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Abstract. A linear stability analysis applied to a system consisting of a
horizontal layers which contains conducting fluid, affected by uniform ver-
tical magnetic field and solute, the fluid with uniform heating from below.
The flow in a fluid layer is assumed to be governed by the Navier-Stokes
equation. Numerical solutions were obtained for stationary convection
case using the method of expansion of Chebyshev polynomials (the spec-
tral method). We conclude that the presence of the magnetic field always
has a stabilizing effect on the flow, and that the increasing of the solute
Marangoni number leads to the increasing of instability in the fluid.
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1 Introduction

The aim of this paper is to investigate the effect of a uniform vertical magnetic field
and solute on the Marangoni instability of horizontal three-dimensional planer layer
of quiescent electrically conducting fluid, with a free surface whose surface tension de-
pends on temperature and solute, subject to a uniform vertical temperature gradient,
within steady stationary instability only. The earliest work on the Marangoni instabil-
ity of a fluid layer heated from below was performed by Pearson [9], who demonstrated
that if the surface tension of the free surface is linearly dependent on temperature
then instability can occur in the form of steady convection cells analogous to those
described by Raleigh [10] in purely bouncy-driven flows. In particular, Pearson’s [9]
linear analysis showed that there is a critical value of a certain non-dimensional group
of parameters below which all disturbances are stable and above which unstable dis-
turbances exist. This non-dimensional group is now called the Marangoni number,
denoted by is defined to be

Ma =
γ(T1 − T2)d

ρνκ
,
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where the constant −γ is the rate of change of surface tension with respect to tem-
perature, T1 is the temperature at the solid lower boundary of the layer, T2 is the
temperature of the undisturbed upper free surface of the layer, d is the thickness of
the layer, ρ is the density, ν is the kinematic viscosity and κ is the thermal diffusivity
of the fluid. Nield [7] included both the effects of thermocapillary and buoyancy in
the bulk of the fluid and found that the two destabilizing mechanisms are tightly
coupled and reinforce one another. One significant limitation of the early work was
that both Person [9] and Nield [7] considered only the problem with a non-deformable
free surface corresponding to the limit of large surface tension. This restriction was
relaxed by Scriven and Sterling [18] who included capillary but not gravity waves at
the free surface. They showed that in this case the liquid layer is always unstable
to sufficiently long wavelength disturbances however small the temperature difference
across the layer is. This result was clarified by Smith [19] who showed that the in-
clusion of gravity waves at the free surface as a stabilizing effect, and results in the
reinstatement of critical Marangoni number below which all disturbances are stable.
Similar results were obtained by Takashima [20] who also showed that when the lower
boundary of the layer is free surface and the upper boundary is solid then the presence
of a vertical temperature gradient can stabilize the layer. Sarma [11] investigated a
layer of fluid in uniform rotation a bout a transverse axis and showed that rotation
has a stabilizing effect on the onset of steady convection.

The effect of a uniform vertical magnetic field on the thermocapillary instabil-
ity of a layer of electrically conducting fluid with a non-deformable free surface was
first considered by Nieled [8] who found that the presence of the field has the effect
of increasing the critical Marangoni number for the onset of steady convection and
is therefore always a stabilizing influence. Maekawa & Tanasawa [5] considered the
same problem with an inclined magnetic field and found that, in this case, steady
convection always sets in the form of longitudinal rolls whose axes are aligned with
the horizontal component of the magnetic field, and furthermore that only the vertical
component of the field has any effect on the critical Marangoni number. Both Nield
[8] and Maekawa and Tanasawa [5] calculated asymptotic expressions for the critical
Marangoni number and wave number in the limit of large magnetic-field strength.
Subsequently Maekawa and Tanasawa [6] extended their analysis to include the effect
of buoyancy in the bulk of the fluid. Wilson [24] was generalized in a series of paper
by Sarma [12, 17] who considered the effect of a magnetic field on both the conduct-
ing and insulating problems with a deformable free surface. Sarma [12, 17] used an
incorrect boundary condition at the free surface in his analysis and so all his results
for systems with a nonzero magnetic field and a deformable free surface need to be
reexamined. The correct description of onset of steady Marangoni convection in the
conducting case was given by Wilson [21, 23]. In the present study, we shall consider
the onset of Marangoni convection in a horizontal fluid layer affected by a uniform
vertical magnetic field and solute. The linear stability equations will be solved using
expansion of Chebyshev polynomials. This method has been used by Abdullah [1] in
the study of the Benard problem in the presence of a non-linear magnetic field and
by Lindsay and Ogden [4] in the implementation of spectral methods resistant to the
generation of spurious Eigenvalue.
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Lamb [3] used this method to investigate an Eigenvalue problem arising from a
model discussing the instability in the earth’s core. Also Bukhari [2] has used this
method to solve multi layers region. The method possesses good convergence char-
acteristics and effectively exhibits exponential convergence rather than finite power
convergence.

2 Problem formulation

We consider an incompressible, Navier-Stokes occupies the horizontal layer 0 ≤ x3 ≤
d. The fluid layer containing two diffusing components, such as heat and solute, and
are subject to constant gravitational acceleration −ge3 and uniform vertical magnetic
field He3. The fluid motion is constrained by a rigid lower boundary maintained at
constant temperature T0 and solutal S0. The upper free boundary whose temperature
Tu and solutal Su are maintained by the radiative transfer of heat into an impinging
passive inviscid fluid at constant temperature T∞ and constant pressure P∞. Surface-
tension effects at the upper surface are allowed for, where the surface tension τ is
dependent on temperature T and solute S according to the simple linear law

τ = τ0 − γ(T − T0)− γ8(S − S0),

where τ0 is constant of the surface tension, the depth of the layer is d. A right handed
system of Cartesian coordinates xi with associated base unit vectors ei where it will
be understood in all subsequent analysis that roman indices take value 1, 2 and 3
whereas Greek indices take value 1 and 2 only. (See figure 1.)

Subject to the Boussinesq approximation and neglecting the effect of buoyancy
in the bulk of the fluid the governing equations for an incompressible, electrically
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conducting fluid in the presence of a magnetic field and solute are:

(2.1)
∂Vi

∂t
+ VjVi,j = − 1

ρ0
P,i + νVi,jj − gδi3 +

µm

4πρ0
HjHh,j ,

(2.2)
∂T

∂t
+ VjT,j = κT,jj ,

(2.3)
∂S

∂t
+ VjS,j = MS,jj ,

(2.4)
∂Hi

∂t
+ VjHi,j = HjVi,j + ηHi,jj ,

(2.5) Vi,i = 0,

(2.6) Hi,i = 0,

here V is the fluid velocity, H is the magnetic field, T is the temperature, g is the
external gravity field, S is the solutal, and P is the magnetic pressure, which is
defined to be P = P + µm

8π H2, where P is the fluid pressure. The properties of the
fluid are represented by the fluid density ρ, the kinematic viscosity ν, the magnetic
permeability µm, the electrical resistivity η = 1

4πσµm
, the thermal diffusivity κ and

the mass diffusivity M . Once V and magnetic induction B have been determined
the current density J and the electric field E can be obtained from the additional
Maxwell equations

J = σ(E + V×B), B = µmH.

In any non-conducting region, the magnetic field satisfies equation (2.6) together with

(2.7) eijk Hk,j = 0.

We neglect buoyancy forces in the bulk of the fluid (equivalent to taking the coefficient
of the thermal expansion and solute expansion of the fluid to be zero) but include the
effect of gravity in the momentum equation (2.1), thus allowing for the presence of
gravity-driven surface wave.
Suppose from the outset that the region exterior to the fluid layer is filled with non-
conducting material so that no currents can flow there. At the boundaries between
conducting and non- conducting, materials, the component of the current density nor-
mal to the interface is zero. At any interface, normal components magnetic induction
are always continuous and so the natural way to guarantee the current condition is to
extend continuity to all components of the magnetic induction. Within an insulating
material, equation (2.6) indicates that H is irrotational so that H is the gradient of
φ(t, xi) where φ is a solution of the Laplace equation since divH = 0, that is

Hi = Hδi3 + φ,i, φ,jj = 0.
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Since x3 = 0 is a rigid boundary at a both fixed temperature T0 and salinity S0 then
the appropriate boundary conditions there are

Vi = 0, T = T0, S = S0, Bi = µmHi continuous

With irrotational magnetic field in x3 < 0. The treatment of the upper boundary x3 =
d is more involved since it can move. Suppose that it has equation x3 = d + F (t, xα)
at time t with unit normal n = niei directed from the viscous fluid in to the passive
inviscid fluid. The boundary conditions come from four sources. General radiation
conditions heat and mass transfer are

(2.8) T,ini + L(T − T∞) = 0,

(2.9) S,ini + C(S − S∞) = 0,

where L and C are constants. Material surface fluid particles on the surface x3 =
d + F (t, xα) remain there and so

(2.10) V3 − ∂F

∂xα
Vα =

∂F

∂t

Magnetic condition since the region x3 > d is electrically insulating then Bi = µmHi

is continuous across x3 = d and the magnetic field in x3 > d is irrotational, that is,
derived from a potential function.

The stress conditions have the components given by

τ,α aαβ xi,β + τ bα
α ni = −P∞ni −

(
P +

µm

8π
H2

)
ni

+ ρ0ν
(
Vi,j + Vj,i

)
nj +

µm

4π
(Hjnj)Hi,

where aαβ is the surface metric tensor, τ is the surface tension and bα
α is the mean

curvature of the interface.

This can be decomposed further into the normal and tangential components,

(2.11) τ(T, S) bα
α = −P∞ − (

P +
µm

8π
H2

)
+ 2ρ0 ν Vi,j ni nj +

µm

8π
(Hjnj)2,

(2.12) τ,α = ρ0 ν (Vi,j + Vj,i) nj xi,α +
µm

4π
(Hjnj)(Hi xi,α).

It is easily verified that equations (2.1)-(2.4) have a steady state conduction solution
in which the viscous fluid is stationary, the top surface is flat, the magnetic field is
constant at the imposed value and the fluid interior is permeated by temperature,
mass concentration and pressure fields which are functions of x3 only. The actual
solution satisfying all the boundary conditions on x3 = 0 and x3 = d is

Vi = 0, Hi = Hδi3, F (xα, t) = 0.
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(2.13) TE(x3) = T0 + βx3, SE(x3) = S0 + β8x3.

PE = P∞ + ρ0 g (d− x3),

where β, β8 denote temperature gradient and concentration gradient respectively and
are determined from the thermal and solute boundary conditions at x3 = d,the ther-
mal and solute conditions at x3 = 0 being satisfied trivially. In the equilibrium
temperature profile in (2.13) and the conditions (2.8), (2.9) thus lead

Tu =
T0 + Nu T∞

1 + Nu
, Su =

S0 + Nus S∞
1 + Nus

,

β d =
Nu

1 + Nu
(T∞ − T0), β8 d =

Nus

1 + Nus
(S∞ − S0),

where Nu, Nus are the Nusselt numbers such that

Nu = L d, NusC d,

the Nusselt numbers Nu and Nus may take values between 0 and ∞. Nu −→ 0
corresponds to an insulating boundary, while Nu −→ ∞ corresponds to an conduct-
ing boundary, also Nus −→ 0 corresponds to an impermeable boundary, whereas
Nus −→ ∞ to a permeable boundary, suppose small perturbation of velocity, pres-
sure, magnetic field, temperature and solute concentration about their equilibrium
value PE(x3), He3, TE(x3) and SE(x3) so that

Vi = 0 + νi, P = PE(x3) + p, Hi = H δi3 + hi,

T = TE(x3) + θ, S = SE(x3) + s.

It can be established easily from (2.1)-(2.4) that p, hi, θ and s satisfy the field equa-
tions

(2.14)
∂νi

∂t
+ νj νi,j =

−1
ρ0

p,i + ν νi,jj +
µm

4πρ0
(Hhi,3 + hj hi,j),

(2.15)
∂θ

∂t
+ β ν3 + νj θ,j = κ θ,jj ,

(2.16)
∂s

∂t
+ β′ ν3 + νj s,j = M s,jj

(2.17)
∂hi

∂t
+ νj hi,j = hj νi,j + H νi,3 + η hi,jj ,

Where ν and h are solenoidal vector fields. The boundary conditions on the lower
boundary x3 = 0 become θ = 0, s = 0, νi = 0, µmhi is continuous, while, the
conditions on the upper boundary x3 = d+F (t, xα) corresponding to (2.8)-(2.10) are
modified respectively to

(2.18) (n3 − 1)(Tu − T0) + d ni θ,i + Nu θ + Nu (Tu − T0)
F

d
= 0,
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(2.19) (n3 − 1)(Su − S0) + d ni s,i + Nus s + Nus (Su − S0)
F

d
= 0,

(2.20) ν3 − ∂F

∂xα
να =

∂F

∂t
,

The modified form of normal component of (11) is

τ(T, S) bα
α = −p +

µm

8π

(
(hjnj)2 + 2H n3 hj nj

)
+ ρ0 g F

− µm

8π
H2(1− n2

3) + 2 ρ0 ν νi,j ni nj ,(2.21)

whereas the tangential surface stress condition (12) yields

(2.22)
∂τ

∂T
T,α +

∂τ

∂S
S,α = ρ0 ν (νi,j + νj,i)nj xi,α +

µm

4π
(Hn3 + hjnj) (hi xi,α).

In (22) it is assumed that the derivative of the surface tension with respect to tem-
perature and concentration are evaluated at

T = Tu + (Tu − T0) d−1 F + θ, S = Su + (Su − S0) d−1 F + s.

3 Non-dimensionalization

To simplify the analysis we introduce non-dimensional variables. Spatial coordinates
xi are scaled with respect to d, time t with respect to d2

κ so that, the non-dimensional
form of the upper surface becomes x3 = 1 + f(t, xα). Similarly, perturbed velocity
components are scaled with respect to ν

d , magnetic field components with respect
to Hκ

η , pressures with respect to ρ0 ν2

d2 , temperatures with respect to |T0−Tu| ν
κ , and

saltinity |S0−Su| ν
M . Non-dimensionalizing the equations and boundary conditions give

rise to nine non-dimensional groups, namely the Prandtl number, Pr, defined as Pr =
ν
κ , the magnetic Prandtl number, Pm, defined as Pm = η

κ , the Chandrasekhar number,
Q defined as Q = µm H2 d2

4π ρ0 ν η , the Schmidt number, Sc, defined as Sc = ν
M , the Lewis

number, Le, defined as Le = M
κ , the Marangoni numbers, Ma, Mas, defined as

Ma = −∂τ
∂T

d |T0−Tu|
ρ0 ν κ , Mas = −∂τ

∂S
d |S0−Su|

ρ0 ν M , the Crispation number, Cr, defined as

Cr = ρ0 ν κ
d τ(Tu,Su) , and the Bond number, B0, defined as B0 = ρ0 g d2

d τ(Tu,Su) .

4 Linearized problem

Until now the analysis has been exact. Henceforth suppose that perturbations in
ν, h, θ, s and p are small that their products can be ignored whenever they occur.
Equations become

(4.1) P−1
r

∂νi

∂t
= −p,i + νi,jj + Q P−1

r hi,3,
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(4.2)
∂θ

∂t
= ξT ν3 + θ,jj ,

(4.3)
1
Le

∂s

∂t
= ξsν3 + s,jj ,

(4.4) P−1
m

∂hi

∂t
= νi,3 + hi,jj ,

Where ξT = sign(T0 − Tu) and ξs = sign(S0 − Su) indicates the boundary at which
heat and solute are supplied. Such that

ξT = sign(T0 − Tu) =
{

+1 when heating from below
−1 when heating from above

ξs = sign(S0 − Su) =
{

+1 when soluting from below
−1 when soluting from above

The boundary condition on the lower boundary x3 = 0 are unchanged. On the upper
boundary x3 = 1 + f(t, xα) the outward unit normal has components

n1 =
−f,1√

1 + f2
,1 + f2

,2

, n2 =
−f,2√

1 + f2
,1 + f2

,2

, n3 =
1√

1 + f2
,1 + f2

,2

,

so that the Linearized upper boundary condition are

Pr
∂θ

∂x3
+ Nu(Pr θ − ξT f) = 0,

Sc
∂s

∂x3
+ Nus(Sc s− ξs f) = 0,

ν3 = P−1
r

∂f

∂t
,

lim
x3→1−

hi =
µ0

µm
lim

x3→1+

∂φu

∂xi
,

Cr−1P−1
r bα

α = −p + QP−1
r h3 + B0Cr−1P−1

r f + 2
∂ν3

∂x3
,

−Ma P−1
r (Prθ,α − ξT f,α)−Mas S−1

c (Sc s,α − ξsf,α) = ν3,α +
∂να

∂x3
+ Qh,α.

Recall that the magnetic field on insulating material is irrotational and is derived
from a potential function φ(x, t) which is the solution of Laplace equation. Let φ =
ψ(t, x3) ei(px1+qx2) then

∂2ψ

∂x2
3

− a2ψ = 0, a2 = p2 + q2,
∂ψ

∂x3
→ 0 as |x3| → ∞.
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Where a =
√

p2 + q2 the dimensionless wave number. Trivially φ0 and φu have
functional form

φ0 = C0(t)eax3 ei(px1+qx2), φu = Cu(t)e−ax3 ei(px1+qx2).

When x3 < 0 then h = C0(t)(ip, iq, a) and continuity of the magnetic induction across
x3 = 0 requires that

h3,3 =
1

µm
b3,3 =

−1
µm

bα,α =
µ0

µm
a2C0(t) =

a

µm
b3 = ah3.

With a similar argument on x3 = 1+f(t, xα), hence the magnetic boundary conditions
are

∂h3

∂x3
− ah3 = 0, x3 = 0,

∂h3

∂x3
+ ah3 = 0, x3 = 1.

We put ω = ν3, h = h3 and take the double curl of equation (4.1), to obtain

(4.5) P−1
r

∂

∂t
∇2ω −QP−1

r ∇2Dh = ∇4ω,

(4.6)
∂θ

∂t
= ξT ω +∇2θ,

(4.7)
1
Le

∂s

∂t
= ξsω +∇2s,

(4.8) P−1
m

∂h

∂t
= ∇2h + Dω,

Where D = ∂
∂t , ∇2 the three-dimensional Laplacian operator. Now the boundary

conditions on x3 = 0 become

ω = 0, θ = 0, Dω = 0, s = 0, Dh− ah = 0.

While on x3 = 1 the boundary conditions are

Pr Dθ + Nu(Prθ − ξT f) = 0,

Sc Ds + Nus(Sc s− ξsf) = 0,

ω − P−1
r

∂f

∂t
= 0,

Dh + ah = 0,

42f − fB0 − CrPr(−p + 2Dω + QP−1
r h) = 0,

−Ma P−1
r 42(Prθ − ξT f)−Mas S−1

c 42(Sc s− ξsf)− (42ω + D2ω + QDh) = 0,
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Where 42 = ∇2 − ∂2

∂z2 (two-dimensional Laplacian operator). Normal mode solution
is sought for equations (4.5)-(4.8) in the form

φ(t, xi) = φ(x3) ei(px1+qx2)+σt, φ = {ω, h, p, θ, s}.
f(t, xα) = f0e

i(px1+qx2)+σt, f0 is constant,

where σ is an eigenvalue of the system.

(4.9) σ P−1
r (D2 − a2) ω − σ Q P−1

m P−1
r Dh = (D2 − a2)2ω −QP−1

r D2ω,

(4.10) σ θ = ξT ω + (D2 − a2) θ,

(4.11)
σ

Le
s = ξs ω + (D2 − a2) s,

(4.12) σ P−1
m h = (D2 − a2) h + Dω.

The boundary conditions on x3 = 0 are

ω = 0, θ = 0, Dω = 0, s = 0, Dh− ah = 0.

As a preamble to the formulation of the final boundary conditions on x3 = 1, the
pressure everywhere is given by the equation

p =
1
a2

(D3ω − a2Dω + QP−1
r D2h− σP−1

r Dω).

Hence the boundary conditions on x3 = 1 are

Pr Dθ + Nu(Prθ − ξT f0) = 0,

Sc Ds + Nus(Sc s− ξsf0) = 0,

ω = σP−1
r f0,

Dh + ah = 0,

a2(B0 + a2)f0 − CrPr(D3ω − 3a2Dω −QP−1
r Dω) = σCr(QP−1

m h−Dω),

(D2 + a2)ω + Ma P−1
r (Prθ − ξT f0)a2 + Mas S−1

c (Sc s− ξsf0)a2 = 0.

5 Results and discussion

The Eigenvalue problem consists of a 10 ordinary differential equation of first order
with 10 boundary conditions. This problem is solved using method based on series
expansion of Chebyshev polynomials. In this paper we will discuss the numerical
results in two ways, first, the Marangoni convection when free non-deformable surface
is, second, the Marangoni convection when free surface is deformable.
1- Non-deformable free surface Cr = 0 The numerical results of this state are
found by two stages: the first stage to find the thermal Marangoni number Ma versus
the wave number a by considering chosen values of the non-dimensions constants Pr,
Pm, Q, Nu, Nus, Le, Mas and B0. And the second stage is founding the critical
values of thermal Marangoni number for deferent values of Q, Nu, Nus, Mas, we
found the following results will be held:
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1. When the fluid faces uniform vertical magnetic field, it helps to reduce the
Marangoni convections as shown in figure (2).

2. If the free surface conducts, the heat is great, this cause great reducing the
currents of Marangoni convections and this means that the stability will increase
in the fluid as shown in figure (3).

3. If the free surface is permeable for the solute, this helps weakly to reduces the
currents of Marangoni convections as shown in figure (4).

4. The increasing of the solute Marangoni number Mas means the increasing of
Marangoni convection that leads the increase instability of the fluid as shown
in figure (5).

5. The increasing of free surface deformation leads to generate stationary instabil-
ity that controlled by forces of surface tension either the surface is conducing
the heat source as shown in figure (6) or not as shown in figure (7).

6. There is a direct relation between the critical thermal Marangoni number Mac,
and Nusselt number of heat Nu as shown in table (1) and this assure what we
found in paragraph 2.

7. There is a direct relation between the critical thermal Marangoni number Mac

and Nusselt number of solute as shown in table (2) and this assure what we
found in paragraph 4.

8. There is a reversal relation between the critical thermal Marangoni number Mac

and the solute Marangoni number Mas as shown in table (3) and this assure
what we found in paragraph 4.

9. There is a direct relation between the critical thermal Marangoni number and
Chandrasekhar number Q. If the free surface is the following cases: case 1, it
doesn’t conduct the heat, case 2, it isn’t permeable for the solute, case 3, it
doesn’t conduct and is not permeable, and case 4, it conducts and it is perme-
able, it case 5, it is not permeable and it conducts as shown in table (4).
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Fig.2. The relation between thermal Marangoni number Ma and wave number a for
various of Chandrasekhar number Q when Mas = 100, Nu = Nus = 0, B0 = 0,

Pr = Pm = 20, Le = 1.

Fig.3. The relation between thermal Marangoni number Ma and wave number a for
various of Nu when Mas = 100, Nus = 0, Pr = Pm = 20, B0 = 0.1, Le = 1.
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Fig.4. The relation between thermal Marangoni number Ma and wave number a for
various of Nus when Mas = 100, Nu = 0, Pr = Pm = 20, B0 = 0.1, Le = 1, Q = 50.

Fig.5. The relation between thermal Marangoni number Ma and wave number a for
various of Mas when Q = 50, Nu = Nus = 0, Pr = Pm = 20, B0 = 0.1, Le = 1.
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Fig.6. The relation between thermal Marangoni number Ma and wave number a for
various of Cr when the free surface conducts the heat and Mas = 100,

Nu = Nus = 0, Pr = Pm = 20, B0 = 0.1, Le = 1, Q = 50.

Fig.7. The relation between thermal Marangoni number Ma and wave number a for
various of Cr when the free surface insulating the heat and Mas = 100, Nus = 0,

Pr = Pm = 20, B0 = 0.1, Le = 1, Q = 50.

Nu Mac ac

0 192.862266 2.189
5 568.113841 2.189
10 943.365415 2.189
15 1318.61698903 2.189
20 1693.86856327 2.189
25 2069.12013752 2.189
30 2444.37171177 2.189
35 2819.62328602 2.189
40 3194.87486026 2.189
45 4144.31829932 1.94
50 4582.29034882 1.94

Table (1):- Critical Marangoni number Mac and wave number ac for various Nu
when Q = 50, Nus = 0, Mas = 0, Pr = Pm = Le = 10, B0 = 0.1.
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Nus Mac ac Mas Mac ac Mas

0 182.862266 2.1890 10 92.862266 2.1890 100
200 191.554073 2.1890 10 183.232839 2.1890 100
400 191.602867 2.1890 10 183.75288 2.1890 100
600 191.619253 2.1890 10 183.927483 2.1890 100
800 191.627470 2.1890 10 184.015058 2.1890 100
100 191.632407 2.1890 10 184.067683 2.1890 100
1200 191.635702 2.1890 10 184.102800 2.1890 100
1400 191.638057 2.1890 10 184.127899 2.1890 100
1600 191.639823 2.1890 10 184.146733 2.1890 100

Table (2):- Critical Marangoni number Mac and wave number ac for various when
Nus when Mas = 0, Pr = Pm = Le = 10, B0 = 0.1, Q = 50, Nu = 0.

Mas Mac ac

0 192.8622 2.1890

10 182.8622 2.1890

20 172.8622 2.1890

30 162.8622 2.1890

40 152.8622 2.1890

50 142.8622 2.1890

60 132.8622 2.1890

70 122.8622 2.1890

80 112.8622 2.1890

90 102.8622 2.1890

100 92.8622 2.1890

Table (3):- Critical Marangoni number Mac and wave number ac for various Mas when
Q = 50, Nu = Nus = 0, Pr = Pm = Le = 10, B0 = 0.1.

Q Nu = 0, Nus = 0 Nu = 0, Nus →∞
Mac ac Mac ac

0 -20.393 1.99 79.586 1.99

10 3.690 2.17 101.230 2.17

20 26.505 2.18 122.077 2.18

30 48.929 2.18 142.871 2.18

40 71.031 2.18 163.600 2.18

50 92.862 2.18 189.257 2.18

60 114.460 2.18 204.839 2.18

70 135.856 2.18 225.347 2.18

80 157.076 2.18 245.782 2.18

90 178.141 2.18 266.147 2.18

Table (4):- Critical Marangoni number Mac and wave number ac for various Q when
(Nu = 0, Nus = 0), (Nu = 0, Nus →∞), B0 = 0.1, Pr = Pm = Le = 10, Mas = 0.
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Q Nu →∞, Nus →∞ Nu →∞, Nus = 0

Mac ac Mac ac

0 358168.699 2.18 -102585.21 1.81

10 440129.695 2.18 -5870.598 2.15

20 520018.482 2.18 74571.912 2.18

30 599907.269 2.18 152751.780 2.18

40 675000.549 2.18 229533.490 2.18

50 750596.076 2.18 305126.713 2.18

60 825171.766 2.18 379700.127 2.18

70 898859.951 2.18 453388.482 2.18

80 971773.192 2.18 526300.645 2.18

90 1044005.875 2.18 598525.659 2.18

Table (4’):- Critical Marangoni number Mac and wave number ac for various Q when
(Nu →∞, Nus →∞), (Nu →∞, Nus = 0), B0 = 0.1, Pr = Pm = Le = 10, Mas = 0.

2- deformable free surface Cr 6= 0. The numerical results of this state is find
the thermal Marangoni number Ma versus the wave number a by considering chosen
values of the non-dimensions constants Pr, Pm, Q, Nu Nus Le Mas B0.When Cr =
0.001, so we found the following results:

1. When the fluid faces uniform vertical magnetic field, it helps to reduce the
Marangoni convections as shown in figure (8).

2. If the free surface conducts, the heat great, this cause great reducing the currents
of Marangoni convections as shown in figure (9).

3. If the free surface is permeable for the solute, this helps to reduce the currents
of Marangoni convections as shown in figure (10).

4. The increasing of the solute Marangoni number increases the Marangoni con-
vections as shown in figure (11).

5. When we put Cr = 0, we obtain the first state and this means that the state is a
generalization for the pervious state. Moreover, we observe that the overstable
Marangoni convection appears when we take Cr as the values not equal zeros.
Also, the deformation and increasing in Marangoni number of solute lead to the
overstable Marangoni convection quickly.
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Fig.8. The relation between thermal Marangoni number Ma and wave number a for
various of Chandrasekhar number when Mas = 100, Nu = Nus = 0, Pr = Pm = 20,

B0 = 0.1, Le = 1.

Fig.9. The relation between thermal Marangoni number Ma and wave number a for
various of Nu when Mas = 100, Nus = 0, Pr = Pm = 20, B0 = 0.1, Le = 1, Q = 50.

Fig.10. The relation between thermal Marangoni number Ma and wave number a
for various of Nus when Mas = 100, Nu = 0, Pr = Pm = 20, B0 = 0.1, Le = 1,

Q = 50.
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Fig.11. The relation between thermal Marangoni number Ma and wave number a
for various of Mas when Q = 50, Nu = Nus = 0, Pr = Pm = 20, B0 = 0.1, Le = 1.
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