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Abstract 

 

Improved crop production is very important in Africa, especially in such time when food required exceeds food produced. However, 

improved yield is constrained by a number of biophysical factors including poor planting density, cropping systems and low yielding 

crop components in mixtures. Manipulation of these factors will not only improve plant growth and grain yield in systems with 

limited external inputs but will also provide food security and poverty alleviation in small scale farming systems. This review 

presents the possible influence of these factors on; rhizosphere mineral elements concentration, acid and alkaline phosphatase 

activities, flavonoids and anthocyanins concentrations, N2-fixation, photosynthetic activities, leaf chlorophyll contents and their 

effect on yield improvement in crop components in mixtures. 

 

Keywords: chlorophyll content, phosphatase activities, photosynthesis rate, nutrient concentration, rhizosphere soil. 

Abbreviations: LER = Land equivalent ratio, RuBP = Ribulose biphosphate, Rubisco = ribulose-1 - 5-bisphosphate 

carboxylase/oxygenase. 
 

 

Introduction 
 

The recent global increases in food and fuel prices have 

increased the pressure on the agricultural production systems 

and have caught the attention of many scientists. Previous 

FAO reports on the state of global food insecurity have 

shown that about 800 million people in developing countries 

have insufficient food to eat (FAO, 2000). In sub-Saharan 

Africa, the food crisis is chronic even though high 

proportions (70 - 85%) of Africans are active in agriculture 

(Borlaug, 1991). For example, Africa produced only 5.3% of 

the world’s total cereal crop yield and many reports show that 

food imports into Africa have increased in the past decade 

(FAO, 2000; von Braun and Paulino, 1990; World Bank, 

1989). According to the World Bank the increase rate of 

cereal yield in Africa was as low as 0.7% over the years, as 

opposed to the growth rates of 1.2 - 2.3% in other developing 

regions of the world (AGRA, 2007). The above mentioned 

trends are due to low soil fertility, low grain yield, poor N2 

fixing cultivars and cultural practices, severe pests and 

disease infestations (Boserup, 1981; Cooper et al., 1996; 

Sanchez et al., 1997). To reverse these trends and increase 

production of these crops, concerted efforts are needed by 

various key players. These must be targeted at improving soil 

fertility; identifying high yielding and N2 fixing genotypes 

which are predominantly common in Africa and developing 

cultural practices which may confer resistance to insect pest 

and enhance yield stability. This may be achieved by altering 

plant densities and cropping systems. Cowpea (Vigna 

unguiculata L. Walp.) is among the indigenous African grain 

legumes grown extensively throughout Africa. It is the most 

important food legume, fodder and cover crop (Padulosi and 

Ng, 1990; Jackai and Adalla, 1997). In addition, to its early 

maturity potentials, it is versatile in adaptation, drought 

tolerance, and has a broad range of local genetic diversity. 

Nutritionally, cowpea grain is rich in protein (20.5 - 31.7%), 

carbohydrates (56.0 - 65.7%); fat (1.1 - 3.0%), fiber (1.7 - 

4.5%) and moisture (6.2 - 8.9%) (Onwuliri and Obu, 2002). 

The green leaves and young pods of cowpea contain up to 

35% protein and are eaten as vegetables. Cowpea also 

contains other essential nutrients, such as Ca, Fe, nicotinic 

acid and thiamine (Platt, 1962). Similar to other grain 

legumes, cowpea has been shown to contain several other 

important phytochemicals rich in health-related properties 

(Anderson et al., 1999). Some of the known health promoting 

phytochemicals in cowpea include phytosterols, saponins, 

isoflavone, phenolic compounds and antioxidants (Narasinga, 

1995; Warrington et al., 2002). Likewise, compounds such as 

flavonoids, anthroquinones, anthocyanidins and xanthones 

commonly present in these legumes, possess remarkable 

antioxidant activity (Siddhuraju et al., 2002). Diets rich in 

polyphenolic compounds have been associated with longer 

life expectancy due to their richness in health-related 

properties such as anticancer, antiviral, anti-inflammatory 

activities, effects on capillary fragility and ability to inhibit 

human platelet aggregation (Stampfer et al., 1993; 

Deshpande et al., 1996; Hertog and Hollman, 1996). In this 

regard, increased dietary intake of natural flavonoids and 

anthocyanins through these legumes may greatly correlate 

very well with increased health benefits mentioned above. 

Cowpea has the potential for high grain yields of up to 3,000 

kg.ha-1 (Rusoke and Rubaihago, 1994). However, cowpea 
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grain yields vary widely and are in the average of 200 - 400 

kg.ha-1 in Uganda (Sabiti et al., 1994), 200 - 300 kg.ha-1 in 

Nigeria (Alghali, 1992), 400 - 1,000 kg.ha-1 in Cameroon 

(Langyintuo et al., 2003), 50 - 300 kg.ha-1 in Niger 

(Sivakumar et al., 1996) and from 1,100 – 1,400 kg.ha-1 in 

Ghana (Adjei-Nsiah et al., 2008). This implies that farm 

yields of cowpea ranges between 1.7% and 46.7% of its 

potential. The observed low yields are attributed to several 

constraints, including various biological and environmental 

factors, low levels of symbiotic N2 fixation, high genotypic 

variation and poor cultural practices (Onwuliri and Obu, 

2002). To increase cowpea production, further work is 

required on the selection of high yielding genotypes and the 

assessment of them in different plant densities and cropping 

systems. Growing cowpea and cereals as intercrops for food 

production is popular among subsistence farmers in the 

tropics, sub-tropics, semi arid regions, humid tropics, 

Mediterranean regions and temperate climates (Francis, 

1986). For example it was estimated that 99% of cowpea and 

75% of maize (Zea mays L.) in Nigeria are grown as mixed 

culture (Okigho and Greenland, 1976). In Ethiopia, most of 

the bean production is from mixed culture systems (Seyoum, 

1990). Similarly, in Latin America where 60% of maize and 

80 - 90% of beans (Phaseolus vulgaris L.) are produced by 

small farmers from mixed culture system (Francis et al., 

1976). In Spain, 40% of the cultivated land is used for 

intercropping (MAPA, 1999). Most of these farmers have 

adopted this system because they want to maximise space 

and plant growth resources (Lie et al., 2003b) as well as crop 

quality and quantity (Mpairwe et al., 2002). However, until 

recently yields and N2 fixation from farming practices in 

Africa has been disappointing and is mainly attributed to 

poor agronomic practices and low yielding cowpea genotypes 

used by farmers. Sorghum is the fifth most important small 

grain cereal crop after wheat, rice, maize and barley (FAO, 

2005). It is produced in drier areas of the tropics, often grown 

in mixture with cowpea in low input cropping systems. In 

Africa, well managed sorghum crop yields ranged from 1,700 

- 4,800 kg.ha-1 (Rohrbach et al., 2005) compared with the 

currently reported yields of less than 600 kg.ha-1. Growing 

sorghum in mixture or in succession with cowpea or any 

other grain legume is one way of improving grain yield. For 

example sorghum grain yield has been reported to reach 

1,620 kg.ha-1 following legume crop compared with 420 

kg.ha-1 by continuously growing sorghum (Ncube et al., 

2007). Similarly, growing sorghum in mixture with peanuts 

(Arachis hypogea L.) has been shown to be more productive 

than mono crops combined (Azam-Ali et al., 1990). There is 

limited information on how different legume plant densities 

and cropping systems affect sorghum when grown with 

cowpea genotypes. Plant density defines the number of plants 

per unit area, which in turn, determines the size of the area 

available to the individual plant (Wiley, 1979). Plant 

population is among the major cultural practices that impact 

on light regimes of the canopy as well as interplant 

competition, consequently affecting canopy structure and 

light conversion efficiency (Akunda, 2001). Greater pressure 

on growth resources has been reported from higher plant 

densities compared with lower plant densities (Wiley and 

Osiru, 1972). For instance, in soybean (Glycine max. L.), 

high plant density may influence the extent of the fibrous root 

system which contributes to enhanced drought tolerance 

(Pantalone et al., 1999). Similarly, high plant stand may 

influence foliage arrangement and increased light 

interception (Fisher and Wilson, 1976). In soybean-sorghum 

mixed culture, Akunda (2001) reported that varying plant 

density may be a viable alternative of manipulating the 

productivity of crops through their changes in physiological 

processes. This review seeks to assess the influence of plant 

density and mixed culture on rhizosphere nutrients, 

phosphatase activities, flavonoids and anthocyanins 

concentration, N2 fixation, photosynthesis and chlorophyll 

content and yield of cowpea genotypes grown with sorghum. 

 

Some rhizosphere chemical reactions and mineral 

elements concentration as affected by plant densities, 

mixed culture practices and different legume genotypes 
 

Several studies have indicated that the rhizosphere pH is 

greatly influenced by; the relative proportions of cations and 

anions absorbed by the plant root (Marschner, 1986; Haynes, 

1990), the corresponding differences in net excretion of H+ 

and HCO3
- (or OH-), excretion of organic and amino acids 

(Marschner et al., 1987) and release of CO2 from the roots 

(Laurent and Eric, 1994). Legumes such as cowpea growing 

in mixed culture with cereals have the ability to modify soil 

pH in their rhizosphere (Muofhe and Dakora, 2000; Rao et 

al., 2002; Li et al., 2004b) through different mechanisms such 

as response to stress on plant growth in different cropping 

systems. These mechanisms include net positive excess 

cations over anions entering the roots of N2-fixing legumes 

with characteristic release of protons (Romheld, 1986; 

Gahoonia et al., 1992). Other mechanisms include changes in 

redox potential induced by plant roots in the rhizosphere 

resulting into the release of proton (Ahmad and Nye, 1990), 

enhanced release of H+ as a response to P-deficiency 

localised behind the root tip as those reported in maize and 

rape (Brassica napus L.) intercrops (Gregory and Hinsinger, 

1999) and root excretion of carboxylic acids which are 

capable of mobilising P by ligand exchange or dissolution 

and occupation of P-sorption sites (Fox et al., 1990; Gerke, 

1995). More recently, Rao et al. (2002) concluded that 

rhizosphere acidification was light induced and is regulated 

by photosynthetic activity rather than excess cations uptake 

in the rhizosphere. These researchers arrived at this 

conclusion after a NO3-fed non-symbiotic cowpea plants was 

put under illumination and significantly raised protons 

concentration in their rhizosphere similar to the 

aforementioned mechanisms. As a result of these 

mechanisms, mineral elements which are otherwise 

unavailable such as P, K, Ca, and Mg become available for 

plant nutrition (Vandermeer, 1989; Hauggaard-Nielsen and 

Jensen, 2005). To date, few studies have reported on the 

chemistry of the rhizosphere soil, involving complex plant 

densities, cropping systems and genotypes. A better 

understanding of such interactions is therefore important.  

 

Phosphatase activities in plant roots and soils as 

influenced by plant densities, cropping systems and 

legume genotypes 

 

Phosphatase enzyme activity has been traditionally classified 

as being acid or alkaline (Vincent et al., 1992). Acid 

phosphatase enzymes are the principal component of root 

exudates and occur widely in plant organs (Duff et al., 1994). 

On the other hand, alkaline phosphatase activity is fungus 

and bacteria borne mostly found in the soil (Nakas et al., 

1987; Tarafdar and Claassen, 1988). Accordingly, these 

enzymes are involved in the mobilisation of P within the 

rhizosphere of many cropping systems (Marschner, 1995; 

Strom, 1997).  For example, release of acid phosphatase from 

roots as root exudates has been implicated as a mechanism to 

enhance the availability of sparingly soluble mineral 

elements such as P, Zn, Fe, and Cu (Marschner, 1995; Jones 
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et al., 1996a). There is evidence that acid phosphatase play 

major roles in; remobilising internal P from plant organs 

(Duff et al., 1991; de Pozo et al., 1999; Baldwin et al., 2001), 

facilitating release of P from organic P-esters by exudation of 

these enzymes into the rhizosphere (Lefebvre et al., 1990; 

Miller et al., 2001) and synthesizing glycolate from P-

glycolate (Christella and Tolbert, 1978) as well as glycerate 

from 3-PGA during photorespiration (Randall et al., 1971). 

The P released is then available for plant nutrition. Such 

actions could be complex and may benefit the mixed culture 

systems. Phosphatase activity is greatly affected by soil 

physical-chemical properties, management practices and 

cropping systems (Alvarez and Guerrero, 2000; Criquet et al., 

2000). Several studies have shown that in different 

agronomical settings, plants strongly compete with each other 

for resources (Tilman, 1988; Vandermeer, 1989). In mixed 

culture systems for instance, optimum intercrop yield 

advantage is achieved by maximising complementarity while 

minimising competition between component crops (Willey, 

1979; Vandermeer, 1989). The reduction in competition has 

been suggested to be a primary reason for improved total 

yields in mixed culture systems (Vandermeer, 1990). Apart 

from complementary resource use, facilitation has been 

suggested as a mechanism for obtaining greater total yields in 

intercrops as opposed to monoculture. Such beneficial 

interaction could be the result of increased resource 

availability through root induced changes in the rhizosphere 

including phosphatase activities (Ae et al., 1990; 

Vandermeer, 1990). There is evidence that crops that are very 

good at accessing sparingly available P can have a favourable 

effect on plants with which they are in mixture with (Horst 

and Waschkies, 1987; Li et al., 2003a). However, plant 

species and cultivars possess diverse root morphological 

(Gahoonia et al., 1997) and physiological (Neumann et al., 

1999) mechanisms for adapting to low P supply with varying 

P mobilising processes. Although there is vast literature on 

acid and alkaline phosphatase activities, effect of different 

plant densities and cropping systems on these activities 

(when cowpea and other leguminous genotypes are grown in 

mixture with cereals such as sorghum) are still inadequate. 

Availability of such information will provide more 

understanding of the dynamics of phosphatase activities in 

mixed cultures and establish their effect on the availability of 

plant nutrients in such complex systems. 

 

Flavonoids and anthocyanins concentrations as affected 

by plant densities and cropping systems 
 

Flavonoids and anthocyanins are the major secondary 

metabolites which occur widely in most plants with a 

characteristic wide range of colours (Linda, 1999; Dieter, 

2006). Physiologically, they are beneficial to the plant itself 

by acting as effective antioxidants in photosynthetic tissues 

and screening harmful incident radiation (Hashimoto and 

Tajima, 1980; Balakumar et al., 1993; Rice-Evans et al., 

1997). They also act as protectants of plants from insect pest 

infestations, diseases and oxidative cell injury (Hedin et al., 

1983; Harborne, 1988). On the other hand, the accumulation 

of these compounds may act as a signal of nutrient limitation 

in a low plant/soil nutrient environment. For example, 

flavonoids and anthocyanins accumulation has been related 

to common nutrient (P, N, K, S, Mn and B) deficiency 

symptoms in a variety of plants (Murali and Teramura, 1985; 

Close et al., 2000). These nutritional stresses have been 

reported to increase flavonoids concentration by regulating 

availability of substrates expression of enzymes responsible 

in their synthesis (Yamakawa et al., 1983; Plaxton and 

Carswell, 1999). However, some flavonoids induce spore 

germination and hyphae growth in the establishment of 

vesicular arbuscular mycorrhizal symbiosis, which is 

important in P acquisition, uptake and improved soil plant 

water relationship. Similarly, some studies have shown that 

flavonoids also act as chemo-attraction in the legume-

rhizobium symbiosis at the onset of N2 fixation process 

(Caetano et al., 1988; Khan and Bauer, 1988). For example, 

there is sufficient evidence that some plant flavonoids such as 

genistein, daidzein and coumestrol function as signals to N2-

fixing microbes leading to interaction with NodD protein of 

the (Brady) rhizobium cells, thus, inducing expression of 

nodulation (nod) genes, consequently nodule formation and 

N2 fixation (Long, 1989; Recourt et al., 1992; Dakora et al., 

1993a; Dakora and Phillips, 1996; Hungria and Stacey, 1997; 

Philips, 2000). Furthermore, a group of flavonoids have also 

been identified as haustoria inducers that promote suicidal 

germination of Striga, a notorious parasitic crop weed in 

cereals and legumes (Steffens et al., 1982; Ndakidemi and 

Dakora, 2003). Sorghum has been reported to contain 

flavonoids such as flavonols, flavonones, flavons and 

anthocyanins (Haslam, 1998). The most abundant 

anthocyanins in sorghum grain are 3-deoxyanthocyanidins 

e.g. apigeninidin and luteolinidin (Awika et al., 2004b) which 

are particularly abundant in red and black sorghum grain 

(Dicko et al., 2005a) but rare or absent in other plants (Awika 

et al., 2004b). In black sorghum for example, apigeninidin 

and luteolinidin accounted for 50% of the anthocyanins 

content (Awika et al., 2004a). Apigeninidin and luteolinidin 

(3-deoxyanthocyanidins) are of interest because they are 

more stable in organic solvents as well as in acidic solutions 

than anthocyanidins found in other cereals. Sorghum has 

been suggested to have a potential advantage as a viable 

commercial source of anthocyanins reported to have good 

antioxidant activity (Awika and Rooney, 2004a). It was 

recently reported that proanthocyanidins such as those found 

in plants may inhibit the growth of several viruses including 

human immunodeficiency virus 1 (HIV-1), influenza virus 

and herpes simplex virus by blocking their entry in the host 

cells (Hamauzu et al., 2005). Since both cowpea and sorghum 

are staple food in many of the African countries, growing 

them in mixed culture may be the main source of natural 

antioxidants. Flavonoids have also been shown to inhibit seed 

germination in a variety of legumes and cereal grains and are 

toxic to seedlings of several species including weeds 

(Patterson, 1987; Rao, 1990). For example, the flavonoids 

vitexin and isovitexin which are present in the seed coat of 

mungbeans are powerful inhibitors of seed germination and 

seedling growth of other plant species around them (Tang 

and Zhang, 1986; Khalid et al., 2002). Similarly, tricin and 

some related flavonoids are considered to be responsible for 

phytotoxicity exhibited by quack grass residue (Rao, 1990). 

Therefore, it is suggested that flavonoids may lead to soil 

sickness and also adversely affect root growth, shoot 

bleaching, root swelling, inhibition of root hair formation and 

influences the uptake of mineral elements such phosphate and 

chloride (Stenlid, 1963; Chang et al., 1969; Rao, 1990). 

However, the release and accumulation of these 

phenylpropanoid compounds is dependent on factors such as 

plant density, cropping systems and genotypes or plant 

species involved in the cropping systems. It has been reported 

that flavonoid concentrations vary with cultural practices and 

varieties (Dykes et al., 2005). For instance, at high plant 

density many plants occupy the same area and rely on the 

same resources, thus may become stressed. Similarly, in 

mixed culture system, more than one crop species grow in a 

unit area and rely on the same growth factors (Wiley, 1979). 
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So, high density and mixed culture systems will definitely 

create competition for the growth factors leading to stress. 

Similarly, if one of the component crops is competitively 

stronger for the plant growth factors, stress for such growth 

factors will then occur (Jensen, 1996). Some studies 

(Ampong-Nyarko et al., 1994; Hassan et al., 2009; Makoi et 

al., 2010) have also reported that high plant density and 

intercropping practices reduced insect pest infestation in 

cowpea. This was probably due to excessive accumulation of 

phenolic compounds in plants growing in such systems. 

Although several studies have shown that stress affects the 

release of these compounds, further studies are required to 

assess the effects of flavonoids and anthocyanins compounds 

in the control of pests (insects, diseases and weeds) in mixed 

culture systems. Thus, playing important ecological functions 

such as those involving insecticides, fungicides and  

herbicides.  
 

Possible influence (s) of different plant densities and 

cropping systems on N2 fixation and availability to crops 

in mixtures  
 

Biological nitrogen fixation (BNF) plays an important role in 

the N economy of cereal/legume mixed culture. BNF 

accounted for total N accumulation of between 61 - 77% in 

cowpea and 58 - 78% in soybean (Glycine max. L.) 

respectively (Ofori et al., 1987; Adjei-Nsiah et al., 2008). 

Additionally, of the total N accumulated in the component 

crop such as sorghum, between 11 and 58% was directly 

transferred through BNF (Fujita and Ofosu-Budu, 1996; 

Salvagiotti et al., 2008; Peoples et al., 2009). Legume/cereal 

mixed culture has been reported as potentially advantageous 

with increased total crop productivity compared with 

monoculture systems. This has been ascribed to the effective 

use of water, mineral elements and light in such complex 

systems (Wiley, 1979; Midmore, 1993; Jensen, 1996). 

Intercropping system involves simultaneous growing of two 

or more crops on the same piece of land. Such cultural 

practices have led to increased size and stability of total grain 

yield compared with monoculture, especially under small 

scale and low input farming systems (Ofori and Stern, 1987; 

Vandermeer, 1989). Amongst others, a reason for mixed 

culture practices involving legumes and cereal rely on the 

ability of the legume to fix N2 which also benefits the 

associated cereal crop (Heichel, 1987; Dakora and Keya, 

1997; Adjei-Nsiah et al., 2008). As a result total grain yields, 

land use efficiency and efficient utilisation of the limited land 

resource are increased (Trenbath, 1974; Paperndick, et. al., 

1976; Fukai and Trenbath, 1993). A significant direct transfer 

of fixed N to the associated cereal crop has been observed in 

controlled studies (Stern, 1993; Elgersma et al., 2000; Chu et 

al., 2004). Apart from the compelling evidence of increased 

N availability to the associated crops as a result of 

mineralisation from the decomposing legume roots (Schroth 

et al., 1995; Evans et al., 2001), increased total grain yield 

was also ascribed to less competition and greater 

complementarity of growth factors between the intercrops 

(Snaydon and Satorre, 1989; Hauggaard-Nielsen et al., 2001). 

Legume/cereal mixed culture has been shown to use the 

available growth resources efficiently compared with their 

corresponding monoculture (Vandemeer, 1990). However, 

the efficient use of growth factors in mixed culture systems 

depends on factors such as plant species, plant morphology, 

density of component crops, type of management and 

competitive ability of the component crops (Ofori and Stern, 

1987). An improved understanding of how the cropping 

systems involving different crop components behave with 

regard to N fixation will enable proper selection of N fixing 

leguminous genotypes and the cropping patterns facilitating 

the process. 

 

Possible influence of altering plant densities, cropping 

systems and different legume genotypes on photosynthetic 

activities, leaf chlorophyll contents, δ13C and water-use 

efficiency 
 

Photosynthesis rates and the associated parameters (stomata 

conductance, intercellular CO2 concentration and 

transpiration rate), chlorophyll contents, δ13C and water-use 

efficiency (WUE) are affected by several agronomical 

factors. It is postulated that changes in plant population in the 

field, plant arrangements, type of plant species and genotypes 

involved in such cropping systems would affect 

photosynthetic parameters (Lima Filho, 2000; Li et al., 

2008). Since high plant density is associated with lower grain 

yield and dry matter due to decreased photosynthesis rate, it 

is proposed that low plant density will possibly increase such 

rates (San-oh et al., 2004). For example, increasing plant 

density has been shown to increase shading in the field, 

leading to limitation in light intensity, thus, lowering the 

photosynthesis rate and the associated parameters 

(Feigenbaum and Mengel, 1979; Hirose et al., 1988; 

Schieving et al., 1992a). Similarly, the decline in leaf area 

ratio was related to increased plant density as a result of 

competition for light (Pons et al., 1989). Several studies have 

also reported photosynthesis rate variability amongst several 

crops such as wheat (Evans and Dunstone, 1970; Austin et 

al., 1982), maize (Heichel and Musgrave, 1969), faba bean 

(Vicia faba L.), pea (Pisum sativum L.) (Schulze et al., 1999) 

and soybean (Buttery et al., 1981) suggesting that the type of 

component crops involved in cropping systems have an 

important effect on the gas exchange parameters. For 

example, variation in C allocated to nodulated legumes and 

the amount of C respired has been reported to vary with 

species (Atkins et al., 1978; Herridge and Pate, 1977). 

Similarly, adaptation to higher C costs during N2-fixation 

varies with species. For example, faba bean has greater 

photosynthetic capacity compared with pea (Schulze et al., 

1999). Competition for plant growth factors such as mineral 

elements under high plant density and mixed culture have led 

to stress, differences in photosynthesis rates and chlorophyll 

contents (Akunda, 2001; Ghosh et al., 2006). For example, N 

and K deficiency due to stress caused by dense population of 

plants significantly decreased photosynthetic rate and leaf 

chlorophyll concentration, resulting in increased leaf 

reflectance (Bednarz et al., 1998; Daughty et al., 2000; Zhao 

et al., 2001, 2003 & 2005), thus, affecting leaf photosynthetic 

rate (Muchow and Sinclair, 1994; Zhao et al., 2005). On the 

other hand, enhancement of plant growth has been closely 

related to high leaf photosynthesis due to elevated CO2 

concentration, which mostly depends on field plant 

arrangement and composition such as mixtures. This is 

because higher CO2 concentration can suppress RuBP 

oxygenase activity, decrease photorespiration and increase 

carbon assimilates for plant growth and development (Lawlor 

and Mitchell, 2000). Although chlorophyll concentration is 

an important physiological parameter for indicating plant 

photosynthesis status, it has been reported that stress related 

factors may result in increased leaf reflectance due to reduced 

amount of chlorophyll content. Therefore, affecting its 

function as an indicator for photosynthesis status in plants 

(Carter and Knapp, 2001). Plant growth (measured as 

biomass) is influenced by many factors, including water 

availability, C accumulation via photosynthesis and the 
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supply of mineral nutrients. Photosynthetic CO2 reduction by 

Rubisco in C3 plants such as cowpea and other legumes is 

therefore   the  key  process   driving  growth  and  agronomic  

yields in crop species. Theoretically speaking, high 13C 

discrimination (i.e. more negative δ13C value) tends to 

indicate low water-use efficiency, while low 13C 

discrimination (i.e. less negative δ13C value) suggests high 

water-use efficiency (Farquhar and Richards 1984). As a 

result, the δ13C values of crop plant species have been found 

to correlate with photosynthetic water-use efficiency 

estimated from gas-exchange studies (Farquhar and Richards 

1984). However, very negative δ13C values in the leaves of a 

young legume can also arise from the supply of 13C-depleted 

C to shoots and other organs such as nodules, roots and 

developing pods by the Rubisco-operated C3 pathway 

(Yoneyama and Ohtani 1983). But because these organs also 

fix CO2 via phosphoenolpyruvate carboxylase (Lawrie and 

Wheller 1975; Coker and Schubert 1981), this can shift the 

very negative δ13C value of organs to a less negative δ13C 

value. So, it is important to manage agronomic practices by 

manipulating the cropping systems, plant densities and 

varieties such that constraints influencing photosynthesis rate 

and related parameters are minimised. Thus, improving both 

biological and economical yields of different component 

crops in mixtures.  

 

Enhanced productivity and grain yield from components 

in mixed culture systems 

 

Mixed culture advantage (or intercropping productivity) is 

commonly assessed by land equivalent ratio (LER) (Magino 

et al., 2004; Dariush et al., 2006). It is defined as the relative 

land under monoculture that is required to produce the yields 

achieved under mixed culture (Gocio, 2001). Total land 

equivalent ratio (LERt) is obtained by the summation of LER 

for each crop (i.e. partial LER) in the mixture. When LERt > 

1, mixed culture is advantageous because environmental 

resources are used more efficiently for plants growth. On the 

contrary, when LERt < 1, there is disadvantage because 

environmental resources are less efficiently used. However, 

when LERt = 1 it is considered as there is no effect by 

growing such crops either as monocrops or intercrops. As 

shown by Vandermeer (1989), competition and facilitation 

for growth factors takes place in mixed culture systems. As 

such, it is possible to obtain the net positive result whereby 

LERt > 1, thus indicating that in such mixed cultures, 

facilitation is contributing more than the competition. In their 

work on cowpea/sorghum mixed culture with varying 

number of cowpea rows, Hussain et al. (2000) showed that 

LERt > 1 was fairly high in all mixed culture treatments but 

the highest value of 1.89 was recorded from the sorghum-

cowpea 3-rows mixed culture. This indicated that 89% yield 

advantage was gained due to mixed culture practice attributed 

to higher facilitation. Likewise, in a wheat (Triticum aestivum 

L.)/chickpea (Cicer arientinum L.) mixed culture, LERt was 

highest in 4:2 rows, indicating low competition or greater 

complementary facilitation between the component crops 

(Zhang and Li, 2003; Li et al., 2004a; Banik et al., 2006). 

Collectively, the observed mixed culture advantage in these 

studies were attributed to beneficial complementarities of 

component crops with regard to mineral elements, light and 

moisture (Babu et al., 1988). Thus, mixing legumes with 

cereals could lead to better land use efficiency making it an 

important component in small scale farming in Africa and 

other parts of the world. In conclusion, a pre-requisite for a 

successful legume/cereal intercrops is to obtain adequate 

plant population density, appropriate cropping system and 

highly potential legume genotypes. This will then contribute 

to the improvement of N2 fixation, phosphatase activities, 

flavonoids and anthocyanins and nutrients for plant growth 

and development.  
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