
(IJEECS) International Journal of Electrical, Electronics and Computer Systems. Vol: 11 Issue: 2, December 2012

©IJEECS

Increasing Auditability in Web Application Security
Andrew M. Kahonge, William Okello-Odongo, Evans K. Miriti

School of Computing and Informatics, University of Nairobi, Kenya

Abstract— As more services become web based and open to a
larger audience, security is become a key concern. We discuss
the idea of auditability of a transaction in the web application
environment and how current logs may not capture minimum
information required to have a complete audit record. We then
propose a solution to this that involves a design as well as a tool
that can be integrated into an existing web application to
generate supplementary logs of database activity and user
profile information with a focus on auditability of transactions.
Finally we talk about results of tests that we conducted of this
tool on an actual web application.

Keywords— Auditability, Web Security, Internet, Audit Trails,
Log Management, Supplementary Logs

I. INTRODUCTION

In the field of communication protocols, a definition is
given by [1] that states that a protocol is auditable with
respect to a property if it logs enough evidence to convince
an impartial third party or judge of that property. This
definition also goes further to state that the judging entity
evaluates if some evidence enforces a given property in an
impartial and transparent manner. Therefore, a program is
auditable if, at any audit point, an impartial judge is satisfied
with the evidence produced by the program. Logging and
auditing is usually performed, not as a replacement of, but in
addition to an (a priori) access control system [2]. In
addition, sometimes the access control system itself is
audited for flaws or errors. An audit of the access control
mechanism can be sufficient when it is certain that the
mechanism cannot be turned off between the audits. The use
of audit logs has been recommended by security standards as
a means of evaluating an IT system and therefore providing
assurance [3].

Given that an auditable event is a single event (within a
business process) that could lead to the compromise of the
integrity and/or security of an information system and
therefore directly or indirectly compromise a business
process, recommendations by [4] state that an organization
may select the relevant auditable events in the business
processes that would be logged. As much as this would assist
in keeping the logs to a minimum, it would miss out on
attacks that by-pass the security controls in that business
process and pose a risk to the data. Therefore we find that
auditable events should encompass actions that are
performed on the regardless of the business process where
the actions are performed.

II. RISK, THREAT VULNERABILITY AND IMPACT

Risk can be defined as the potential impact (positive or
negative) to an asset [5]. It's a combination of the likelihood
that a particular vulnerability will be either intentionally or
unintentionally exploited by a threat-source and the
magnitude of the potential harm that could result. A threat is
an unwanted event that may result in harm to an asset.
Vulnerability is a weakness or flaw in a system that can be
accidentally. Impact is the magnitude of the potential loss or

seriousness of the event triggered or intentionally exploited.
The determination of risk for a particular threat/vulnerability
can be derived by multiplying the threat likelihood (e.g.,
probability) and the threat impact:

Risk = Threat likelihood * Threat Impact

Further, [6] identifies seven pillars of information
security; Information security policy, Security awareness,
Identity and access management, Network and data security,
Monitoring, Risk assessment, Contingency. Threats can be
from the outside or from the inside. The latter, includes
threats introduced from within an organization by a trusted
entity where the participant plays either a know role in the
activity or unknowingly introduces a risk to the
organizational security boundaries [7].

Unlike traditional desktop systems, web applications
suffer native vulnerabilities due to their architecture and also
due to the fact that they are exposed to a wider audience.
There are two main types of attacks facing web applications;
server attacks and client attacks. Recently research indicates
that among all attacks, SQL Injection and Cross-Site
Scripting attack are the most common and most serious
attacks [8]. Inherent Vulnerability in Web Server may occur
if the web server has certain vulnerability and this gets
exploited by an attacker. Some web servers have features that
allow remote administration such as file management. If the
controls are not adequate enough, they may be sources of
vulnerability. Using an attack graph [9] have described
several scenarios where an attacker gains access to the web
server by exploiting remote-to-admin vulnerability, then
gains access to the database server through remote-to-user
vulnerability.

Inherent Weakness of Web Script a web script is also
another source of vulnerability. The script may be developed
with a weakness or fault that may go undetected. For
example, a page that is only meant for administrators may
fail to apply this control thereby allowing normal users to
access privileged operations and alter data in the web
application.

A. Detecting Web-Based Attacks

The two most common approaches to detecting web-based
attacks are signature-based detection and anomaly based
detection [10]. Signature-based detection relies on detecting
patterns of known attacks to identify malicious behavior.
While they are accurate, they have to be kept up-to-date with
current attacks to be effective. Any attacks that are not in the
signature or pattern database will therefore not be detected.
This weakness can be exploited by creating different versions
of a single attack.

Also, a number of security standards have been developed
to help build more secure systems. Alongside this, scientific
models have also been proposed to cope with security
management. In a report by [11] several scientific models are

(IJEECS) International Journal of Electrical, Electronics and Computer Systems. Vol: 11 Issue: 2, December 2012

©IJEECS

discussed and it is argued that two are most appropriate on an
e-Commerce web application as opposed to a conventional
software system. The report mentions that Abuse Cases and
Business Process Modeling for Analysis and Design would
work best since the employ Use Case Modeling and Business
Modeling respectively. Other criteria used are that the two
approaches are complete as far as the product life cycle is
concerned, are business centered to motivate security by
business means.

In broad terms, security mechanisms have been classified
by [12] into two main categories; network-centric or host-
centric, depending on their deployment model and which
type of activity they observe and inspect. Examples of the
former include network sensor devices and the latter are host
or server based protection mechanisms.

III. AUTHENTICATION LEVELS OF A WEB APPLICATION

When a user contacts a website as shown in step a of Fig.
1 , an authentication request may be prompted for username
and password. Two common methods for this are script
controlled authentication and web server controlled
authentication. The former would include form-based
techniques that render a web page on the user agent with data
entry components to input username, password and other
authentication data. The latter is where the web server
manages validation of the user and will only serve the
requested web resource if the user is valid. Basic
authentication and Integrated Authentication are common
examples.

When level a is completed and the web resource request is
within the database server, such as is the case for content
management systems, the server side script will initiate a
connection to the database server.

Fig. 1 Authentication levels in a web environment

Depending on the audience or type of system, the web
application may be designed to authenticate at level b with
the database, as shown in Fig. 1. by either N:1 or 1:1
mapping of actual or external user and database user
respectively. Many-to-one database connections may be
desirable in applications a scenario of Internet facing where a
large section of the system performs read-only operations
regardless of which users are logged in. It may also be
desirable for achieving connection pooling [13] where the
database services thousands of requests with only a few
database connections. For such a case, a single database
username and password is used to connect to the database.

Most popular web application frameworks, including Drupal,
use this approach [14].

IV. LOG MANAGEMENT

A log has been defined by [15] as the record of events
occurring within an organization’s systems and networks.
They are composed of log entries; each entry contains
information related to a specific event that has occurred
within a system or network. Originally, logs were used
primarily for troubleshooting problems, but logs now serve
many functions within most organizations, such as
optimizing system and network performance, recording the
actions of users, and providing data useful for investigating
malicious activity. Logs have evolved to contain information
related to many different types of events occurring within
networks and systems. Because of the increased use of
application software such as web and database systems, the
number, volume, and variety of computer logs has increased
great. Thereby creating the need for computer security log
management, which is the process for generating,
transmitting, storing, analyzing, and disposing of computer
security log data. In a web environment, a there can be a
number of points where logs are generated including
authentication servers, web servers, database servers, routers
and firewalls.

A. Log Generation and Storage

Due to several hosts and applications generating their own
logs, a number of complications arise when one needs to
perform analysis. Some of these problems arise as a result of
many log sources that have inconsistent log content,
inconsistent timestamps, and inconsistent log formats.

A number of audit methodologies or methods,
procedures and techniques, have been used to tackle this
daunting task of log analysis. Meyer describes a four-stage
methodology [16] as illustrated below. In this methodology is
the planning phase that involves identifying log sources are
and preparing a central log server to be the repository for log
data. The log infrastructure from each source is also
evaluated as well as the method of submitting this data to the
central log server. This methodology compares to a Web
server log analysis that had been proposed by [17] that
includes determining the types of information server
administrators and decision makers need; developing a
program that can parse through, manipulate, and present
value-added information from the log files; and analyzing the
information generated from the program.

Fig. 2 Four stage testing methodology [16]

One key difference is that the latter puts more focus at
the planning or initial stage and allows for possible inclusion
of additional information into the logs and thereby improving
auditability.

B. Minimum Information

To determine the minimum possible or sufficient
information that a log should gather, we refer to the

Planning Discover Vulnerability
Analysis

Reporting

Web Server Program

Server side scripts Static pages, images, etc

Database (Dynamic Content)

a

b

User Agent (e.g. browser)

(IJEECS) International Journal of Electrical, Electronics and Computer Systems. Vol: 11 Issue: 2, December 2012

©IJEECS

recommendation made by [4]. This states that an audit record
should have the following properties to enable a business
process event to be auditable;

1. What type of event occurred, e.g. the server,
system process, IP address, MAC address etc.,

2. When (date and time) the event occurred, e.g.
time stamps where the event occurred

3. Where from the origination of the event
occurred, e.g. source and destination addresses,
user/process identifiers,

4. Where to the event occurred, e.g. the identity or
name of the affected data, system or component,

V. PROPOSED LOG GENERATOR DESIGN

Our solution to gathering additional information to
increase auditability involves setting up a tool that can log all
activities and profile information of a user that is accessing a
web application. We propose a design that allows integration
into an existing web application system. The test bed we
select for the host web application is a system developed in
the Drupal framework. This is an Open Source content
management system and uses PhP with MySQL database.

An environment running on Open Source technology has
been selected purposively because OSS allow easy
modification of a running application and also support some
key features that are fundamental in our design; overriding
system functions. As shown in Fig. 2. the standard interaction
between PhP scripts and a MySQL database is that the PhP
script will call a set of MySQL database functions such as
mysql_pconnect and mysql_query to connect and run SQL
database commands. The technique we are proposing
involves setting up an intermediary stage between the web
script and the inbuilt mysql functions, specifically
mysql_query. See Fig. 3. In doing so we gain access and
control of commands passed by the web script to MySQL
engine. Meanwhile, we manage to log all activities generated
at any time. To achieve this, we use two PhP functions;
rename_function and override_function. This is illustrated in
Fig. 3.

Fig. 3 Standard interaction of web script and database

After renaming and overriding the inbuilt mysql_query
function such that all subsequent calls to it land on our own
custom function, we have control of SQL statements issued
by the PhP web script. The next step is to log these SQL
statements and corresponding parameters into a log database
separate from the web application’s database. Alongside
logging the database activity, all other relevant profile
information such as current logged-on user can also be
logged in accordance to the methodology being used or the
security requirements being used.

Fig. 4 Modified interaction

For example, is using the recommendations by [4], we can
proceed to log the username and perhaps the roles or groups
that the user belongs in order to fulfill requirement 4. On the
other hand, if one followed the analysis methodology of [17],
this would mean obtaining the set of fields or information to
be logged from the administrator and other stakeholders
concerned with security of the system.

VI. RESULTS

To show that the concept can really work, we developed a
logging tool and installed it on a test-bed as shown above.
The test-bed was running Drupal version 5 and we achieved
the overriding of mysql_query function by inserting and
include file command on the database.inc file that points to
our tool. This guaranteed that all database queries would pass
through our tool. The log database

The information we logged in each call to database
commands was the username, user’s roles, remote IP address,
session id, script name and query string, and of course the
database activity information. While logging this
information, database activity information was parsed to
extract constituent objects, operations, fields and data
elements. These objects corresponded to a table, stored
procedure or view being referenced. Operations would be
database statements like Select, Insert, Update, Execute and
so on. Fields would be the database fields and the data
elements would be the values being passed on. The log
database was designed to store this information accordingly.

Analysis of the web application’s performance revealed
that there was significant degradation in response time when
our tool was running. Several tests showed that the SQL
parser in our tool took considerable amount of time to extract
the query semantics and was affecting performance the entire
web application.

After removing the query parsing step in our tool,
performance of the web application was restored. There was
no significant reduction in either response time or processing
time of web pages.

The final design on the tool involved two parts; log
generated and log parser. The log generated would run in the
web application and create log information including the raw
database SQL statements issued at all times. The log parser
would be executed offline and manually to break down the
raw SQL statements logged by its counterpart into a format
that can then be fed into some log analysis software for
auditing.

MySQL php
functions

PhP web script file

Web
Application

Database

MySQL php
functions

PhP web script file

Web
Application

Database

Log
Database

Auditability
Logging Tool

(IJEECS) International Journal of Electrical, Electronics and Computer Systems. Vol: 11 Issue: 2, December 2012

©IJEECS

VII. CONCLUSION AND FUTURE WORK

We have discussed auditability and the need to increase it
within the web application environment to improve security.
Current web platforms support logging at both web server
and database server level. However auditability are often not
met especially in cases where the authentication allows
sharing of user account for the entire web application of a
section of it. Further, these logs exist in silos and it is hard to
consolidate them to meet minimum information requirements
of auditability.

In moving towards a solution, we have discussed the
design of an open-source based tool that can be used to
improve auditability. The tool logs database activity as well
as additional information about the user or other profile data
that may be of interest as far as security is concerned. The
design of this tool allows it to be installed on an existing web
application or host web site. Consequently, we installed it on
an actual web application developed on the Drupal
framework and talked about tests and modifications that we
performed on it.

The results show that the tool has no significant impact on
the host application. Also, it’s design is open to capture
necessary profile information that the administrator or
security stakeholder may deem important in increasing
auditability of a transaction

Further work can be done toward integrating this design
into the software development process of general
applications and perhaps also those that not Open Source.
Further, the SQL parser that we used in our tool had
significant impact on the web application and we excluded it
from the core log generator. Therefore, if this can be
improved, then it can be integrated into the generator to
achieve a compact design and tool.

REFERENCES

[1] Nataliya Gust, Cedric Fournet, and Francesco, Zappa Nardelli,
"Reliable Evidence: Auditability by Typing," in 14th European
Symposium on Research in Computer Security: ESORICS, Berlin
Heidelberg, 2009, pp. 168-183.

[2] J. G Cederquist et al., "Audit-based compliance control," International
Journal of Information Security, vol. 6, pp. 33–151, 2007.

[3] ISO/IEC, Common Criteria for Information Technology Security
Evaluation., 2009.

[4] European Payments Council, The use of audit trails in security systems:
Guidelines for European banks. Brussels: EPC AISBL Secretariat,
2010.

[5] Roger Meyer, Auditing a Corporate Log Server.: SANS Institute
InfoSec Reading Room, 2006.

[6] Krishna Raj Kumar, "A Model for Information Security Management in
Government," ISACA Journal, volume 4, 2011.

[7] T.C. Dodge, A.J. Ferguson, and D.M. Cappelli, "Introduction to Insider
Threat Modeling, Detection, and Mitigation Track," in 45th Hawaii
International Conference on System Sciences, 2012, pp. 2381 - 2381.

[8] Dwen-Ren Tsai, A.Y. Chang, Peichi Liu, and Hsuan-Chang Chen,
"Optimum Tuning of Defense Settings for Common," Security
Technology, 2009. 43rd Annual 2009 International Carnahan
Conference on, pp. 89-94, 2009.

[9] R.P. Lippmann et al., Evaluating and strengthening enterprise network
security using attack graphs. MASSACHUSETTS: MIT, 2005.

[10] Stemmer Joel, University of Twente, 2012.

[11] A. Zuccato, "Towards a systemic holistic security management,"
Karlstad, Sweden, 2002.

[12] Clarke, Oberheide Jonathan, "Leveraging the Cloud for Software

Security Services," in Unpublished PhD Thesis. Michigan: University
of Michigan, 2012.

[13] A. Roichman and E. Gudes, "Fine-grained access control to web
databases," in In Proceedings of the 12th ACM symposium on Access
control models and technologies, SACMAT, New York, 2007, pp. 31–
40.

[14] Y. Gonen and E. Gudes, "Users Tracking and Roles Mining in Web-
Based Applications," in Proceedings of the 2011 Joint EDBT/ICDT
Ph.D. Workshop, New York, 2011, pp. 14-18.

[15] Karen Kent and Murugiah Souppaya, "Recommendations of the
National Institute of Standards and Technology," Guide to Computer
Security Log Management, 2006.

[16] Roger Meyer, Auditing a Corporate Log Server.: SANS Institute
InfoSec Reading Room, 2006.

[17] Moen and McClure, "Web Server Transaction Log Analysis
Methodology," An Evaluation of U.S. GILS Implementation, 1997.

Andrew M. Kahonge is a lecturer at the School of Computing and
Informatics, University of Nairobi. He received his BSc in Computer
Science at the same school in 2001 and proceeded to University of
Birmingham and for MSc in Advanced Computer Science in 2004. His
research interests include web security and distributed systems. He is also a
Certified Information Systems Auditor (CISA).

William Okello-Odongo is a Professor in the School of Computing and
Informatics in the University of Nairobi. He lectures and does research in a
variety of areas in Computer Science including Computer Networks and
Network Security.

Evans K. Miriti is a lecturer at the School of Computing and
Informatics, University of Nairobi. He received his BSc in Computer
Science at the same school in the year 1999 and continued on for an MSc in
Applied Computer Science. Evans is actively involved in research in
machine learning and robotics. He is also a Certified Information Systems
Auditor (CISA).

