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ABSTRACT

Malaria is an infectious disease transmitted between humans through mosquito bites that kill
about two million people a year. Many infectious diseases including malaria are preventable, yet
they remain endemic in many countries like Kenya due to lack of proper, adequate and timely
control policies. The main goal of this project is to develop a mathematical model for the control
of malaria. It has been shown that the model has unique disease-free and endemic equilibria.

A mathematical model for malaria is developed using ordinary differential equations. We
analyze the existence and stability of disease-free and endemic malaria (malaria persisting in the
population) equilibria. Key to our analysis is the definition of a reproductive number R, (the
number of the new infections caused by one individual in an otherwise fully susceptible
population) through the duration of the infectious period.

The methods for controlling any infectious disease include a rapid reduction in both the infected
and susceptible populations as well as a rapid reduction in the susceptible class if a cure is
available. For diseases of malaria where there are no vaccines, it is still possible to reduce the
susceptible group through a variety of control measures.

The disease-free equilibrium is locally asymptotically stable, if R, <1, and we also note that
when R, > 1, the disease-free equilibrium is unstable and the endemic equilibrium is stable.
Numerical simulations show that recoveries and temporary immunity keep the populations at
oscillation patterns and eventually converge to a steady state.

Further simulation of the model clearly shows that, with proper combination of treatment and
concerted effort aimed at prevention, malaria could be eliminated from our society. In fact,
effective treatment offered to about fifty percent of the infected population together with about
fifty percent prevention rate is all that is required to eliminate the diseases.
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CHAPTER 1

1.INTRODUCTION

1.1Background

Malaria is the common name for diseases caused by single-celled parasites of the genus
Plasmodium. Among the parasites of the genus Plasmodium four species have been identified
which can cause disease in humans. These include: Plasmodium falciparum, Plasmodium vivax,
Plasmodium malaria and Plasmodium ovale. Of these, Plasmodium falciparum is of greatest risk
to non-immune humans. The Plasmodium falciparum variety of parasites account for 80% of
cases and 90% of deaths (Kakkilaya, 2003).

Malaria remains arguably the greatest menace of our society in terms of morbidity and mortality
and the occurrence of malaria in our part of the world correlates with poverty, ignorance and
social deprivations in the community. An accurate knowledge of the incidence of malaria in
endemic areas would be necessary towards the planning and development of effective preventive
measures against the deadly scourge of malaria.

Malaria is spread by the bite of an infected female mosquito, of the genus anopheles each time
the infected insect takes a blood meal. The symptoms in an infected human include bouts of
fever, headache, vomiting flu-like, anemia (destroying red blood cell) and malaria can kill by
clogging the capillaries that carry blood to the brain (cerebral malaria) or other vital organs. On
the average the incubation period of Plasmodium falciparum is about 12 days in humans.

Malaria is endemic to tropical areas where the climatic and weather conditions allow continuous
breeding of the mosquito. Malaria is one of the most important parasitic and infectious diseases
especially in tropical and subtropical areas caused by protozoan parasites of the genus
plasmodium. Malaria, affecting mainly children and pregnant women is one of the greatest
menaces of our society in terms of morbidity and mortality and the occurrence of malaria in our
part of the world correlates with poverty and ignorance (Perandin, 2003).

Malaria is a major public health problem in the world. The WHO estimates that in tropical
countries among the 500 million cases of malaria infection, one million deaths occur annually.
Malaria parasites are transmitted by female anopheles mosquitoes. Four species of plasmodium
(P) causes human malaria. Among these, P. falciparum is responsible for most of the mortality
P. Vivax causes considerable morbidity and P. malariae and P. ovale, are less prevalent around
the world(Aslan and Seyrek, 2007).

This group of human pathogenic Plasmodium species is usually referred to as plasmodium . The
parasites multiply within red blood cells, causing symptoms that include symptoms of anaemia,
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as well as other general symptoms such as fever, chills, nausea, flu-like illness, and in severe
cases, coma and death (Deressa et al, 2000). It is a disease that can be treated in just 48 hours, yet
it can cause fatal complications if the diagnosis and treatment are delayed.

1 No Malaria
1 Malaria

Figurel.1:Countries with endemic malaria transmission (WHO, 2000).



Malaria has been a significant factor in virtually all of the military campaigns involving the
United States. In World War 11 and the Vietnam War, more personnel time was lost due to
malaria than to bullets. The discovery that malaria was transmitted by mosquitoes unleashed a
flurry of ambitious public Understanding health measures designed to stamp out malaria. These
measures were targeted at both the larval stages (which thrive in still waters, such as swamps)
and adult stages of the insect. In some areas, such as the southern United States, draining
swamps and changing the way land was used was somewhat successful in eliminating
mosquitoes.

The pace of the battle accelerated rapidly when the insecticide DDT and the drug chloroquine
were introduced during World War 11. DDT was remarkably effective and could be sprayed on
the walls of houses where adult Anopheles mosquitoes rested after feeding. Chloroquine has been
a highly effective medicine for preventing and treating malaria. In the mid-1950s, the World
Health Organization (WHO) launched a massive worldwide campaign to eliminate malaria. At
the beginning, the WHO program, which combined insecticide spraying and drug treatment, had
many successes, some spectacular. In some areas, malaria was conquered completely, benefiting
more than 600 million people, and was sharply curbed in the homelands of 300 million others.

Difficulties soon developed, however. Some stumbling blocks were administrative, others
financial. Even worse, nature intervened. More and more strains of Anopheles mosquitoes
developed resistance to DDT and other insecticides, and the environmental impact of DDT was
recognized. Meanwhile, the Plasmodium parasite became resistant to chloroquine, the mainstay
of antimalarial drug treatment in humans. Researchers estimate that infection rates increased by
40 percent between 1970 and 1997 in sub-Saharan Africa.

To cope with this dangerous resurgence, public health workers carefully select prevention
methods best suited to a particular environment or area. In addition to medicines and
insecticides, they are making efforts to control mosquitoes, by draining swampy areas and filling
them with dirt, as well as using window screens, mosquito netting, and insect repellents. At the
same time, scientists are intensively researching ways to develop better weapons against malaria,
including : sophisticated techniques for tracking disease transmission worldwide , more effective
ways of treating malaria , new ways( some quite ingenious) to control transmission of malaria by
mosquitoes ,a vaccine for blocking malaria’s development and spread.



1.2 History of the mathematical modeling of malaria

It is important to establish the transmission dynamics of an epidemic in order to understand and
predict it. Mathematical models are particularly helpful as experimental tools with which to
evaluate and compare control procedures and preventive strategies, and to investigate the relative
effects of various sociological, biological and environmental factors on the spread of diseases.

These models have played a very important role in the history and development of vector-host
epidemiology. Several authors have used mathematical models to analyze the transmission and
spread of malaria. Mathematical models of malaria transmission that include both mosquito and
human populations have been reviewed and discussed in detail by various authors.

Nedelman (1985) did some further work on malaria model of Dietz et al (1974), and showed
that the “vaccination” rate depends on a pseudo equilibrium approximation

to the differential equation describing the mosquito dynamics in the malaria model. Nedelman
surveys various data sets to statistically approximate parameters such as inoculation rates, rates
of recovery and loss of immunity in humans, human-biting rates of mosquitoes and infectivity
and susceptibility of humans and mosquitoes.

Dietz et al (1974) proposed a model with two different classes of humans: one without immunity
to malaria and one class with some immunity. As the non-immune class falls sick, some people
recover with immunity. The immune class can get infected, but does not fall clinically ill and
cannot be infectious. The model also included super infection, a phenomenon usually associated
with macro parasites.

Yang (2000) describes a compartmental model where humans follow an SEIRS-type (with more
than one immune class for humans) pattern and mosquitoes follow a Susceptible-Exposed-
Infectious (SEI) pattern. Yang (2000) defines a reproductive number, R, for this model and
shows, through linear stability analysis, that the disease-free equilibrium is stable for R, <1 . He
also derived an expression for an endemic equilibrium that is biologically relevant only

when R, >1 . He used numerical simulations to support his proposition that for R, >1, the
disease-free equilibrium is unstable and the endemic equilibrium is stable.

The model for malaria transmission that we modified is an extension of the equations introduced
by Tunwiine et al (2007).



1.3 Life cycle of malaria parasite

The human malaria parasite has a complex life cycle that requires both a human host and an
insect host. In Anopheles mosquitoes, Plasmodium reproduces sexually (by merging the
parasite’s sex cells). In people, the parasite reproduces asexually (by cell division), first in liver
cells and then, repeatedly, in red blood cells (RBCs).

In mosquitoes

Sporozoites

develo
in oocyst

Oocysts develop

in gut wall "f"

Parasites
sucked%
P NN

Sporozoites
migrate to

salivary glands

i Sporozoites
J ) ' injected
| with

Gametocytes mosquito
o - O™
) Red blaod Liver stage
-t cell stage '.
»
In humans

Figurel.2:The life cycle of malaria parasite.

When an infected female Anopheles mosquito bites a human, it takes in blood. At the same time,
it injects saliva that contains the infectious form of the parasite, the sporozoite, into a person’s
bloodstream [1]The thread-like sporozoite then invades a liver cell[2] . There, during the next
week or two (depending on the Plasmodium species), each sporozoite develops into a schizont, a
structure that contains thousands of tiny rounded merozoites (another stage of the parasite).
When the schizont matures, it ruptures and releases the merozoites into the bloodstream[3] .

Alternatively, some P. vivax and P. ovale sporozoites turn into hypnozoites, a form that can
remain dormant in the liver for months or years. If they become active again, the hypnozoites
develop into schizonts that then cause relapses in infected people.

Merozoites released from the liver upon rupture of schizonts rapidly invade RBCs, where they
grow by consuming hemoglobin[4] . Within the RBC, most merozoites go through another round
of asexual reproduction, again forming schizonts filled with yet more merozoites. When the



schizont matures, the cell ruptures and merozoites burst out. The newly released merozoites
invade other RBCs, and the infection continues its cycle until it is brought under control, either
by medicine or the body’s immune system defenses.

The Plasmodium parasite completes its life cycle through the mosquito when some of the
merozoites that penetrate RBCs do not develop asexually into schizonts, but instead change into
male and female sexual forms known as gametocytes[4] . These circulate in the person’s
bloodstream, awaiting the arrival of a blood-sucking female Anopheles mosquito[5] .

When a female mosquito bites an infected person, it sucks up gametocytes along with blood.
Once in the mosquito’s stomach, the gametocytes develop into sperm-like male gametes or large,
egg-like female gametes[6] . Fertilization produces an oocyst filled with infectious sporozoites[7]
. When the oocyst matures, it ruptures and the thread-like sporozoites migrate, by the thousands,
to the mosquito’s salivary (saliva-producing) glands[8] . The cycle starts over again when the
mosquito bites its next victim[9] .

1.4 Life cycle of the mosquito

All mosquitoes must have water in which to complete their life cycle. This water can range in
quality from melted snow water to sewage effluent and it can be in any container imaginable.
The type of water in which the mosquito larvae is found can be an aid to the identification of
which species it may be. Also, the adult mosquitoes show a very distinct preference for the types
of sources in which to lay their eggs. They lay their eggs in such places such as tree holes that
periodically hold water, tide water pools in salt marshes, sewage effluent ponds, irrigated
pastures, rain water ponds, etc. Each species therefore has unique environmental requirements
for the maintenance of its life cycle.

The feeding habits of mosquitoes are quite unique in that it is only the adult females that bite
man and other animals. The male mosquitoes feed only on plant juices. Some female mosquitoes
prefer to feed on only one type of animal or they can feed on a variety of animals. Female
mosquitoes feed on man, domesticated animals, such as cattle, horses, goats, etc; all types of
birds including chickens; all types of wild animals including deer, rabbits; and they also feed on
snakes, lizards, frogs, and toads. Most female mosquitoes have to feed on an animal and get a
sufficient blood meal before she can develop eggs. If they do not get this blood meal, then they
will die without laying viable eggs.

However, some species of mosquitoes have developed the means to lay viable eggs without
getting a blood meal. The flight habits of mosquitoes depend again on the species with which we
are dealing. Most domestic species remain fairly close to their point of origin while some species
known for their migration habits are often an annoyance far from their breeding place. The flight
range for females is usually longer than that of males. Many times wind is a factor in the



dispersal or migration of mosquitoes. Most mosquitoes stay within a mile or two of their source.
However, some have been recorded as far as 75 miles from their breeding source.

The length of life of the adult mosquito usually depends on several factors: temperature,
humidity, sex of the mosquito and time of year. Most males live a very short time, about a week;
and females live about a month depending on the above factors.

Figure 1.3:The life cycle of a mosquito



The mosquito goes through four separate and distinct stages of its life cycle and they are as
follows: Egg, Larva, pupa, and adult. Each of these stages can be easily recognized by their
special appearance.

Egg : Eggs are laid one at a time and they float on the surface of the water. Most eggs hatch into
larvae within 48 hours.

Larva : The larva (larvae - plural) live in the water and come to the surface to breathe. They shed
their skin four times growing larger after each molting. Most larvae have siphon tubes for
breathing and hang from the water surface. Anopheles larvae do not have a siphon and they lay
parallel to the water

surface. The larva feed on micro-organisms and organic matter in the water. On the fourth molt
the larva changes into a pupa.

Pupa: The pupal stage is a resting, non-feeding stage. This is the time the mosquito turns into an
adult. It takes about two days before the adult is fully developed. When development is
complete, the pupal skin splits and the mosquito emerges as an adult.

Adult: The newly emerged adult rests on the surface of the water for a short time to allow itself
to dry and all its parts to harden. Also, the wings have to spread out and dry properly before it
can fly.

The egg, larvae and pupae stages depend on temperature and species characteristics as to how
long it takes for development. Also, some species have naturally adapted to go through their
entire life cycle in as little as four days or as long as one month.

1.5 Transmission of the disease

The malaria parasite typically is transmitted to people by mosquitoes belonging to the genus
Anopheles. In rare cases, a person may contract malaria through contaminated blood, or a fetus
may become infected by its mother during pregnancy. Because the malaria parasite is found in
RBCs, malaria can also be transmitted through blood transfusion, organ transplant, or the shared
use of needles or syringes contaminated with blood. Malaria also may be transmitted from a
mother to her fetus before or during delivery (“congenital” malaria).

1.6 Rationale of the study

In the Tunwiine model, humans follow an SIRS-like pattern and mosquitoes follow a Sl pattern,
similar to that described by Yang (2000) but with only one immune class for humans. Humans
move from the susceptible to the infected class at some probability when they come into contact
with an infectious mosquito, as in conventional SIRS models.

However, infectious people can then recover with, or without, a gain in immunity; and either
return to the susceptible class, or move to the recovered class. A new feature of this model is that
although individuals in the recovered class are assumed to be “immune”, in the sense that they
do not suffer from serious illness and do not contract clinical malaria, they still have low levels
of Plasmodium in their blood stream and can pass the infection to susceptible mosquitoes.



After some period of time, these recovered individuals return to the susceptible class. Susceptible
mosquitoes get infected and move to the infected class, at some probability when they come into
contact with either infectious humans or recovered humans (albeit at a much lower probability).
Both humans and mosquitoes leave the population through a density dependent natural death
rate. This allows the model to account for changing human and mosquito populations. Variations
in mosquito populations are crucial to the dynamics of malaria, population models do not
account for this.

The model also includes human disease induced death as mortality for malaria in areas of high
transmission can be high, especially in infants. In the modified model, we aim to capture some of
the more important aspects of this epidemiology while still keeping it mathematically tractable.
One of the major important factors that we include in the existing model is vaccination in order
to determine its impact as a control measure for the spread of malaria.



'CHAPTER 2

2.MODEL DESCRIPTION AND FORMULATION

2.1 Model formulation

As in Tumwiine et al. [24], the human population is divided into three epidemiological lasses
that include the susceptible class Sy ,infective class I; and immune class Ry .The mosquito
population is divided into two epidemiological classes that include the susceptible class S, and
infective class Iy,.

The vector population does not include immune class [4,12] as mosquitoes never recover from
infection; that is, their infective period ends with their death due to their relatively short life-
cycle. There is no vertical transmission and all the newborns are susceptible with a per capita
birth rate A;,. The infected human individuals recover at a constant rate v to join the susceptible.
The infected individuals acquire immunity at constant rate r and may die due to the disease at a
rate §. The natural per capita death rate is assumed to be the same constant w;, for all humans.
The mosquito population has A, and u,, as the natural per capita birth and mortality rates
respectively. The infected female mosquito bite humans at a rate a.

The fraction of the bites that successfully infect humans is b and c is the fraction of bites that

infect mosquitoes when they bite infected humans. The incidence term is of the standard form

with the terms 23212 denoting the rate at which the human hosts S get infected by infected
Ny

mosquitoes I, and aCIi—VIH for the rate at which the susceptible mosquitoes S, are infected by the

H
infected human hosts I .The rate of infection of human host S;; by infected vector I, is
dependent on the total number of humans Ny available per infected vector [21].

The parameter a is the average number of bites per mosquito per day. This rate depends on a
number of factors, in particular, climatic ones, but for simplicity in this paper we assume a to be
a constant.

The parameter (0 < o < 1) determines the degree of partial protection for the recovered

individuals given by a primary infection : ¢ = 0 implies complete protection, and o = 1 implies
no protection. The above description leads to the compartmental diagram in figure 1.5.
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Fig 1.4: The host-vector dynamics of malaria transmission with temporary immunity
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From the compartmental diagram figurel.4 above, we have the following set of equations for
the dynamics of the model:

as abSyl
d_:I:AhNH_ 4 vly — ppSy
dal abSylI ogabRyl
H — HV+ HV_(T+U+6+ﬂh)IH
dt Ny Ny
dRy _ oabRyly
?—TIH - _ﬂhRH (211)
daSy acSyly
=V = 2,Ny — — 1l
dt vi'v Ny Uvly
dly acSyly
— Y = __¥Y I __ I
dt Ny Uyply

with total population sizes Sy + Iy + Ry = Ny and S, + I, = Ny,

We assume that all infected human who recovered are moved to the recovered class and
vaccinated human have temporary immunity that expires over time and again become
susceptible, hence by including a vaccine parameter "a", the above model leads to the modified
model:

dSy abSyly

a ANy — — aSy — UpSH

dl abSyl oabRyl

d_H: Tt = (r+ 6+ pp)ly
t Ny Ny

dRy _ oabRyly

daSy acSyly

LY = ANy — — S

dt vV Ny Hyoy

dly acSyly

— Y = __¥Y I __ I

dt Ny Uyply
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2.2 Model analysis

2.2.1 Transformation of the system

The equations are obtained by differentiating each proportion with respect to time t. The
proportions for the system are:

S . I R S . I .

— ipb==2 =2 s,=X, i,=-L inthe classes Sy, Iy, Ry, Sy and I,

Ny Ny Ny Ny

. . N . . .

of populations respectively and m = N—V is the female vector-host ratio defined as the number
H

S, =
h Ny

of female mosquitoes per human host [2,7,23]. Scaling each of the new variables with respect to
time gives the following system of equations:

Sh _ 4 (sH) = 1 (450 _ SH @NH
dt _dt(NH)_NH(dt Ny dt)
= i(AhNH - —aSy — upSy — Sh[(AhNH - —aSy — ﬂhSH) +

abSyly oabRyly oabRyly
( v TN, ﬁlIH) +(rly ——F — — Ry + aSH)])
H H H

abSHIV

ds . . :
d—th = A, — abmi,s, — as, — ppSp — ApSp + abmi,si + as? + u, st — abmi,s? —

gabmi,sy1, — BiSpin — T'Spip + cabmi, s,y + UpSpT, — as?

asy __ . 2 . .
— = An — abmi,sy — asy — ppSp = ApSp + UpSh + BiSpin — TSpin + UpSaTh

= Ap — abmi,sy, — asp + (r + 8 + pp)Spin — UrSp — ApSp + UnSi; — TSpip + UpSnTh
= Ap — abmi, sy — asy + 8spip + rSpip = fpSp — AnSp + UpSh+HHnSin — TSpin + UpSpTh
= (1 — sp)Ap — abmi, sy — asp + 8spip — PpSp + UpSp(Sp + in +13)

asy __
dt

. 1 di d (I 1 dl Iy dN
For i, = -2, we have =2 = _(i) = _(_H_i_H)
Ny dt dt \Ny Ny \ dt Ny dt

(1 = sy, — abmi,s, — asy, + syl Since s, + i, +r, =1 (2.2.1)

di 1 rabSyl oabRyl
h = < Y+ HV—(T+5+Hh)1H

dt ~ Ny\ Ny Ny

Iy (abSyly, oabRyly,
- — + —(r+8+u)l )
N, < Ny, Ny, (r tn) 1y
abSyly, oabRyly,
+ </1hNH — 0 —aSy — ﬂhSH) +(rly — N, UnRy + aSH)])
H H
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diy
— = abmsyi, + oabmryi, — (r + 8 + )i, — abmsyiyi, — cabmryiyi, + (r + 8 + up)i?

dt
— Apip + abmsyipiy, + aspiy + UpSpiy — riz + cabmryiyi, + uprhin — asyip
% = abmsyi, + oabmryi, — (r + 8 + wp)ip + (r + 8)if — Apip — rif + ppif + UpSpin +
UnThin
= abmsyi, + oabmryi, — (r + 6 + )iy + ri2 + 8i — Apip — ri2 + upin(sp + i + 1)
= abmsyi, + ocabmryi, — (r + 8 + )iy + 8i2 — Apin + ppin
= abmsyi, + oabmryi, — riy, — 8iy — Upip + 8iF — Apip + Upip
din

— = abmsyi, + cabmryi, — Byip + 8i2 where, By = A, +1r+6 (2.2.2)

R d d (R 1 dR Ry dN
For 7, = -, we have %:E(_H) :_(_H__H_H)
H

Ny Ny \ dt Ny dt
dry, 1 oabRyly, Ry oabRyly,
Prae N—H<T A HnRy + aSy —N—H[<T1H "N, — tnRy + 05511)
abSyly, abSyly, oabRyly,
+ </1hNH ——— —aSy — #hSH) +( + - ﬁ11H)])
Ny Ny Ny

% = riy, — oabmryi, — Uty + as, — ripty, + cabmrii, + urF — asprty, — Apry +
abmsyi,, + as,ry, + Up Sy — abmsyi,r, — cabmrii, + Byinry
= 1ip — cabmryi, — Pty + aSp = Tipty + 1y — ApTy + fpSpty + Brinty
= 1ip — cabmryi, — Pty + aSp = Tiphy + 1 — Apty + Syt + (r + 8 + )ipm,
= ri, — oabmryi, — upty + aSp — Tipty + UpTi — Aptn + UpSpTy + Tipty + Sipty + UpinTh
=riy, — Ayry, —oabmryi, + iy, + asy — upty + uprn(sy + i, + 1)

dar . . .
h=ri, — A1y, — cabmryi, + Siyr, + asy, (2.2.3)

s d d 1 (d dN
For s, :N—V, we have %:E(s_") :_(ﬁ_s_v_v)
H

Ny Ny \dt N, dt
ds, 1 acSyly Sy acSyly acSyly
d _N_ viVy ™ N _MUSV_N_[ ANy — N — WSy +( N _MUIV)
t v H v H H
dsy _ . 2 2 .
ar Ay — acsyly — PySy — ApSy + acsyip + fySyS, — acsyip + fySyly
dsy, __ . .
ar Ay —acsyly — WSy — ApSy + Uy SypSy + Uy Syly
dsy

- = /11; - acsvih — UySy — /11,51, + ﬂvsv(sv + iv)

14



dsy

1 (dlv I de)
Ny \dt Ny dt

dtr = Ay — AySy — ACSylp — UySy + UySy
dsy, __ .
e A,(1 —s,) — acs,iy,
. I di d (1

For i, =%, we have —%= —(—")

Ny dt dt \Ny
d_iv — i(acSVIH _ l,[ I _ I_v (acSVIH
dt Ny \ Ny vV, Ny

dt
diy

dt

di, _ . . . .
ar acsylip = Ayly = tyly + Uyly

Thus the system reduces to ;

- MUIV) + (/LJNV -

- = acsvih - Aviv - ﬂviv + ﬂviv(sv + iv)

%’l = (1 - sp)A, —abmi,s, — as, + 6syiy ,
% = abmsyi, + ocabmryi, — Byi, + 8i? ,
% =ri — Apry, — oabmryi, + Siyry, + asy,
% =1,(1 —s,) —acs,iy ,

% = acs,ip — Ayi,

2.2.1 Existence and positivity of solutions

All state variables are assumed to be positive since the model is dealing with population.

Invariant region is obtained by the following lemma.

Lemma 2.2.1

acSyly

H

1,5,)1)

di . . .. . . P .
—== acsylp — fyly — ACSylply, + ﬂvlg — Aply +acsyinly + 1y Syly

(2.2.4)

(2.2.5)

(2.2.6)

The solutions of the system are contained in the region T' € R® and I, UT, € R3 x R2 (Mtisi et

al,2008). We first show that the feasible solutions are uniformly bounded in proper subsets
I € RS. Let{(s), (in), (), (s,), (i,,)} € R> be any solution of the system given by

N, = s, + i, + 1, and N,, = s, + i, with non-negative initial conditions.

Proof

In differential forms ,we write
ANp _ dsp | dip

dar ds . . .
== —hp " h=""h=(1-5,)1, —abmi,s, — as, + 8s,i, + abmsyi, +

dt dt dt dt dt

ocabmiyi, —
ocabmiyi, + Siyr, + asy

Apin — 1ip — 8ip + Si2 +1ip — Apry, —

= Ay — Ap(sy +ip + 1) = Sip + Sip(sy +ip +17)
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Db = A — InNy — 8iy + Siy Ny,

since s, + i, + 1, = Ny,
S8t (A — Big)Ny = Ay — Sy

which is a first order differential equation
To solve the above differential equation above, we make use of the integrating factor which is
given by p(x) = e#n=din)t

Multiplying all through the differential equation by the integrating factor yields
d(Nhe(/lh—&h)f) = ,1he(/1h—5ih)tdt
and integrating both sides with respect to t yields
Nen=08in)t = g(Ar=38in)t 4 ¢
N, =1+ ce~(An=0in)t (2.2.7)
Applying initial conditions : that is when t=0

N,(0O)=1+cor

N,(0)—-1=c.
Thus N, = 1 + (N, (0) — 1)e~Ar=8i)t N, — 1 ast— oo.
(2.2.8)
And
dN, _ds, _ dl,
dt dt dt
=1,(1 —s,) — i,
:/11; - /1va
M 4 AN, =2, (2.2.9)

dt
Since it is the first order linear differential equation we use an integrating factor. Integrating

factor If = e(Jwdt) =gt
d(NyeMt) < 2,eMtdt
Nye™t < eMt + ¢
N, <1+ ce Mt
N,(0)<1+cor

N,(0)—1<c.
Thus N, < 1+ (N,(0) — 1)e %t N, — 1 ast— oo, (2.2.10)
Hence the host population size N, — 1 as t— oo. For vector total population size N,, — 1 as
t— oo. Thus the feasible region for the model system is given by

I={((s), (), (1), (5p), (i) € R Sy, in, T Spy iy = 0,55 + ipy, + 1, = land s, + i, = 1}
which is positively invariant set for the model system. Hence the model is well-posed and
biologically meaningful. The feasible region for R3 ( the positive orthant R®). Thus the system is
well-posed.
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2.3Positivity of solutions

For the system to be epidemiologically meaningful and well posed we need to prove that all the
state variables are non-negative vt > 0.

Lemma 2.3

Let {(s,(0)), (i,(0)), (,(0)), (s, (0)), (i,,(0)) = 0} € I'. Then the solution set
{Gsn (), Gr (), (r(®)), (s, (1)), (i, (t))} of the model system is positive for all t > 0

Proof
From the first equation of system(2.2.6) ,we have

ds . .
=h =@ —-5,)A, —abms,i, —as, + 6syi
" n)An hly h nln

dSh _ . B
— = Ay + 6spip — (A, + abmi, + a)sy,

.Thus,

ds .
d—th > —(Ay + abmi, + a)sy,

I t then follows that,

ds% > —(A, + abmi, + a)dt

after separating variables .

Integrating yields

sp(t) = Sh(o)e—(f(abmiv)dt+(/1h+a)t)

Therefore,

sp(t) = s,(0)e-U@mi)dt+@n+alt > 0 iff ([(abmi,)dt + (4, + a)t) >0 (2.3.1)
For the second equation of the model(2.2.6), we have

di
=
or % = abmsyi, + cabmryi, + §it — (y + 5§ + 1),
Thus,

% > —(y+ 8+ 4,)iy

Separating the variables we have,

% > —(y + 6+ 4,)dt

and integrating yields,
in(t) = (in(0)e~(r+8+n)t,
Therefore i, (t) > (i, (0)e~+3+4)t > Qiff (y +85+1,) >0 (2.3.2)

For the third equation of the model system (2.2,6), we have

d . . .
% =rip — Ayry, — oabmryi, + i1y, + as, Or
d . . .
% =rip — Apry, — oabmryi, + i1y, + as,or
d . . .
% =rip + 8iyry, + as, — Apry, — oabmryi, or
d . . .
% =riy + 6ipry, + as, — (A, + cabmryi,)r, .
Thus,
d ..
% > —(oabmiyi, + Ap)1y,.
Separating the variables we have,

abmsyi, + cabmryi, — Ayip — iy — 8ip + 8i?
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d ..
% > —(oabmiyi, + A,)dt
h

and after integration of the above equation yields
1, (t) = rh(O)e‘U (cabmipiy)dt+A,t]

Thus, 7, (t) = 1, (0)e U (cabmini)dt+intl > 0 if and only if [[(cabmi,i,) dt + A,t] >0

For the fourth equation of the model system(2.2.6), we have

& A,(1 —s,) — acs,iy or

— = A, — 4,8, — acs,iy or

— =1, — (4, + aciy)s,.

% > —(4, + acip)s,

Separating variables we have,
L > —(4, + aciy)dt

ané after integrating we have

s, (t) = 5,(0)e~Avtacin)t,

Therefore, s, (t) > s5,(0)e~Mvtacin)t > 0 if and only if (4, + aciy) >0
For the fifth equation of the system(2.2.6), we have

di . .
d—: = acs,iy — Ay,
Thus,
di .
d—: > =i,
Separating the variables we get
> —A,dt

a;d after integrating the above equation we get
iy (t) = i,(0)eH*

where,

i,(t) = i,(0)e %t >0ifandonlyifi, >0

18
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2.4 Equilibrium states

The equilibria are obtained by equating the right hand side of the system below to zero and
solving for the state variables in terms of i, for easy analysis of the model. The resulting
equilibria is given by E = (s, ip,, 13, Sy, i) and from it we can work out the two equilibrium
points.

% = (1 — sp)A,, — abmi,s,, — as;, + 8s,iy,

% = abmsyi, + ocabmryi, — By, + 8i?

% = riy, — Ay, — cabmryi, + iy, + asy, (2.4.1)
% =1,(1 —s,) —acs,i

% = acs,ip — Ayi,

We set ,

A1 —s5) —acsyiy, =0 or
Ay — Ays, —acsyip =0 or

Ay —sy(A, +acip) =0 or

o= (2.4.2)

Ay+aciy,

acsyiy —A,i, =0 or

Ayaciy,
o acsyiy, — Ap+aciy, — aciy,
v Ay Ay Ap+acij,
aciy,
PR
i 2 (2.4.3)

- Ay+aciy,
From the equation

An — Apsp — abmiysy, — asy, + 8s,ip =0 or

An — Ay + abmiy + a — 8i)s;, =0 or

. An An
Sp = . —~ = =
Ap +abmiy +a — i, aciy, v
Ah+abmm +a—5lh
_ Ap
"~ a?bemi; + (A, + aci;) (A, + a — 8i})
Ay, +aciy,
S;kl _ An(Aptacip) (244)

- a?bemi +(Ap+aciy,)(Ap+a—6if)
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rip + asy —r, (4, + cabmi; — 6iy) =0 or

riy+as;y,
*
r,=—=2—h — or
Aptoabmi;—8iy
Ap(Ap+aciy,
ri;;--l_a .k h( z .k h) .k
= azbcmlh+(lv+aah)(lh+a—&h)
me Antoabm|—h |5
+oabm|—L2+(-6i
h [lv+aci;“l] h

[a2bemiy+(Ap+aciy)(Ap+a-Siy)]riy +Apa(Ap+aciy)

azbcmi;“l+(lv+aci;“l)(lh+a—6i;“l)

gaZbemiy+(Ayp+aci), )(Ap-8i3)

Ayp+aciy,

T;; — {[azbcmi;“l+(/1v+aci;‘l)(/Ih+a—Si;“l)]ri;“l+lha(/1v+aci;“l)}(/1v+aci;“l) (245)

[a?bemif +(Ay+aci})(Ap+a—38i)|[oa?bemif +(Ap+aciy ) (Ap—8if)]

2.4 Existence of disease free equilibrium point(DFE)

The system is analyzed to determine the equilibrium point of the system and their stabilities. Let
E(sp, in, 17, Sy, I;) be the equilibrium point of the DFE model which is obtained by setting
dsi _ dif _ drf _ dsy _ dis _

dt dt dt dt dt
Therefore, in the absence of infection, that is, when i, = i;, = a = 0, the model system has

steady state E,, called the disease free equilibrium . When we substitute

iy =i, =1, = a = 0 in the system, the system reduces to (1 — s;)A, = 0 or A;s;, = A, hence
s, = l,also (1 —s;)4, = 0or 4,s; = A, hence s; = 1.Thus the disease free equilibrium point
of the model is given by E, = (s, iy, 17, S5, 1) = (1,0,0,1,0)

At the disease free point, the susceptible populations is equal to the total population respectively
, that is, N, = s, and N,, = s;,. Thus the disease free equilibrium exists when 4, > 0and 4, > 0.
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2.5 Basic reproduction number

In order to assess the stability of disease free equilibrium(DFE) and the endemic
equilibrium(EEP),the computation of the basic reproductive number R, is required. R,
represents the average number of secondary infections that a single infectious host can generate
in a totally susceptible population of hosts and vectors. In other words, to know how many
infectious individuals are generated by a single infective introduced into a susceptible
population. We now write the equations of the system beginning with the infective and use the
next generation matrix to determine the basic reproductive number.

2.5.1 Next generation matrix
To determine the basic reproduction number, we consider the system of differential equations:

di . . : : : :
d—: = abmsyi, + oabmryi, — Apip — iy — 8ip + SiF

di . :

d—t" = acs,iy — Ayi, ,

dar . . .

d—th = riy, — Ay — cabmryi, + Siyry, + as, (2.5.1)
ds . .

d—th = (1 — sp)A, — abmi,s, — asy, + 8spiy ,

dsy

- = A,(1 —s,) —acs,iy,

R, is obtained by taking the largest(dominant) eigen-value(spectral radius) of

et el

oxj || ox;

where ,
F; is the rate of appearance of new infections in compartment i
V;* is the transfer of individuals into compartment i
V.~ is the transfer of individuals out of compartment i

E, is the disease free equilibrium point

Ey = (sp, i, 17, 85,13) = (1,0,01,0) .
The new infected compartment are i, and i,.
0f1(Eo) 9f1(Eo)

fil _ | 6i? | e oi; | _[26i; O
Therefore,[fz] = |acssiz F=1anGo oneo| = [acs;; 0] . (2.5.2)
ai; ai}
AtEy, = (sp,i7,10, 50, 15) = (1,0,0,1,0),F = [ac 0]. (2.5.3)
Also 'Vl] _ [—(r + A + 6)ij, — al?:ns;‘li; - aabmr;{i;] .
.VZ Avlv

By linearizing at disease free equilibrium point we have
[0V1(Eo)  0Vi(Eo)
dir aiy;

o=l wa|

(r+ A, +98) —abms; —aabmry,
OVa(Eo) 9Va(Ey) 0 Ay

L o), ais,

The jacobian matrix of V' evaluated at E,, is given by
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V= [(Ah +7r+ ) —abm] (2.5.4)
0 /11;
The inverse of the jacobian matrix above is given by
—— 1 A, +r+8) —abm
Ay(Ap+1+8) 0 Ay
1 abm
_ |@n+r+8)  2,(p+7+6)
— | @Gntr hlr (2.5.5)
0 "
The product of F and V1,
1 abm 0 0
Fy-1= [0 0] (Ap+7+8) lv(lh;-r+5) :l ac 2bem (2.5.6)
ac O 0 - Ap+7+8)  Ap(Ap+7+8)

Hence we develop a matrix
A=|FVv=*—=IP|=0

—P 0
A= l ac a’bcm . Pl (257)
Ap+r+8)  Apy(Ap+r+6)

Then the eigenvalues (P) of matrix A are given by

a’bcm _
P(m—P) =0 (2.5.8)
_ _ a’bcm
ThusP =0 orP = m (259)
Hence the reproduction number R, from (2.5.9) is the dominant eigenvalue of A ,which is
R. = a’bem (2.5.10)

0™ A,(Ap+7+6)
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2.6 Local stability

The local stability of the disease free equilibrium point is obtained by the following lemma.

Lemma 2.6.1

If Ry < 1, the disease free equilibrium point E, of the model is locally assymptotically stable,
and is unstable if R, > 1.The local stability of DFE equilibrium point E|, is established by

linearizing system (2.2.6 ) around a DFE, then
[0f1 0f1 9f1 0f1 9f17

[ —(/1]:+ abmi, + a — 8iy) dsp 0 0 —abms,
| abmi, — Ay +1r+8) + 260, oabmi, 0 abmsy, + ocabmr, |
| a r+8ry 8ip, — (A, + oabmi,) 0 oabmry, |
0 — acs, 0 — (A, + aciy) 0
0 acs, 0 acip -1,

At the DFE point E, = (s, i, T, Sy, i,) = (1,0,0,1,0),hence the jacobian matrix simplifies to

[ —(Ay + ) 6 0 0 —abm 1
| 0 —(r+21,+96) 0 0 abm |
Je, =| a r — A 0 0 |
l 0 —ac 0 — A 0 J
0 ac 0 0 — A

We observe matrix that the matrix /g has negative eigenvalues

—(Ap + @), =, —4y (2.6.1)

and the remaining two can be obtained from the block matrix given by

B:r0+h+& abm (2.6.2)
ac -y

whose trace and determinant are given by

Trace B=—-(A, + A, +r + ) (2.6.3)

Det B =21,(A, +r+8)—a’bem = 1,(A, +r+8)(1 —Ry) > 0if Ry < 1 (2.6.4)
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where
a’bcm

Ry = Ap(Ap+7+68)
Thus E, is locally and asymptotically stable if and only if R, < 1 and unstable if R, > 1.

(2.6.5)

The quantity R, is the basic reproduction number of the new infections produced by one infected
individual introduced in an otherwise susceptible population. It is useful quantity in the study of
a disease as it sets the threshold for its establishment. If R, < 1,the disease free equilibrium is
locally unstable.

Alternatively, the characteristic equation of the above matrix is
A +a+ A+, + )= + 7+ 5+ §)(A, +§) +a’bem] =0 or
A +a+ A+ +D-2,(A, +1 +8) = 1, — (A +1 + 5+ E7) + azbcm] =0
A+ a+ A+ + DI — Ay + A, +1 +8) — A, (4, +7+6) + azbcm] =

(A + a + &)y + (A, +§) [52 — (A + A + 7+ 6)E — Ay (A + 1 + )[1 — 2™ ]]

Ay(Ap+1r+8)
0
A +a+8A, +ON, +O)[E2 - A, + A, +1r+8)E— 21,4, +r+8)(1—-R)]I=0
(2.6.6)
where,
_ a’bcm
There are five eigenvalues corresponding to the characteristic equation above.
Three of the eigenvalues §;, = —(A, +a) , & = =4, , & = -4, (2.6.8)

have negative real parts.
The other two eigenvalues can be obtained from the quadratic equation

E2— M+ A +r+8)E—21,(A,+7r+6)(1—Ry) =0 (2.6.9)
Applying the Routh-Hurwitz criteria for a quadratic polynomial. It is easy to see that both the
coefficients of (2.6.6) are positive if and only if R, < 1. Thus, all roots of (2.6.6) are with
negative real parts if R,< 1, and one of its roots is with positive real part if Ry,> 1. Therefore,
the disease-free equilibrium(DFE) E, is locally asymptotically stable if R, < 1 and unstable if
Ry> 1. Thus, we have the following result;

Theorem 2.6.2

The uninfected equilibrium E, is locally asymptotically stable if R, <1 and unstable if Ry, > 1
inT.
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2.7 The endemic equilibrium point
The endemic equilibrium point of the model is obtained by setting

dSh _ dih _ drh dsy _ div

A=A =T = =0 (271)
t dt dt dt dt
Then by solving the given system each equilibrium point is expressed in terms of i;, at steady
states and this yields,
E1 = (S;;_! i;;_! r;;u S;u i;)
as an endemic equilibrium point where,
A1 —s5) —acsyip, =0 or

Ay — Ays, —acsyip =0 or

Ay —sy(A, —aciy) =0 or

Ay
S, = 2.7.2
v Ay—aciy, ( )
acsyiy —A,i, =0 or
Ayaciy,
i = acsyiy _ Ay-aciy _ aciy
v Ay Ay Ay—aciy,
, aciy,
1= h 2.7.3
v Ay—aciy, ( )
An — Apsp — abmiysy, — asy, + 8s,ip, =0 or
An — (A + abmiy + a — 6iy)s;, =0 or
* lh
s; = - —
Aptabmiz+a—35iy
— An
- N b aciy, sit
hta m(—lv_aci;l)+a— ip
= A
azbcmi;“l+(lv—aci;“l)(lh+a—6i;“l)
Ay—aciy,
An(Ap—aciy,
5 = wOu—aciy) (2.7.4)

a?bemif+(Ay—aciy)(Ap+a—5i},)
rip + asy — 1, (4, + cabmi; — §i;) = 0 or

. _ riy+asy,

T or

- . %
Ap+oabmiy—§8ij
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rij+a

Ap(Ap—-aciy)
azbcmi;“l+(lv—acifl)(lh+a—6i;“l)

aciy, ] st
Ay—aciy, h

h =
/1h+aabm[

[a2bemiy,+(Ap—aciy)(Ap+a-8iy)]ri} + Apa(Ay—aciy)

azbcmi;“l+(lv—aci;“l)(lh+a—6i;“l)

gaZbemiy+(Ap—aci}, )(Ap-8i})

Ay—aciy,
= {[a?bemiy +(Ap—aciy)(Ap+a—6if,)|rij +Apa(A,—acif, ) }(Ap—aciy)
a’bemiy+(Ay—aciy ) (Ap+a—=48i oga*bcemiy +(Ay—aciy )(Ap—=381i;)
n 2bemiy, h n)lloa?bemiy h h
= {[a?bemiy +(Ap—aciy) (Ap+a—38i;,)|riy +ady (Ap—aciz)A,—aciy] (2 7 5)
h a?bemii +(Ay—aciy)(Ap+a—38i})||[ca?bemi; +(Ay—aci ) (Ap—8i3) o
h h h h h h
. An(Ap—aciy) " aciy, %
x4 h Ay h _ + h — =
rpTa a?bemi} +(Ay—acif)(Ap+a—6i;,) rh(lh oabm [lv—aci;‘l] 5lh) 0
[a2bemiy +(Ay—aci),)(Ap+a—68ip)|rif, +arn (Ay,—aciy) _ rploa?bemiy +(Ay,—aciy)(An—6ip)] -0 (2 7 6)
a?bemif,+(Ay—aciy)(Ap+a—6i;,) Ay—aciy, o
[a?bemiy +(Ay—aciy)(Ap+a—8ip)|rif +arn(Ay—aciy) _ riloa?bemiy+(Ay—aciy)(Ap—8i})]
a?bemif+(Ay—aciy)(Ap+a—6i;;) - Ay—acip,
« — {la?bemiy+(Ay—aciy,)(Ap+a—6ip)|rij,+arp (Ay,—aciy)}Ay,—aciy | (2 7 9)

Th = [a?bemif +(Ay—aci})(Ap+a—38i})|[oa?bemif +(Ay—aci} ) (Ap—8i})]

Letr, =1—s, —iand s, = 1 —i,, the model system (2.2.6) can reduce to a 3-dimensional
system given by equations (2.7.10),(2.7.13),and (2.7.14) as shown below

% = (1 — sp)Ay, — abmi,sy, — as, + 8syip (2.7.10)
% = abmsyi, + ocabmryi, — B,i; + 8i? (2.7.11)
Sk = abmsyi, + oabmiy(1— s, — i) = Baij, + 8if (2.7.12)
% = abmsyi, + oabmi, — cabmi,s, — cabmi,i, — f,i; + §i? (2.7.13)
ZT = acsylp = Ayly (2.7.14)

We can now make the substitutions,
m=1—s,—ipands, =1—1i,

in each of the equations (2.7.10),(2.7.13),and (2.7.14) to obtain the three dimensional system
given below by equations (2.7.15)-(2.7.17)
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di . . .
d—t" = acip(1—1i,) — A0,

C;—i: = aciy — aciyi, — A1, (2.7.15)

That is,

asy __

— (1 —sp)A,, — abmiy,s,, — as, + 8syip, (2.7.16)

dip _

—+ = abmsyi, + oabmi, — cabmi,sy, — cabmiyiy — Pain + 5i? (2.7.17)

Equating the right hand side of the equations (2.7.15)-(2.7.17) of the above system to zero yields

(1 —sp)A, —abmiysy, — asy, + 8spip =0 (2.7.18)
abmspi, + cabmi;, — cabmiy,s;, — cabmiyi;, — i, + 5i,*12 =0 (2.7.19)
acip — acipi, — A,i;, =0 (2.7.20)

Expressing equation (2.7.18) and equation (2.7.20) in terms of i;, we get

A
* h
h

. .k
Ap+abmiz+a—8iy

An

— ry

Ap+ab ( i )+ 5it
abm|—2 - )+a-6i
h Ayp+aciy, h

An
azbcmi;“l+(lv+acifl)(lh+a—6i;“l)

Ay+aciy,

_ An(Ap+aciy)
- a?bemi +(Ap+aciy,)(Ap+a—6iy,)

_ An(Ap+aciy,)
Sh = azbcmi;“l+(/1”+aci;‘l)(/1h+a—5i;‘l) (2721)
.« _ acip
iy = (2.7.22)
Substituting the equations (2.7.21) and (2.7.22) into equation (2.7.19) we get,
An(Ap+aciy,) acij, aciy, |
abm [azbcmi;“l+(/1v+aci;‘l)(/1h+a—5i;‘l)] [lv+aci;‘l + oabm Ap+aciy
An(Ap+aciy,) aciy, _ acij, _— i w2
gabm [azbcmi;“l+(lv+aci;‘l)(lh+a—5i;‘l)] [lv+aci;‘l cabm Ay+aciy ih = Bain + 60" =0 (2.7.23)
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Apa?bem(Ay+aciy)ip, ga’bemip | Apoa?bem(Ay+acip)ip, _
| [a?bemif +(Ay+aciy)(Ap+a—6i;)](Ay+aci}) Ap+aciy, [a?bemif +(Ap+aci)(Ap+a—8i;)|(Ay+acit)
—aazbcmi;“lz i
_ | - —+ e
| Ap+aciy ] ﬁz 5"’1 0 (2724)

Apa?bem(Ay+aciy) ga’pbem| Apoa?bem(Ay+aciy) _
| [a?bemif +(Ay+aci)(Ap+a—6i)](Ay+aci}) Ay+aciy [a?bemif +(Ap+aciy)(Ap+a—8i3)](Ay+aci})
—aazbcmi;“l %

_ —+ e
| Ap+aciy, ] b2 5"’1 0 (2.7.25)

Ana?bme(4, + aciy) — Apoa?bem(A, + aciy) + {[a?bemi;, + (A, + aci;) (A, + a —
§ip)Hoa?bem — ga?bemi;] — [a?bemi;, + (A, + aciy)) (A, + a — §i;)1(4, + aci;) B, +
[a’bemiy + (A, + acif)(Ap + a — 8i3)](A, + aci;)Si; =0 (2.7.26)

AyAna?bem + Apa’bemaci;, — A,Ayoa’bem — A,aa®bc?mi;, + {ca?bem[a?bemi;, + A4, +
Aot — A, 805 + Apaciy, + aaciy — Saciy?] — oa’bemi;[a*bemi;; + Ay, + Aya — 4,805 +
Apaciy + aaciy — 5aci;‘12]} - [azbcmi;‘l + Apd, + Ay — 4,605 + Ayaciy, + aaciy, —
Saci;®|(A, + aciz)p, + [a?bemis, + ApA, + Aya — 4,815 + Azaciy, + aaci;, — Saci;?| (4, +
acip)éip, =0 (2.7.27)

ApApa?bem + Apa’bemaci;, — A,Ayoa’bem — Apaabc?mi;, + {[(ca*b?c?m?i;, +

ca“bcm aca“bem — A,0a“bcmoi ca’bcmi aca’bc“mi, —
AnA,aa2bem + A aca?bem — A,0a?bemdii + A,oadbc®mii + aca®bcimis
Soadbc*mi?) + (—oatb?c?m?iy? — AnA,0a2bemi;, — A,aca’bemiy + A,80a?bemi;® —
Apoadbcimii? — acadbc?mi;® + 6a3bczmi;‘l3)]} + [(=A,Bra?bemi;, — 2,426, — A2B,a +
MBSty — AndyBracis — AyBraaci;, + A, B,8aci;?) + (=Byabc?mis? — Aph,Braci;, —
AyaPyaci + A,8B,aciy® — A, Bra?c?iz? — aB,a?c?i;® + 6ﬁ2a202i;‘13)] +[(2,6a?bemi;? +
M A28iy, + Aadiy, — 12820 % + ApA,Saci;” + A,8aaci;® — 82 Ayaci;?) + (a®bc?msi;® +

Mnhyacsiz? + d,aacsdiy® — Ay8aciy® + A,a?c?8i;? + Saa?c?i;® — 82a2c?i;*)| = 0
(2.7.28)

[62a2c?)i;* — [Saa?c? + Apa®c?8 — A,8ac + §a3hc?m — §2),ac + 8B,ac? +
sa3bc?mliz® — [A,aacs + AyA,acs + A,8aac + AyA,8ac + A,8a2bem + 1,8 B,ac +
ABrbac + A,60a’bem — 226% — afya®c? — B,albc*m — Apoadbc?m — aca®bc?m —
A Bra?c? — ga*b?c?m? — Soadbc?mliy? — [A2as + 1,428 + 1,8, + acabc*m +
Apoadbc?m + oca*b?c?m? + A a’bemac — A,oa?bemé — A,B,a*bem — ApA,0a’bcm —
Ayaca’bem — A,af,ac — ApA,Brac — A,B,aac — Apd,Brac — Apoadbc?mli; —
[A,Ana?bem + A, A,0a2bem + A,aca’bem — A,Apoa’bem — A, A28, — A2B,a] = 0

(2.7.29)
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For easy analysis of the above polynomial we let each of the coefficients of i}, to be equal to
some constants say A,B,C,D and E so as to obtain the polynomial

fGp) = Aij* + Bi;® + Ci;? + Dij, + E (2.7.30)
or Aiz*+Bi;*+Ci;*+Di; +E=0 (2.7.31)
where

A = 62%a?c?, (2.7.32)
B = —[6aa?c? + A,a%c?6 — A,6ac + §albc*m — §%A,ac + 8B,a%c? + §acbc?m],

= —[saclac(+A, + a + B,) — 21,6(8 + 1)] + 26a3bc?m]
= —Sac{lac(+2, + a + B,) — 1,6(6 + 1)] + 2a’bcm} (2.7.33)

C = —[A,aacé + A, ,acsd + A,6aac + A, A,6ac + A,6a’bem + 4,6 B,ac + A,B,6ac +
Ay6aa?bem — 2362 — af,a?c? — Byadbc?m — Ayo0a3be*m — aocalbc*m — A, Bya%c? —
oa*b?c*m? — §aa®bc?m],

= —[ac(A,6[2(4y, + a + B,) — 1,6] — Bracla + A,]) + A,8a2bem[o + 1] — a®bc?m(B, +
oA, + a + 6 + abm])]

=adbc?m(B, + o[A, + a + 8§ + abm]) — ac(1,6[2(A, + a + B,) — 1,6] — Bracla + 2,]) —
A,6a2bem([o + 1] (2.7.34)

D = —[A2ab + 2,436 + A1,,6 + acga®bc*m + Ay oa®bc?m + oa*b?c?*m? + 1,a3bc?*m —
Ayob6a’bem — A,B,a’bem — ApA,0a’bem — A,aca?bem — A,af,ac — ApA,Brac —
MBraac — ApA,Brac — Apoadbc?m],

= [+A,{2B,ac(a + A,) + a’becm(o[A, + 8 + a] + )} — (4,6[A,(a + 4,) + B,] +
a3bc?m{A, + ola + abm]})]

= +A,{2Bac(a + A) + a’bem(o[A, + 6 + a]l + B,)} — (1,6[4,(a + A) + B,] +

albc?m{A, + ola + abm]}) (2.7.35)
E = —[A,Apa?bem + ApA,0a?bem + A ,aca’bem — A,Apoa?bem — A, 2B, — 126, al
_ 2 2 2 aZme
= —A,aca’bem + A2B,a + L7208, (1 - )
iy
= A,a(A,B, — ca’bcm) + 1,A36,(1 — R,) (2.7.36)

The value of E in the above equation can only be greater than zero if R, < 1 where
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_ a’bmc
Ry = Ap[Ap+7+6]
It then follows that A > O .Further,E > 0 whenever R, < 1. The number of possible real roots
of (2.7.31) depends on the signs of B, C and D. This can be analyzed by Descartes' rule of signs

on the quartic.

2.8 Descartes rule of signs
Descartes' rule of signs is a method that can be used to determine the number of positive or
negative roots of a polynomial.

Let p(x) = X™, a;x* be a polynomial with real coefficients such that a,, # O.

Define v to be the number of variations in sign of the sequence of coefficients a,,, ... ... ... Ap_q-
By, ’variations in sign’, we mean the number of values of n such that the sign of a, differs from

the sign of a,,_, , as n ranges from m down to 1.

For example, consider a polynomial p(x) = x? — 4x + 4. The coefficients are 1,-4,4, so there
are 2 variations in sign (since the sign of 1 differs from that of -4, which in turn differs from that
of4.)

Then the number of positive real roots of p(x) is v — 2N for some integer N satisfying
0<N< E The number N represents the number of irreducible factors of degree 2 in the

factorization of p(x). Thus N = O if it is known that p(x) splits over the numbers. The number
of negative roots of p(x) may be obtained by the same method by applying the rule of signs to

p(x).

2.8.1 History of the method

This result is believed to have been first described by Rene Descartes in his 1637 work La
Geometrie. In 1828, Carl Friedrich Gauss improved the rule by proving that when there are
fewer roots of polynomials than there are variations of sign, the parity of the difference between
the two is even.
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The various possibilities for the roots of f(i;) are tabulated in the table below

Table 1: Number of possible positive real roots of f(i;) for Ry>1 and Ry<1.

Cases 1 2 3 4 5 Ro | No. of sign No. of positive real
change roots

1 + + + + + Ro<1 0 0
+ + + + - Ro>1 1 1

2 + - - - + Ro<1 2 0,2
+ - - - - Ro>1 1 1

3 + + - - + Ro<1 2 0,2
+ + - - - Ro>1 1 1

4 + - + - + Ro<1 4 0,2,4
+ - + - - Ro>1 3 1,3

5 + - - + + Ro<1 2 0,2
+ - - + - Ro>1 3 1,3

6 + + + - + Ro<1 2 0,2
+ + + - - Ro>1 1 1

7 + + - + + Ro<1 2 0,2
+ + - + - Ro>1 3 1,3

8 + - + + + Ro<1 2 0,2
+ - + + - Ro>1 3 1,3

Theorem 2.8.1
The system has a unique endemic equilibrium E* if Ro>1 and Cases 1,2,3 and 6 are satisfied; it
could have more than one endemic equilibrium if Ry>1and Cases 4, 5, 7, and 8 are satisfied; it
could have 2 or more endemic equilibria if Ro<1 and Cases 2-8 are satisfied.

2.8.2 Stability of endemic equilibrium point

The existence of multiple endemic equilibria when Ry<1 (is shown in Table 1). Table 1 suggests
the possibility of backward bifurcation [22-24], where the stable DFE coexists with a stable
endemic equilibrium, when the reproduction number is less than unity. Thus, the occurrence of a
backward bifurcation has an important implication for epidemiological control measures, since
an epidemic may persist at steady state even if Ro<1 .This is explored below by using Centre
Manifold Theory [25] .Now, we shall establish the conditions on parameter values that cause a
backward bifurcation to occur in system (4), based on the use of Center Manifold theory, of the
paper in Castillo-Chavez and Song [25].

Theorem 2.8.2
Let one consider the following general system of ordinary differential equations with a
parameter ¢: f(x, @), f: R® x R - R*(R % R).

31



Without loss of generality, it is assumed that x = 0 is an equilibrium point of the system for all
values of the parameter . We assume that:

(A1) A = D, f(0,0) is the linearized matrix of system around the equilibrium point x = 0 with
¢ evaluated at zero is simple eigenvalues of A have negative real parts.

(A2) Matrix A has non-negative right eigenvalue w and a left eigenvalue v corresponding to the
zero eigenvalue. Let f;, be the k" component of f and

° 92£,(0,0)
a1: Z 'UkWin—

= axiax]'
5
b = Z 0%£(0,0)
1= L Ui g 9k
i,k=1

(2.8.1)
The local dynamics of the system around O are totally determined by a; and b,

(1) In the case where a; > 0, b; > 0,0ne has that when ¢ < 0 with ¢ close to zero, x = 0 is
unstable; when 0< ¢ < 1, x = 0 is unstable and there exists a negative and locally stable
equilibrium;

(ii) In case, where a; < 0, b; < 0, one has that when ¢ < 0 with || close to zero, x = 0 is
locally asymptotically stable and there exists a positive unstable equilibrium; when 0 < ¢ < 1,
x = 0 is locally asymptotically stable and there exist a positive unstable equilibrium ;

(iii) In the case where a; > 0,b; < 0 , one has that when ¢ < 0 with |¢| close to zero ,x = 0 is
unstable and there exists a locally asymtotically stable negative equilibrium; when 0 < ¢ < 1,
x = 0 is unstable and a positive unstable equilibrium appears

(iv) In the case where a; < 0, b; > 0, one has that when ¢ < 0 changes from negative to
positive , x = 0 changes its stability from stable to unstable . Correspondingly a,, negative
unstable equilibrium becomes positive and locally asymptotically stable. Particularly, if a; > 0
and b; > 0, then a backward bifurcation occurs at ¢ =0

To apply the stable manifold theorem, the following simplification and change of variables are
made on the model

First, we let, x; = sy, X3 = ip, X3 =1 X4 = Sy, X5 = Iy (2.8.2)

sothat N, = x; +x, + x5 and N, = x, + x5 (2.8.3)
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Further, by using the vector notation, X = (sy,, in, 7, Sy, i,)" ,the system can be written in the

form % = (f1. for f5. [2. f5)T as follows:

% = fi = (1 — x4, — abmxsx; — axy + §xqx,
% = f, = abmxsx, + cabmxzxs — Bx, + 5x§
% = f3 =71x, — ApX3 — cabmxsxs + 8x,x3 + ax,
% = fo = A, (1 —x,) —acx,x,
% = fs = acxyx, — A,xs

where,

Bo=A,+r+46

(2.8.4)
(2.8.5)
(2.8.6)
(2.8.7)
(2.8.8)

The jacobian matrix evaluated at disease free equilibrium E, = (1,0,0,1,0) with b = b* is

[ 2, —abmx, —a + 65X, 5%, 0
oabmx; B, +26%, cabmx,
o r+6x, —A —ocabmx, +6X,
0 —acx, 0
0 acx, 0

AtDFE x; =1,x,=0,x3=0,x,=21,x5=0

[-(4,+a) & 0 0 -—abm]
0 -5, 0 0 abm
JorE = a r =4 0 0
0 —-ac 0 -4, 0
0 ac O 0 -4 |

0 —abmx,
0 cabmx, + abmx;
0 —cabmx,
—A, —acx, 0
acx, A,

(2.8.9)

Choosing b as a bifurcation parameter and solving for b = b* when R, = 1 gives

a’bcm
Ry =——
Ay(Ap+7+98)
__ a®b*cm
Ay(Ap+7+98)

_ Apy(Ap+r+96)
acm

b*
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It can be easily seen that the jacobian ] of the linearized system has a simple zero eigenvalue
and all other eigen-values have negative real parts. Hence the centre manifold theory can be used
to analyze the dynamics of the system. For the case when R, = 1, it can be shown that the
jacobian matrix J has a right eigenvector (corresponding to zero eigen-value) given by

w = (W11W21W31W41W5)T ’

where,
4, &6 0 0 -—abm][w ]| [O]
0 -, O 0 abm {|w, 0
0 ro -4, 0 0 w, | = |0
0 —-ac 0 -4, 0 W, 0
0O a 0 0 -4 ]|w]| [O]
— A w; + 6w, —abmws; =0 (2.8.11)
—pow, + abmws =0 (2.8.12)
TWZ - /1hW3 = 0 (2813)
_aCWZ - /1UW4- = 0 (2814)
acw, — A,ws =0 (2.8.15)

Using equation (2.8.11)
_ﬁ2W2 + abmW5 =0 )

we have w, = a;’—mws (2.8.16)
2

From equation (2.8.11)

— A, wy + 6w, —abmws =0

__ Swy—abmws

we have w; = ———= or
An
5(‘1;;—:1w5)—abmw5
w; = or
1 A
abm(5-B7)
w,=—L2 o
1 A
bm(5—
L = %WS (2.8.17)
2
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From equation (2.8.14)
_aCWZ - /1UW4- = 0

ac
we have w, = —w or
v
ac ,abm
w, —(—)ws or
w a’bcm
4 P

From equation (2.8.13)
rwy, — AhW3 = O

TW»
we have w; = —= or
An

From equation (2.8.15)

acw, — A,ws =0 or

We = acW _ac abm] We or
ST 2T Ll 17
We = azbcmW or
> MBr 0

W5 = W5 > O
since

a’bcm

Ro =05

=1

where, B, = A, +1r+ 6
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Similarly, the components of the left eigenvector of J (corresponding to the zero eigenvalue)
denoted by

v = (vq,Vy, V3, Uy, U5)T (2.8.21)

where,

-4, 6 0 0 -abm] |[O
0 -, O 0 abm 0
v, v, v; v, ]l e 1 -4 0 0 |=]|0
0 -ac 0 -4 0 0
0 a O 0 -4 | |[0] (2.8.22)
Expanding the system yields the system of equations
_/1hv1 = 0
6vy — Bov, + 1v3 —acv, + acvs =0
—/1h173 = 0
_/11;1]4_ = 0
—abmv; + abmv, — A,v5 =0
(2.8.23)
Solving the system (2.8.23), we obtain,
v, =0, (2.8.24)
vz =0, (2.8.25)
v, =0, (2.8.26)
From,
évy — v, + rv3 — acv, + acvs = 0, we have, —f,v, + acvs = 0 implying
v, = =g (2.8.27)
B2
Again, from

—abmv; + abmv, — 4,v5 =0,
we have,

abmv, — A,vs = 0 or
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abm
Ay

Vs = —— v, Or

__abm
Vg = Vg Or

_ a“bcm 2bem

Vs =—vs 0rvs =v5 >0 (2.8.28)
AvB2

since Ry = 2™ — 1
07 MBe

where f, = A, +r+6

Computation of a,: for transformed system ,the associated non-zero partial derivatives of
f (evaluated at DFE) which we need in the computation of a, are given by

82£,(0,0) _ 8%£>(0,0) _

oxs0x,  oxoxg PP (2.8.29)
82£,(0,0) _ 8%£>(0,0) _
82£,(0,0) _

ox = 20, (2.8.31)
82f5(0,0) _ 8f5(0,0) _
0x40x;  0x0%s ac (2.8.32)
From

> 0*f, (0,0)

= V. WW, — KA

a1 .% K 8Xi8Xj

it then follows that

=vz_ZSZWi Jazf(OO) 25: 2°1,(0,0)

OX,0X e Wi OX,0X; (2.8.33)
a, = 2v,[wyws(abm) + wyws (cabm) + wow, (6)] + 2vs[w,w, (ac)] (2.8.34)
substituting
__abm(é-82) _ __ |rabm __ a“becm
L= S wswy = g ws = [ e w, = - S

W5:W5>0 and

v, =0,v, = %vs, v; = 0,1, = 0,v5 = vs > 0 in the equation above we get
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a, = 2v,[wyws(abm) + wyws (cabm) + wow, (6)] + 2vs[w,w, (ac)] (2.8.35)

a, =

20sw ] am (25=22) + oabm [552] + 5 (57| + 2w [ae () (- 557

ac] (a?b*m?r ca?b?m?[(6- 8a?b?m? a’bcm
a, = 2vsw? [—]{ + [6=F — — abm [— }
B2 AnB2 B2n B3 AvB2

[Za bcmvsw?

T ]{Avﬁzrabm + oA, Brabm(8 — B,) + A A 8abm — A, 8,(a?*bcm)}

[ZROWS] {1, B,rabm + g, B,abm(8 — B,) — ApB,(a?bcm) + A,A,6abm}

= — [ {00u 82 + Muprac — Ao(Bor + 2n8 + 605,)} (2.8.36)

If we let
g = 0,3 + Apfrac and (2.8.37)
= Ay (Bor + 2,6 + 80 ,), (2.8.38)

we then have a; <O ifandonlyif g > s

For the sign of b, it can be shown that the associated non-vanishing partial derivatives of f are
given by:

\ _i 02£,(0,0)
1= L Ui T g 9k

k=1

5 92£,(00) < 92£5(0,0)
b, = szwi—"'zvswi—

, dx;0b , dx;0b
=1 =1
(2.8.39)
3%£,(0,0) 3%£,(0,0) 3%£,(0,0) 3%£,(0,0) 3%£5(0,0)
by = v,wy 9x,0b + vaWs dx50b + Vw3 9x30b + vaWs dx50b +Uswy 9x,0b (2.8.40)
2
b, = v, SaafZ(;bO) vowsam >0 (2.8.41)
Thus b; >0 (2.8.42)
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Since a; < 0 and b, > 0 holds as stated in Theorem 2.8.2 above, then model (2.2.6) undergoes a
forward bifurcation at R, = 1 and has a negative unstable endemic equilibrium point(EEP)
which becomes positive and locally asymptotically stable when a = 0.

Figure : The Diagram of Forward Bifurcation when
A, =0.89,4, =0.35a=0.29,¢ =0.75,m = 0.358,r = 0.00019,6 =0.333,06 =0.0La =0
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It is observed that as R, decreases to one, the disease also decreases due to the acquired
immunity to malaria which develops gradually due to continuous exposure to infections. The
disease free equilibrium (DFE) occurs when R, < 1. WhenR,, > 1, it should be noted that the
diseases continue to exist in population due to re-infection of the individuals who lose immunity,
which implies that the disease can invade the population and persist at an alarming rate.
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CHAPTER 3

3.NUMERICAL ANALYSIS OF THE MODEL

3.1 The model parameter estimates

The following parameter estimates we used in numerical simulation of the model.

Parameter | Description Value Reference

a the average daily biting rate on man by a single 0.29/day [14,18]
mosquito

b the proportion of bites on man that produce an 0.75 [18]
infection

c the probability that a mosquito becomes 0.75 [18]
infectious

r the rate of recovery of human hosts from the 0.00019/day [5]
disease

1) the per capita death rate due to the disease 0.333 [25]

An the per capita natural birth rate of humans 0.0015875/day | [8]

Ay the per capita natural birth rate of the mosquitoes | 0.071/day [8]

Up, the per capita natural death rate of the humans 0.00004/day [5]

Uy, the per capita natural death rate of the mosquitoes | 0.05/day [19]

3.2 Numerical analysis of the model

In this section, we present the numerical analysis of the model. The parameter values in table 1
are used in the simulations to illustrate the behavior of the model. We observe that in the early
stages of the epidemic, there is a high prevalence of malaria because of a large proportion of
infected mosquito vectors that results in a significant decrease in the number of susceptible
human hosts. As the proportions of infected humans and infected mosquitoes decrease and
remain at low level values, we observe a dramatic increase in the immune class.. In the absence
of infected human hosts and mosquito vectors, the proportion of the immune class decreases as a
result of immunity loss and this leads to an increase in the human susceptibles. We eventually
have a higher proportion of immune humans compared to the proportion of susceptible humans.
There are damped oscillations of the proportions until an endemic equilibrium level is eventually
reached and this converges to a steady state that is asymptotically stable. These numerical results
support the results earlier obtained analytically that the endemic equilibrium is stable.

Also, since the is no vaccine for malaria and we hope to have one soon, it was observed from the
simulations that the disease can be controlled by simply vaccinating about fifty percent of the
total population.
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Figure 3.2.3: A graph of human and vector populations when 10% of human population is
vaccinated
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'chaPTER 4

4.DISCUSSION AND RECOMMENDATIONS

4.1 Discussion

We proposed a model with standard incidence for the dynamics of malaria within human hosts
and mosquito vectors in which the reservoir of the susceptible human hosts is refilled by
individuals who lose their immunity to the disease and newborns. The model was then
reformulated in terms of the proportions of the classes of the respective populations.

Model analysis and simulations were carried out. Two equilibria points were obtained and their
stability analyzed. It was established that for the basic reproduction number, R, < 1, the disease-
free equilibrium is locally asymptotically stable so that the disease always dies out, and if R, >
1, the disease free equilibrium point is unstable while the endemic equilibrium emerges as a
unique equilibrium point, re-invasion is always possible and the disease never dies out.

Thus, a threshold population size is necessary for the perpetuation of the disease. These may be
based on the parameters of the threshold quantity, R,.We notice that in order to reduce the basic
reproduction number below 1, intervention strategies need to be focused on treatment and
reduction on the contact between mosquito vector and human host. Thus, there is need for
effective drugs, treated bed nets and insecticides that would reduce the mosquito population.
Since malaria induced immunity is not everlasting, it remains a major obstacle to eradicate the
disease even if individuals are protected. Numerical analysis revealed that the endemic
equilibrium converges to a steady state.

We observe that there is a strong relationship between the proportion of infected mosquitoes and
infected humans in the same locality in a way that arise in the proportion of infected mosquitoes
results in an increase in the proportion of infected humans. Therefore, control efforts aimed at
lowering the infectivity of infected individuals to the mosquito vector will contribute greatly to
the lowering of the malaria transmission and this will eventually lower the prevalence of malaria
and the incidence of the disease in that locality. This can be achieved by prompt provision of
effective anti-malarial drugs to reduce transmission and morbidity. Thus, from the model, it is
noted that recurrent and temporary immunity leads to oscillatory pattern in all the populations of
the model. Also, from the model, it was observed that the disease can be controlled by
vaccinating approximately fifty percent of the total population.
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4.2 Recommendations
There is need to assess the global stability of this model through construction of appropriate
Lyapunov function in order to evaluate the long time effect of partial immunity to re-infection.

We further recommend the investigation of the effect of the re-infection parameter ¢ and the
transmission probability from an infectious human to a susceptible vector b on the associated
backward bifurcation region, as a function of the average life span of mosquitoes (1/ 1, ).
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