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EXECUTIVE SUMMARY

The main objective of this work is to identify probability distributions emerging by solving

difference- differential equations of a pure birth process given by p; (t) =-X Do (t) forn=0
and p;(t)=-A,p,(t)+x,,p,.(t), for n>1. The special cases are: Poisson Process

(Xn =), Simple Birth process (kn =ni), in Simple Birth process with immigration

(A, = ni + v)and the Polya process | A, = Lran |, |,
1+ hat

Four methods have been applied in solving the difference — differential equations are:
(1) the iterative technique
(2) the Laplace Method
(3) the Langranges Method
(4) the generator Matrix technique.
The results through the four Methods are similar. The means and Variances were obtained by
definition, the pgf technique and by the method of moments:
The results are:
From the Poisson process, we obtain Poisson distribution with parameter At both when the
e (At)"
n!

initial condition is X(0) = 0 and also when X(0) =n,. i.e. p, (t) = forn=0,1,2,.

_ e (n)f _ _
p,(t) = e forn=n,+k and k=0, 1,2, ....,

The mean is E[X(t)]: Mt and the variance is Var[X(t)] = At

From the Simple Birth process we obtain a geometric distribution, p, (t) = e ™ (1 -e M )n'l,

when the initial condition is X(O) =1 and a negative binomial distribution,

k+n,-1

Poek(®) = [ ‘ )x (1- e'“)kX(e‘“)n" ,k=0,1,2, ..., when the initial condition is

X(0) =n,.
The meanis  E(X)= n,e™ and variance ne® (1-e™).

From the Simple Birth Process with immigration, we obtain a negative binomial distribution



no+%+1'1

Py (1) = ( J(e'“)""”(l o) j=0,1.2,..

j
n,+ x(1 M
The mean E[ X(t)]= )be'“ and the variance Var[ X(t)] = (no +—

From the Polya process, we obtain a negative binomial distribution

np+1 k
P (t): n0+%+k'lx 1 x| 1 - 1 k=0,1,2,.
Motk k 1+ Aat (1+at)’

The mean is At and the varianceVar[X(t)] = at(1 + aht).

Exceptions
Laplace Method did not work for the Polya process

Generator matrix could not work for the Poisson process.

\Y

7L)e“(eM -1).
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CHAPTER ONE
GENERAL INTRODUCTION

1.1 Background Information

When a Bank opens, the customers enter to be served. This involves queuing or waiting for
service. After being served, one leaves. This process involves coming in, service and going out
until the time of closure. At closure time, no entry is allowed. There is only exit. This process
is known as a birth and death process. At the opening time, we have entry only which is
analogous to pure birth process. At closure time, there is exit only which is analogous to the
pure death process. Time in between, we have both getting in and going out which is analogous
to the birth and death process. In situations like the emission of electrons in physics, we have
only pure Birth process.

Such processes can be described mathematically through what is called the Stochastic

Processes.

1.2 Stochastic Processes
Definition and classifications

A stochastic process is a family of random variables {X(t); t> O} on a probability space with

t ranging over a suitable parameter set T (t often represents time). The state space of the

process is a set S in which possible values of each X(t) lie. This X(t) can be either discrete

or continuous. The set of t is called parameter space T. The parameter t can also be either
discrete or continuous. The parameter space is said to be discrete if the set T is countable
otherwise it is continuous.
Thus, we have the following four classifications of stochastic processes.

1 Discrete Parameter and Discrete state

2 Discrete Parameter and Continuous state

3 Continuous Parameter and Discrete state

4 Continuous Parameter and Continuous state
Further, stochastic processes are broadly described according to the nature of dependence
relationships existing among the members of the family. Some of the relationships are

characterized by



(i)

(i)

(iii)

(iv)

(v)

Stationary process

A process {X(t), te T} is said to be a stationary if different observations on time
intervals of the same length have the same distribution.

i.e.Forany s, t e T, X(t +5)- X(t) has the same distribution as X(s) - X(0).
Markov Processes

A process X(t) is a Markov process if given the event X(t) at some time t, the future

event X(s) for s > t, depend only on the immediate past and not the remote past. This

property is referred to as the Markov or the memoryless property.

A Markov chain is a discrete time space Markov process with discrete state space. A
Markov jump process is a continuous time space Markov process with discrete state
space.

Processes with independent increments

A process X(t) is called a process with independent increments (or an additive
Process) if for t' > t, X(t') - X(t) is independent of X(t).It is a Markov Process and is

said to be homogeneous if the distribution of X(t’) - X(t) depends only on t’ - t.

Martingales process

A stochastic process {X(t),tzo} with finite means is said to be a (continuous
Parameter) Martingale if the conditional expectation of X(tn+1), given the values

X(t,), X(t,), ..., X(t, ) is equal to the most recently observed value X(t,).

i.e. If for any set of times
t <ty <<ty B[ X(th) I X(8), X(t,) X(t,) | = X(8,)-
A stochastic process {X,,n=12, ..} with finite means is said to be a (discrete

Parameter) Martingale if for any integer n, E[Xn+l| X Xy ooy Xn] =X

o
Point Process

When we consider events as occurring in continuous one dimensional time, we consider a
process as a point process when interest is concentrated on the individual occurrences of
the events themselves, events being distinguished only by their positions in time, rather

than concentrating on a group of individuals.



1.3 Pure Birth Processes

Pure birth process is a continuous time, discrete state Markov process. Specifically, we

deal with a family of random variables {X(t); 0<t < o} where the possible values of

X(t) are non negative integers. X(t) represents the population size at time t and the

transitions are limited to birth. When a birth occurs, the process goes from state n to

state n +1. If no birth occurs, the process remains at the current state. The process
cannot move from higher state to a lower state since there is no death. The birth process

is characterized by the birth rate A which varies according to the state n of the system.

1.4 Literature Review

The negative binomial arises from several stochastic processes. The time - homogeneous birth
and immigration process with zero initial population was first obtained by McKendrick (1914).
The non - homogeneous process with zero initial population known as the Polya process was
developed by Lundberg (1940) in the context of risk theory.

Other stochastic processes that lead to negative binomial distribution include the simple birth
process with non — zero initial population size (Yule, 1925; Furry, 1937). Simple birth process
was originally introduced by Yule (1924) to model new species evolution and by Furry (1937)
to model particle creation.

Kendall (1948) considered non homogeneous birth — and — death process with zero death rate.
He also worked on the simple birth — death — and immigration process with zero initial
population (Kendall 1949).

A remarkable new derivation as the solution of the simple birth — and — immigration process
was given by Mckendrick(1914).

Kendall (1949) formed Lagrange’s equation from the differential difference equations for a
distribution of the population, and via auxiliary equation, obtained a complete solution of the
equations governing the generalized birth and death process in which the birth rate and death
rates may be any specified function of time.

Karlin and Mcgregor (1958) expressed transitional probabilities of birth and death processs
(BDPs) in terms of a sequence of orthogonal polynomials and spectra Measures. Birth rate and
death rate uniquely determine the unique measure on the real axis with respect to the sequence
of orthogonal polynomials. Their work gave valuable insights about the existence of unique

solution of a given process.



Gani and swift (2008) attempted to derive equations for the probability generating function of
the Poisson, pure birth and death process subject to mass movement immigration and
emigration. He considered mass movement immigration and emigration as positive and
negative mass movements. The resulting probability generating functions turned out to be a
product of the probability generating functions of the original processes modified by
immigration process.

Janardan (1994) developed a stochastic model to study the number of children born to a couple
up to time t. The model was constructed under the assumption that the rate at which a couple
already having two children goes for subsequent child is smaller than the rate at which the first
and the second child are born.

Janardan (2003) considered pure birth process starting with no individual, with birth

ratesi, =Aforn=0,1,...,m-1and A, =p for n >m. Using integral representation, he obtained

the associated distribution. This was an extension of the work he had done in 1980 while
analyzing data on the hyper distributed eggs laid by a weevil on mung beans.
Trobaugh, D.E. et al (1969), applying pure birth processes and directly relating accident rates

to the total number of accidents, presented a method predicting aircraft accidents.

1.5 Problem Statement and Objectives of the Study

Statement of the Problem

Only a few researchers and textbook authors have presented alternative approaches for solving

pure birth processes basic difference differential equations and even then only sketch them in

outline or present details in different sections.

Objectives

(@) To solve pure birth basic difference differential equations for different processes using
four different approaches.
The four different approaches are the iteration Method, the Laplace approach, the
probability Generating Function Method and the Generator Matrix Method.

(b) To critically review and put together the various work done in this area by other

researchers.



1.6 Areas of Application

Pure birth and death processes play a fundamental role in the theory and applications that

embrace population growth. Examples include the spread of new infections in cases of a

disease where each new infection is considered as a birth.

Pure birth and death processes have a lot of application in the following areas.

(@)

(b)

(©)

(d)

Radioactivity

Radioactive atoms are unstable and disintegrate stochastically. Each of the new atoms is
also unstable. By the emission of radioactive particles these new atoms pass through a
number of physical states with specified decay rates from one state to the adjacent. Thus
radioactive transformation can be modeled as birth process.

Communication

Suppose that calls arrive at a single channel telephone exchange such that successive calls
arrivals are independent exponential random variables. Suppose that a connection is
realized if the incoming call finds an idle channel. If the channel is busy, then the
incoming call joins the queue. When the caller is through, the next caller is connected.
Assuming that the successive service times are independent exponential variables, the
number of callers in the system at time t is described by a birth and death process.
Biological field

Theory of birth — and death processes provide a natural mathematical framework for
modeling a variety of biological processes. Examples of these biological processes
include population dynamics such as the spreading of infectious diseases, somatic
evolution of cancers among others.

Industry

Suppose that a number of automatic machines are serviced by an operator. Owing to
random mistakes, the machines may break down and call for service. If we assume that
the machines work independently and that the operator is busy if there is a machine in the
waiting line and that the service times are identical and independent random variables.
Furthermore, if we suppose that the service times are identically distributed, independent
random variables with a known distribution function, then such a case can also be

modeled as a birth process.



CHAPTER TWO
GENERAL BIRTH PROCESS

2.1 Introduction

In this Chapter, we will derive the basic difference differential equations from the first
principles and also state the assumptions that are made in the derivation. In addition, we will
highlight on some of the Mathematical tools which are a prerequisite before venturing into the
solving of these equations. These mathematical tools will be highlighted for each of the four
methods that will be used in solving these equations. In addition, the key steps to be followed
while using each of the methods to solve the basic difference differential equations are also
given. These methods are the Iteration Method, the Laplace method, the probability generating

function method and the generator Matrix Method.

2.2 Derivation of the Basic Difference Differential Equations for the General Pure
Birth process

The Main Objective of this sub topic is to derive what is called the basic differential equations.

Definitions

Let X(t) = the population at time t
Let p, (t) = Prob[ X(t) =n]

P, (t + At)= Prob[X(t +At) = n]

t+At)-p, (t
We wish to find pj (t) = lim {p”( At) Po )} from the first principles of calculus.

Assumptions
The event is birth

() The probability of having a birth between time t and t +At when X(t) = n is given by

A, At + o(At) where o(At)is of order At
A function is of order At if it tends to O (zero) faster than At

(ii) The probability of having no birth within the interval At is 1 - [kn At + o(At)]

(ili) The probability of two or more births within the interval At is o(At) i.e. negligible.



Diagrammatically

Time 0 t t +At

Size  X(0) X(t) X(t +At)

If X(t+At)=n whatis X(t)?

X(t)=n if no birth within the interval At

X(t +At) =
( ) { X(t)=n-1 if a birth occurs within the interval At

Therefore,

Py

Further,

(t + At) = Prob [X(t +At) = n]

= Prob [ X(t + At) =n, X(t) =n |+ Prob [ X(t + At) =n, X(t) =n-1]

P, (t + At) = Prob [ X(t + At) =n/X(t) =n]Prob[ X(t)=n |+

Therefore,

p,(t + At)-p,(t)

Prob [ X(t + At) =n/ X(t) =n -1]|Prob[ X(t) =n -1]
= {Prob [of no birth in the interval] p, (t)} + {Prob[of a birth in the interval]p, , (t)}

= {1 -[ A At+ o(At)]} p, (t) + [ 1, At + o(At) ]p,_, (1)

{1-2,At - o(At)}p, (t) + [ &, ,At + 0 (At) p, 4 (t) - p, (1)
P, (t) - A, Atp, (t) - o(At)p, (t) + A, ,Atp, ., (t) +o(At)p, . (t)-p,(t)

- L, Atp, (t) - o(At)p, (t) + A, _,Atp, . (t) + o(At)p,,(t)

Dividing both sides by At

p,(t + At) - p,(t)

=-A - P A t
At n pn (t) At n(t) + n-1pn-1(t) + At pn-l( )
But since lim O(At) =0
A0 At
. p,(t+At)-p,(t) _
le) ( At) ( ) __xn pn(t)+ xn—lpn—l(t)ﬁ nx1



Therefore

Pr ()= - 2 Py (1) + Aspoa (1)

Forn=0
At
| | |
| | |
Time 0 t t +At
Size  X(0) X(t) X(t +At)
X(t+At)=0 = X(t)=0 = No birth
Py (t + At) = Prob[ X (t + At) = 0]
= Prob[ X(t + At) =0, X(t) = 0]
= Prob[ X(t + At) = 0/X(t) = 0]Prob[ X(t) = 0]

= {1- [ ReAt + o(At) ]} po (1)

=

Po (t + At) - po(t) - I:}‘oAt + O(At):lpo (t)

Therefore,

At At
Therefore
Py (t+At)-p(t) _ . o(At)
im At =Mt lim At Po(t)

0 (At
And since lim M =0
At—0 At

Therefore

Po (1) = - A Po (1)



In summary, the basic difference Differential equations for the general birth process are

Po () = - & P (t) (2.1)
and

Pr(t)=- 2 P, (t)+ 2, 0p, i (), 21 (2.2)

2.3 lteration

o Solve the first of the two basic difference equations. You will get p, (t)

e Put n =1 in the second differential equation to generate a recursive relation. Solve the

differential equation using the integrating factor method. You will get pl(t).

e Repeat for some more higher values of n.

e Generalize using induction.

2.4 Solution of Linear Partial Differential Equations
Let P, Q and R be functions of x, y and z. suppose we have an equation of the form

Pj—)z( + Qj_s, =R (2.3)
subject to some appropriate boundary conditions. Such an equation is called a linear partial
differential equation.
The procedure for solving the equation takes the following steps;
STEP I: Form subsidiary equations given by

d _dy dz

P Q R

The subsidiary equations are also called the AUXILIARY equations. Note that there are 3

(2.4)

subsidiary equations from (2.4), namely,

dx _dy -
dx dz ..

P r W
dy dz
o~ R (iii)

STEP II: Consider any two equations and solve them



STEP I11: Solutions of the two considered subsidiary equations are in the form
U(x,y,z) = Constant (2.5)
and
V(x,y,z) = Constant (2.6)
STEP IV: The most general solution of (1.3) is now given by
u=y(v)
where v is an arbitrary function. The precise form of this function is determined when the

boundary conditions have been inserted.

Procedure

o Define G(st) = ipn(t)s”. Consequently define %G(s,t) and %G(s,t).
n=0

e Multiply both sides of the second differential equation by s" and sum over n, and taking
advantage of the initial conditions, write the resulting equation in terms of the definitions
above. You will get an equation of the form of the equation (2.3).

e Summarize the results by a single Lagrange Partial differential equation for a generation
function and then solving the resulting equation by means of auxiliary equations as in the

procedure shown above. You will get G(s,t).

p, (t) is the coefficient of s" in the expansion of G(s;t).

2.5 Laplace Transforms
Definition:

Let f(t) be a function of a positive real variable t. Then the Laplace transform (L.T) of f(t)

is defined by f(s) = J'e‘S‘f (t)dt for the range of values of s for which the integral exists. It is
0

also written in the form L(f (t))

Laplace transform of f'(t)

L[F(6)] = [e=F (1) at @.7)

10



Using integration by parts
Ivdu = uv-fudv
Letv=e® == gee
dt
Also, let du = f'(t) = u=1f(t)
Substituting in equation (2.8)

-'[f(t).-se'St dt

0

o0

Ie'“f’(t) dt = [f(1).e"

=[f(t).e] + s]:f(t). e dt

['e]

=[(0) - (F(0))] +s[f(t). e dt

0

= s[f(t). e dt-(0)

0

Thus
L[f ()] = sL[f(1)]-7(0)

Substituting f(t) with p, (t), the equation above becomes

L[p; ()] =sL[p.(t)]- P, (0)

Procedure

o Take the Laplace transform of the second of the two basic difference equations.

e Apply the relation L[p; (t)]=sL[p,(t)]-p,(0) toreplace L[ p, (t)] and simplify

leaving L[p, (t)] as the subject of the formula.

(2.8)

(2.9)

e Starting with the conditions at t = 0, generate a recursive relation and use it to generalize

for L[ p, (t)].

e Find the Laplace inverse of the L[p, (t)] so got.

11



2.6 Generator Matrix

k

1 k
» Replace 1, in the equation p;, (t) :{ XHJ} > = € and simplify.

j=0

12



CHAPTER THREE
POISSON PROCESS

3.1 Introduction

A Poisson process is a pure birth process when the rate is constant i.e. when A, = A. The

formal definition is given as follows.

Definition 1
A counting process {X(t), t> 0} is said to be a Poisson process with rate A > 0 if
(1) X(0)=0

(2) X(t) isa process with independent increments

(3) The number of events in any interval of length t is Poisson distributed with rate At; i.e.

e (M)
forall s, t >0, Prob[X(t+s)-X(s):x] =X 0,12,.. (3.1)
Definition 2

A counting process {X(t), t> 0} is said to be a Poisson process with rate A > 0 if

(1) X(0)=0

(2) X(t) is a process with independent and stationary increments

(3) (iyProb{X(t+h)- X(t) =1} = Ah + o(h) (3.2)
(i) Prob{X(t+h) - X(t) > 2} = o(h) (3.3)

f(h
where a function f(x) is said to be of order o(h) if ng % =0.
The objective of this Chapter is to solve the basic difference differential equations given in

Chapter 2 (refer to equations (2.1) and (2.2)) when A, = A. We shall specifically look at three

methods namely the iterative method, the Laplace transform and the Lagranges method. We

shall look at each of these methods when the initial conditions are (i) X(0) = 0 and (ii)
X(0) = n,
When A, =X V n the basic differential equations now become
Po(t) = -Apy(t) (3.4)
p,®) = -Ap,(t) + Ap,,(t), n>1 (3.5)

13



3.2 Iteration Method

3.2.1 Deriving p, (t) Iteration Method
Initial conditions: Whent=0, X(0) =0
From equation (3.4)

Po(t) = -Ap,(t)

P® _

P, (1)

d = -
a[lnpo(t)]_ A

Integrating both sides with respect to t, we have

I%(In Po(t))dt = -jxdt

Inp,(t) =-At +c¢

Po(t) = ke™
From the initial conditions, when t = 0, X(0) = 0. This implies that p,(0)=1and
p,(0)=0Vv n=0. Thus,

P, (0) = kxe™®

1=kx1

k=1
Therefore

po(t) =e™ (3.6)
We can use the second difference differential equation to obtain recursive relation when n >1.
Substitutingn =1 in equation (3.5), we have

Pi(®) = -Apy() + Apo(D)

= -Apy(t) + Axe™

Rearranging, we have

PL) + Ap,(H) = Axe™

Next, we integrate the above equation by integrating factor method.

The integrating factor = el = g

14



Multiplying the equation above by the integrating factor and simplifying, we have

e xpi(t) +e™ xAp,(t) = e xrixe™
—| e*p, (t ] A
Integrating both sides with respect to t
[d(ep,(t))dt = [ndt
ep,(t) = At + ¢
Therefore
p(t) = (At +c)e™

From the initial conditions when t = 0, X(0) = 0.This implies that. p,(0)=1. Therefore

p,(0) = (Ax0 +c,)e™®

0=(0+c,)

c,=0
Thus,

p(t) = Ate™ (3.7)
Forn=2

P2(t) = -Ap, (0 + Apy(D)

Py(t) = -Ap,(H) + Axhte™
Re arranging,

p,(t) + AP,(t) = Ate™

Next, we integrate the above equation by use of integrating factor method.

The integrating factor is ej Mo

Thus

e’ xp,(t) + ¥ xhp,(t) = e xA\te™

d _
ik "p, (1 )]—kzt

15



Integrating both sides with respect to t
J'd(e“pz(t))dt = Ikztdt
2t2

'p (1) = -+,

Equivalently

A2 t? "
, (1) = ( . CzJe*

From the initial conditions, when t = 0, P, (0) = 0. The equation above becomes

p,(0)=(0+c,)e™®
=
c,=0

Therefore,

A2t?

SONE

je‘“ which can also be written as

P, (t) = @e'“

For n = 3, equation (3.5) becomes

pé(t) = -Xp3(t) + sz(t)

Rearranging

2t2

P30 +Aps(t) = XX(XZ

2t2

pL(t) = - hpy() + xx@

]e'“.

Next, we integrate the above equation by use of integrating factor method.

(3.8)

Integrating factor = ej Mo g Multiplying the equation above by the integrating factor, we

have

e xpl (D) +e" XA py() =e“xx>{”2

d[e“p3(t)] _ r(at)’ _ N

dt 2

16
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Integrating both sides with respect to t, we have

A2

Id(e“pg(t))dt = J. ;

dt

Therefore,

But from the initial conditions, when t = 0, p,(0) = 0. Thus

A 0° i
Ps (O) = (?xg + Cs}e e
c, =0
Therefore
2t
P, (t) = (?nge'“. This equation can also be written as
M)
ps(t) = (). 3,) e (3.9)

Listing down our solutions from above, we obtain a pattern.

po(t) = e—M
p(t) = Ate™
At)’
pz(t) = ( 2) e’
Ay
p3(t) = ( 3|) € '
By induction, assume for n = k -1
k-1
P (t) = (1) e is true.

We want to find p, (t).



Putting n = k in the equation (3.5) we have

P® = -Ap (D + Ap, (D

(kt)k-l _}\l .
() = -Ap () + Ax———e™
Re arranging
}\.ktk-le_h
)+ Ap (b)) =

Next, we integrate the above equation by use of integrating factor method.

Integrating factor = eIMlt = e". Multiplying both sides of the equation by the integrating

factor, we get

. ’ . . ktk-l -ht
e xp, (t) +&“x Ap,(t) = & XW
! () 4+ M
e’ xpy (1) +e* x Ap (D) = (k _1)!
dl:ektpk (t):l _ thk—l
dt (k -1)!
Integrating both sides with respect to t, we have
d(e*p, (t))dt = n t*'dt
.[ (e pk()) _(k-l)!'[

Thus

From the initial conditions, when t = 0, p, (O) =0, k #0. The equation above becomes

0) = A x0" + ¢, |e™° which implies that ¢, = 0
pk( )_ k(k-l)l k p k T M

18



Thus,

kg k
p(t) = Mt e which can also be written in the form,
“ 1)!

e (at)
pk(t)=%) k=0,1,2,3, ... (3.10)

which is Poisson probability density function with parameter it.

Initial Condition: Whent=0, X (0) =n, (n, > 1)
This implies that p, (0) =1, p,(t)=0V n= n,and p,(t)=0V n < n,,
Substitutingn = n,, equation (3.5) becomes
Pr, () = -Ap, () + Ap, (D)
But from the initial conditions, p, _,(t) = 0.
Thus
P, (®) = -ip, (©

Po, (® _
Py, (©

%(Ioge Pr, (t)) =-2

Integrating both sides with respect to t, we have

[d(inp,, (1) = [-dt
Inp, (t)=-At+c

Taking the exponential of both sides, we have
p, (t)=e™ " =e™e’=ke™
From the initial conditions; When t =0, p, (0)=1
This implies that k =1
Therefore,

P, (t)= €™ (3.11)
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Nextlet n=n, +1
Equation (3.5) now becomes

Pro+1(t) = -2 p, 1(©) + Ap, (D)

Pho+2(® = ~Ap, . () + Axe™
Rearranging

Pr, 1 (® + Ap, (D) = Axe™
Next, we integrate the above equation by use of integrating factor method.
Integrating factor for the equation above = eI Mo g

emxp;}[)_'_l(t) +9M x)bpn0+1(t) — ektx}\‘xe-m

%[eK‘Xpnoﬂ(t)] =\
Integrating both sides with respect to t

Id(e“pno+l(t))dt = Ith

e"p, ., (1) = At +¢
Equivalently,

Po, o2 (1) = (M +¢;)e™

The initial conditions are: When t = 0, X(0) = n,. This implies that Py, +1(0) = 0. Therefore, at

t=0,
Pp, +1(0) = (Ax0 + ¢ )e™”
c, =0
Therefore,
Py, +2 (1) = (At)e™ (3.12)

For n = n, + 2, the second differential equation become
P +2() = =Apy .o + Ap, (D)
Pl 2 () = ~Ap, .0 + Axhe™
Re arranging,

Ph, () + Ap, L () = Ate™

20



Next, we integrate the above equation by use of integrating factor method.

The integrating factor is el = g

Thus
eM x p;‘o +2 (t) + eM X}\, pno + Z(t) = ekt X)“zte_m

d [eMpnO +2 (t)]

dt

Integrating both sides with respect to t

[d[e"p,,.,(t)]dt = [2’tdt

2t2

=A%t

+C

b, (1) = 13+,

Equivalently

2.2
pn +2(t) = (X ! + CZJe-M
0 2
From the initial conditions, when t = 0, p, ,,(0) = 0. Thus

pno+2( ) (O+C) 0
=0

pn0+2 [

pn0+2( ) ( (313)

Therefore,

j which can also be written as

For n = n, + 3, equation (3.5) becomes

p:10+3(t) = _xpn0+3(t) + Xpn0+2(t)

, M)
pn0+3(t) = -y\’pn0+3(t) + }\,X 2 e

Rearranging

, A2
pn0+3(t) +7\‘pn0+3(t) =>\‘X 2 €

Next, we integrate the above equation by use of integrating factor method
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Integrating factor = ol = g,

Multiplying the equation above by the integrating factor, we have

& XB}, a(0) +€“ XD, o(0) =e“><xx( :

dr . _a(m) A%
&P (D] ===

Integrating both sides with respect to t, we have

fae"p, (0ot = [~ e
3

Aot
ehpno+3(t) = 7)(? + C,

Equivalently,

IS .
b= g e e

From the initial conditions, whent=0, p, ,;(0) = 0. Thusat t = 0,

7\‘3 3 X0
0)=| —x—+c, |V
b 0= 5% e,
c, =0
Therefore,
2ot
p. ..(t) =] =—x— |e™ which can be written as
fo 3 2 3

(2)’ o
3!

pnO +3(t) =

Listing down our solutions from above, we obtain a pattern.

Py, (t) = €™
pn0+l(t) = }\‘te_m
)
pn0+2(t) = (T)e_m
M)
pn0+3(t) = %e "

(3.14)



_ () o

is true.
(k - 1)!

By induction, assume that for n =n, + k-1, p, ., ,(t)
Then, equation (3.5) becomes
p:10+k(t) = -}\‘pn0+k(t) + }\‘pn0+k-1(t)

(0"

(k-1)!

p;‘o’fk(t) = -}‘pn0+k(t) + Ax

Re arranging

xk k-1_-At

(k- 1)!

Next, we integrate the above equation by use of integrating factor method.

p:10+k(t) + }\‘pn0+k(t) =

Integrating factor = ol = g,

Multiplying both sides of the equation by the integrating factor, we get

)\‘k k-1_-At

(k - 1)!
)\,ktk-l
(k- 1)!

ektxp;10+k(t) +ehx }\‘pn0+k(t) = eMX

This equation can now be written in the form

d ARkt

E[emp““k(t)] " (k- 1)1

Integrating both sides with respect to t, we have

xk

[d[e"p,, . (1) ]dt = (k_l)!jtk'ldt

[ehpn“k(t)] = (D) +C,

empno e (t) =

Equivalently,
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From the initial conditions, when t = 0, Pn0+k(0) = 0. The above equation becomes

-Ax0
ck]e

AKX x Q¥

0[5

c, =0

e ()"

Py (t) = —

which is Poisson p.d.f with parameter At.

3.2.2 Mean and Variance by Definition

(1) Mean

Therefore,

But e = i(—

Thus

| Je'“ which can also be written in the form

forn=n,+k and k=0,1, 2, ....

E[X(t) = k] =2rte™. e =it

E[X(t)]= At

24
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(if) Variance

Alternatively,

%I:Xt e“:l=le“+7u2tehZl[em+7uteh:|

Therefore,

k=0 k'
e [1+at] = :ZO (k +;)!(M)

=[x ]z e e e
E[(x(0)' ] =l 2] =

var[X(t)] = E[X ()] - [E(X(1))]

=\t + (Xt)z - (M)2 =\t

2

Var[ X(t)] = At

25
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3.3 Determining p, (t) by Laplace Method
Initial conditions: Whent=0, X (0) = n;.
This implies that p, (0) =1. Further, p,(0) =0V n=n, and p,(t)=0V n <n,.
Taking the Laplace transform of both sides of equation (3.5), we have
L[p,®] = -AL[p,®] + AL[p, (], n=1
Taking advantage of rule (2.9) L[ p; (t)] =sL[p,(t)]- p,(0) whichwas derived in section
(2.5) of Chapter 2, we have
sL[p,(t)]-p.(0) = -AL[p,®] + AL[p,,(®]

=
{s+ M L[p,(1)] =1L p,.. 0]+ p,(0)
Equivalently,
_ X . (0)
Llp (0] = S Ll O]+ 75 (3.18)
When n = n,, equation (3.18) becomes
_ P, (0)
I—I:pn0 (t)] - A+s L[pno—l(t)} + s+
From the initial conditions, p, (0) =1and p, _,(t) = 0. Thus,
1
L t)| = 3.19
P, (D] = (3.19)

When n = n, +1, equation (3.18) becomes

+ pn0+1(0)
s+ A

[Py, (0] = L p, 0]

From the initial conditions, p, ,,(0) = 0. Also L(pnU (t)) is as derived in (3.19). Thus

A 1
L[p”“l(t)] T h+s A+s
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Thus,

A
Lip, .. (t)]= (3.20)
':po 1( ):I ()\‘J’_S)Z
When n =n, + 2 equation (3.18) becomes
_ }\4 pn0+2(o)
L|:pn0+2(t)] - S + 7& L[pn0+1(t)]+ s+ k
From the initial conditions, P, ,,(0) = 0. Also, from (3.20), L[pnoﬂ(t)} = o : )2
+s
Therefore.
A A
L t)| =
[Pr, (1)) x+sx(x+s)2
Thus,
}\’2
Lip, .,(t)|= 3.21
[Prys2(t)] o (3.21)
)\'k—l
By induction, assume that for n=n, + k - 1, then L[pn0+k_1(t)] = o)
+s
When n = n, + K, equation (2.13) becomes
_ }\4 pn0+k(o)
LI:[pn0+k (t):l - mL[pn0+k—l(t)]+ S‘*‘—)\,
From initial conditions: Whent=0, p, ,,(0) = 0. Thus,
A
L[pn0+k(t):| _S + }\’ LI:pno+k—l(t):|
)\’ )\‘k—l
= X "
S+ A (k + s)
}\'k
- (;n + s)k+1
Thus
)\‘k
L[p,(1)]= ——— (3.22)
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Where n =n, + kandk = 0,1, 2, 3, ...

Taking L* of both sides of equation (3.22), we have

L'l{L[pn (t)]} = L'l{#} or equivalently,

= o]

- L isapole of order n + 1.

n+1
The residue of f(s) = {ﬁ} around s = - A is given by
S

n+1
1 .. d" s n+l 1
Res(f,-k)=mhms_>_x ds—ne t[(s+k) x{(k+s)} ]

= Lim, ., = [e*]

= % lim,_, , [t"xe*]

— ixtn xe-}ut

n!

Therefore,

P, (t) = )J‘)(i)(t“)(e‘)‘t = (Kt) e forn= {nO +k k=012, 3, }

n! n!
Thus
n -t
pn(t)z% n=n,+k k=0,1,23,.. (3.23)

This is a Poisson distribution.
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3.4 Probability Generating Function Method

3.4.1 Determining p, (t) by PGF Method

Initial conditions: When t =0, X(0) = 0.

Equation (3.5) is p,(t) = -Ap,(t) + Ap,,(t), n>1

Multiplying both sides of the equation by s" and summing the results over n

Define

Equation (3.24) now becomes

dt
=-AG(s,t) + Apy(t) +AsG(s,t)
Rearranging the above equation,

A by 1) 1m0

dt 0

-LG(s,t) + AsG(spt)

= - A(1-5)G(s,t)

But from the equation (3.4), py(t) = - A p,(t). Therefore

d(G(s,
w _ pg(t) + p(’)(t): - 7\(1 - S)G(S,t)
d(cz(ts’t)): -2 (1 - 5)G(s, 1
d
—(G(s,1)
M: - A(1-s)dt
G(s, 1)

d
a[ln (GGs)] = - A(1-5s)

29
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Integrating both sides with respect to t,
[ d[In(G(s,))]dt= [- 1 (1 -s)dt
In(G(s,t)) = -A(1-s)t+¢

Taking the exponential of both sides, we have
G(s,t) = e M9 = g Mok

Initial Conditions: When t = 0, we have G(s,0) = ke !9 = k.

o0

But using the definition, G(s,t) = > p, (t)s" = p,(t) + ipn (t)s". Putting t = 0 we

n=0 n=1

0

have G(s,0) = p,(0) + >_p, (0)s" . But from the initial conditions, att =0, X(0) = 0.

=)
This implies that p,(0) =1 and p, (t) = 0 forn =0.
G(s,0) =1
= k=1
Therefore
G(s,t) = ™Y

Now p, (t) is the coefficient of s" on G(s,t).

G(S,t) - e—kt(l-s) — e-xtekts
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3.4.2 Mean and Variance
(i) Mean
Recall that

G(st) = E(s*) = %G(s,t) = E(xs**) = E(x). When s =1, G'(1,t) = E(x).
G(s,t) = e

E[X(t)=k]= die(s,t)

Thus,
E[X(t) = k] = it (3.28)

(i) Variance

Now,
var x = E(x?) -[E(x)]
= E[x(x-1) + x]-[E(x)]
= E[x(x-1) ]+ E(x)-[E(x)]
=6"()+6'()-[6')]
T (6ls) = Tarert
= (1) &0
Puts=1
(OE0) =0 e = (h)
Thus,

var x = (At)” + 1t - (At)°
= At (3.29)
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3.5 Method of Moments to Determine Mean and Variance
3.5.1 Mean
Define

:inpn(t = M ann (3.30)

Initial conditions are that at t = 0, X(0) = 0. Thus M, (0) =0 and M,(0) =0

Now, multiply equation (3.5) by n and sum the results over n

HZZ,” Pn (t) = }‘nZ:,npn (t) + Kgnpn_l(t)
=- XZ:‘npn (t)+ Xi(n -1+ 1)p,.(t)

n=1

Z:,nlon(t)=-7»2npn(t)+ Z(n 1)p,.,(t +7»an1

n=1
Therefore,
My (t) = - AM, (t) + AM, (t) + A
=)

This implies that

d

—M,(t) =2
M (1)

=

M, (t)=At +c

The initial conditions are; When t = 0,M, (0) = 0.

Therefore,
c=0
Therefore

M,(t)=x = E[X(t)]=nr (3.31)

3.5.2 Variance
Define

:inzpn(t = M Zn P (t

Now, multiply equation (2.1b) by n? and sum the results over n
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0

n=1 n=1

0

Sntp, (1) =- Xgnzpn () + 23 n%p, . (1)

= A3, (1) + 135 -1 1) ()

n=1

0

= xgnz P, (t) + XZ{(n - 1)2 +2(n - 1) + l}pn_l(t)

n=1

00

= )\,Z:‘nzpn () +2> (n-1)p,.,

n=1
Using definitions,

o0

(1) + zxg(n D)paa(t)+ Kgpn_l(t)

>n?p, (t) = -AM, (t) + AM, (t) + 2AM, (t) + A

pr}
= 20M, (t) + A
= 20AXAt + A
= 20%t + A
Therefore,
M, (t) = 20°t + A
D, (t) = 222t 4
dt
Integrating both sides with respect to t, we have
M, (t) = 20*[tdt + [idt
= (M) + At +c
Whent=0, M, (t) = 0. Therefore c = 0.

M, (t) = (&t)" + 2t

Now,
var[X(6)] = M, (1) - [M.(0)]
= (M) + At - [M]?
=M
Therefore,

Var[ X(t)] =
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CHAPTER FOUR
SIMPLE BIRTH PROCESS

4.1 Introduction
Consider a population whose members can (by splitting or otherwise) give birth to new
members but cannot die. Assume that the probability is approximately AAt that in a short

interval of length At, a member will create a new Member. More precisely, assume that if
X(t) is the size of the population at time t, then {X(t), t> O} is a pure birth process with

A, =nk forn=0,1,2,...

The simple birth process with a linear birth rate is also called yule process or the Furry — Yule

process. The objective of this Chapter is to solve the basic difference differential equations

derived in Chapter 2 (refer to equations (2.1) and (2.2)) when A, = nA. We shall specifically

look at four methods namely iterative method, the Laplace transform and the Lagranges

Method. We shall look at each of these cases when the initial conditions are (i) X(0) =1 and
(ii) X(0) = n,.
When X, = nA, the difference differential equations become

po(t) =0 (4.1a)

PL® = -nhp,(® + (n-1)kp,,®, n =1 (4.1b)

4.2 Iteration Method
4.2.1 Determining p, (t) using iteration Method
Initial Condition: Whent=0is X (0)=1
When n =1
Substituting n =1 in equation (4.1b), we have
pi(t) = -IxAxp,(t) +(1-1)Ap,,(t)
= -Xpl(t)
Dividing both sides of the equation by p, (t).

B,
p,(t)
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Equivalently
d
—(Inp,(t))=-A
5 P (1)
Integrating both sides with respect to t
jd(ln p,(t))dt = Ikdt
Inp,(t)=-At+c

Taking the exponential of both sides, we have

pl( ) M+c - ecxe—M - ke—M
Initial conditions that when t = 0, X(0) = 1. This implies that p,(0) =1, p,(0) =0V n=L1.
Substituting t = 0 in the equation above, we have

p,(0) = ke™®

1=kx1

k=1
Therefore

p(t)=¢e™ (4.1)
When n =2

Equation (4.1b) becomes
P (1) = -21p, (t) + Ap,(t)
P, (t) = -2&p,(t) + Axe™
Rearranging
p,(t) + 2Ap,(t) = re™

Next, we integrate the above equation by use of integrating factor method.

2)\dt

Integrating factor = ol e?*. Multiplying both sides of the equation above by the

integrating factor

pl2 (t) ZM + 2)\‘p2( ) 2t = }\,X e-?»terM = )\‘eM

%I:ezxtpz (t):l - ke“
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Integrating both sides with respect to t
I d[ez“p2 (t)]dt: J'}Le“dt

eM
e’'p, (t) = kxT +c=¢e" +¢

Equivalently,
pz(t) — (em + C)e-zm
Initial conditions: Whent = 0, p,(0) = 0. Therefore,

0. (0)= (¢ + e

Therefore,
0=(1+c)
c=-1
Therefore
p,(t) = (" - 1)e*"
= e - e
=e™(1-e™)
Therefore
p,(t) =e™ (1 - e‘“) (4.2)
When n =3

Equation (4.1b) becomes
Ps (1) = -34py (1) + 22p, (1)
= -3hp, (t) + 2axe™ (1-e™)
Rearranging
Py (t) +3hp,(t) =2he™ (1-¢™)
Next, we integrate the above equation by use of integrating factor method.

Integrating factor = ol g
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Multiplying both sides of the equation above by the integrating factor
e xpy () +31 xe™ xp, (t) = 2nxe™ (1 ) e‘“)

%(e‘“‘“ps(t)) =21e™ - 2he™

Integrating both sides with respect to t, we get
[d(e™ps(t))dt = [20e™dt - [2re™dt
e'p,(t) = e - 2™ + ¢

Equivalently,
ps(t) = (e - 2 +c)e ™

Using the initial conditions, at t = 0, p,(0)=0

P, (0) - (ezxxo - 2eM0 4 C)esxxo

0=(1-2+c)
c=1
Therefore,
pg(t) - (eZM _ 2(—2‘“ + 1)e-3xt
=M. 0p W 4 g M
=M (1 S 2e M 4 e-2M)
— ext(l_e M)Z
p,(t) =e™ (1 - )2 (4.3)
Generalizing,
pl(t) —e At
p2 (t) — e-m (1 -e M)
ps(t) = e (L-e™)

By induction, assume that p, , (t) = ™ (1- e'M)n-z
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When n = n, equation (4.1b) then becomes

p,(t) = -nip, () + (n-1)Ap, (1)

-2

= -nip,(t) + (n - 1)Ae™ (1 - e'“)n
Re arranging,
pL(®) + Mp,(®) = (n - D)he™ (1- ™)

Next, we integrate the above equation by use of integrating factor method.

Integrating Factor = el ™ _ g

Multiplying the equation above by the integrating factor, we have
e™pl () + e™nhp, () = ™ (n -1)Ae™ (1 -e™ )n_z

Therefore

n-2

%[enmpn (t)] = g™ (n _ 1)7»6’” (1 _ e-xt)

d nit nit -t eM'ln_z
gl P O] = (D (e—j

- (n _ 1)7»6'“6““6(”'2)“ (eM _ 1)”'2

n-2

— (n _ 1)}Le—)»t+n7ut-nkt+2kt (eM _ 1)

n-2

=(n- 1)%6“(6M - 1)
Integrating both sides, we have
e™p, () = (n - 1)%]@:“ (¢ - l)n'2 dt

du

at e

Lete® —1=u = z—l::ke“ or dt =

Therefore

du
Mo (1) = (n - D[ e ut?
e™p,(t) =(n-1) Ie v

=(n - 1)Iu“'2du

=(n-1)
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Equivalently
p, () = (eM - 1)n'1 e™ +ce™
From the initial conditions: When t =0, X(0) =0 and p,(0)=0 V n = 0.

Substituting t = 0, we have

p,(0) = (1-1)""x1+cx1

0=0+c
c=0
Therefore
p,(t) =e™ (eM i 1)“-1
=™ [e“ (1 et )n-l}
p, (t) = e™et™Y (1 ) e_M)n-l
=M (1 et )n-l
Therefore,

p.() =e™(1-e™ )n'l (4.4)
This is geometric distribution of the form p;(t) = pg’™. j=1,2,3,...and p=¢€™ and

-At

g=1-e

General case (Population at time t=0 is n,, no >1)

Initial conditions;
Whent =0, X(0) =n, =p, (0)=1,p,(0)=0Vn=n;and p,(t)=0Vn<n,
When n = n, then equation (4.1b) becomes
Ph, (1) = ~Nokp,, () + (g -1)Ap, (O
This can be rewritten as
Pr, ) + ngAp, (0 = (ng- 1)Ap, (1)
Next, we integrate the above equation by use of integrating factor method.

The integrating factor = ej Mot - gnot
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Multiplying both sides of the equation above by the integrating factor, we get
gt x p;(] (t) + gl xn, 2 P, (t) = el X(no - 1)}\, Pn, _1(‘[)

%(e”o“xpno (t)) =e""x(n, -1)Ax0asp, ,(t) =0

Integrating both sides with respect to t, we have

Id(e”“‘Xpno (t)dt = det

e xp, () =c
But from the initial conditions, whent=0, p, (0)=1and p, (0) =0V i=0.
Thus, substituting t = 0 in the above equation, we have

e™*xp (0) =c

Ixl=c

c=1
Substituting the value of ¢, we now have

e xp, () =1
Thus

Py, (1) = ™" (4.5)

When n =n, + 1, equation (3.1b) becomes
Pro+1® = -(Ng + AP, .1 (®) + (ng +1-1)Ap, 1y 4(1)
=- (n0 + 1)?»pn0 () + 1, Xpno(t)
Rewriting the above equation
P, 1 ® + (Ng +DAp, ., (H) = ngAp, (1)
Next, we integrate the above equation by use of integrating factor method.

Integrating factor = eJ.(no +1) e — e(no +1) At

Multiplying both sides of the equation above by the integrating factor, we have

8(”o+1)“><p:10 a0+ e(n0+1)xtx(n0 + 1)7bpno a® = e(HOH)Man;\‘p“o (t)
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Equivalently

d N + ny + -Ng At
L, ()] = e, xe

=e*n,A
Integrating both sides with respect to t, we have

jd(e(”‘)”)“pnoﬂ(t))dt = [e* nyhdt = ngAfe dt

At
_Nyhe

e(no+1)x1pno+l(t) == +cC

= n,e*+c
The initial conditions are. Whent=0, X(0) = n, wheren,>0. This implies that p,_.,(0) = 0.
Substituting the initial conditions in the equation above, we have

ng+1jat _ A %0
e "D, L1(0) = nyet+c

O=n,+cC
c=-n,
Substituting,
e(n0+l)hpno+1(t) = nge™ -ng

pn0+1(t) - noe'(no +1)7»t(em -l) — no(e-nokt _ e-noxtxe-xt) — noe-noxt(l_ e-m)
Thus

Py, .1 (t) = noe ™ (1-e) (4.6)

When n = n, + 2, equation (4.2b) becomes

p;10+2(t) = '(no + 2)}\'pn0+2(t) + (no - 1 + 2)}\‘pn0—1+2(t)

-(ny +2)Ap,, .0 + (n, +1)Ap, . (1)
Rearranging,

Ph,+2(®) + (Ng + 2)Ap, ., (1) = (ng + )LD, .1(1)
Next, we integrate the above equation by use of integrating factor method.

Integrating factor = ef(no +hdt _ oMo + 22t
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Multiplying both sides of the equation above by the integrating factor, we have
e(r‘lo +2)}\.t Xp:10 +2(t) + e(n0+2)7»t x (no + 2)}\‘ pno +2(t) — e(no +2))\.t x(no + 1)?\’pn0 +l(t)

Equivalently,
%(e(no+2)mxpno+2(t) + e(n0+2)m) — e(n0+2)xtx(n0 + 1))an0e-n0xt(1_ e-m)
= ny(n, + 1)7\.62M(1 - e'“)

Integrating both sides with respect to t

Id(e(n0+2)ktxpn0+2(t) + e(no+2)xr)dt - Ino(no +1)7L62M(1 _ e'}"t)dt

Therefore,
e(no+2)xrxpno+2(t) — no(no + l)K(J.eZMdt ) Je“dt)

ezlt e)»t
= no(n0+1))\. o -T +c

2)t

= n, (n, +1){e2

_em}ﬂ:

The initial conditions are: When t = 0, X(0)=n,. This implies that p, .,(0) = 0. Substituting

the initial conditions in the equation above, we have
21x0

e(no+2)}»><0xpn0+2(0): no(no + 1)|: _ ekx0:| +c

0=n,(n, +1)E-1}+c

Ny (ny +1)
2
Substituting the value of ¢, our equation becomes
. 20t n n + 1
e(no 2)Mxpno+2(t): no(nO +1)|:e2 _eh:|+ 0( ; )

c=

- no(no +1)[62“ - 2eM +1]
2

Ne(ny, +1), .
:—0(; )(67L -1)2
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Equivalently,

P, L, = M(em ) 1)2x (o +2) e
Simplifying and rearranging,
pn0+2(t) = M e-(no+2)m (ext ) 1)2 - M e—(n0+2)kt (EM (1 ) e_M))z

_ no(no +l) e—(n0+2)ltxe2kt(1_ e—kt)z

2
- no(no + l) Mo (1_ e-xt)z
2
Thus
p (t) — w e_nOM (1 _ e—kt )2 (4 7)
ng +2 5 .

When n = n, + 3, equation (4.1b) becomes

p:10+3(t) = - (no + 3))\‘pn0+3(t) + (no +3- I)Kpn0+3_1(t)

= - (nO + ‘?’)}\’pn0 +3(t) + (no + 2’)>\'l:)n0 +2(t)

Rearranging

p:10+3(t) + (nO + 3)}\,pn0+3(t) = (nO + 2)}\'pn0+2(t)
Next, we integrate the above equation by use of integrating factor method.
Integrating factor = gl (oM _ (ng v
Multiplying both sides of the equation above by the integrating factor, we get

e(”°+3)“><p;0+3(t) + e(n°+3)m><n07npno+3(t) = e(“°+3)“x(n0 + Z)Xpn0+2(t)
=

a
dt

(e(n0+3)xtxpno+3(t)) — e(n0+3)xtx(n0 + 2) X X no(ng + 1) g Mo (1 _ e-M)Z

_ ng(ng +1)(n, +2)

- 5 X}Lxe?)ktx(l_e-kt)z

_ Ny (N, +1)(n, +2)
2

x ) x g3 X(l -2 M 4 e—ZM)
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Equivalently,
d (ng +3)1t — rIO(nO + 1)(n0 + 2) 3t 20t i
E(e XP,, .s(0)) = ; xax(e¥ - 26 + ™)
Integrating both sides with respect to t, we have

Id(e(n°+3)hxpno+3(t)) - J' no(no + 1)(”0 + Z)X)\,X(eakt e 4 ext)dt

2
Equivalently
(ng +3)rt no(no + 1)(”0 + 2) 3t 20t At
e Mxp, (1) = ; xax[(e - 2e7 + e )dt
_ny(ny +1)(n, + z)xXx et 26 . et .
2 3 2) A

r'O(nO +:;)(n0 + 2))(|:eakt _ eZM+eM j| +C

But from the initial conditions, Whent=0,X(0)=n,. This implies that p, ,,(0) = 0.

Substituting the initial conditions in the equation above, we have

e(no +3)kXOxpn0+3(o) — n0(nO + :;)(no + 2)x|:ef:><0 _ ezxxo_'_exxo :| +c

0= o (Ng +12)(n° +2)><E-1+1}+c

N (N, +1)(n, +2)
2x3

c=-

Substituting,

(no +3)nt

€ >(pn0+3(t) =

(0, + (1 +2) [e 0] ol + D)0, +2)
2 3 2%3

_ ne(ny +1)(ny + Z)X[esm Tty gt } ] Ny (N, +1)(n, +2)
2 2%x3
N (N, +1)(n, +2)
2%3

N (e +1)(n, +2)
2%3

xl:e:m - 3eM 4 3ext:| _

no(no +2]>-():§no + 2) {(esm _3e?M 4 3e7»t) _ 1}
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Therefore,
n, +1)(n, + 2)x
2x3

+ n
e(no 3)ktxpn0+3(t) = O(

_ g (ng +1)(n, + Z)x(e“ _1)3
2x3

NGRS U MRS |
_ Ny (Ny +1)(n, +2)

o xesmx(l_e-m)3

Therefore,

_[ng(ng +1)(ny +2) V8 | o (g + 3
pn0+3(t)—{ 0 0 2x3 0 xe3ktx(1_e Xt) }xe t

_ ne(ny +1)(n, + Z)xe'”"“x(l- e'“)3
2%3

Thus

o(ng +1)(ny +2
2x3

Pr,+3() = i )"e'”"“"(l' e ™)
When n = n, + 4, equation (4.1b) becomes
p;10+4(t) = _(n0+ 4)>\'pn0+4(t) + (no +4_ 1))“pno+4-1(t)
= _(n0+ 4))\‘pn0+4(t) + (n0+3)}\‘pn0+3(t)

Re arranging, we have

P, +2(® +(n0+ 4)}\'pno+4(t) - (noJr 3)7‘pno+3(t)

Next, we integrate the above equation by use of integrating factor method.

Integrating factor = ej(no +4)Adt - e(no + 4t

Multiplying both sides of the equation above by the integrating factor, we get

(no +4 no +4)ht

e Py (1) +e!

45

(eam _ 3ezm + 3ext_ 1)

X(Ng + 4)2p, o0 = ™ " x(ng +3)hp, 40

(4.8)



Equivalently

a
dt

(10 +4) _ glnova No(No + (Mo +2)_ .o, ey
(e 4“><Pn0+4(t)) e x(ny + 3)x Ax—22 oxa P ——Ixe ™ x(1-eM)

_ no(no + 1)(n0 + 2)(”0 + 3)X)\,X et x (1_ e-M)
2%3

3

Integrating both sides with respect to t, we have

Id(e(”o+4)“xpno+4(t))dt - rIO(nO + 1)(21;- 2)(”0 + 3)X7\,X IeMtx (1_ e M 4 3 . e-SM)3dt

Simplifying
n, +1)(n, +2)(n, +3)
2x3

e Mxp, (1) = o xax[(e -3¢ + 3¢ - et

_ no(no +:I_)(n0 + 2)(n0 + 3)x}\,x et ] 33t N et gt ‘e
2x3 4\ 3A 2\ A

— no(no +1)(n0 + 2)(”0 + 3)x{e4h _ eSM + 3e2M _ eXt:| +c
2%3 4 2

But from the initial conditions, whent=0, X(0)=n,. This implies that p, . ,(0) = 0.
Substituting the initial conditions in the equation above, we have

4% x0 21x0
e (0) = no(ng +1)(n, +2)(n, + 3)){:3 oo 4 30 e“o} ‘e

2%3 4

AL LILLENERTE
2%3 4
Ne(Ne +1)(ng +2)(n, +3)
2%3

Ny (N +1)(n, +2)(n, +3)
2x3%x4

c=

1
X— =
4

Therefore, substituting the value of ¢ in the equation above, we have

0 (No*1)(ng J’Z)(”oJr3)>{e4M w3 }r Ny (N +1)(1Ng+2)( 1o +3)

-e
2x3 4 2 2x3%x4

(ng +4)t n
e Xp, ..t =

_ o (g +1)(no+2)(no+3)x e !- 4e™+6e’ '-4e™' | N (no +1)(ng +2)(n, +3)
- 2x3 4 2x3x%x4
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(np +4) t n
e x pnO + 4 (t) =

0(n0+1)(n0 + 2)(n0+ 3)x{(e4kt _ 4e3kt + GeZXt_ 4elt ) +1}
2x3x%x4

- D0 D0 Y,y

2x3x4

— Mo (no + 1)2(:;:42)(% + 3)x{ext (1 e m)}“

Ny (Ng +1)(ng + 2)(ny + 3)xe4xt X(l ) e-xt)"'

2x3%x4
Therefore
0 ()= N (Ng +1)(ng + 2)(ny + 3)><e4“><(1 ] e'“)4><e_ (n, +4)at
0 2x3%x4
- N (N +1)(ng + 2)(n, + 3)x(1 . e-kt)4xe‘”0“
2%x3x4
Thus
No (Ng+ 1)(ng+ 2)(Ng+3) . s )
) = 0 0 0 0 xe ny txl_e}\t 49
P4 () P (1-e™) (4.9)
Generalizing,

P, () = ™"

pn0+1(t) - noe-noxt(l_ e—kt)
1
pno +2(t) = [n02+ je_noh (1- e-M)Z

n, +2 3
ty=| ° xe "M x(] - g M
SRR A TR

+

="
pnO +4 4

3jxe— nOMX(l _e At )4

By induction, assume that for n =n, + k-1

-2 e
p%+wﬂ0==(n0;_]_ J(é“) (1_e4)k1
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When n = n, + k, equation (4.1b) then becomes

pr’10+k ®) = _(n0+k)}\'pno+k(t) + (no tk- l)kpn[ﬁ-k-l(t)
Rearranging,

p;10+k (t) + (n0+k)xpn0+k(t) = (no + k - l)xpn(ﬁk—l(t)

no+ k-2

=(n, +k- 1)x( - J(ex) (1)

Next, we integrate the above equation by use of integrating factor method.
Integrating factor = el ™ " = g(r +1m
Multiplying equation (3.2) with the integrating factor, we have

+ SN S n,+k-2 ny -
e(n0 k)mp;“k(t) + e(n0 k)M (n0+k);\’pno+k(t): e( o k)t (no + k- 1)7»[ 0 - ](e-m) (1 _e™M )k 1
Therefore,

d (ng + k) _ n,+k-2 -kt + KAt + nght L ok-l
a[e Mpno+k(t)j|_(n0+k-l))\’( ok-1 o Mo+ ke )‘(l—em)

k-2

=(ny, +k- l)?{no;- . jek“ (1 -e™ )k-l

=
1
N

Integrating both sides with respect to t, we have

n,+k-2 )
e ® = (ny + k- 1))( 0 k-1 }Ie“ (e - l)k dt
Let u = €™ - 1. Therefore, (;_l: =e™ or dt = dlit :
€
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Therefore

ng+k-2
e(no+k)mpn0+k(t)=(no +k-1))u( ok-l jj‘emum%

n0+k-2]uk
+C

L

SRS M= R

k-1 k
Therefore
pL.(t) = (no + k- 1)x (no + k- 2)! (em ) 1)" e-(no+k)m + Ce-(n0+k)M
ot k (k -1)!(n, - 1)!
W R
I(n, -
— [no +kk - 1}(6‘)‘t - 1)" e—(nO ke Ce-(n0+k)m

From the initial conditions: When t =0, X(0)=n, = p, (0)=1and p,(0) =0Vn=n,.

Substituting t = 0 in the equation above, we have
n,+k-1
pno+k(0) = ( ° k ](1 - 1)k X1 + Cxl

c=0.
Therefore,

n,+k-1 k
t) = 0 em -1 e-(n0 + k)it
Py, (D) [ ) j( )

— [no +kk - 1jx|:em (1 _eM )]k g NoM g~ Kkt

Therefore

()= (”o e 1j(e-v P (1- e (@10

Where n=n,+k, andk= 0, 1,2, 3,...,

k+r-1
This is a negative binomial distribution of the form p, = [ " jqux p" where q = 1-p.

In our case above, p=¢e* and q=1-¢*.
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4.2.2 Mean and Variance by Definition

k - ng Y k
pno+k(t)=[”° iy lj(e'“) (t-e”)

ie.

n,+k-1

Prob[ X(t) =n, + k] :( y ]p"qu where p=e™ and q =1-e™.

Mean

Therefore

E[X(t) =n, + k]=n,e*
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Variance

Var[X(t) = n, + k] = E[(x(t) g + kﬂ ~(E[X(t)=n, + K]}’

Now
n 2(ny + k-1 0,
SIRCRENT A YRS (i
n n,+k-1
= {(n0 +k)(n, +k-1) +(n, +k)}[ 0 ‘ qupno
k=0
:i(no_'_k)(no_'_k_l) rlo-l_k'l qkpno +i(no+k) r]0_{_k 1 kpno
k=0 k k=0 k
> (np +k-1)1 n
= k k-1 oo+ 2
;(no +k)(n, + ) ki(n, - 1)! qgp”+ D
= (ny +k)tng n
= "“(n, +k-1)+ =2
kz_(;k!(no-l)!noq P (mg ) p
= (ng + k), ) n
= Mo k - _0
kz:(; K g p™ (ng +ngk - n, ) + ;
Therefore,
E[ (X () =n, + k)| = i(n"; quk " (n2 + ngk - g ) + =
k=0 p

Expanding, we have

(Mo + K n S n, + K n © (n, + Kk n n
E[(X(t)=no+k)2}=n§g;‘[°k jqkpo+§nok[ok jqkpo_noz(ok jqkpuﬁ

k=0

Working out each term separately, we have

First term
= (n, + K = (n, +k Mo+t
n2 0 jkp%:nz [o Jq p
i DI
nS - no"'kj K ng+1
=— qp"
S
_ N
p
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Second term

|
[+
—~
=]
o
+
=~
~
>
o
—
=]
o
N—
=
=
5

1
>
o
—~
>
o
+
[EEN
N—
s
R
>
AN ©
o+
HX
N—
o]
x~
o
o]
©
S
N
N

|
>
o
—~
>
o
S+
[
N—
o]
M
7~ N\
>
x o
+
~
N——
o)
=
~
o
3
+
N

p k=0 -1
:no(no+1)q
p2
Third term
n q“p"™ =n q
Okz—(;( k okZ:(; Kk p
nO S n0+kJ k Ny +1
= — q po
o3
_No
p
Therefore
; )9 n, n
E| (X(t)=n, + k)’ =&+n0(no+ _ o, o
[( (t)=n. )J p p p P
:n_§+ no(n02+ 1)q
p p
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Therefore

2 n(n,+1 ?
Variance:&+—°( 02 )q (ﬁ]
p p p

ng

ny no(n, +1)q n?
p

+
1

_nip+n(ng +ng)(L-p) - ng

2 2 2 2
:nop+no'nop+no'nop'no

p2

= N4
pZ

— noezm (l _ e-M)
Therefore

Variance = ne” (1-¢™) (4.12)
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4.3 Determining p, (t) by Laplace Method

Recall the from (2.9) that
Lp; (t)]=sL[p,(t)]- P, (0)

Recall that the differential equation (4.1b) in the simple birth process is
p(t) = -nip,(t) + (n-1)Ap, (), n >1

Taking the Laplace transform of equation (4.1b), we have

L(p,(®) = L(-nip,(®) + L((n-1)Ap,,®), n =1

= -nxL(p,(®) + (n-1)AL(p, 1), n =1
Taking advantage of the identity above, we have
sL(p,(1) - p,(0) = -nAL(p,(®) + (n-1)AL(p,,(®), n =1
Re arranging
sL(p, () + nAL(p,(®) = p,(0) + (n-1)AL(p,,(®)
Grouping the like terms in the equation above together and factorising, we have

L(p,(®)(s +n2) = p,(0) + (n-1)LL(p,, ()

Therefore,
_ p©@ , (0-2)2L(p,,0)
L t)) = —" + 4.13
(PO) =) (s+n) #39)
The initial conditions are; When t = 0,X(0)=n, = p, (0)=1andp, (0)=0Vn=n,
andp, (t)=0vn<n,
When n = n, in equation (4.13) becomes
0 n, -1)AL(p, ,(t
L(pno (t)) _ pno( ) 4 ( 0 ) (p ,-1( ))
(s+n,2) (s +n,1)
Thus
1
L ))=—— 4.14
(., ®) Gn) (4.14)
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When n =n, +1, Equation (4.13) becomes

(e +1-1)
s+(n, +1)1)

L(p,, .+ (1) = ( L(Py,+1:®)

s +(Ez7ll)x)L(p"o(t))

Ny A « 1
(s+(n, +1)1) (s+nyd)

Ny A
(s+nyA)(s +(n, +1)1)

Thus
Ny A

(s +ny 1 )(s +(n, +1)1) (4.15)

L(py, 1)) =

When n = n, + 2, Equation (4.13) becomes

(np +2-1)
s +(n, +2)

L(py, .. (1) = ( )L(pn0+2_l(t))

NE ir(];:j)zx)x) L (Pr, 1)

(no +)A Ny A
(s+(no +2)1) (s +nyd)(s +(n, +1)1)

Thus
ny(n, +1)A%
(s +ny %) (s +(ne + )& )(s +(n, +2)2)

L(p,,..®) = (4.16)

When n = n, + 3, Equation (4.13) becomes

(n, +3-1)A
s +(n, +3)1)

L(pn0+3(t)) = ( L(pn0+3_1(t))

e &n(on:f)s)ix)L(pW“))

(n, +2)x y n, (n, +1)A?
(s+(ng +3)A) (s +nod)(s +(ny + )X )(s +(n, +2)2)
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Thus

R Tl - (0, 21

(s +nok)(s +(n, + 1)%)(5 +(ng +2) )(s +(n, + 3)7»)

Generalizing,

P. (1)=P,, ., (1),k=0,1,2,3.....and n=n,,ny+1, Ny +2, ....

Taking the laplace inverse of equation (3.18) above, we have

k-1

IT(ny+i)A

K-

Pa (t) = pn0+k(t) = I—-l[pn“k(t)]:tl = :.Hl(no + i)?uk Lt

k
- i=0
EO(S +(ng+ 1))
These are k + 1simple poles (Singularities)

L_l 1 l c+iowo est

k

106 +(n, +i)2) | 28 f1fs +(n, + 12)

i=0
i=0

K e-(n0+j)xt ) _
=) = EY
POTT(+(no + )&+ (ng +1)1)

i=0

e_ (”o + j))\,t

k
k
=T T(=ng — i+ ny +1i)

Thus,
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Equivalently,

p (t)= l n + 1 xzk: ek’ ”‘j j)k_t
=)

But

klj[:(n +1)=ny(ng +1)(ny + 2)..ecee. (no+(k—1))_(nzn:E;)'1)'
Further,

(- = 56« (-0 i#]
But

le(' )= CDE-1)(2-5)ee(-3)(-2)(-1)

=(-1) jt

Similarly

Zk:l(l )=1.2.3...(k-1-j)(k-j)=(k-j)
Thus

[16-1)=36-0) x 26

(n +k - 1 y k o (no+ i
P82 (no - 1)! g‘ ik - )
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Equivalently

But n=n,+k = k=n-n, k=0,1,2,..

Substituting k with n — n, in equation the above, we have

0 ZLHO e, _1j(9' M) x(L-er)

n, -1
=
p, () :(n” ) llj(e "V x(1-e)"" n=n, +k k=012,. (4.20)
-

n-1

Jlonf’q”'no which is a negative
n, -1

Putting p=e""" and g =1-¢e""', we have p,(t)= [

binomial distribution.

Special case
If n, =1, then
P, (1) = (n(; 1je'“ (1- &™) But [n(; 1} =1. Thus
p,(t)=¢e™ (1 - e )n (4.21)

which is of the form p, (t) =p g" which is a pmf geometric distribution.
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4.4 Probability Generation Method
4.4.1 Determining p, (t) by PGF Method

The initial conditions are: Whent = 0, X (0) = n,

=p, (0)=1,p,(0)=0Vn=n,andp,(t)=0 Vn<n,

If A, =nA for n =1, 2, 3, .... the difference differential equation (4.2b) remain as

pr®) = -nip,(® + (n-)Ap,, (), n >1

Definitions
Define
G(s,t) =D p,(t)s"
n=0
d - ! n ’ - ! n
Gt =2 (1) s" = (1) + 2 p; (1) s
n=0 n=1
d _ = n-1 _— l > n
d—G(s,t) = ann (t)s"*= —ann(t) s
S n=0 S n=1

(4.22)

From the definition of G (s,t) and the initial conditions, we can make the following deductions

o0

G(s,0)= > p,(0)s" =p, (0)s™ =s™

n=0

n=1 n=1

Multiplying equation (3.2b) by s" and summing over n

D pp®)s” = A np,()s” + 2D (n-1) p,,D)s"
n=1 n=1 n=1

Equivalently,
2P M =AY np,(®)s" + ks (n-1) p,®s"
n=1 n=1 n=1

2.0 (1)s" = %G(s,t) - py(t) and Snp, (t)s" = s

(4.23)

From the definitions (4.22), initial conditions, and the deductions, equation (4.23) becomes

d
dt

Factoring out di G(s,t),wehave
S

%G(S,t) - po(t) = %G(S,t)(- Sk + st)
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But from (4.1a), p;(t) = 0. Thus, the linear differential equation is

d d

Tl - -1)— = 4.24

dtG(s,t) As(s )dSG(s,t) 0 (4.24)
Applying lagranges differential equation, the auxiliary equations are

dt_  ds _dG(st) (4.25)

1 - Xs(s - 1) 0
Taking % = %1) and integrating, we have

-Adt _ ds .
-[ 1 _Is(s-l) ®
1 A B
= — +
s(s-1) s (s-1)
=

1 _A(s-1)+Bs _-A+s(A+B)

s(s-1) s(s-1) s(s-1)

=

A=-land B=1

Thus, equation (i) above becomes
1 1
-Adt=- =ds+ |—ds
.[ I S IS - 1
=

-M=-Ins+In(s-1)+c,

Thus,
-M+Ins-In(s-1) =¢ (ii)
dG(s;t : .
Taking % = (()S ) and integrating, we have

fodt=[dG(st)

c, = G(st) (iii)
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Therefore, from (ii) and (iii),
s-1

G(st) = F(-At +Ins - In(s-1)) = F[ At +In (in (4.26)

Let '{' At+In (LID —wand w=e""") Therefore
s -

s w
W= —=§= ——
S - w-1
w )"
G(s,0)=| —
=[]
i o S h
G(st) = z-l
g ™M -1
| s-1
[ se™ "o
_ s-1 B se™ "
seM-s+1 seM-s+1
. s-1

But se™ -s +1:1-s(1- e‘“)

Thus

ge M Mo ge M o
G(st)=|———| =|——= 4.27
(1) Le'“ -s+1} L-s(l-e“)] (@27)
Let p=e*andgq=1-¢e™
Then

corfis]

1-qs

This is the p.m.f of a negative binomial distribution.
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p, (t) is the coefficient of s" in G(s,1).

k=0
n = (N + k-1 ny +
k=0
2 n, +k-1 .
- anu( 0 k qusno k
k=0

Thus,

— no+k'1 Np K
X

Butp=e*andq=1-e".
Thus

n

k

P, (t) = (nO ke l](e'“)% (1-e*) k=01,23,.

andn, >1. (4.28)

This is a negative binomial distribution with parameters p = e and q =1-¢e*".

4.4.2 Mean and Variance by use of Generating Function
(i) Mean

Recall that G(s,t) = L p:J

Now E(X) = %G(S,t)

s=1

P IR RN

1-gs

=n,p st (L-gs)™ + (ps)°n,q(Ll-qs)
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Putting s =1.

d n -ng no -ng -
86 =npn(t-a)™ + (p)"mea(t-a)"”
s=1
=N, +neqp’ = no£1+ Ej
p
Thus,
qu=n{i+9j (4.29)

p

(i) Variance

Recall
d Ny oMo - ~No Mo “No -
EG(s,t): neps®*(1-gs) ™ + (ps)°n,q(l-qs) '
o fanp-1 -ng n -ng-1
:nOpO{s0 (1-gs) ™ +s™q(l-qs) }
Therefore
d2 n ny -2 -No ny -1 -Np-1
<z G(st) = ngp® {[(ng -1)s™ (L= as) ™ + 5 (- ng)(1-as) ™ (-a) | +
n sno—l 1- -(no +1) (no +2) -
008" (L-as) T +as™ (- (ng +1)(1-qs) " T (-q)
d2 n ng - -Ng ng - -No -
EG(st) =n,p °{[(n0 -1)s™?(1-qs) ™ +nyqs™*(1-qs) l} +
[noqs”"'l(l-qs)'(“"ﬂ) +(n, +1)g*s™ (1-gs) "°+2)}}
Now puts=1
d2
EG(s,t) =n,p"™ {(n0 -1)1-q) " +npq(1-q) "+
s=1

a0y "+ (ng + )07 (1- )7

ne +1)

= n,p™ {(ng - 1)p™ +nyqp ™™+ nyqp Y + (n, + 1)qPp 7]

Ny 2
= nor? {(no _1)+2noﬂ+(n°+—1)q}

p p’
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Therefore

d2
EG(S,'[)

Now, since VarX = G"(Lt) +G'(1t) - [G'(Lt) |

2
VarX = no{(n0 1)+ anoq + (n, +1)q

p

+ 2n0q + (nO +1)q2

p

2

REIN)

)+ AU (n, +1)n, g’

=ny(ne -1 7
2 2 N2
=nZ-n, + 2ngq N nog N nog
p p
_ n,q’ L Mol _ noq(ﬂ+1j
PP pp

Therefore

varx = Jodq)

2

Therefore,

VarX =n e (1-e™)
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4.5 Method of Moments to Determine Mean and Variance

4.5.1 Mean
Multiply the basic difference differential equations by n and then sum over n
gn oL (1) = - 2 Zn b, (1) + Xgn(n D)pya(t) (4.31)
Define
M, (t) = in P, (t) and M, ( Zn p, (t (4.32)
e}
Therefore,

=>'np;(t) and M;( Zn P (t (4.33)
n=1
Substituting the definitions above in equation (4.31), we have

M (1) = -AM, ( +Xin 1+1)(n - 1)p, , (t)

:-kMz(t)+k{i(n 1 pnl +in lpnl }
n=1

n=1
=AM, () + M{M, (t) + M, (1)}
Therefore,

Mi(t) = le(t)

U

M; (t
M, (t)

N—"

iy

=\

d
a(|n M, (t)) = A
Integrating both sides with respect to t, we have
d
ja(ln M, (1)) dt = [2 dt
=

In(M,(t)) =2t +c

Taking the exponential of both sides

Ml(t) — ekt+c — kekt
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Thus,

M, (t) = ke™ (4.34)
When t =0,
M, (0)=ke"® =k (4.35)

But from the definition of the first moment
ann =p,(0) +2p,(0) + ...+ nyp, (0) +... =n,

(Recall that at time t =0, X(0)=n, = p, (0)=1and P,(0)=0V n=n,)
Thus
k =n, (From equation (4.35))

Equation (4.34) now becomes

M, (t)=n,e* = E[X(t)]=n,e" (4.36)
4.5.2 Variance
Multiply the basic difference differential equations by n and then sum over n
SRz (1) = -4 Snp, (1) + 23 0% (n - 1)p, , (t) (4.37)
n=1 n=1 n=1

Substituting the definitions (4.32) and (4.33) above in equation (4.37), we have

M (t) = -AM, (1) + ki(n 1+ 1 (n - 1)p, (1)
= -XM +XZ[ )+1}(n -l)pn_l(t)
=AM, (1) + 23 (n - (0)+2(n -1 p, 4 (1) + (0 - 1)p, (1)

]
LN

= =AM, (1) + A{M, (1) + 2M, (t) + M, (1)
Therefore,
M, (t) = 2AM, (t) + AM,(t)
Equivalently,
M (t) - 2AM, (t) = AM, (t) (4.38)

Integrating factor = el 24 = o
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Multiplying equation (4.38) by the integrating factor, we have
&P M (1) - 20 M, (1) = Ae ™ M, (1)
But from (4.36), M, (t)=n,e*". Thus

e M, (t) - 2heM M, (t) = Ae ' xn et = nje™

or
e My (t) - 2he M, (t) = nyhe™
Equivalently
d -2t _ - At
a[e Mz(t)] =n,Ae
Therefore
e M, (t) = ngh [e™ dt
S Mohen o
A
=-n,e* +c¢ (4.39)
When t =0,
M,(0)=-n, +c¢
Therefore
D> .n%p,(0)=-ny +c
n=1
Thus
nt=-n,+c
=
c=n’+n,

Recall that from the definition of the second moment
M, (0) = > n?p,(0) = p,(0) + 2*p,(0) + ..+ nZp, (0) +.. =n;
n=1

Thus, equation (4.39) becomes
e M,(t) = -n,e™ +n5 +n,

=
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M, (t) = - nje™ + nge™* + nye*

Therefore,
Var[X(1)] =M. (6) - [M,(0)]
=-n,e"+nje*+ne* —n
=-n,e* +n e
=n,e” - n,e™
=n,e"(e* -1)
Therefore,

Var[ X(t)] = n,e™(e* -1)
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CHAPTER FIVE
SIMPLE BIRTH PROCESS WITH IMMIGRATION

5.1 Introduction

Consider a pure birth process {X(t), t >0} with intensity function A, (t) = v(t) +ni(t),
n=0, 1,2, ... One can regard X(t) as the size at time t of a population into which individuals
immigrate in accord with a Poisson process with intensity function v(t) and then give rise to

offspring in accord with a pure birth process with linear birth rate.
The objective in this chapter is to solve the basic difference differential equations given in

Chapter 2 (refer to equations (2.1) and (2.2)) when A, =nA +Vv. n =0, 1, 2, 3,... We shall

specifically look at three methods namely the iterative method, the Laplace transform and the

Lagrages method. In all these cases, we will work with the initial conditions being
(i) X(0) = 0 and (ii) X(0) = n,
When A, =ni +v for n=0,1 2, 3, .... the basic difference differential equations become
Po(t) = —(0xA + V) py(t) =
Po(t) = —vp,(t) (5.1a)
p(t) = = (N +V)p, (1) + (n-D)x+Vv)p, ,(t), n>1 (5.1b)

5.2 Iteration Method
5.2.1 Determining p, (t) using iteration Method

Initial Conditions: Whent =0, X (0) = n,
When n = n,, equation (5.1b) becomes

P, ) = -(NA +v)p, (O + ((n-1)X+v)p, ()
But p, ,(t) = 0. Therefore

pr, @ = -(nA + V)P, ()

P, (® _
P, ® (N )

d
alog P, () = - (A + v)
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Integrating both sides, we have
Idlog P, () = -J(nox +v)dt
log p, (1) = -(NA + V)t +c
Taking exponential both sides, we have
P, ®) = e (M V)ite (0t e e g (noh vt
Using the initial condition, X(O) =Ny, P, (0) =1.
1=k
Thus,
p,, () = e ™" (5.1)

When n =n, + 1 equation (5.1b) becomes

P ® = -((ng + DA +v)p, ,® + (nyh+v)p, (O
Re arranging, we have

Pl (®) + ((Ng + DA+ V) (®) = (g &+ v)e ™
Next, we solve the equation above using the integrating factor method

Integrating factor = ef((no + DA+ v)dt _ e((n0 +1)h+ )t

Multiplying equation above by the integrating factor, we have

e((n0 +1)k+v)tp:]o+1(t) + ((no + 1)7\’ 4 V) e((n0+1)x+v)tpno+1(t) _ (nok 4 V)e((no+1)x+v)te-(nox+v)t

= (noA + v)e

E[e((no +1)x+v)tpn +1(t):| — (nok + V)GM

dt °
Integrating

el () = (noh + v) [edt

At
= (noh + V)% +c

Therefore

At

pn0+1(t) = ((nok + V)e7 + Cje'((no +1)A+ V)t
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Whent =0,

(Ned + v)e°
A

0:(n0+xj+c
A
_ Vv
c=- n0+x

Substituting for c, we get

v t v -((ng +1)A +v)t
g

- (no + %j(em ) 1)6-((n0+1)x+v)t
o+ LJereree

Therefore, p, ,,(t) = (no + %)e'(”"“v)t (1 - e'“) (5.2)

pn0+1(0) = + C

When n =n, + 2, equation (5.2b) becomes
Pl M) = -((Ng+2)% + v)p, .. + ((ny + 1) +v)p, .,(0)

Re arranging, we have

! _ \ -(ngh + V)t At
pn0+2(t) + ((no+2)7‘ + V) Pn2(t) = ((no + 1)7‘ + V)(no + K]e( ) (1 -¢ )

. \% \4 -(ngA + V)t -At
_(no+xj(no+z+lje (1-e )

Next, we solve the above equation using the integrating factor Method

|nteg|’ating factor = ej((no+2)k+v)dt _ e((n0+2)x+v)t

Multiplying equation above by the integrating factor, we get

(_:'((n0+2)>\+v)tpn0+2 (t)+e((n0+2)x+v)t ((n0+2)7\. + V) pn0+2 ('[) _ e((no+2)x+v)t ((n0+1)7\.+V)(DO‘F%)C-(nOMV)t (l_e-m)

%[e((nwz)xw)tpnoﬂ(t)} _ (no"'%j(no-" %+1j7»ezm (1_e.m)

_ \ \J PRI,
-(%*ﬂ(”o* X+1)7u(e t-e)
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Integrating both sides with respect to t, we have

e((n0+2)k+v)tpn0+2 (t) - (n0+%j(n0+ %+1j)\' J‘(GZM ‘eh)dt
2)t At
:(n0+XJ[nO+ X+1]k ¢ g
A A 20 A

ng 42ty Vv v e?t - 2eM
o

Initial Conditiont=0, p, .,(t) =0
o (o o)
A A 2
(i)
C=|Ny+— || g+ —+1|=
A A 2

2
_ (n0+%)(n0+ %"'1) {ezm - 2eM + 1}
2
Equivalently,
Poa (D) = (n°+X)(20+ o e - 2¢" +1y
_ (nO+X)(;o+ 1+1) USRS {1 - 2e™M 4 e'“}
- (no+%)(no+ %+1) (o +3)at (1 -e M)
2
_ (ng+ y+1)! e.m(non)(l em)2
(no+¥ -1)1 2!
ny,+ %+1 M(ng +Y¥) At
A 1_
iy
Thus
+ 1+1 -M(ny + ¥
P2 (0) = (no 2 je ety °
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When n =n, + 3, equation (5.2b) becomes

p:10+3(t) = - ((n0+3)>“ + V) Prys(® + ((no + 2)7‘ + V) Pr,2(t)

Re arranging, we have

n+l+1! -M(ng +¥ It
B 5 + ((Ng*3)A + v) pya(0) = ((ng +2)x+v)—(r(] j—"il)l)Zleu I1-em)
L-1)r28

_ (n +l+1)! —lt(no+%) At 2
= ((n, +2)“V)—(noixx-1)!2!e (1-¢™)
Therefore,

(no +5+ 2)(n0+%+1)!ke-m(no+%) (1 ) e-xt)z
(n0+% - 1)! 2!

Py ® * ((Ne+3)A + V) P, a(®) =

Next, we integrate the equation above using the integrating factor method

Integrating factor = o (o3P v)a (g 432 v)

Multiplying equation the equation above by the integrating factor, we have

+3)A+v)t ng+3)A+v)t ng+3)A+v)t 1+2)! -M(ng+¥ -
el 1)+l I (ng43)Akv) p, Lo () = e )(rgnitx_*l)l)z.lxeh(o I1-em)
oy -1)121

Equivalently,

E ((no +3 k+v (n V + 2) ((n0 +3)k+v)t -Xt(no +)¥) M 2
dt|:e pn0+3():| (n +v 1)|2')\‘e S (l-e )
_(ng+y+2)!

. Ry
(no+y -1)! Tial (1-¢7)

_ (r(]nj_t\}(:_;);)‘ew (1 _0e™M 4+ e»zm)
ot ") e

- ((no+x+12))ll;( e 9p?M 4 exn)
Not+ 3

Integrating both sides with respect to t, we have

SR NOE 2 (ew . e—MJ +c

(ng+y-1)r21lan 20
((:0 VX"'f))l 2'(6:3: et 4 ext] fc
0
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Initial Condition t=0, X(0) =n,,P, ,,(0) =0

0= —(n0+%+2)!k (1- 1+ 1} +cC
(ne+y-1)12103

o= (ne+¥L+2)n
(Ne+¥-1)!3!

((ng+3)r+v)t t
° Pral) = (ny+¥ -1)1 2!
(3m 3e2n+3em) (no %—’_2)!7”

(no+¥ -1)13!

- no+%+2)!7‘ {eam_ 3 + 3pM _1}
no+ ¥ -1)13!
Equivalently,
N+t +2)Ih ((ng 3w
pn0+3(t) — ( 0 A ) (( 0 3)}L ) { 3ht 362M+ 3ekt _1}
(ng+y -1)13!
- (no"'%"'zle-h( ){1 3e™ + 3 em}
3
_ (n0+%+2Je-m(no+A)(l_ eM)
3
Thus
(5.4)

By induction, assume thatwhen n=n, + j-1

n+V+J 2 ng +Y e\
pnom()( o j vt (1)

When n =n, + j, equation (5.1b) becomes

Pry(® = (e + )2+ )Py ® + (0o §-1)A+v) py 1)

. . Ne+i+]J-2 ng + e\

ph @ + (N )X + v)p, ;0 = ((ng+j-1)A+ )( ; 11 ]e ( ))(l_ex )11

_ v . (n0+%+j-2)! -M(nOJr%) At j-1
_(n0+x+1-1)x(j-l)!(no+X-l)!e (l-e )
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Re arranging the above equation, we have

(Mo +¥+J-D'N angrv) eyt
TECREE VA

Next we integrate the above equation using integrating factor method

p;10+j(t) + ((n0+j)}\' + V) pn0+j(t) =

Integrating factor = ej[(no+1)k+v]dt _ e[(no+j)x+v:|t

Multiplying the equation above with the integrating factor, we get

(034 ey

el:(n0+j))t+v]tpll‘]0 N (t) + e[(n0+j)}‘+V]t ((n0+ j)x + V) pn0+j(t) — e[(n0+j)}“+vjt

Equivalently,

AT glows ) = looriede (Mot T+ I-DNA o) (g ot
il 0= e )
(no+%+j'1)! it )t
= 1- A
(no+2-1)1(j-1) (1-e™)

_ o (ngreHjnr (et -1 "

- v i e A A
(ng+¥-1)1(j-1)! e

- (no+%+j'l)! M art 1\t

= (n0+%-1)!(j-1)! e (e 1) A

Integrating both sides with respect to t, we have

el:(nO +j)}”+V]t

(”o+XJrJ"l)!)I;LjeM(eM 1) de

Pl = (oL

We wish to integrate J'eM (e - 1)1"1 dt

e™du

Letu=e"-1 = Z—::Xe“ or dt =

Therefore,

Al

4 adu
eMute™ —

[(ng+i)a+v]e 3 (no+%+j-1)!
e () = wANY
i ® = G ey
(no+%+j'1)! j-1
= d
(n0+;-1)!(j-1)!ju -

_ (n0+{+j-1)! u’

(ne+L-1)1(j-1)! ]
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Equivalently,

gl(mo+irev]s (”o+%+j'—1)! (eM i 1)j +C

Prol) = (ne+¥-1)! j!

= (n0+%-+j']j(em _ 1)1' +c

J

- [no"'%"'j'lj(em _1)1' +c

J

Using initial conditions, X(0) =n, = p, (0)=1andp,(t) =0V n=n,. Substitutingt=0

in the equation above, we have
ne+¥+j-1 -
0:(0 k' J j(1_1)1+c
J
c=0.

Therefore,
nyg+j)A+vt +M+-'l j
e ]pnoﬂ-(t):[no i j(e“'l)'

Equivalently,

N+ 3+ J-1) ingriprsv j
prg@ =| Tl )

— n0+%+j'1 Lo+ ia+v]e [ ot 1-eM i
i) e"(1-e")]
- n0+%+j'l ngh-it-vi [ (1 _ o j

j ¢ [e (1-e )J
Ne+¥+j-1

ok - At - vt + it (1 ) e-m)l'
J

- Np+i+J-1 USRS (l- e-m)j

J

Therefore
+¥+ --1 -Mt(ng + ¥ i
p”oﬂ'(t) = (no xj J je M(ng +) (1 et )J

This is a negative binomial distribution.
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5.2.2 Mean and Variance by Definition

Now, let p=¢e™, q = (1 - e‘“) and j = k. Equation (5.5) now becomes

PrObl:X(t) =n, + k:' _ [no+xk+k-1j p(n°+%) qk

Mean
E[X(t) =n, + k] = i(no + k){no+xk+k-1jp(no+x)qk
k=0
+V+k 1 (no+)¥) K n0+%+k-1 (ho+2) i
Ex ‘”*k]-%Zl AR, I

= 3 (n0+%+k-1)! (no +%) 1k
_noxl+2kxmp g

=N+ i(n““k'l)!x(noﬂ)!xp(”‘”)*lq
gy - (k-1 (ng+y)! .

NP +n,-nep+¥-¥p

P
:n0+%-%p
p
_ Mot 3(1-p)
p
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Re substituting back the values of p and ¢, we have

ny+ ¥(1-e™)

E[X(t)=n, +k]|= o (5.6)
Variance
E[(X(t) = ng + k)" [ = (g + k)z(n°+¥k+k'ljp(““”qk
k=0

_ i(né +2n0k + kz)[n0+%k+k-1jp(n°+X)qk
k=0

n +¥+k-1} n,+¥+k-1

ny+¥ ny+¥ n +l+k'1 ng+¥
E[(x(t):n0+k)z]:ng;( T gl »>qk+2n0;k{o . ]pu )V>qk+kzokz( a5 qu 9

Working out each term separately, we have
1% term
(N, +¥+k-1) (n v
HSZ( T jp“ g = njx1=n;
k=0

2" term
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Therefore

X

(k

- 2)! (ne+y +1)!

(M 5+K-DE ()

- .kzz(;(k-z)!(n0+x+1)! P

(ne+¥+k-1)1

(Nt ¥+k-1)! (ny+y +1)! y

v
No+y +2

(k-2)!(ny+y

E[(X(t):n0 +k)2} =n2 + 2n0(n0+%)x% +(Ng+d +1)(n0+%)>{

79

p

a

n0+¥ +2 k-2

q“" +(ng +%

2
NG
+(Nyg+ 5 )X—
p) (n k)p

- qk-2qZ +(n0 +%)

o |



Therefore,
Var (X(t) =n,+ k) =

=n? + 2n0(n0+%)xq

P

g

T e

= n§+2n0(no+%)

- (no+%+1)(n0+%)(%j2 +(ng+¥)

Therefore,

i (ng+ + 1)(n0+%)><(ﬂj2 +(n,

+ %)x

2
Var (X(0) =1, + K) =+ 8 + 0+ &] fro+ 2410,

Equivalently,

a

p2
Substituting back the values of p and g, we have

(1-e")

-2t
€

Var (X(t) =ny+ k) = (n,+¥)

Var[ X(t) = n, + k]=(n,+¥)

— (n0+%)e2“ (1 _ e-xr)

Thus
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5.3 Determining p, (t) by Laplace Method
Initial conditions: Whent=0, X (0) = n,
Recall that equation (5.1a) and (5.1b) are

Po(t) = —Vvp,(t)

p,(t) = = (N +V)p, (1) + (n—D)x+Vv)p, ,(t), n>1
Taking the Laplace transform of both sides of (5.1b)

L(p,®) = L(-(n%+v)p,®) + L(((n-1)A +v)p, (1))

= -(nx+v)L(p,(®) + ((n-1)%+ v)L( pn_l(t))

But, L[p, (t)]=sL[p,(t)] - p,(0) (from Chapter 2, section 2.5 formulae (2.9)).
Substituting in the equation above, we have

sL[p, (1) ] = p,(0) = —=(n%+ v)L(p,(®) + ((n =) + v)L( p,,(1))

Grouping the like terms together and factorizing, we have

(s +(nx+Vv))L[p,(t)]=p,(0) + ((n =1 + v)L( p,,())

p(0) , ((n-Drry)

e )= e ) s i vy 9

Initial condition: At timet = 0, the population is n,. Thus, p, (0)=1, p,(0)=0V n =n,

and p,(t)=0V n<n,.

When n = n,, equation (5.8) becomes

Cn 0 ((me-2rty)
L[pn‘) (t):| (S + (no A+ V)) (s + (n0 A+ V)) L( pn"'l(t))

But L( p,, ,(t)) = 0. This above equation is thus equivalent to

1

L[p”" (t)J - (s +(ny& +V))

(5.9)
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When n =n, +1, equation (5.8) becomes

_ Po,+1(0) , (g +1-1)2+v)
L[pn0+1(t)] (S + ((nO +1)A + V)) (s + ((nO +1)A + V)) L( pn0+1_1(t))
But p, ,,(0)=0. Thus
L p,,.:(t)]= (gt + V) L( p,, (1)

(s +((ng + )1 + v))

1
But L[IOno (t)] = G (V) Therefore

B (Noh + V) y 1
LLPna(8)] = (s +((ng + D1 +v)) (s + (N2 +V)) (.10

When n =n, + 2, equation (5.8) becomes

pn0+2(0) ((no +2'1)7‘+V)

Lp,,..(1)]= + )L( Dy, 21(0))

(s +((ne + 21 +v)) (s +((ny +2)1+v)

Equivalently,

L[pn0+2 (t):l - (

((ng + 1) + v)
s +((ne +2)1 + V)

)L( pn0+1(t)) as pn0+2(0) = O

(N + V) y 1
(s +((ny + D)1+ v)) (s +(nox +v))

But L[pn“l(tﬂ =

Therefore,

L|:pn0+2 (t)] - (

((ny + )i +v) . (Noh + V) y 1

S + ((no + 2)k + v)) (s + ((n0 +1)n + v)) (S N (nox N V)) (5.11)

When n =n, + 3, equation (5.8) becomes

P, .2(0) N ((ng +3-1)1 + V)
s +((n, +3)A + v)) (s +((ny +3)1 + V)

LI:P”O*?’(t)iI - ( )L( pn0+371(t))

 ((ng +2)a+v)
- (S +((ng +3)1 + v)) L( pn°+2(t))
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Therefore

((ng+2)r+v) § ((ng+ 1)A+v) o (nrtv) 1

L[P”“S(t)} :(s+((n0+3) k+v)) (s+((n0+2)x+v)) (s+((n0+1)x+v)) (s+(nortv)) (6.12)
Generalizing by letting n=n,, n,+1, n,+2, n,+3, ....
Then L(pn (t)) = L(pn0+k(t)), k=0,1,23,...
Thus,
ﬁ((n0+i)x+v) ] (noh + v +ik)
L(p, (1)) = = =0 (5.13)

ﬁ(s+v+(no+i)x) lii[(s+v+n0k+ik)

i=0

The numerator in equation (5.13) can further be simplified as shown below

k-1 k-1 7\’ k-1 klkl
(N + v +1i) Hnok+v+1kxx—H((no+kj j =) [( ] j

i=0 i=0 i=0 i=0

K“ﬁ((n(ﬁ—%j%—i} = x“ﬁ(mﬂ) =2 {m(m+1)(m+2)(m+3)...(m+k-2)(m+k-1)}

Equation (5.13) can now be written as

}\’k—l (m+k—1)'
L(p (t))= k (m-1)! =xk,lx(erk—l)!x k 1
I (s+Vv+ngh+id) (m-1)! i1:[0(s+v+(n0+i)7u)
Equivalently,
k-1 (m+k—1)' 1
L(p. (1)) =21""x x— (5.14)
(5. (1) (m—1)! i1})(s+v+(no+i)k)
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Taking the inverse of the Laplace transform, equation (5.14) becomes

k-lx(m+k-1)! 1

(m-1)! ﬁ(s +V+(n, +i)))

i=0

p, (t) = L*(L(p, (1)) = L&

(v (ng +i) )t

e (m + k-l)! K e
=)\ X . z %
(m-1)! & TT(-(v+ (ny +i))+v+(n, +)2)

j=0

i1# ]

- (V+ Nk + i)t

k.1X(m+k-1)! Zk: e
(m-1)! = . :
[T(-v-neh-ik+v+n,d+ jd)

=0

-(VHngh +iA)t
0

_ 7\‘k-1x(rn + k -1)'

(m-1t = f[(- i+ ) A

1# ]

= ;::1 (nzr: :_)Il)lx g (Vb .Z;J - e_m i#]
R
_(MAK-D v > e™
(m-2) T 160-911G-)
=0 it

]

k

[(i-i)=1x2x3x............... x(k-i-2)x(k-i-1)x(k-i)=(k-i)!

j=i+l
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Now equation (5.15) becomes

— | k —irt
py (1) = MK e 57 €7
(m-1)! 0 (1) it x (k=)
This can also be re written as
pn(t)z(m+k_1)!><e‘(v*“°”t k _(—1)'e’”_‘><k!
(m—1)! = il x(k—i)!xk!
_(mak=DU e s (—e) " xk!
(m—l)!xk! = 1! x(k—i)!
_ (m +k _1)!>< e—(v+n0k)t k! (_ e—xt)'
(m —1)! xk! = il(k—i)!
m+k-1 k k i
_ —(v+ng1) -
Cnts e S e
:(m; kl—lj>< e T (1 - )
In short
k-1
P, (t):(m;_l jx g (v Hmoh)t (1-e'“)k (5.15)
v
Butm:n0+x = MmMA=ngA+V
Equation (5.15) becomes
k-1
lon(t):[mr:]r 1 ]x e (o)
k -1 m
(o ey
Thus
k+m-1 m k
pn(t)z( . ](e'“) (1-e) K=0.1,2...and m=n, +-. (5.16)

Equivalently, If we take p =e™ andq =1-¢e™, then

k+m-1y =
P q

(0=

This is a negative binomial distribution.
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5.4 Probability Generating Function Method
5.4.1 Determining p, (t) by PGF Method

The initial condition: When t = 0, X(0) =1

Recall that equation (5.1a) and (5.1b) are

Po(® = -vp,(t) and

P, = -(nA+v)p,®) + ((n-1)A+v)p,,(), n > 1 respectively.
From the initial conditions, when t = 0, X(0) =1, then p,(0) =1.

Further p,(0)=0V n=1and p,(t)=0.

Definitions

Let
G(s0) = 3 pu (05" =po(t) + Tp, (05"
ICOIEDWACEEFACEDWACE 517)
Sle(sn]= Xne, ()57 = 2 Ynp, (s

Further G(s,0) =s.

Multiplying both sides of (4.2) by s" and summing over n.

0

Zoj:pn(t)sn =-> (nh+Vv)p,(t)s" + i((n -)h +V)p,_,(B)s"

n=1
= -A np,(H)s" - v p()s" +A D (n-1)p, ()s" + v p, (1)
n=1 n=1 n=1 n=1
Thus
3P, 05" =23 np, (05" -vY p, (08" +AsY (n-1)p,, (0" +vs p L™ (5.18)
n=1 n=1 n=1 n=1 n=1

Taking advantage of the definitions (5.17) above, equation (5.18) can now be written as
d d d
—G(s,t)= —As—G(s,t) = vG(s,t) + As*—G(s,t) + vsG(s,t
—G(s1) = —2s-G(s,t) = VG(s,t) + s’ G(s,t) + VsG(s.t)

Equivalently, by grouping like terms together, the above equation becomes

%G(s,t) = as(l- s)%G(s,t) v(1-5)G(s4)
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Re arranging, the above equation can be rewritten in the form below
%G(s,t) +as(1 - s)%G(s,t) — v(1-5)G(s) (5.19)

Applying Langrages method of solving this kind of differential equations, the auxiliary

equations are as below

dt _ ds _ d[G(st)]

2= = 5.20

1 ks(l—s) V(l—s)G(s,t) ( )
Taking % = XS((]lls_ S) and integrating, we have

1
Adt = d

-[ ' -[ s(1-s) ;

But - =1+ 1
s(1-s) s 1-s

Therefore,

[rdi= | E+i}ds

-At=Ins-In(l1-s)+c orc, =-At +Ins-In(l-s)
Equivalently

c,=-At+1In

(1-9)

Taking exponential of both sides, we have

k=e™ [&j (i)

d| G(s,t
Taking . ds =- [ ( )] and integrating, we have
S

(1 - s) V(l - s)G(s,t)

%J'% ds = jdln[G(s,t)]

=

% Ins= In[G(s,t)] +C,
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Thus

In[G(st)] + %Ins =c,orc,=In [sxe (s,t)j

Taking the exponential of both sides,

\

K™ =" G(s¢t)
From (i) and (ii)

s*G(st) = W[e'“ (ﬁﬂ (5.21)

Whent =0, G(s,0) =s

s% G(s,0) = W[LJ

1-s

Y s

St x§ = y| —
Therefore

1+Y S

s *= _-
Let w = S

1-s

. w
= W -SW =s0rs+sw=w or equivalently s = Trw
+

(2] v

Substituting these changes in equation (5.21), we have

S%G (s.t)= w(e'“w)
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Equivalently

Therefore

~ p l+%
G(st) = SL - qs} (5.22)

P, (t) = po. (1) is the coefficient of s". k=0,1,2,3, .....

1+~
p A 1+ _(1+X]
G(s,t)= —sp +(1-
(s,t) SL—QJ sp *(1-gs) U *

1+%j+k_1 p(“U kok+1
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Therefore,

Thus

IOn('E):(x « ](e'“)(“”(l-e'“)k wheren=1+kandk=0,1,2,..

Initial conditions: when t =0, X(0) = n,.

This implies that p, (t) =1, p,(t)=0V n#=n, and p,(t)=0V n <n,.

Po(t) = —vpy(t)asn=0
pL(t) = —(nk + V) p,(t) + ((n —1)7h+v)pn71(t), n>1

Definitions
Let

ICUIENACEETAC R HATE
Sle(s]= S np, (057 =< S, (1)

Further G(1, t) =1, G(0,t) = p,(t) and G(s,0) = s™.

Multiplying both sides of (5.1b) by s" and summing over n.

0

ip;(t)s“ = ->(nh+v)p,()s" + i((n -DA+ v)p,,©Os"

n=1

PN ALE
n=1

90

30D, 05" VIR 08+ 530 1,05+ vy
n=t n=1 n=1

=AY np,Os" - vy p (s + D (n-1)p,,(Ds" + v p,,(D)s"
n=1 n=1 n=1 n=1

(5.23)

(5.1a)

(5.1b)

(5.25)

ipn—l(t)sn-l

n=1



Thus’
ip; (Hs" = -Xinpn(t)s" - Vipn(t)s” +Xsi(n—1)pn_l(t)s”'1+Vsipn_l(t)s”'l (5.26)
n=1 n=1 n=1 n=1 n=1

Taking advantage of the definitions (5.25) above, equation (5.26) can now be written as
%G(s,t) = - Xs%G(s,t) vG(sit) + xSZ%G(S,t) +vsG(st)
Equivalently, by grouping like terms together, we have
%G(s,t) = as(1- s)%G(s,t) + v(1-5)G(s)
The above equation can further be rewritten in the form
%G(s,t) s sl s)%G(s,t) — v(1-5)G(s) (5.27)
Applying Lagrages method of solving this kind of differential equations, the auxiliary

equations are as below

dt _ ds _ d[G(st)]
1 -as(l-s) v(1-5)G(st) (5:26)

. dt ds
Taking — = ———
aKing 1 -Xs(l —s)

-jm=[s(11_s)ds.

1
s(1-s)

and integrating, we have

But

=1,
s (1-s)

Therefore,

-J.th=.|.{-§+i}ds

M=lns-ln(1-s)+c or At=1n +c

(i-5)

Therefore,

c*:-kt+ln[ij
1-s
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Taking the exponential of both sides

— ] S :
= o [ﬁ] (i)

d| G(st
Taking ds =- [ (s )] and integrating, we have
As(1-s) v(1-5)G(s;t)

%J'% ds = jdln[G(s,t)]

%
-—Ins=In| G(st)|+c.
Y Ins=n[G (s1)]
Equivalently
c, =InG(st) + % Ins =1In {sk G(s,t)}
Taking the exponential of both sides,

\

k*=s*G(s;t) (ii)
From (i) and (ii)
S% G(st) = \u[e'“ %j

Whent = 0, G(s,0) = s™. Putt =0 in the equation above.

S :
Let w=—— = w-sw=s o0or w=s+sw or equivalently s = . Thus,

1-s 1+w
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From equation (5.29) above,

Y S . e Mw
ot =vle g vl W)= £

Therefore,

1
wn
>|<
1
D
>
-
[EEN
1 w
w| v
|
S
S
+
>

If we take p=e " andq=1-e*" we have

G(st)=s" {L} '

1-0s

p, (t)is the coefficient of s", n=n, +k, k=0,1,2,3, ....
G(st)=s™p" i (1 -qs)'{"“%]

Let n, + — =r. Then,

v
A
G(s,t)=s™p'(1-as)

_ s”°pr§(_krj(— gs)*

r
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Equivalently,

k=0

=(r+k-1 rKahg +K
= pgs”
k=0( k j

Therefore

r+k-1
b =0 0= e

5.4.2 Mean and Variance by use of the Generating Function
(i) Mean

2G(st) = p[ngs" (1-05) " + 5™ (- r)(L-as) (- )]
=p' _nos”O'l(l -gs) " +s™rq(L-gs) " +1)}

=p'n,s™t(L-gs)" +rgs™(1-gs)" ”)J

=p's™(1 -qs)'rJ[nos‘% rq(l -qs)'l}
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Puts=1

d
—G(s;t
5 G

=p'[(2-)" |[no* ra(z-a)”

s=1

=pp e+ rq(1-0)” |

Therefore

E(X(1)) = —2— (5.32)

(i) Variance
VarX = G"(Lt) + G'(Lt) - [G'(Lt) |
Therefore

d r Ny - -r No -(r +
EG(s,t):p[nos“(l-qS) +rqQs (l-qs)( 1)}

2
%G(S,t):%{pr[nosno-l(l _qs)-r + I,qsno (1 _qs)-(r +1)j|}

raho-1

nop S -(r +1)

oo d
— l' — I aNo l'
s (1-gs) + dSrqp s™(1-gs)
— r ng -2 T ng -1 -(r+1)
=n,p [(n0 -1)s™(1-gs) +s™(-r)(1-as) (- q)}

#rap| s (1-as) 45" (- (r+ 1)) (1-a5) 7 ()

95



d2 e - -r N - -(r+
—G(st) =nyp’ [(n0 -1)s™ 2(1 -gs)  +rgs™ 1 -qs)( l)}

ds
+ rqpr|:r\osno-1(1 _qs)‘(r+1) +(r +1)an° (l _qs)'(r+2)j|
Puts=1
e =n,p'(1-q)"{(n, -1 1q)° "(1-q)" 1)q(l-q)"
2 Gt =nep (L) [ (no -1)+ra(l-g) [+ rap’(t-a)" 7| ny +(r+1)a(l-q)
s=1
f~-T r r-(r+
=nypp {(n0-1)+§}+rqpp( 1{n0 +(r+1)%}
_ rq rq q
=n,|(n,-1)+ — |+ —In, +(1+r)—=
002+ 2 |+ B, 2 9|
2
=ny(n, -1) + LA PRLLLLL B r(1+2r)q
p p p
2
= (g -1) + 2n0rq+r(l +2r)q
p P
Therefore,
2n,rq  r(1+r)g? rq ( rqy
VarX =n,(n, -1) + —2—+ +n,+ —-|n+—
o(M 1) p p’ p U7
2 2 2
=n,2 - ny+ 2n0rq+r(1+2r)q +no+ﬂ-(n§+ 2Norg 1 (21 j
p p p p p
2n,rq  r’g® . rqg’ rq , 2n,rq r’q’
=n2-n+20 14 + +Nn,+—-n; - —2— - ——
0 p p2 p2 0 p 0 p p2
_ra L rq
“op
=m[p+QJ
p p
rq
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Therefore
Var X = (no + X)(1 - e e
A
Equivalently,

Vv
Var X =|n, + — |eM (e -1 5.33
(o xj (e -1) (5.33)

5.1 Method of Moments to Determine Mean and Variance
5.5.1 Mean

Initial conditions; When t = 0, X(0) = 0.

Multiply the basic difference — differential equations by n and then sum the results over n.

gn p.(t) = :Zon[(n “D)A+ v ]p, (D) - gn[nk +v]p, () (5.34)
Define

Ml(t)=2 p, (t) and M, ( Zn p, (t
Therefore,

Mi(t)=i0np (t) and M ( Zn py (t

Therefore, equation (5.34) now becomes

M (t) = i(n 1+1)[(n-1)r+v]p,,(® - Z[n A +nv]p, (1)

23 (0 -1 p, 40 +v2 (n-1)p, 1(¥ +>»Z (n-1)p, ,(® +v2pn (0 - xzn 0

.0
=AM, (t) + vM,(t) + AM, (t) + v - AM, (t) - vM,(t)
=AM, (t) +
Therefore,
M'(t), - AM,;(t) =v (5.35)

At ot
=e

Let the integrating factor | = el
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Multiplying equation (5.35) by the integrating factor, we have
e MM (t) - e M, (t) = ve ™
Equivalently, the equation above can also be written in the form

%[e‘ "M, (t)] = ve

Integrating both sides with respect to t, we have

e M, (t) = jve‘M dt

M, (t) = ce™ - = (5.36)

(5.37)

From definition, M, (0) = in p,(0)
n=1

The initial condition is p,(0) =1and p,(0) =0 for n = 0. Therefore, M, (0) = 0.

Equation (5.37) now becomes

0:C-X
A

=

c=

><

Equation (5.36) now becomes
v

M, (t) = %(e“- 1) = E(X(t)=n)=—(e"-1) (5.38)

5.5.2 Variance
Next, multiply the basic difference- differential equations by n? and then sum the results over

n.

inzp'n (t) = - inz [N+ v]p,®) + inz [(n-1D)A+v]p, (1) (5.39)
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Define

:inpn(t = M;( ann
n=1
:inzpn(t = My( Zn P, (t
n=1

o0

:§n3pn(t) = My (t)= Y n%p; (1)

Equation (5.39) now becomes

s

M (t) = -AM, (t) - vM, (1) + D (n -1+ 1)°[(n - 1)A + v]p, (1)

I}
o

n

NgE

=AM, (6) - VM, (1) + X[ (n-1)° +2(n - 1) + 1 [(n - )+ v]p, (0

>
1
o

= -AM; (t) - vM, (t) + AM, (t) + 2AM, (t) + AM, (t) + vM, (t) + 2vM, (t) +

M, (t) = 2AM, (t) + AM, (t) + 2vM, (t) +
Therefore,

M, (t) - 2AM, (t) = (A + 2v)M, (t) + v (5.40)
But from equation (5.38), M, (t) = %(eM - 1)
Equation (5.40) now becomes

Mj(t) - 2AM, (t) = (A + 2v)x x(e“ )+ (5.41)
Let the integrating factor | = e 2o _ g
Multiplying equation (5.41) by the integrating factor, we have

e 7'My (1) - 2he M, (t) = (A + 2v)e ™ x%(e“ 1)+ e

The above equation can be written in the form

jt[ M, (t )] (h+2v)e ¥ x X( M'l)+ve’2“

2
- (V + lee-zmx (em ) 1) + e 2M
A

-0t 2v° -t M -t
= ve +Te x(e -1)+ve
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2 2
%I:e'ml\/lz(t)] = ve M - ye M 4 2%6"“ ) z%e-zm + e 2M
= ve ™ + Z_VZe-M ) 2_V2e-2m
A A
= [V + Z_VZJQ'M - 2_\/2(:_\'2)‘t
A A
Therefore
2 2
%[e'z“M2 (t)] = (v + %Je‘“ - Z%e‘m (5.42)

Integrating both sides of equation (5.42) with respect to t, we have

2 2
e M, (t) = j(v + 2%je‘“dt - 2%J'e‘z“dt +c

2 2
M, (t) = -(X + Zije“ + X— + ce™ (5.43)
When t =0, equation (5.43) becomes

2 2
e (12 5

A
v V2
STt

From definition, M, (0) = > n’p, (0)=0
n=0
Therefore
v 2

v oV
O:'—'—2+C = C=—+—2
AOA AA

100



Equation (5.43) now becomes,

aGRGI SER G
A 6 )

N

Therefore,

Variance = %e“ (eM - 1)
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CHAPTER SIX
POLYA PROCESS

6.1 Introduction

The objective in this topic is to solve the basic difference differential equations derived in

1+ an
1+ Aat

Chapter 2 (refer to equations (2.1) and (2.2) of Chapter 1) when A, = x{ j.We shall

specifically look at three methods namely the iterative method, the Laplace transform and the

Lagranges method. In each of these cases, we shall work with the initial conditions being

(i) X(0) = 0 and (ii) X(0) = n,

When A, = k[ll:;ntj for n =0,1, 2, 3, .... the basic difference differential equations
a
become
= - —2—|p,® (6.13)
Po 1+ hat Po :
Y (L PP o (o PO (6.1b)
g , N =2 .
Pr 1+ nat)0 1+ rat |

6.2 Iteration Method
6.2.1 Deriving p, (t) using Iteration Method

Initial Condition: X(0) =0
When n = 0, we use the equation (5.1a)

e 1
Po(t) = 7»[“ Xatij(t)

Dividing both sides by p, (t)

Po(t) _ -
Po(t) 1+ Aat

d Y
E(In P (1)) = 1+ hat

Integrating both sides of the equation with respect to t, we have

[d(Inpo(t))dt= | A

1+ Aat

dt
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Inp,(t)= _—}f; In(1+ Aat) + Ink

:-éln(l+Xat)+lnk

=In(1+%at)* + Ink

= In[k(1+ rat)’]
Therefore
Dy (1) = k(1 +Aat)”
Using the initial condition: When t = 0, X(0) = 0 which implies that p,(0) =1 and

substituting,

o

P, (0) = k(1 + Axax0)
k=1

Therefore

(0= @t o b= 62)

We can use the second difference differential equation to obtain recursive relation when n> 1.
When n =1.

1+a 1 RS
=-A t)+ A X
(1+ Xat] (1) [1+kat] (1+Xat)

Re arranging

1+1
l+a 1 )
(t) + A t)=2A
pl( ) [1+ katj pl( ) [1 +Xatj

Next, we integrate the above equation by integrating factor Method

Integrating factor = e lF (L+2rat)"
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Multiplying both sides by the integrating factor

1+1
1, +1 l1+a +1 1
@ ragf om0+ @ na b 0= 0 aag

This simplifies to
E[(1 + kat)“%pl(t)} =
dt
Integrating both sides with respect to t
jd[(l + kat)“%pl(t)Jdt = [t
(L+rat) p (1) =rt+c
The initial conditions are: When t = 0, X(0)=0, whichimpliesthatp, (t)=0. Substituting in
the above equation, we have

(L+21ax0) " p,(0)=%x0+c

c=0
Thus,
p,(t) = % or equivalently
(1+nrat) *
1(  at 1)
)=~ 6.3
P() a(l+kat)(l+%at} (6.3)
When n = 2.

p;(t):-X(“za jpzm - x( L+a jpl(t)

1+ Aat 1+Xat
1+2a l1+a

=-A t) + A x D, (t
(l+katjp2() [1+katJ p,(t)

Rewriting the equation above

p;(t)+x[“2"" ]pz(o - x( L2 prlm

1+ Xat 1+ Aat

Next, we integrate the above equation by integrating factor Method.

1+2adt

Integrating factor = eI (1+ %at)h%
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Multiplying both sides of the equation by the integrating factor

+1 +1 1+ 2a 2+1 1+a
1+ nat) Explt) + (1+rat) @ xn t)=(1+rat) = x\ t
R LR IRE SR e g O
Equivalently,
d 2+1 2+1 1+a 1 at 1 :
91+ nat)?" t}=l+kt Fx x =
dt[( a ) pZ( ) ( a ) [1+kat) a(l+katj(l+katj

=A% t(1+a)
Integrating both sides with respect to t
Id((l + kat)p%p2 (t))dt = Ikz t(1+a)dt

At
2

= (1+kat)2+%p2(t) (I+a)+c

The initial conditions are: When t=0, X(t) = 0. This implies that p, (0) = 0. Substituting in

the equation above

L+ 2ax0)7 p,(0) = 2% (14 a) 4 c
= c=0
Thus,
1+ rat o () = v a)
Therefore,
_ At S@+h)

p,(t) > (1+a)(l+2rat)

_GEEDE (e V(1Y
2 1+ Aat 1 + Aat

_ G e Yo 1Y
(L-1)r2r (1+2at 1 + Xat
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Thus,

1

1 a 2
2 +1 1 Aat (6.4)
1-1{1+nrat) \1+2rat '

Whenn =3,

1+ ax3 1+ ax2
"(t) = -\ t)+ A t
Pa(1) [1+Xat]p3() (Hm ]p"*()

1+ ax3 1+ax2) (2+1) 1 V([ rat

=) ps(t) + 2 X
1+ )at 1 + Aat L-1){1+rat) (I+Arat

Re writing, we have
1 2
1+ax3 1+ 2a 1+a 1 [ Aat

2(t)+ A t)=A% x

P () (1+Xat]p3() [1+Xat](2a2J[1+Xat][l+kat]

1

:k(1+a)(1+2a)x[ 1 jl[ rat ]Z

2a? 1+ \at 1+Aat
M HE (1 VT rat Y
2 1+ Aat 1+ Aat

Next, we integrate the above equation by integrating factor Method.

P ERELR Y A1 +3a)[| 2 |t
Integrating factor = eI [“M‘] —e j[lﬂat]

Letl+iat=u = ?j—l: = \a. Therefore dt = d_u

p¥:|

+ 3a E dfu 1+3a nu 14
Integrating factor = ek(1 R [M] = e{ a j = (1 + Aat)* :

Multiplying the above equation by the integrating factor, we have

(a0 a1 ) 52 o, ) < My H at j

1+Aat 1+Xat 1+Xat

Equivalently,

%{(1+kat);+sps(t)}=X(1+;;(2+;)(1+Xat)é+3( 1 T”( Mat jz

1+ Aat
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Integrating both sides,
Ly 1+2
(1+2at) “p,(t) = a2k3[a ; ]J.tz dt
14 1+2 3
(1+ 2at)* 3p3(t)=a2x3[a ) ]x_ +C

Whent=0, p,(0) = 0. Thusc=0.

Therefore

1 3 3
=a’\ @ 2 xt—x 1 X 1
2 3 |1+ )at 1+ Aat
Ca(re2) 01 V([ am Y
3al 2 1+ hat 1 + Aat
1 (1 1 : 3
_ 2 GGy (1 alt
3 2 1+ Aat 1+ Aat
((+2)E+1() (1 Y a Y
3x2 1+ Aat 1+ Aat
_ (G2 (1 V(A Y
(%-1)!3! 1+ \at 1 + \at
1 z 3
(5 t2 1 [ ant
( 3 j[l+kat} (1+Kat)
Thus
1+ 1 V[ oan Y
ty=1|? 6.5
p?’() ( 3 J(1+Xat] (l-l—kat} (65)
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By induction, assume that

O Eha SR (T
Pl =1 o | T3t ) T+ 2t

For n = k, equation (6.1b) becomes

P () = - 7{1 + ak ka(t) + x[“a—(k-l)jpk-l(t)

1+ Aat 1+ Aat

1+ ak 1+a(k-1)) (2+k-2) 1 Y a |7
(B =-A t) + A ————= || °
Pi(® (1+7Latjpk() [ 1+ Aat ][ k-2 Jl1+2at) \1+2at

1+ ak trk-2Y 1 VO oa )T
= -2 p () + A(1+ak -a)x
1+ \at k-2 1 + Aat 1 + Aat

Re writing

1+ ak tek-2) 1 VT an )
L@+ t) =A(l +ak-a)x|*
Pic() (1+Xat]pk() (1+a a)L k-2 j(lﬂm] (1+Kat}

Next, we integrate the above equation by integrating factor method.

1+ ak

. M T | A(1+ak) +1 dt
Integrating factor = ej [1 m] =e i

Letl+Aat=u —= d_u = a\. Thereforedt = d_u
dt an

1 du 1+ak
Vit

=——Inu
Ua?»:e a

A A(1+ak)
Integrating factor = e

=(1+ kat)%+k
Multiplying the above equation by the integrating factor, we have

d

1 A 1 _ L+1 k-1
a{pk(t)x(1+7*at)a+k}:7“(1+ak-a)><(1+mt)“k£a;{(ZZJ[ 1 ] ( alt j

1+ Aat 1+ Aat

L+k-2 k-1  aAt o
:k(1+ak-a)(a .o j(l+kat) (1+k tj
- a

1 _
=A(1+ak - a)(a -l: k2 Zj(kat)k'l

Integrating both sides, we have

atk Tt K-2) ik
P(OX(L+hat) " =(1+ak-a) * " [ttt
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Equivalently,

14 14+ k-2 k
pk(t)x(l+kat)a “ k(1+ak a)[ -l: ) jkk'lak'lt?-i-c

Whent =0, p, (t) = 0. Thus ¢ = 0. Therefore

1 k
D, (t) = A(1 + ak - a)[ Lkl Zj (32 x(1 + rat) "

(1+ak-a)>< (L+k-2
ak k-1)1(2-
+K-

1
a

(
_Grk-y (G
k -

" ( )1 x(aht) x(1 + rat)

_(k';k l! (1+ka [1+m}

O
P, (t) = (% +: _ 1}{1 +1ij(l i};tvaj

Equivalently,

j+i-1) oo 1 \at
(t) = a 'xp* where p = andg=1-p=
P;(t) ( j ]q pr W P (1+Xat} a P £1+katj

This is a negative binomial with parameters p and g defined as above.

1Y

m\H

J
;)

Thus

Initial conditions: X(0) = n, with n; >1
Therefore, p, (0)=1,p,(0)=0V n=n,and p,(t) ¥ n<n,

When n = n,, equation (6.1b) becomes

1 -1
Pr, () = - k(lliizsjpno(t) + X(M]p%-l@), n

1 + Aat
1+an
=-A 0 t
(“MJPM()
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Therefore, dividing both sides by p, (t), we have

Po, ) _ ,(L1+an,
Py, (1) 1+ Aat

Equivalently,

d 1+an,
i (o, )} = 7‘(1 - mj

Integrating both sides with respect to t, we have

1
In (p,, () =-2(1+ anO)J(l + )at) a
. . 1 1
From the previous section, we know that I(l - 7a0) dt = x—ln (1+ Aat).
Al a

Therefore,

In (pn0 (t)) =- ?»(1 + ano)xx—];lln (l + ?»at) +c

=- (1 + nojln (1+2at) +c
a
Therefore,

- [1 + nojln (1+2at)+c

a

P, (D =€

= gh (1+ Xat)’(i""o) xk

=(1+ kat)'(%”") xk

Putting in the initial conditions, we have

p,, (0) = (1+2ax0) ") xk
=
k=1

Therefore,
P, () = (1+ hat) 7!

S (6.7)

(1+ kat)(%m")
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When n = n, + 1 equation (6.1b) becomes

1+a(n +1) 1+a(n +1-1)
o) = - — 2 t) + A 0 t
pno+1() { 1 + 7\,21'[ ]pnoﬂ() [ 1+ kat pn0+1-l()

L an, “") Pru(®) + [“a”"jpno(t)

=-A

1+ Aat 1 + Aat

_ 7L(1+an ta) 0+ [1+anoj>< 1

1+ hat 1+ Aat (1+kat)( +no)

A ——

l+an,+a A(1+an)
n0+1()

1+>\.t 1+7\4t)( +n0+l)

Re arranging,

l+an,+a A1+ an
—°]pn0+l<t> - M . :;L)
1+ Aat (1+ rat)"™

p:10+1(t) + )\'(

We will now solve the above equation using the integrating factor method.

ltang+a A(1 + ang + )J‘ 1 & 1 . 1
Lot ) — g angta)f S odt ex(l +ang+ a)gln(l + hat) eax(5+n0 H)Eln(l + hat)

Integrating factor =e (

_ eln(1+xat)(% o +1) (1 + Xat)( +ng +1)

Multiplying the above equation by the integrating factor, we have
A(1+ an,)
(1 + \a t)( L+ng+1)

+ng +1)

(;jt @+ 7)Y, o) = x(1+ dat)t

= A(1+ an,)

Integrating both sides with respect to t, we have

pn0+1(t) = }\‘(1 + ano)J.dt

=A(1+any)t+c

n0+1

(1+ kat)(

Putting in the initial conditions, we have

1

(1+ hat) "™
—
=0

Pp,+1(0) = (1 +any)x0 + ¢
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Therefore,

l+ny+1

(L+2at)* " p L @© = A(1+ ang )t

Equivalently,
A(1+ an
p”o"'l(t) = ( (1+:)+l)
(1+hat)® ™

When n = n, + 2,equation (6.1b) becomes

p;10+2(t) = - X(M] pn0+2(t) + }\‘(1 i a(n0+ 2 - 1)jpn0+2—1(t)

1+ Aat 1 + Aat
1+an, +2a 1+a(n +1)
SR N Bt ) + A| ——2 t
1 + Xat pn0+2() [ 1 + Xat ]pn0+l()
+ 1+
_ 5 [L+an, +2a PO + A 1+a(n,+1) y At( ?no)
1+ )at ° 1+ Aat (1+ xat)(f% +1)
I 1+an, + 2a b () + Kzt(1+ano)(11+ an, +a)
1+t )™ L+ rat)t
Re arranging,
, 1+an. + 2a At(l+an,)(1+an, +a
Phoee(® + Al ———— [P .. () = ( 0)( = )
1+ Aat (1 + }\‘at)(a o )

We will now solve the above equation using the integrating factor method.

1+an, + 2a 1 1
T+ mt ] _ ei(l +ang + Za)jl rewC ex(l +ang + 2a)In(1 + Aat)

Integrating factor = e [

a)»(é +ng + 2)iln(l + Mt) In (l + Mt)(% +ng + 2) 14 ng + 7_)

=e g =e =1+ Xat)(a
Multiplying the above equation by the integrating factor, we have

A*t(1+ang)(1 +an, +a)

(1+ kat)(%+”o+2)

L4ng+2)

x(1 + at)*

ling+2

%{(1 + at)

)pn0+z(t)} =

= 2*t(1+an,)(1+an, +a)

112

(6.8)



Integrating both sides with respect to t, we have

2

(1+ Xat)( et D2 () = A% (1 +ang )(1+ an, + a)Itdt

2
=A*(1 +any)(1 +an, + a)% +c

Putting in the initial conditions, we have

2
(1 + kaxO)( +ng +2) n0+2(0) =)\2 (1 + ano)(l +an, + a)% +c
=
c=0
Therefore,

2

pyea®) =221 an,) (1 am, + 2)

(1+ nat) "™

Equivalently,

(ant)’ (2 +ng) (L +n, +1)
2(1 + dat) )

pn0+2(t) =

When n = n, + 3,equation (6.1b) becomes

1+a(n,+3) a(n,+3-1)
! ) = -A + A t
pn0+3() ( 1+ x t j n0+3() [ 1+ 2 at jp%*?"l()
1+an, +3a n +2
=0 — t) + A
1+ \at pn +3() [ 1 + \at ]pn(ﬁz()
1+a(n,+2) ant)’ (L +n L4n,+1
__,[L*an, +3a b sa(®) + @) (G +ng) (3 )
1+ )at 1 + Aat 2(1 + Kat)( +”0+2)
1+an, +3a a2 (L +ny)(L +n, +1)(1+an, +2a
fLren ) () n (s n,  20)
1+ Aat 2(l+7uat)(’" Mo )

Re arranging,

1+ an, +3aJ © = a?2%t? (L +n,)(L +ny +1)(1+an, + 2a)
= A (D) =

A ()
Proa) [ 1+ hat 2(1 + aat) i7"

We will now solve the above equation using the integrating factor method.

113

(6.9)



_ (1 +1a:01;t 3aj AL +ang + Sa)jﬁdt M1+ ang + 3a)i1n(1 + at)
Integrating factor = e = R ra

L4+ L+ Ling+s 1y, +
_ eax(E 3)M1 (1+ 2at) _ eln(1+}\,at)(a ) _ (l + Xat)(a o +3)

Multiplying the above equation by the integrating factor, we have
a’’t? (£ +ny)(+ +ny +1)(1 +an, + 2a)

2(1+ rat)t "

L+ng+3)

x(1 + 2at)

d (03 _
dt {(1 + xat) pn0+3(t)}

2 3t2
= > (L + no)(§ +1, +1)(1+ an, + 2a)

Integrating both sides with respect to t, we have

243
a+me“W“pwgo=a2(§+n0@+no+na+m%+2@jﬁm
24 3.3
:akt L+n,)(2+n,+1)(1+an, +2a)+cC
23 a 0 a 0 0
Putting in the initial conditions, we have
243 3
1+Xa><0(5+n°+3)p +(0)=a}L><O L+n,)(t+n, +1)(1+an, +2a)+c
ng+3 23 a 0/\a 0 0
=
c=0
Therefore,
a’\’t?

(1 + ?\,at)G +1, +3) pn0+3(t) —

23 (% + no)(§ +n, + 1)(1 +an, + 2a)

Equivalently,
(am)s(% ) (3 +np +1)(3 +n, +2)

L+ng+3)

23(1+ at)"

pn0+3 (t) =

_ (L4, +2)! (ant)’
C(E g -1)13Y (4 g

_GHne+2) [ an 3x 1
(L +n,-1)13! {1+ 2at (1+xm%*%)
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In a simplified form,
l+n +2 at 3 1 (3+m0)
=2 o x 6.10
Prgrs (1) ( 3 jx(l ¥ Xat] (1 T xatj (6.10)

Assume thatfor n =n, +k -1

140 +k-2 i k-1 1 (+no)
t — a 0 X X
Prgri1 (Y ( k-1 j (1 + Xat] 1+ Aat

For n = n, + k, equation (6.1b) becomes

p;10+k(t) = - }“(M] pn0+k(t) + )“[1 ’ a(nO . k - 1)Jpn0+k—l(t)

1+ Aat 1+ Xat

But p, ., ,(t) is as assumed above. Therefore

, (t)— A 1+a(n0+k) (t) L[ 1ralne k-1 1+ a n +k- 1 1+n +k- 2 1 (§+n0)
png+k - 1+ Xat pn0+k 1+}\‘ t 1+)\‘at 1+}Lat

k-1 lin,
1+a(n,+k) b (4 1+a(n, +k-1) (% ny+ k-2)! y 1 e
1+2at ’ 1+ at (l o-1)!(k-1)! 1+Xat 1+t

a

Ling+k
- 1ralnvk) Py, i (D) + 2@ < x (Grnprk-a)t 1 o
1+2at (1+n0-1)!(k-1) 1+ hat

Re writing

L - (410 +k)
p:1 +k(t)+7\« M n+k(t)_ }Lk kk Ly (a+n0+k 1)' 9 1
0 1+)at o (§+no-1)!(k-1)! 1+ hat

Next, we integrate the above equation by integrating factor method.

A[raln +k)Jdt

1
Integrating factor = ej [ Lehat

1+ Aat

A1+ ang + ak) |

dt A(1+ang + a.k)iln(l + Mat)

aM(L+ng + k)= L In(1+ Aat)

—e . = enaeral T g )t

Multiplying the above equation by the integrating factor, we have

1 _ (L +ng +k) .
g{pn +k(t)x(1 + Xat)(;+no+k)} kg Kk -1y (a+n0+ k 1)! y 1 ><(1 N xat)(5+”°+")
at 1, -1)1(k-1)! 1+ Aat
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Integrating both sides, we have

Lany+k

Doy (DX(1+ 2t

) = 2kakx (%+n°+ k-l)! Itk'ldt
(%"'no '1)!(k'1)!

GHn + k-1t ‘e

(L+n,-1)(k-1)! k

= }\‘kak X

Substituting the initial conditions,

= AFak x (340, * k-1)! 9O c

(1+n,-1)(k-1)! K

%+n0+k)

Doy ()% (1+ Rax0)

=
c=0
Therefore,
(omo) _ ik (2+No* KDt
Po o Ox(1+ dat) 7 =2k x X—
' (L+n,-1)1(k-1)! Kk
- (rat)y G ot K1)
(L+n,-1)lk!
Equivalently,
$Hn+ k-1 )at)"
pno+k(t) = (a Ok J ( (?J,n +k)
(1+2at)® "
Thus
(4,4 k-1 e Y o1 Y
oo = [ k j(l + ;,at] (1 n m] (6.11)
Equivalently,

This is a negative binomial with parameters p and g defined as above.

6.2.2 Mean and Variance by Definition (for X(0) = 0)

jre-1) . 1 Aat
From (6.6) above, let p.(t)= 8 Ixp* where p = q=1-p=
(©6) Py() ( j ]q P P [1+ Xat] a P (1+Xatj

- 1
and j = k. Then PrObI:X(t) = n:l: [n +na 1jqn><pa
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Mean

D |

X

X

o | o |

S

S

1
QD | =
X
7\ 7\
H
+ | >
> |8
o
=%
N—
7~ N\
=
* =
>
=%
N

I
>
~t

Therefore

E[X(t)=n]=xt (6.12)

Variance
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Therefore

Var[X(t)=n]= {%(g + 1)g—jx1 + M} - (M)

Now
q _ Aat 1+>\/at_}\'t
p 1+ Aat 1
Therefore
Var[X(t) = n] = {£(52)(at)’ + 2t - ()’
= {(1a+za)><7fazt2 + M} - (M)
= {1+ a)n* + e} - ()’
= 2262 + al? + At - (M)
= M(akt+ 1)
Therefore

Var[ X(t) =n|=At(aht+1)

6.3 Determining p, (t) by Laplace Method
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6.4 Probability Generating Factor Method
6.4.1 Deriving p, (t) by PGF Method

The initial conditions: When X(0) = 0.
Thisimpliesthat p, (0)=1,p, (0)=0 V n = 0andp, (t)=0.

The difference differential equations to be solved are (6.1a) and (6.1b).

o) = - t

(0 N 1+an ® kl+a(n-1) ©. n>1

P 1+ Aat Pr 1+Aat e
Definitions

Let

RICHIEWACEETALED AL (6.14)
%[G(s,t)} = nZ:)npn (t)s" ™ = % nZ?ln p, (1)s"

NB: Notice that G(1, t)=1,G(0,t)=P,(t) and G(s,0) = 1.

Take the equation (6.1b) multiply by s" and sum over n

ip;(t) s" = _1+>;Lat i(1+an)pn(t) s“-i(1+a(n-1)) Q) s”}

n=1 n=1

o[ - 2 2
=- t)s" + t)s" - t)s"- -1 t) s"
1+xat_n;p”()s anz::ln ()¢ n;p”'l()s an:l(n )P0 }
}\' B s} N o0 N 0 . 0 N
e A DI ICERT) WENCEEE) Y SNCERSEED HURGE }
at_n:l n=1 n=1 n=1
Equivalently
S n }‘ - n S n-1 S n-1 2 S n-2
Dop(t)s"=- o xat{an(t)s +as) np, (1) s"* - p,,(t) 8" -as”D (n-1)p,,(t) s }(6-15)
n=1 n=1 n=1 n=1 n=2
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Taking advantage of the definitions in (6.14) above, equation (6.15) above can now be written

as
EG(st)- py(t) = - * {G(st)-p (t)+as><iG(st)-sG(st)-aszxiG(st)}
a0 1+rat] - 7 ° ds ’ ds

_ A ) _ i Xpo(t)

B 1+kat[(l $)6(st) +as(i-s) dsG(S’t)}rlHLat
—G(st)=- 1-s5)G(s,t) + 1-5)—G(st) | +——= + t
dt (s9) 1+xat{( $)G(sit) +as( S)ds (s )} 1+Mat Po (1)

. , A

From equation (6.1a), p,(t) = - [1+ Xatjp(’(t) Therefore,

G6(s)=- - +’;at{(1- $)G(st) + as(L-s) %G(s,t)}

The above equation can also be written in the form

+ M EG(s,t) = M G(st) (6.16)

—G(st)
dt 1+Xiat ds 1+ Xat

Solving this equation using Lagrange’s method, the auxiliary equation is

dt _(1+xrat)ds _ (1+2rat) dG(st)

— = 6.17

1 as(l-s)r AM1-s)  G(st) ©.17)
Taking dat_ Mds = ahdt __ds and integrating, we have

1 as(l-s)i 1+xat  s(l-s)

1 ds
Marmy iy

But from
1 A B
=+
s(ls) s 1-s
1=A(1-s)+Bs
=
A=1B=1
Thus
1 1 1
=+ ____
s(ls) s 1-s
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Thus

1 _ ds (1 1
O Frrevw Kl v il IRCLRS Fat

kax% In(1+2rat)=Ins-In(1-s)+c
a

—
In(1+2rat)=Ins-In(1-s)+c

=

In(1+%rat)=In —— +c
1-s

Taking the exponential of both sides,

S

l1+iat=— .k
1l-s
k = LTS(l +at)
Taking (1+2at)ds _ (I+2at) dG(s;t)
as(l-s)u AM1-s)  G(st)
have
ds _ f d G(st)
as G(sit)
1

gIn s=- J'd(ln G(st))

a

=

1

G(st)=sc*

1

c* = G(st) s
Integrating both sides
From equations (i) and (ii), we have

G(S,t)xsé = W(lTs (1+ xat)j
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lIns+c:-ln G(st) or InG(st)= -iln s -cC

(i)

d G(s.t
G(s,t)

(i)

and integrating, we

(6.18)



Recall that G(s,0)

P,(0) =1 (from definitions)

G (S,o)xsg = W(l_sj

S

1-s
— = sw=1l-s = sw+s=1 = s=
: 1+w

]

From (6.18)

Let w =

1

G(s,t)xs* = y(w (L+ rat))

1

G(s,t) =5 ;[1+W(11+ akt)]a

o |-

1
14 (1_5) (1+akt)

S

l a
“1+ant— aktsj
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Therefore,

D |

1
1+ant
G(st)= _alts
1+ anrt
Let p = ,q=1-p=1- 1 _lrart-1_ art
1+aht l+ait l14+alt 1+alt
G(st) = P awherep: and q = art . (6.19)
1-gs 1+ait 1+aht

p,(t) = Coefficient of s" in G(st).

aet) |2 f=pi(1qs>i

1-qs

1.1
=p* 2| a|(-as)

n=0 n

1 _1
=p 2 (-1 ag's

n=0 n

1

ol =+n-1]2
=>|a paq"s"

n=0 n

Thus

1

pn(t)=(§+”'1j( ! j( a“j n=0,1,2,3,...and (6.20)

n 1+akt 1+alrt

Equivalently

(0=

lin-1)\ 1% 1 aat
4 ag"n=0,1,2,3,... where p= and g = .
n jp | P l1+ant q 1+aht
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Initial conditions: When t =0, X (0)=n, where n, > 1.

Take the equation (6.1b) multiply by s" and sum over n

SR = [i(ﬂan)pn(t)s”-i(ua(n-l))pn.l(t)s"}

1+at n=1 n=1

7\‘ i = n - n < n < n
- Ep0F a0 - S0 8 S0 p,.0
_n:l n=1 n=1 n=1
)\‘ B o0 o0 o0 o0
:-1+ an(t) s" +aznpn(t)sn -Szpn—l(t) s"" -as Z(n-l) pn—l(t) Sn-1:|
at_n:l n=1 n=1 n=1
Thus,
S0 = | S s +adnp, s -5 > p 0" - as > (n-1)p, 0" | (6.21)
n=1 1+at n=1 n=1 n=1 n=1
Definitions
Let
G(s,t) = D P, (1)s" = po(t) + D pa(t)s"
n=0 n=1
d - !/ n ! = ’ n
p G(s,t)] =3P (1)s" = py (1) + D p, (t)s (6.22)
n=0 n=1
d 2 o 18 .
S IIOOIEDWINCESEES WENOE
S n=0 S o1

Notice that G(1, t) =1, G(0,t) = p,(t) and p, (t)=1p,(t)=0V n=n, and p,(t)=0.

Taking advantage of the definitions above, equation (6.21) can now be written as

d - h d ] Cas2x 4
aG(s,t) = 1+at{G(s,t)+as><dsG(s,t) sG(st)-as deG(s,t)}

A

- [(s-l)G(s,t) +as(s-1) %G(S,t)}

“1+at

The above equation can also be written in the form

G(st)= M

1+at
Solving this equation using langranges formula, the auxiliary equation is

dt _ (1+at)ds _(1+at) dG(st)
T as(s-1) A(s-1)G(s) (6.24)

] Axas(s - 1) d

G(s;t 6.23
1+at ds (1) (6.23)

aG(s,t)
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dt _ (1+at)ds

Taking 17 _MS(S - 1) and integrating, we have
1 ds
-\ dt =
aj(1+at) Is(s-l)
=
1 1 1
-dax=In(l+at)=||—-=|ds=1 -1)-Ins +
aan( a)j(s-l Sjs n(s-1)-Ins+c
=
-AIn(I+at)=In(s-1)-Ins+c
=

In (1+at)'k+lns-ln (s-1)=c

=

In {(1 + at)'*xi} =c

Taking the exponential of both sides,

*

(1+ at)'”xi1 =,

Simplifying the second pair, we have

(L+at)ds _(1+at) dG(st)

-Xas(s—l) X(S—I)G(s,t)

ds _ dG(st)
-E_W_dl G(sit)

Integrating both sides
1,1
-—|—=ds = |dIn G(s;t
_[<ds = [din 6(st)
=

-ilns:InG(s,t)+c
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=

In G(s,t)+§|ns:cor

In {G(s,t)xs;} =c

Taking the exponential of both sides,

1

G(st)xs* =, (ii)

From (i) and (ii)

G(s,t)xs§ = f((l + at)‘*xij

s-1
=
1 N S
G(st)=s aXf((l+at)' X—J
s-1
A S
Let w=(1+at) X[—]
s-1
Att=0 w=——
s-1
© WS-W=SOrws-s=w
w
=5z —
w-1

1
a

This implies that G(s,t) is of the form G(s,t) = s X(

1
w } aWhereW:(1+at)'x(iJ

w-1 s-1
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D |

(1+at)'ks 10
_(l+ at)"xxs -s+1

— g + =

(1+at)’s
1-5|1-(1+at)” ]

This can further be written as
1 -x a - o
G(S,t):s_gx (L+at)’s — | x (1+at)’s —
1-s|1-(L+at)" || |1-s[1-(1+at)’]
1

| arayt [ arayrs [
) 1-s[1-(1+at)x} 1-5[1-(1+at)'x}

If we take p = (1+ at)'k andq=1-(1+ at)'x, we have

G(st) = L _qu{l ?:ST

Equivalently,

1
U)l
o |

G(st)=s" L p: J (6.25)

Now, p, (t) is the coefficient of s" in the expansion of G(s,t). Therefore,
G( ) =gt pn0+ no +1 (1 _ qs)-(n0+%)

= ph*is s (1- qs)( 3)

n+1 n x| (N +%
e 5[0 g
k=0
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e+t oo (Mg +3)+ k-1
G(st)=p™ as°§(( 0 z ](qs)k
- = pn0+;((no +%)+ k-lj qk Sn0+k
k=0 k

But n=n, + kK where k=0, 1, 2, .... Then

netf(ny, +3)+k-1
Po (1) = Py, ok (O = P a[( o *3) jqk

_ [(n0 1)+ k -1) oo g

k

Substituting back the values of p and g, we have

ng+1 k
(ng +3)+k-1 1 )" 1
t) = a 1- 6.26
Py 1) E k 1+ aht 1+ akt (6:26)

This is a negative binomial distribution.

6.4.2 Mean and Variance Using Generating Function Method
(i) Mean
Initial Conditions: When t =0, X(0) =0

From (6.19), G(st) = P 1" Where p= ! and q = art . Therefore,
1-qs 1+ait 1+aht
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Therefore,

E[X(t)] = % { art 1 +1axt}

(if) Variance

VarX =G'(Lt) + G'(Lt) - [G'(Lt)]

Recall
%[pi(l—qS) ijszl =p{——( —gs)y (- q)}
_ piq(_ (1+§j(1— gs) (- Q)J
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a* S PO PR ERS
A B
2 2
B Y U PR
= (1+5j(1 q)( )

1
_pd’ a+1] (2+3)
a a P

o g )
= (a+1). (ut)
Var(X(t)) = (a +1). (At)" + 1t - [at]
=a(rt) + (ht)" +rt-[nt]
=a(1t) + 1t
=At(akt+1)

= At(1+akt)

6.5 Method of Moments to Determine Mean and Variance
6.5.1 Mean

Initial Condition: when t =0, X(t) = ng

Definitions

Ml(t)zgnpn(t) = M;(t):gnp;(t)
Mz(t)=gn2pn(t) = M;(t)=§n2p;(t)

o0

Ms(t):gnspn(t) = My(t) = Sntpl(t)

n=1
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Multiply the Polya basic difference — differential equations by n and then sum the results over

n.

[1+a n-1)]np,.,(t) (6.32)

n=1 n=1 ].+7Latnl

Substituting the definitions (6.29) and (6.30) above in equation (6.31), we have

i) = ;;‘ajwlawaw(t)} e S 0-0ne, )

A = -
= l+kat{- M, (t) )+ HZ:; (n-1+1)p, () + anzz;(n -1)(n -1+1)pn_l(t)}
A < - 2
e P A0 -aM2<t)+;< D, 6+ 3390 (0) + 83500 =3B, 1)
+oSin-19,.00)
A
=13 xat{' M, (t) -aM,(t) + M, (t) +1+aM,(t) + aM,(t)}
A
_1+Mt{1 +aM, (1)}
Therefore,
vy A
(1) 1+xat{1 +aM, (1)
Equivalently,
! a}\’ — }\4
M) - o M) = o (6.33)

) j-idt
Integrating factor = e "™

Letu=1+dat » Y_a = d=L
dt ak
J‘ ak dt = - % d_u:-J‘ldu:-Inu:In(l+7uat)'l
1+ Aat u ai u
Integrating factor = "™ = (1+2at)” = .
1+ Aat
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Multiplying equation (6.33) by the integrating factor, we have

L omy-—Lt - mp=—1 2
1+ Aat I+ Xat 1+ 2Aat 1+ Xat 1+ Aat
=

1 ar A

xM;(t) - —— M, (t) = ———
1+ Aat () (L+nat)’ (1+rat)’
Equivalently,

d 1 A
ll M. ()= — &
dt {1 e M )} (1+ at)’

Integrating both sides of equation (6.34) with respect to t, we have

1 )
M, (t) = [—2—dt
7 ) I(1+>m)2

Letu=1+rat = d_u =ah —> dt= d_u. Therefore
dt an

-2+1

A I du 1¢1 1 I u
gt o[ Zdu=~[udu=—
I(1+ka1:)2 quxak a-[u2 “ aJ‘u " T

Therefore, equation (6.35) becomes

M, (1) _ 1 1
a

= +c=-=(1+an)" +
1+art  a(l+aht) ( ) T

Equivalently
M) 11 ),
1+ ait all+ ait

Assume thatat t =0, X(0)=n, = p, (0)=1

When t = 0, we have

Ml(O):-§+c

And by definition

(6.34)
(6.35)
|
+C=——xU"+C¢C
a
(6.36)

M, (0) = znpn (0) = 0%y (0) + 1xp, (0) + 20, (0) + .. + np,, (0) + .. =,

Therefore,

1 1
n=--+c = c=n,+=
a a
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Equation (6.36) now becomes

M,(t) _ 1( 1 ( 1)
-\ =_= + n0+_
1+ ait all+ ait a

M, (t) = - i + (no + %j(l + aht)

:-E+{n0+n0kat+1+kt}
a a

1
+n, + N hat + — + At
a

n, + njAat + At

Ny (1 + Aat)+ At
Therefore

M, (t)=ny(1+2at)+at = E[X(t)]= ny (1 + Aat)+ At (6.37)
Special Case

When n, =0, M, (t) = At.

6.5.2 Variance

Next, multiply the basic difference differential equations by n? and sum the results over n.

A A i[l +a(n - 1)]n2pn_l(t)

> n?p, () = - > (1 ’p, (t
2 (0= g e (U 2

Equivalently,
A

M (1) = 1 (M 0) M (0] + 2 S, )+ 23 (-2 (1)

o xat{(z +a)M, (t) +1+2aM,(t)}
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Therefore

Ve A
2(t)_ 1+ Aat

{(2+a)M,(t) +1+2aM,(t)}

Case 1: Restricting ourselves to t = 0, X(0) = 0 and therefore M, (t) = At.

Therefore,

M (1)

) 2a\
1+ Aat

A
1+ \at

M, (t)=

{(2+am, (1) + 1

- T {(2 +a)re+ 1}

Equivalently,

, 240,
M; (t)

-1+Xat

A
1+ Aat

M, (t)

{(2 +a)re+1}

Let

2a\ d
'.[1+7\mdt — e'zjaln(hm)dt _ a-2In(1+2at)

-2
—e _ eln(l+}\at)

l=e
Therefore,

| = (1+ hat)”
Multiplying equation (6.38) by the integrating factor, we have
2a\ A

(1+ at) * My (t) - mMZ (t)= m{(2 +a)At+ 1
%[(1 +2at) * M, (1)] = m{(z +a)he 1)

Integrating both sides with respect to t, we have

. dt
1+ aat) * M, (t) = (2 + a)A? —dt + A| ——
(L 2at) Ma(0) = (24 2) I(1+xat)3 I(1+Xat)3
Letu:(1+kat) = du=Aadt and u-l1=iat = t=u7b—_l
a
Therefore
; u-1 du 1 dt
(1+Xat)2M2(t)=(2+ )XZIXauSXE-FXJ.FXE-FC
_(2+a)f1 1
v | ikl R i
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a’u  a%u® au 2au® 2au?

2 1 1 1 1
+ +C

2 1 1
Sramt gz~ *¢
a’u  a’u® au
Therefore,
2 1 1 2
M, (t)=(1+rat) |- — + -— | +c(l+ Aat
(=@ 2 2 L e(an
2 1 1
2 2
=u’| - — -—l+cu
[azu a’u’ au}
_2u 1 wu )
S-agptz-ta
a®> a’ a

_ 1- (1+ Xaazt)(2 + a) N C(1+ Xat)z

_1-[2+a+ 2kt +da’t]

2

- +c(1 + at)’

:l-2-a-2kat-ka2t

+c(1 + rat)’

a
2u 1 wu )
=-—t—5-—tcC
a a® a
-2u+1-ua 2
= > + C
a
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1-u(2+a)

M, (1) = = T8 gy

a‘2

_1-(1+2at)(2+a)

a2

_1-[2+a+2kat+ka2t]

+c(1+ Aat)’

a2

_1-2-a-2\at-)a’t

aZ

= c(1+ Aat)’ - (1+2)

+c(1

+ at)’

- hat(2 + a)

a_2

2 (1+a)-nat(l+1+a)

= C(l + Xat) -

a2

+c(1+ at)’

- Aat - Kat(lJra)

= o(1+ nat) - L)

=ca+xmf-{

Therefore,

2

a
(1+a)+nrat(l+a)
a2

1+2at) At

+ —

MJQ:c@+xmf-u+ag

2

a

Substituting t = 0 in equation (6.39) we have

(t+a)

M, (O): C- a2

From definition,

M, (0) = inzpn (0) =0 since p,(0) =1and p,(0) =0 for n = 0. Therefore
n=1

O:C_(1+2aj
a

Therefore

Equation (6.32) now becomes

w0 = 8 gy - A2

a

1+ kat)

a

2
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a

At
+ =

a

(6.39)
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Simplifying equation (6.40), we have

v ()= EFAEEA)
a a
_ (1 + a)(l + Xat)(kat) oMy
= . 3
_(1+a)(+hat) (M) M
a a
At
= (1+a)(l+ Aat)-1
S @)+ an-1]
:ﬁ[1+xat+a+ka2t-1]
a
Therefore,
Mz(t) = E[Kat +a+ Xazt:l
a
= [t +1+ Aat] (6.41)
Therefore
Variance = M, (t) - [Ml(t)]z
= kt[?»t +1+ Xat] - (M)2
= M[At +1+ Aat - At]
= At[1+ Aat] (6.42)

137



CHAPTER SEVEN
GENERAL PURE BIRTH PROCESS

7.1 Introduction

The objective in this topic is to solve the basic difference differential equations when using a
matrix method. We shall solve three processes using this method. i.e. Pure Birth Process, the
Pure birth Process with Immigration and the Polya Process.

From Chapter 2, we derived the two basic difference differential equations below

Po(t) = -2 po(t) (7.1a)

Pr® = Aoy pra(® - A, p (1), n 21 (7.1b)
If we substitute for n (withn =1, 2, 3, ..) in equation (7.1b), we would have

Po(t) = -2 po(t)

Pi(t) =2 Po(t) - Ay py(D)

P2(t) = & (V) - A, p, (D)

P3(t) = 2, p, (1) - A; ps(t)

p; (t) = 7\‘n—l pn—l(t) - 7\‘n Py (t)

Expressing the above equations in matrix form

Py (1) A O 0 0 0 0 Py (t)
p; (t) A A, O 0 0 0 P, (t)
P, (t) 0 A oA, 0 0 0 p,(t)
'(t 0 0 A A .. 0 0 .. t
P (1) | _ . ke |ps(0) 02
p; (t) 0 0 0 0 xn 1 'Xn pn (t)

We shall now solve this Matrix equation.
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7.2 Generator Matrix Method

We wish to solve the above matrix equation (7.2).

p'(t) = A P(t)

()

p(t)

d

— (1 t))= A

mUL)
Integrating both sides

Inp(t)=At+c

p(t) = ke™

The initial condition; When t = 0, p(O) = |. This implies that k = 1. Therefore

p(t) =e™

To solve this kind of equations, we use the formulae

p(t) -R e(diagA)t Rfl p(O)

Where R is the matrix of eigen vectors, e™@*" js

value column Matrix of p,; (t)

Using eigen values and eigen vectors of A.

AL 0 0 0
A A -A 0 0
0 A A, oA 0
0 0 N, Ay -
0 0 0 0

Restricting ourselves up to n only,

(-1 (o + 1) + 1) (2, +2)
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o o o O
[ R = I ]




Dividing both sides by (- 1)" "

(ho + ) (A + A)(Ay + X)eeeeee(A, + 1) =0
Solving for A, we get

A=-AyOor A =-A Or A =-A, OF....OF A = -A,
Let

N
I

A% 0 0 0 0 07 [z
AN A 0 0 0 0 z,
0 A -4, O 0 0 z,
0 0 A, -A 0 0 |x/z,|=

Extracting equations from the matrix equation above, we have
- hoZo = - Aoz, (trivial)
MoZo- Mzy = - oz,

= Moz = (M - Kz,
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A kg O
Letz, =1 (i)
= g = (ii)
7‘1 - 7‘0
Mzi- Mz, = - Koz,
A
= z,= M z, = —2—x M (iii)
Ay - R M-hy Ay -
AyZy- NyZy = - hyZy
= z, = A, z, = Ay X M X Ay (iv)
Ay - A O
xn—lzn—l_ ann =- >\’OZn
= z, = A Mol h o« L

Thus
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Eigen vectore, for eigen value A = -4,

A, 0 0 0 0 0 z, zZ,
Ay A O 0 0 0 z, z,
0O A - 0 0 0 z, z,
0 0 A, -2 0 0 |x|z,|=-X]2,

0 0 0 0 . Ay A |z, ] 0z, |
- NzZy = - N2,

= z,=0

MZo- Mz, = - Mzy
= z,=0 (vi)
Mz - Nz, = - M2,
A
= Z, = Z,
7‘2 - 7‘1
Letz, =1 (vii)
=  z,= i (viii)
7“2 - 7‘1
A,Z,- Mgz, Mz,
A A A
= BTy Zx N Zxxx lx
3 M 3 "M 2~ M
= z, = M X A (ix)
P
AoZy- Nz, = - N2,
N 2, = Ay zksxklxkz
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xn—lzn—l_ }\‘nZn =- Xlzn

(xi)

Thus
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1 0 0 0]
A 1 0 0
}“1'7‘0
. A, A, 1 0
}‘1'%0 7»2-7»0 7‘2'}“1
R = li[ M4 li[ My X, .. .0 (7.4)
k=1 }\’k -7»0 k=2 Xk '7\1 7»3—?»2
L }‘kl ! )\’k-l ! xk1 1
| k=1 kk 'ko k=2 }\‘k '}"1 k=3 }\‘k ')"2 _
i i+1 i+ 2 .o i+k
i 1 0 0 .. . 0]
i1 A, 1 0 .0
7\‘i+1'>”i
i+2 AL Aiiq 1 ... 0
(y"i+1'}Vi)(>"i+z'>"i) }"i+2_)\'i+1
i+3 A A, Aty .0

(y"i+1_ }\‘i)(y“ﬂz' Xi)(}‘i+3_ }\'I) (}"i+2_ >"i+1)(}\‘i+3_ }‘i+1) )\'i+3_}\‘i+2

kL A k-1 AL j k-

. 1
i+] >\’i+j
ek | L [
j=0 }“i+j+1_7\‘i =1 )\‘i+j+l_)\'i+1 j=2 }\‘i+j+l_}\‘i+2
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Inverse Matrix

I i+1 i+2 i+ k
S | 0 0 o
S ! 0 .0
Y
I+2 Moy “ A 1 .. .0
(7“”2 ')“i)(knz _}\‘i+1) Mivo Ay
i+3 - Mhishiss MM A, 0

N T N CARRE A |ENRE N B (AT

k4 7\‘i+j ko192 7\‘i+j+1 k-2 15 }\’i+j+2 o1
' -1 —_— -1 — == (1 — vixz
i+k _( ) =0 (xﬁk'}‘iﬂ’) ( ) lj:_(’[<7‘i+1+2'}‘i+l) ( ) 11:01(7‘H1+3'7“i+2) J
(7.5)
Now
X(0)=i p(0)=i p,(0)=0 vV j=i
(0 | [1]
pi..(0)| |0
p(O)z pi+2(0) _ 0
_pi+k(0)_ 10]

Now, we know that p(t) =R e™*" R"* p(0)

145



>\‘i
My - M
ML,
(o =) (i - %)
N M s

e 1) ) 1)

k-1 A
_lk i+
_( ) 0 (e - hae) |
But
-ht O 0 0 T
At 0 0
“hisat 0
e(diagA)t — 0 €
0 0 e Py kt_
Therefore,
_e-xit
_}\'i e—}v Lt
)\‘i+1 - )“i
}"i )\’i+1 e-xi+2t
(7‘“2 - xi)(knz - 7\‘i+1)
e R p(0) = M hes Mo

e 7)) e 1)
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“Aiat

(7.6)
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(7.8)
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7.3 Solution To Simple Birth Process

Ay =NA

Therefore,

Therefore

= kiﬂ.:(i

M~
=~
iR
@D
@D

P (t)=e m{::("”)} k T T K K
[16-00 T1G-0 T16-2) T1G-3) T10-4)
o (i+k_1)! 1 g M g 2 g 3t o
Pt =e (i-1)! {E-(k-l)! 2(k-2)l 23(k-3)1 1234(k-4)!
T (S RN er e L€
RN (Y {0! k! 1r(k-1)t 20 (k-2)! 31 (k-3)! 4l(k-4)1 7
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(7.9)




o) = (ki:(T-_ll))!!{mki TSV CE TR T AT TR T k)!}
o e e ol
Therefore
SCN ey IHIES
e
(e ey (7.0
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7.4 Birth Process with Immigration

In this case, A, =nA + v. But the general solution is given as

Now, ., =(i+jr+vand &, =(i+r)r+v.

Therefore
K e-((i+r)x+v)t K-1 - -
(=13 1 (RPN B
r=0 ( 7\,+V ((i+r)k+v)) 1=0

-(iv+ V)t -rat

{kl(.+1x+v)}ﬁ% ¢ ¢

k
=0 H(I)\,‘FJ)\,'FV iL-rh-v)
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—
—_
— - -
-
< | < _|.
v— |
N—
,e ~ @ o
T ==
<[ LE

Therefore

e 4
4(k-4)1 "

e
ork! 1i(k-1)! 21(k-2)! 31(k-3)!

e—o‘m

X | X -
pe
: (5]
- —_— ~
< —_~ -
= — —_~
(D) 1 =
— '
—| X
— | = X | v
T p—
| S
—

I. -
| — TN
. TN >
— +
/ \ 1 N
>R — "o
+ > <L ] -
— + i -
SN— 1 —
+ N T =
~ — > <L \
~— + TN
= — >
— N——
+ +
N —
= |
|
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(7.12)
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7.5 Matrix Method for the Polya process

For the Polya Process, A, = ?{

Therefore

k-1
p|+k =
j=0

xm}zk: ¢

(T

T+a(i+]))|<&
1+ Aat j}; k

1+ an
1+A

at

')”i+rt

( 17 b

and A,,, = 7{

1+ Aat

e

P

J. But the general solution is given by

A

(5

1+

a(i+r)

1+ Aat

Ak

)

et

(7.13)

1+ai

1

+7»at}

(

t -xL a; Jt
+Ad
€

A

1+

Aat

]-75

¢

1+ai

e' L+kat

|

.

k
H (1+ai+aj—1—ai—ar)

ar |
1+Aat

J#r

_:_ 1+\at

_}{H; 1}
e al

al

ﬁa(j -T)

j#r

2T](-7)
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Cont

Py (t) = ; — + S — +ot
= JH(‘ 0) QO(J 1) Q(J-Z) Q(J-S) H(J 4) g(;-k)
e
:{j:o[H' +ﬂ}e{ d {o'lk' nk-1) " 21(k-2) 3(k-3) " alk-4) (1) ki(k -1)!
Equivalently,
(BT L e e
pi+k(t)_ jlj[o [J"""'g} e r:o(-l) r'(k-r)!'_!
.1
_ (k+ (I + aj - 1)' }LLH)TJ} {i ( [lia;»tt}}}
[(i +i)'1j!kl = rt(k-r)
o1
| (.+gj'l REE [kj[_e[lizj}
2R
a
| [+3)- RE [1 []}
(i + 1) -1
a
Thus
o1
k+|i+=1-1 1+ai aht K
ka(t) ( 151j e"x[um} [l_e[luajj (7.14)
(i + —j -1
a
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CHAPTER EIGHT
CONCLUSION

8.1 Summary

This literature was dedicated to the construction of probability distributions arising from the
solution of the basic difference differential equations derived in Chapter 1. Our intention was
to bring together the scattered different Methods that can be used to solve these differential
equations and yet give the same results. In the first Chapter, we derived the basic difference
differential equations from the first principles and stated the assumptions involved. We also
introduced the various necessary pre requisite tools needed before venturing into solving.

In the second, third, fourth and fifth Chapter, we explored various methods of solving the
difference differential equations under different values of parameter A ..

In the sixth Chapter, we applied a matrix Method to solve the same equations. Below is a

summary of our findings in the cases where our initial condition WasX(O) =n, unless

otherwise specified.

8.1.1 Basic Difference Differential Equations

pé) (t) =- )‘opo (t) (2-1)
and
p; (t): - 7\‘n pn (t)+ )\’n—lpn—l(t)’ n Z 1 (22)

where p, (t) is the Probability that the population at time t is n.

These two equations are called the basic difference differential equations. When solved using
any of the known methods, we end up finding the distribution of p, (t). A summary of the
results of solving the equations for some values of A, and the various properties of the

distributions are given below.
8.1.2 Poisson Process

(i) Parameters

In this case A, = A Vnindicating a constant growth rate.
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(if) Basic Difference Differential Equations

When the equations become
Po(t) = -Ap,(H)
Pr® = -Ap, () + Ap,, (), n =1

(iii) Distribution of p, (t)

p,(t) = " forn=n,+k and k=0, 1,2, ....

(iv) Probability Generating function
G(s,t) = e
(v) Laplace function
2K
Lp,(t)] = eo T
(vi) Mean
E[X(t)]= At
(vii) Variance
Var[ X(t)] =1t
(viii) First Moment
M, (t) = At
(ix) Second Moment

M, (t) = (At)" + At

8.1.3 Simple Birth Process

(i) Parameters

In this case A, =nA V n.

(i) Basic Difference Differential Equations
Po(t) = 0

pr(®) = -nip, () +(n-1)Ap,,(t), n>1
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(3.4)
(3.5)

(3.15, 3.23, 3.27)

(3.26)

(3.22)

(3.16, 3.28, 3.31)

(3.17, 3.29, 3.33)

(3.31)

(3.32)

(4.1a)

(4.1b)



(iii) Distribution of p, (t)

PO = (k ' EO _lj x (1- e'“)kX(e'“)n" forn=n,+k and k=0,1,2, ....

(iv) Probability Generating function

G(s,t):{ pS } where p=e™* and q=1-e™

1-qgs

(v) Laplace function

k-1
H nk+v+1k

L(pn (t)) = ,n=ng, Ny+1, ...

k
[T(s+v+n,a+in)
i=0

(vi) Mean

(vii) Variance

Var[ X(t)]=n,e” (1-e™)
(viii) First Moment

M, (t)=n,e"
(ix) Second Moment

M, (t) = - nje™ + nge™ + nye*

8.1.4 Simple Birth Process with Immigration
(i) Parameters
Inthiscase A, =nA +v Vn

(i) Basic Difference Differential Equations

When the equations become

Po® = -vp,(®)

p,() = -(NA+v)p, () +[(n-1)A+v]p,,(©, n
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(4.10, 4.20, 4.28, 7.10)

(4.27)

(4.18)

(4.11, 4.29, 4.36)

(4.12, 4.30, 4.41)

(4.36)

(4.40)

(5.1a)

> 1 (5.1b)



(iii) Distribution of p, (t)

Ng +£+k-1), , \no+¥ S
pa(0) = e ey

forn=n,+k and k=0,1,2, ....

(iv) Probability Generating function

St np +3
G(s,t) = s {—e }

1-s+es

(v) Laplace function

L(p, (1)) = +— _ n=n,+ki=01,..

(vi) Mean

E[x())= —2
(vii) Variance ((5.45) evaluated for n, =1)

Var[ X(t)] = (no + %)e“ (e -1)
(viii) First Moment (n, =1)

M, (1) = (" -1)

(ix) Second Moment (n, =1)

8.1.5 Polya Process
(i) Parameters

In this case A, 27{1+anj v n.

1+ Xat
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(5.5,5.16,5.31, 7.12)

(5.30)

(5.14)

(5.6, 5.32, 5.38)

(5.7, 5.33, 5.45)

(5.38)

(5.44)



(i)

(iii)

(iv)

(v)

(vi)

Basic Difference Differential Equations

When the equations become

s Mt]loo(t)

po () = [

1+ Xat 1+ Xat

pL(t) = -x(“a” jpna)w[w}n.m, n

Distribution of p, (t)

(t) = Leng+ k) ot Y1
Prgic ) = K 1+ Aat ) | 1+ )at

Probability Generating function

G(st) = s'i{ Ps }

1-qs

Laplace Function
The Method did not work.

Mean

E[X(t)]= At

(vii) Variance

Var[ X(t)] = at(1+ait)

(viii) First Moment

(ix)

M, (t) = (1+ Aat)+ At
Second Moment

M, (t) = At[At +1+ Aat]
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(6.1a)

(6.1b)

(6.11, 6.26, 7.14)

(6.25)

(6.7, 6.26, 6.37)

(6.8, 6.28, 6.42)

(6.37)

(6.41)
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8.2 Conclusion

In each case of the pure birth process, all the four Methods resulted in the same distribution.
The distributions emerging from difference differential equations of a pure birth process are
power series distributions. They are the Geometric distribution, the negative Binomial

Distribution and the Poisson distribution.

8.3 Recommendation for Further Research

One of the assumptions made in the derivation of the Basic difference differential equations is
that in a time interval At the probability of more than one birth is negligible. It would be
interesting to see what kind of distributions would emerge if the probability of two or more
births within a time interval At was not negligible.

If the birth rate was changing over time rather than remain constant (or change at a constant
rate over t) , it would introduce a lot of new application areas in real life.

Determine the distribution emerging from pure birth processes when the birth rate is a
distribution function.

Determine the distribution emerging from pure birth processes when the birth rate change over
certain time intervals

Determine the distribution emerging from pure birth processes when the birth rate is a survival

function
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8.4 Framework
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