TRANSITION
PROBABILITIES BASED ON
KOLMOGOROV EQUATIONS FOR
PURE BIRTH PROCESSES

By Mutothya Nicholas Mwilu

Reg.No: 156/70030/2011

Dissertation Submitted to the School of Mathematics of the University of Nairobi in
Partial Fulfillment of the Requirements for the Degree of Master of Science in the School

of Mathematics

July 2013



DECLARATION

| declare that this is my original work and has not been presented for an award of

a degree in any other university

Signature  ....cciiieiiiiiiiiiiiiiinien, Date .....cceevvinnnnnnn.

Mutothya Nicholas Mwilu

This thesis is submitted for examination with my approval as the university

supervisor

Signature ....c.ovviiieiiiniiiiiiiiniiiiiineien. Date..ccevvniiiiiiiiiiiiiiiiiiiinnn

Prof J.A.M Ottieno



EXECUTIVE SUMMARY

The aim of this thesis is to identify probability distributions emerging by solving the

Kolmogorov forward differential equation for continuous time non homogenous pure birth
process. This equation is %pkykm (8:8) *+ A () Priesn (551) = At () P2 (85 1)-

This equation has been solved for four different processes. i.e. Poisson Process (kn = k),

Simple Birth process (A, = ni), in Simple Birth process with immigration (A, = nA + v)and

the Polya process (kn = ( 1+an jk)

1+ Aat

Three different methods have been applied in solving the forward Kolmogorov equation above
with the initial conditions being that p,, (s,s) =1and p,,.,(s,s) =0 forn>0.

These methods are:
(1) The integrating factor technique
(2) the Lagrange’s Method
(3) The generator Matrix technique.
The results from the three Methods were similar.
In addition, the first passage time arising from the solution of the basic difference differential
equations has also been derived for each of the four processes.

From the Poisson process, we found the distribution of the increments to be a Poisson
distribution with parameter A(t - s)
A(t-s)T
Pekan(Sit) = e'”("s)u; n = 0,1, 2, ... This is independent the initial state and
' n!
depends on the length of the time interval, thus for a Poisson processes the increments are

independent and stationary. The first passage distribution was

St n-1 n
f.(t)= % = % et fort>0;n=1,2,3,.. which is gamma (n, )




From the Simple birth process, we found the distribution of the increments to be Negative

binomial distribution with p=e™"* and q=1-¢""*

P (5=

t - s and on k and is thus stationary and not independent.

k+n-1

]e"‘k(”) [1 - e'”"s)]n. It depends on the length of the time interval
n

The first passage distribution is f, (t) = A(n - 1)e™ (1 - )n'z; t>0,n=2,3,.. which is

an exponentiated exponential distribution with parameters A andn -1

From the Simple birth process with immigration, we found the distribution of the increments to

be Negative binomial distribution with p=e™**) and q=1-¢™"*"*

e ()=

t - s and on k and is thus stationary and not independent.

K+i+n-

1 (k+¥+n -s _ _s n - -
je (lcrgen)t-sp. (1-e“t )) . It depends on the length of the time interval
n

The first passage distribution is

fn (t): ;e-(noxw-x)t (1_ e-M)n'”o {(n% fv- }L)e-m _ (no)" fv- 7»)}

Nk +v-X 1
% H

From the Polya process, we found the distribution of the increments to be Negative binomial

ha(t -
distribution with p =15 ang q=q. Lt s _2a(t-s)
1+ 1+Aat 1+ Aat

jrk+1-1)(1+%as)  (Ra(t-s)Y _
Prsj(S:1) = _ It depends on the length of the time
] 1+ )at 1+ Aat

interval t - s and on k and is thus stationary and not independent. The first passage distribution

| 1
n+ 1 La gt
(n+3) x (k ) t>0, n>0, 1>O, L 50 whichis a generalized

560 e 2% %
ra

Pareto distribution.
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CHAPTER ONE
GENERAL INTRODUCTION

1.1 Background Information

Consider a case of infectious disease transmission. When an infected person makes contact
with susceptible individual there is potential transmission. A susceptible person makes the
potential transition to infected person through a contact with infected persons. A newly
infected person then makes further transitions to other infected states with the possibility of
removal. The removal stage represents death caused by the diseases or eventual recovery.
Those individual who have recovered reenters the susceptible stage. The average number of
people that an infected person infect during his or her infectious period is the reproductive
number and the mean number of affected individuals is the outbreak size. These transitions, for
both susceptible and infected persons evolve over time. Such complex process can be
described mathematically through what is called the continuous time stochastic processes.

Banks loan money to customers on trust that they will payback. The financial circumstance for
the customer servicing loans may remain change within the loan period. If the financial status
improves or remains stable the customer repays the loan without default and the loan status is
said to be always current. When customers makes a full and final settlement before the end of
the loan period attrition is said to have occurred. If the customer is financially constrained he
defaults the loan. A customer who has default makes further transitions to other higher default
states, early delinquency, mild delinquency and hard delinquency with the possibility paying
the loan to fall back to current or lower delinquency status. When the customer defaults for a
very long period, the loan is considered irrecoverable and bank write it off as bad debt and
customer is removed from the loan book to written off book. In addition some customers die
before clearing the loan. This process can be modeled using continuous time non homogenous
Markov process with discrete states.

When pollen grains are suspended in water they move erratically. This erratic movement of the
pollen grain is thought to be due to bombardment of the water molecules that surround the
pollen grains. These bombardments occur many times in each small interval of time, they are
independent of each other and the impact of a single hit is very small compared to the total

effect. This suggests that the motion of pollen grains can studied as a continuous time



stochastic process. A botanist, Brown was the first to observe it in 1927 and named the motion

‘Brownian motion’.

1.2 Stochastic Processes

Definition and classifications

A stochastic process is a family of random variables {X(t); t> 0} on a probability space with

t ranging over a suitable parameter set T (t often represents time). The state space of the

process is a set S in which possible values of each X(t) lie. This X(t) can be either discrete

or continuous. The set of t is called parameter space T. The parameter t can also be either
discrete or continuous. The parameter space is said to be discrete if the set T is countable
otherwise it is continuous.
Thus, we have the following four classifications of stochastic processes.

1 Discrete Parameter and Discrete state

2 Discrete Parameter and Continuous state

3 Continuous Parameter and Discrete state

4 Continuous Parameter and Continuous state
Further, stochastic processes are broadly described according to the nature of dependence
relationships existing among the members of the family. Some of the relationships are

characterized by

(i) Stationary process
A process {X(t), te T} is said to be a stationary if different observations on time

intervals of the same length have the same distribution.
ie.Forany s, te T, X(t +s)- X(t) has the same distribution as X(s) - X(0).

(i) Markov Processes
Markov process is a stochastic process whose dynamic behavior is such that probability
distribution for its future development depends only on its present state, but not on the
past history of the process or the manner in which the present state was reached. This
property is referred to as the Markov or the memory less property.
A Markov chain is a discrete time space Markov process with discrete state space.
Markov jump process is a continuous time space Markov process with discrete state

space.



A Markov process is said to be time homogenous if the behavior of the system does not
depend on when it is observed. In a time homogenous Markov process the transition rates
between states are independent of the time at which the transition occurs. On the hand
Markov process is said to be time non homogenous if the behavior of the system is

depended on the time when it is observed.

1.3 Pure Birth Processes

Pure birth process is a continuous time, discrete state Markov process. Specifically, we

deal with a family of random variables {X(t); 0<t < «} where the possible values of

X(t) are non negative integers. X(t) represents the population size at time t and the

transitions are limited to birth. When a birth occurs, the process goes from state n to

state n +1. If no birth occurs, the process remains at the current state. The process
cannot move from higher state to a lower state since there is no death. The birth process

is characterized by the birth rate A, which varies according to the state n of the system.

The birth death process is a continuous time markov process where the states are the
population size and the transition are restricted to birth and death. When a birth occurs the
process jumps to the immediate higher state. Similarly when a death occurs the process jumps
to the immediate lower state. In this process birth and death are assumed to be independent of
each other. This process is characterized by birth rate and death rate which vary according to
the state of the system. Pure birth process is birth death process with death rate equal to zero

for all states.

1.4 Literature Review
The negative binomial arises from several stochastic processes. The time - homogeneous birth

and immigration process with zero initial population was first obtained by McKendrick (1914).



The non - homogeneous process with zero initial population known as the Polya process was
developed by Lundberg (1940) in the context of risk theory.

Other stochastic processes that lead to negative binomial distribution include the simple birth
process with non — zero initial population size (Yule, 1925; Furry, 1937).

Kendall (1948) considered non homogeneous birth — and — death process with zero death rate.
He also worked on the simple birth — death — and immigration process with zero initial
population (Kendall 1949).

A remarkable new derivation as the solution of the simple birth — and — immigration process
was given by Mckendrick (1914).

Kendall (1948) formed Lagrange’s equation from the differential difference equations for a
distribution of the population, and via auxiliary equation, obtained a complete solution of the
equations governing the generalized birth and death process in which the birth rate and death
rates may be any specified function of time.

Karlin and Mcgregor (1958) expressed transitional probabilities of birth and death processs
(BDPs) in terms of a sequence of orthogonal polynomials and spectra Measures. Birth rate and
death rate uniquely determine the unique measure on the real axis with respect to the sequence
of orthogonal polynomials. Their work gave valuable insights about the existence of unique
solution of a given process.

Gani and swift (2008) attempted to derive equations for the probability generating function of
the Poisson, pure birth and death process subject to mass movement immigration and
emigration. He considered mass movement immigration and emigration as positive and
negative mass movements. The resulting probability generating functions turned out to be a
product of the probability generating functions of the original processes modified by
immigration process.

Simple birth process was originally introduced by Yule (1924) to model new species evolution
and by Furry (1937) to model particle creation.

Devaraj and Fu (2008) developed a non-homogenous Markov chain to describe deterioration
on bridge elements. They showed that the new model could better predict bridge element

deterioration trends.

Wolter et al (1998) presented and compared three different uniformization based algorithms;
base algorithm, correction algorithm and interval splitting algorithm, for numerically

computing transient state distribution for non homogenous model. They investigated the



numerical solution of the transient state probability vector of non homogenous markov process
by algorithms that are based on unifomization by Grassmann(1991) and Jensen (1953). The
three algorithms numerically solved the integral equations that constituted the uniformization
equation as derived by Dijk(1992).

1.5 Problem Statement and Objectives of the Study

Problem Statement

Most of the literatures concerning pure birth processes concentrate on deriving and solving
basic difference differential equations for time homogeneous processes and rarely do they
present non homogenous birth processes. The few literatures that have presented the non
homogeneous birth processes only sketch them in outline form or scatter details in different
sections. In the analysis, emphasis is often laid on the steady state solutions while transient or
time dependent analysis has received less attention. The assumptions required to derive steady
state solutions are seldom satisfied in analysis of real systems. Some systems never approach
equilibrium and for such systems steady states measures of performance do not make sense. In
additions, systems with finite time horizon of operations, steady state results are inappropriate.
Generally, in real life situation, knowledge on the time dependent behavior of the system is

needed rather than the easily obtained steady state solution.

Objectives

The aim of this thesis is to derive and solve differential equations for continuous time non
homogenous pure birth process by applying four alternative approaches; Iteration method,
Kolmogorov equations and solving directly the Lagrange partial differential equation for the
generating function by means of auxiliary equations, Laplace transform method and the
generator matrix approach. It is hoped that this will demonstrate to statistics scholars the
variety of mathematical tools that can be used to solve non homogenous pure birth processes.
At the same time it is also hoped that students of mathematics will find in this processes

interesting application of standard mathematical methods.



1.6 Areas of application

Pure birth and death processes play a fundamental role in the theory and applications that

embrace population growth. Examples include the spread of new infections in cases of a

disease where each new infection is considered as a birth.

Pure birth and death processes have a lot of application in the following areas.

(@)

(b)

(©)

Biological field

When an infected person makes contact with susceptible individual there is potential
transmission. A susceptible person makes the potential transition to infected person
through a contact with infected persons. A newly infected person then makes further
transitions to other infected states with the possibility of removal. The removal stage
represents death caused by the diseases or eventual recovery. Those individual who have
recovered reenters the susceptible stage. The average number of people that an infected
person infect during his or her infectious period is the reproductive number and the mean
number of affected individuals is the outbreak size. These transitions, for both susceptible
and infected persons evolve over time. Such complex process can be described
mathematically through what is called the continuous time stochastic processes.

Radioactivity

Radioactive atoms are unstable and disintegrate stochastically. Each of the new atoms is
also unstable. By the emission of radioactive particles these new atoms pass through a
number of physical states with specified decay rates from one state to the adjacent. Thus

radioactive transformation can be modeled as birth process.

Communication

Suppose that calls arrive at a single channel telephone exchange such that successive calls
arrivals are independent exponential random variables. Suppose that a connection is
realized if the incoming call finds an idle channel. If the channel is busy, then the
incoming call joins the queue. When the caller is through, the next caller is connected.
Assuming that the successive service times are independent exponential variables, the

number of callers in the system at time t is described by a birth and death process.



CHAPTER TWO

TRANSITION PROBABILITIES FOR A GENERAL PURE BIRTH
PROCESS
2.1 Introduction
A stochastic process {N,:t > 0} is a collection of random variables, indexed by the variable t
(which often represents time).
A counting process is a stochastic process in which N; must be a non — negative integer and

for t>s, N, > N..

Our interest is in the variable N, - N.. We refer to this variable as an increment in the interval
(s, t).Consider the set of events {N;} where N, is the j" state. The probability of moving
from state N, to state N, is denoted by p; and is called the transitional probability jk.
Further, p, = Prob(N, =k|N; = j)

Definition 1

A stochastic process has stationary increment if the distribution of N, - N, for t > sdepend

only on the length of the interval.

Remark

One consequence of stationary increments is that the process does not change over time. Some
researchers call this process time homogeneous also.

Definition 2

A stochastic process has independent increments if increments for any set of disjoint
intervals are independent.

We shall examine counting processes that are Markovian. A loose definition is that for t > s,
the distribution N, - N, given N is the same as if any of the values N, N, , N , ... with all
Uy, U,, ... <S were given.

For a Markovian counting process, the probabilities of greatest interest are the transitional
probabilities given by

P n (S, 1) = Prob{N, - N, = n/N, =k} (2.1)

for 0<s<t<om.



The marginal distribution of the increment N, - N, may be obtained by an application of the
law of total probability.
That is

Prob{N, - N, =n} = > Prob{N, - N, = n/N, = k}Prob{N, = k}

= 2 Pien (5 1) P (3) (2.2)

2.2 Chapman-Kolmogorov Equations
“Feller (1968), states that the transition probabilitiecs of time homogenous Markov process

satisfy the Chapman — Kolmogorov equation.

Pin (s + 1) Zp.v )P, (t (2.3)

The transitional probabilities of time non-homogenous Markov process satisfies the Chapman-

Kolmogorov equation, namely
pIn T, t Zp,v 1: S pvn (s t) (2.4)

and is valid for Tt <s< t.

This relation expresses the fact that a transition from the state E; at epoch(time) t to E, at

epoch t occurs via some state E, at the intermediate epoch s, and for Markov process the

probability P, (s, t) of the transition from E, to E, is independent of the previous state E;.

The transition probabilities of Markov processes with countably many states are therefore

solutions of the Chapman-Kolmogorov identity (2.4) satisfying the side conditions

Pik (T’t) 2 Ovzpik (T’S) =17 (2.5)



2.2.1 Time Homogeneous Markov Process
Proof of formulae (2.3)

The transition probability

P, (s + t) = the probability of moving from state E; at time O to state E; at time s + t, passing via

some state E, in time s.
= ZProb{ (s +1) =], X(t) = v/X(0) =i}

_ < Prob{X(s+t)=j, X(t) = v, X(0) = i}
Z Prob{X(0) = i}
_ ZProb{ (s +t)=j/X(t)=v, X(0) = i}Prob{X(t) = v/X(0) = i}Prob{X(0) = i}

Prob{X(0) = i

Therefore

P (s + )= ZProb{ (s +1t)=j/X(t)=v, X(0)=i}Prob{X(t)=v/X(0)=i}
Because of Markov property,

Pin (s + ) ZProb{ s +1t) = j/X(t) = v}Prob{X(t) = v/X(0) = i}

The equation above can also be written in the form

Pin (s 1) = va, )Py (t

= Zp.v ) py;(t



2.2.2 Time Non-homogeneous Markov Process

Proof of formula (2.4)

Consider a transition from the state E; at epoch (time) t to state E; at epoch t occurs via
some state E, at the intermediate epoch s.

Diagrammatically,

Time = S t
State  E, E, E,
Py (T, t) ZProb{ t)=n, X(1,s)=v/X(1)=1 }
_ < Prob{X(z.t) = n, X(z.s) = v, X(r) = i}
Z Prob{ (t )=i}
_ Prob{X(r,t)=n/X(r,s)=V X() }Prob{ (t.8)=v, X(r)=i}

” Prob{X(t) = i}

_Zprob{ t)=n/X(ts)=v, X(1)= }Prob{X(r,s)=V/X(r)=i}

Therefore
P (T.1) ZProb{ t) =n/X(t,s) = v|Prob{X(t,s) = v/X(1) = i}

= ZV:PVH (s, )P, (t.,5) = ZV:Piv(r,s)Pvn (s,t)

10



2.3 Forward and Backward Kolmogorov Differential Equations
2.3.1 Forward Kolmogorov Differential Equation

Using notations by Klugman, Panjer and Withalt (2008) replace i by k and n by k + n.

Therefore,

Prson (©:8) = 2Py () Pujen (5:1)

Next, replace t by s, sbytand t by t + h. Thus we have

Prsen (8.1 1) = 3Py (8:8)Pyon (L1 )

Finally, replace v by k + j

Pken (St +h) = jzz(;pk'k”(s,t) P i (LT +1) (2.6)
This can also be re-written as

n-2
pk,k+n (S’ t + h):zpk,k+j (Sv t)pk+j,k+n (t1 t + h)+ pk,k+n—l (S' t)pk+n—l,k+n (t' t + h)+ pk,k+n (S’ t)pk+n,k+n (t' t + h)
j=0

(2.7)
But for a pure birth process
Pecaa(tt+h)y =4 (t)h+o(h); k=0,1,2,.. (2.8)
P (tt+h)=1-2(t)h+o(h); k=0,1,2,.. (2.9)
and
P+ (tLt+h)=0(h); j=2,3,...,n (2.10)
Apply (2.8), (2.9) and (2.10) in (2.7) to get
Prken (S, t+D)= Zpkk+J $,) + [ Myens ()0 () [Pypins (8:0)F[ 1- Ry (D) hH0(B) [Py (s01)

11



Therefore,

lim P kn (S’t+h)_pkk+n (S1t) -

h—0 h

pkk+n l(s t) + le)

Iim(T D Pk j(s,t) +lim

h—0 =0 h—0

| n2 _ Pkm_l(t)hhm(h)}

0
apk,km (S’t) + Man (t)pk,k+n (s,t) = }”k+n—1(t) pk,k+n-1(sat)

where

Pr1(sit)=0

In general %pij (s,t) + &, (t)py (s.t) = A4 (t) pyjy (s, t) wWhere p;; , (s,t) = 0.

For this non-homogeneous birth process, the initial conditions are:

Pk (s,8) =1and py,.,(s.s) =0 for n>0.

2.3.2 Backward Kolmogorov Differential Equations
Backward Kolmogorov Differential Equations

Consider the following diagram

{ Mo (tr)]h+o(h)}

| | |
Time s s+h t
State E. E E.

i v j

pi;(s:1) Zp,k (s,s+h)p;(s+h,t)

But for a pure birth process
Piin(S,5+0) =, (s)h +o(h)
pii(s,s+h)=[1-%(s).h +o(h)]

And p, (s,s+h)=o(h); fork>i+2

12

(2.11)

(2.12)

(2.13)

pk,k+n (S1t)



Therefore,

p;(s.t) = p;i (s,s+h)p;(s+ht)+p;;(s.;s+h)p,.,;(s+ht) + ZJ‘, Py (s,5+h)py(s+h,t)

k=i+2

= [1- Ai(s)-h +of ]p,J s+h,t +[k h +of )}piﬂ'j(s-kh,t) + ZJ: o(h)p,(s+h,t)

k=i+2

Therefore,

j
P, (s.t) - py; (s +ht) =[- & (s)-h +o(h) |p; (s+h,t)+[ A (s)h + o(h) |pi,y; (s+h,t) + D o(h)p,(s+h,t)

0 _ i P8 ) - pi(s + hit)
= —p,;(sit) = lim A
= - % (8)pi (s, )+ (5)piay (s51) (2.14)

NB. The duration (s,t) > duration(s + h,t)

This is the Kolmogorov Backward Differential equation.

2.4 Methods of Solving Continuous Time Non-homogenous Forward Kolmogorov
Differential Equations

Equation (2.11) can be solved using the following techniques. In Chapter three, we shall use
the integrating factor method. In chapter four, we shall use the Lagrange’s Method. In chapter
five, we shall use the Matrix method. Highlights of the key steps in each of these three
methods are given below. Some comments on the Laplace Method have also been given even

though it has not been used.

2.4.1 Integrating Factor Technique
Let a differential equation be of the form

dy

+ay =R (2.15)
dx

where y is a function of x and R is a constant or a function of x.

To solve for y in this kind of differential equation, given the initial conditions, we use the

following procedure.

13



Procedure

e Let the integrating factor IF _ el

e Multiply both sides of the equation (of the form (2.15)) you want to solve with the
integrating factor.

e Express the new equation in the form di[ejadx xy} =R ><ejadx
X

e Integrate both sides with respect to x. Use the initial condition to find the constant of

integration.
e Findy.
2.4.2 Lagrange’s Method
Let P, Q and R be functions of x, y and z. suppose we have an equation of the form
P$+Q%=R (2.16)
dx dy

subject to some appropriate boundary conditions. Such an equation is called a linear partial
differential equation. The Lagrange method of solving this kind of equation is described below.
The probability generating function (pgf) is one of the major analytical tools used to work
with stochastic processes on discrete state spaces.

Definition

Let X be a non negative integer valued random variable such that P[X = k] = px k=0,1,2,...is

the probability mass function (pmf). Then the probability generating function is given by
G(s) = E[S*] = X p,s"
k=0

If we are able to obtain the pgf of a stochastic process, then we can find the pmf of the process.
The pmf p,is the coefficient of s

Procedure

e Define G(st,z) = D p,(s,)2" =D p,(s,t)z". Consequently define gG(s,t,z) and
n=0

k= S
0

—G(s,t,2).
po (s,t,z)

14



e Multiply both sides of the second differential equation by s" and sum over n, and taking
advantage of the initial conditions, write the resulting equation in terms of the definitions
above.

e Summarize the results by a single Lagrange Partial differential equation for a generation
function of the form P%G(s,t,z)+ Q?G(s,t,z) =R.
Z

e Form the resulting auxiliary equations from the equation above. It will be of the form;

ot oz _ dG(s,t,z)

P Q R

We can form three subsidiary equations from the equation above. These are

ot oz .

EZ—Q (i)
ot 9G(s,t,2) y
P R (it
oz 0G(st,2)
) = (iii)

e Consider any two equations and solve them

e Solutions of the two considered subsidiary equations are in the form
U(s,t,z) = Constant (2.17)
and
V(s,t,z) = Constant (2.18)
e The most general solution of (2.16) is now given by
u=y(v)
where v is an arbitrary function. The precise form of this function is determined when the

boundary conditions have been inserted.

2.4.3 Laplace Transforms
L[F'(t)] = [e'f'(t) ot (2.19)
0

Using integration by parts
Ivdu =uv - Iudv (2.20)

15



-st

Letv:e's‘:d—vz-se
dt

Also, let du = f'(t) = u=f(t)

Substituting in equation (2.20)

0
o0

Jet(t)y de=[F(1).e] - [F(t).-se at

0

=[F(0).e"] + sIf(t). e dt

o0

Ie_ﬂf’(t) dt = [(0) - (F(0))] +s[f(t). e ot

= 5[ (1). e dt-£(0)

Thus
L[(1)] =sL[F(1)] - (0)

Substituting f (t) with p; (t), the equation above becomes
Lpis(t)] =sL i (t)] - py; (0)

Procedure

leaving L[ p;;(t) ] as the subject of the formula.

for L[pij(t)].

Find the Laplace inverse of the L[ p;;(t) | so got.

16

Take the Laplace transform of the second of the two basic difference equations.

Apply the relation L[ p;;(t)] =sL[p;;(t)]- p;;(0) to replace L|pj;(t)] and simplify

(2.21)

Starting with the conditions at t = 0, generate a recursive relation and use it to generalize



2.4.4 Generator Matrix Method
e Express the differential equation in Matrix form.

e Obtain the eigen values and the corresponding eigen vectors.

e If A has distinct eigen values p,u,,....1, , say, then A = UDV where V = U * and
D= diag(pl,pz,...,uk)and the ith column of U is the right eigen vector associated with .
e Workout p(t) = U diag(e*, ..., &) V

e Substitute . in the equation

" g I+ VA(E-s)

Pjjen(sit) = {H(J + k)%n} > — and simplify.
PTG+ KA -G+ V),

k=0
k=v

17



CHAPTER THREE

TRANSITIONAL PROBABILITIES BASED ON THE INTEGRATING
FACTOR TECHNIQUE

3.1 Introduction
In this chapter, we shall solve equation (2.11) using the integrating factor technique. We shall
solve this equation for all the four pure birth processes starting with Poisson Process, then the

Simple Birth process, the Simple Birth Process with immigration and finally the Polya Process.

By putting n = 0 in equation (2.11), we shall find p, , (s, t). Putting other higher values of n in

the same equation will generate a recursive relation. Each generated equation will be solved

using the integrating factor technique. We shall then generalize each case by induction.

3.2 Determining p, (s.t)

When n =0, equation (2.11) becomes

gpkk (S’t) + (t)pkk (S’t) - )‘k-l(t) pkvk'l(s’t)

But from (2.12), p.,(s,t) = 0. Therefore
0

apkk(s,t) + A ()P (5,1) = 0
—
1 d
—pP (S t)=-A (t
Pex (si1) dt a(8:1) (1)
=

0
alog Pei (5,1) = - 4, (1)

Therefore,
t t
log pkk(s,t)‘S =- jxk(x) dx
Equivalently
Pec(s:t)
log =- | X (x)dx
P (5:5) I )

18



Therefore

=
t

log p,, (s,t) = - jkk(x) dx

S

=
—jkk(x) dx
pkk(s1t) =e- (3.1)
-j.xw a(t) dt
For n > 0, use the integrating factor e ° in equation (2.11).
We shall now look for special cases.
3.3 Special Cases of Non-Homogeneous Markov Processes.
3.3.1 Poisson Process
A, = A for all k.
—jk dx
Pu(st)=e: =e’ (3.2)
For n > 0, the differential equation for the transition probabilities is
0
apk,km (5’ t) + APrksn (S’t) =X Peken-t (s,t) (3.3)

Whenn =1,

a - -S
a5+ A (5. =R, (5) =27

Integrating factor = ef M it

Therefore,

At -AM(t-s)

e“%pk,kﬂ (S,t) + }\‘eMpk,k +1(S’t) =hete

=

0

E[em pk,k+1(s1t):| = he®

19



Therefore,

0{€” P (5.Y)) Jw&y

(7)) S——

U

€ Pir (5Y)] jxe“ay

Therefore
€ Pyrar(Sit) - €0 Prias(s:8) = A (t - 5)
=
e Pyiar(Sit) -0 =A(t-s)e®
Equivalently

Perar (51) = A(t-s)e™ ) (3.4)

When n = 2, equation (2.11) becomes
0 s
5'0“” (s,t) + kpk‘“z(s,t) )&(t - s) Mt-s)

Integrating Factor = e*'. Multiplying the above equation by the Integrating factor, we have

ehgpk,kﬂ(s't)*‘Xe“pk‘“z(s,t) 22 (t-5)e ¢t

Or s
a[ex Prksr (s,t)] =27 (t-s)e

Integrating both sides

t

exypk,k+z (S’y)‘: = J.xz (y - S)exs dy

S

Therefore,

B t
eMpkvk"'Z (S’t) - ekspk,k+2 (S,S) = Xzexs y— - syi|

2 2
= A%e™ (% - st} - (% - szﬂ

20



M As — 12,2 tZ SZ )
€ pkvk+2(s’t)'e pk’k”(S,S)—}\,e E-St—z—i—s

2_As
= Xze [t - 2st +67 |
Ae™ 2
= t-
—(t-9)
Equivalently, using (2.21)
At-s)[ e
i o(o) = AL
Therefore,
2
At -
Pk +2 (S,t) = e-k(t_s)M (3.5)

2!

By induction, assume

g [Me-9)]

pk,k+n—1(s’t):e (n -l)!

Then equation (2.11) becomes

%pk,k+n (S,t) + APrksn (S,t) = pe M9

Integrating factor = e
Multiplying the above equation by the integrating factor, we get

) A I:?»(t ) S)]n-l
(n-1)!

e %pk,k+n (S’t) + }\‘eMpk,k+n (Sot) Ae

2 SLEDIN

a[eMpk,km (s,t)] =Ae (n - 1)!

Integrating both sides

e* pkk+n St‘t: Le xsj.

Letu=y-s = 3_“:1 orequivalentlydu = dy.Wheny =s, u = 0.Wheny =t, u=t-s.
y
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Then

eMpkk+n(siy)s = (n -l)' '([ un_ldu
_ }\,n eXs E t-s
(-1 n |
}\'n eks N
= t -
n(n - 1)1( s)
- e)\s |:7\'(t - s):ln
n!
Therefore,
At-s)]
ehpk,k+n (S’t) - empk,k+n (515) = e %
At-s)]
empkk+n (S,t) = eks[ ( ls)]
n!
Therefore
At-s)]
P sn(S1) =e'*("s>M; n=012, .. (3.6)
’ n!

This is independent the initial state and depends on the length of the time interval, thus for a

Poisson processes the increments are independent and stationary.

Remarks;
Formula (3.6) does not depend on k, which reflects the fact that the increments are

independent.
From (2.2), the marginal distribution of the increment N, - N, is thus given by

Prob{N, - N; =n} = >"p, .. (s,t) p (5)

k=0

Py (S)

— ze»l(t-s) [k(t B S)]n

n!

= g Mt-9) [}‘(t - S)]n Zpk (S)

n! =

22



Therefore,
At-s)]
Prob{N, - N, =n}= e'“”’M; n=0,1,2,. (3.7)
n!
Which depends only on t - s. Therefore, the process is stationary.

Thus, the poisson process is a homogeneous birth process with stationary and independent
increments.
Note that

n
_ s (M)
Prob{N, - N, =n} =e tT
Since N¢ is the number of events that have occurred up to time t, it is convenient to define
N, = 0.

Therefore,

p,(t)=e™ %; n=0,12,.. (3.8)

N: has a Poisson distribution with mean Ait.

3.3.2 Simple Birth Process
A, =kr fork=0,1,2, ...
For n =0, (2.11) becomes (3.1). Therefore,

t

- . ox

Pec(sit)=e: =gkt (3.9)
For n >0, (2.11) becomes

L Pucen (5:0) # (K M)py (5:0) = (k40 = D pygerpa(s)  (310)
For n =1,

0

Epk,kﬂ(s,t) + (k + 1)7ka'k+l(s,t) =k\ Prx (S,t) — kxe—m(t.s)
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Integrating factor = ej(k“)th _ glk+D

Multiplying the equation above by the integrating factor, we have

e(k+l)M %pkkaA(Sat) + (k + 1)e(k+1)xt}\1pk1k+1(s’t) _ kke(k”)m e KA(t - s)

RH.S = kel "M (-9 = [ xehh x e xe i xe = kaxeMxe = kaxe!! )
Therefore,

0 * t_khs
a|:e(k )it pk'k+1(s,t):| — k)\,ek ek}u

Integrating both sides with respect to t, we have

t

e(k+1)7“y pk,k+1 (S, y)‘t = k}\’ekksj'ek}’dy

t
= khe*® e’
A

S

- k?»)e:‘ks [em ) exs:l

= kelks I:em _ exs:l
Therefore,

Pro1(s t) = ke [eM-<k+1)m i em.(kﬂ)m]
= ke et - g

Dia () = ke [1- e ]
= ke [1- g
= k™Y [1 e x(t.s)}

= ke ™) [1 ; e-k(t-s)]

_ [ﬂe'”‘(”) [1-e09] (3.11)
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Forn=2

%pk,k+2 (S’t) + (k + 2)7\’pk,k+2(s’t) = (k + l)xpk,k+l(sat) = (k + 1)}\'|:ke_M((t_S) (1 = C_)L(t_S))}
Integrating factor = ef M 2)d _ (kor2):

Multiplying the above equation by the integrating factor, we have
ek(k+2 _pkk+2(s t) + 7\,(1( T 2) Mk +2)t pk'k+2(sjt) _ 7\.1((1( 4 l)ex(k+2)te-xk(t-s) (1 M s))

This can also be written as,

0

at[ 7~(k+2 pkk+2(s t)] — Xk(k + l)exkuzm-xkuxks(l _ e»l(t—s))

— M{(k + l)ezxt+xks (1 _ e-x(t-s))

— }\,k(k 4 1) ( 2 eksekt)

Integrating both sides with respect to t, we have

t
x(k+2 pkk+2(s t) Xk k+l exksJ' 2y

S

_ 7\,1((1( + l)e;\ks ﬂ _ eme?»y t
2\ A

eZM eZKs
- k(k + 1)e7»ks ~ . ekseh - 4 e?»se?»s
2 2
Therefore,

1 1 Ko -
p (s, t) - k(k + 1) 2M KAt -20t eXs + At- Kt - 24t _e2xs-kkt -2 + eZKS kit - 22t
kk+2 2 2

Simplifying,

pkk+2(svt) = k(k +l) M(S |:; - e-k(t-s)_ %e—Zk(t-s) + e'n(t-s)jl

k(k+1) st klt[%_e—k(t—s) +%e—2x(t—s)}

_ k(k +1)e-xk(t—s)[e -2 M +1}
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Simplifying, we have

pkk+2(s’t) =

Equivalently,

Pz (Sit) = ((k ; 1)]@“(“5) [1 -e ”‘“”]z (3.12)

Put n = 3, then (2.11) becomes

0
apk,mg(slt) + Myas (t)pk,k+3(5at) = Az (t) Py +2 (S’t)

0
apk‘kw(s,t) + (K +3)Ap,i.s(sit) = (k +2)A pyy.,(st)

Integrating factor = exp“(k + B)th} = exp{(k + 3)%t}

Multiplying the above equation by the integrating factor, we have

k+1
e(k+3)m§pk’k+3(s1t) + (k + 3)7\,6(k+3)m pk,k+3(S,t) _ (k + 2)7\{ ; je(k+3)m e-Xk(r-s) [1 _ e-K(t.s)}Z

This can also be written as

%[e(k”)“ pk,k+3(svt):| — SX(k ; zjeKXt+3lt—th+kks [1 ) e-?»(t-s):|2

%[e(kﬂ)m pk,k+3(5,t):| = 37»[k ; zjew”ks [1 - e'x(t's)]z

Integrating both sides with respect to t, we have

(k +3)h t K+2) ,.F 5 T
° ka,m(s,y)L-BX( 3 je Jer [t Jay

t

= 37{k ; ZJ e“‘s‘!exy [exy - exSTdy

Put u=e¥-e* = g—u:ke‘y = du = Ae™dy. Wheny=s, u=0. When y=t, u =e* -e”*.
y
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Therefore

k +3)Ay

P Dcas(5Y)

e : = 3[k ; ZJe“‘S':[Xe” [eky - e“}zdy

At

k+2 et e
-3 exksJ‘ Ley? du

3 0 re™
k+2 eM e
=3 e u® du
3 0
= 3 k + 2 e)\ks U_3 -
3 3 o
k+2 s [ oat aas P
= e e” -e
. e -]
- k+2 R [em (l _ e-?»(t-s)):|3
3
- k +2 P ghks [1 ) e-?»(t-s):|3
3

But p,.s(s.s) = 0.Therefore,

k+2
e(k+3))¢ pk’k+3(s,t) — ( ; jesmekks |:1 _ e—?»(t-s)i|3

The above equation can also be written in the form

k+2
pk‘k+3(s't) = ( ; ]esxteme-kme-m [1 ) e_m_s)]s

= (k ;’ Zje-xko-s) [1 . e‘“"”f

By induction, assume

Prsna(St) = [k ; tll- Zje'm(t's) [1 - e'x(t's)]n_l to be true.

Then equation (2.11) becomes

(3.13)

(3.14)

%pk,km (s,t) + Apa (t)pk’k+n (s,t) = 7\,k+n_1(t)(k +n - ZJG-M(t-s) |:1 _ e—x(t-s)j|n-1

n-1
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Substituting for ., (t), we have

0

K+n-2) . tos Caftos) L
apk,k+n(s’t)+(k+n)xpkk+n(s’t):(k+n_l)}\'( n-1 je M{( )|:]_ex( ):|

_ k+n-1 Mo M(-s) [1 ) e-x(t-s)]”'l
n

Integrating Factor = alks i

Multiplying the equation above with the integrating factor, we have

n-1

k -1
e(k+n)m§pkk+n (S,t) + (k + n)le(kmmpkkm(s,t) :( +nn jnxe-m(t-s)e(k+n)xt |:1 _ e-x(t-s):|

Equivalently,

O [[k+np _(k+n-1 Kkt + nit - Akt + 2ks t-s) Ml
a[e pk,k+n(51t):| —[ 0 nA e e |:1-€ :|

k+n-1 n-
[ Jm‘ ks gt [1 e mest 1
n

-1
k+n-1 e |
=n }\’ekksenm 1_ =
n (]
kK+n-1 : n-1
=n }\'e)\ksen)»te M(n-1) [em _ exs]
n
- k+n-1 3, ks * mht - dan [em ) exs}”'l
n

n e k+n-1 }Lem[em ) exs:ln‘l
n

Integrating both sides with respect to t, we have

: = ne”‘s(k +nn -]jj.?»e“ [exy - e“}n_ldy

e(k + n))»ypk‘k . (S, y)

du
re™

Further, wheny=s, u=0andwheny=t,u=e* - e*.

Put u=e”-e* = d—u =2e” or dy=
dy
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Therefore,

k +n)ry

e( ) pk,k+n(siy)

t k+n_1 eM_ghs dU
- ne)»ks( jj. )Le)»tun—l
S

e(k ' n))\ypk,k +n (S, y)

t K+n-1)ce-e
= nem‘s( I u™'du
s n 0

k+n-1\[y" e
- ne)»ks(
n | n 0

exks(k +nn i 1J[exr _exs]”

Therefore,

Therefore,

preen(s) =K e 1] @15

This is a Negative binomial distribution with p=e™"* and q=1-¢""*
It depends on the length of the time interval t -s and on k and is thus stationary and not

independent.
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3.3.3 Simple Birth Process With immigration

For simple birth with immigration A, = kA + v

-j[(kk +v)dx

Pk (st)=e*

-(kn+ v)xl
10

= (Kh+v)(t-s)

For n >0, (2.11) becomes

ka,m (s,t) + [(k +n)h+ v]pwn (s,t) = [(k +n-1)A+ V]pk'km_l(s,t) (3.16)

When n =1, equation (3.16) becomes

0 [(K+ 1)+ v]pyies (5.8) = [2 + vy (5.)

apk,k+1(s1t) +

%pkykﬂ(sﬁt) + [(k + 1)k + V]pk’kﬂ(s,t) = [k}» + V]e-(kxw)(t s) (3_17)

To integrate equation (3.17),

Integrating factor = ef [(k+1a+v]a

[(k +1A+ v]t

Multiplying equation (3.17) with the integrating factor, we have

[(k+Dp+v]t 0 pkkﬂ(s’t) + I:(k"'l)}w"'V:Ie[(kH)Hv:'tpkk+l(S,t) _ [kx+v]e»(kx+v)(t )e[(k+1)x+v]t

e R
ot
Equivalently,
a + +v +V)s
L6l Ty (s.0) = [l ] e

t
e[(k+1)x+v]ypkk+1(s’y)[ — [kk_l_v]e(k)ﬁrv)sj'eky dy

[t
- [kl+V]e(kk+V)Sﬂ
A

t
S

e[(k+l)l+v]ypkk+l(s’y)

S
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From (2.13), pyy,+(S.s) = 0. Therefore,

e[(k+1)x+v]tpkk+l(s,t) - (k?vl-vje(k“v)s(em _ exs)

A
Therefore,
pkk+l(5,t) = (kx}j‘Vje(Wwv)s (em _ exs)e-[(ku)x”]t
— kA +v (Kh+v)s [ AAt As —[(k +1h+ v]t
-( . je (e" -e™)e
v e
= |k + % | V)-0g-4 (em ) exs)
A
VY o e "
=k +— e(k}‘ v)(t S)e M(l_ex(t s))
A
v _}{k+%](t_s) -t At-s)
=[k+—le e (1'9 ) (3.18)
Whenn =2,
0

Epsz(s’t) + I:(k + 2)}‘ + V:kak+2(s,t) - [(k + 1)X * V]pk"”(s’t)

= I:(k + 1)7» + V:I(k n %je_x(“m(td)e'“ (1 ] e-x(t-s))

Integrating factor = ef [(k+2)p+v]dt

_ e[(k +2h+v]t

Multiplying equation (3.18) by the integrating factor, we have

glke2Pr gpkm (s,0)+e I (k4 2) 24y ] py s (4 t)=[(k+1)k+v](k+%je_k[l&x)(t_S)e'Me[(m)M]‘ (1 - )
Equivalently,

0 +2)Atv Vv +V)s -M(t-s

a{e[(k P (s,t)} :(k+x)[(k+1)x+v]e<“ P (1-e7)
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Integrating both sides with respect to t, we have

t
{e[(k”)“vjtpkm(s,t)}‘ = (k+%)[(k+1)k+v]e("“”)5!(e2*y- e**e™)dy

t
S

() (o)

+—

\'

= £k+_
A

M 2y oty |t
K+1)h+y el v e €€
[yl {_—m :
k+1 }\‘+ (k7\.+V)S e _
Jlsn e 22

A
2)s

)[(k+1)x+V]e(k“v)s {e_ B A }
2\ A 2\ A

Now, from (2.13), p,.:(s.,s) = 0. Therefore,

e

okt v)s {ezm _0eMsTY) | g 4 282}‘5}

BINCEE {ezm S0ty 4 ezxs}

v
Kk+xj+1}
el lp o (s,t) = (k+x)— (10 v)s {e“‘ -2eM7 4 e”s}

Equivalently,

P k+2 (S’t) =

2
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Therefore,

D] g
( A A e_[ x)(‘s) (1_e-k(t-s)) (3.19)

Pik+2 (S’t) = 1 5

When n = 3, equation (3.16) becomes

0 s (58 +[ (K+3)2 ¥ s (5:8) = [(k + 2)% + V]pys . (5.1)

a ,
k+%) [ +1] (-5) (l-e'm's))z

:[(k+2)x+v]( N 2

Integrating this equation,
Integrating factor = glltkrarnla

- e[(k+3)x+v]t
+5) [("’f;)*l] (lsape e'x(k%)(t-s)(l_e'x(‘.s) )2

glteor 1‘_pkm (s, 0)+[ (k#8) 2ty ]l p, (s, t)=(k+2) A+ ]( .

)[(k"' +1] Qllrpeve i )(l_e—k(t—s))z

5 +3)A+v |t
a[e[(k I :I pk,k+3 (S’t):| = I:(k+2 X+V:| 2
- (k’iX) _(k+§)+1- [(k+2)n+v]et " e (1-2e70) + )
— (k';'-\;:) _(k+§)+1_ I:(k+2)>\’+v:|e(kk+v)s (GSM_ze}»seMt + este )
Integrating, we have
- ‘ (k+¥) [(k+¥)+1] o [ 2eise e“se
ellesrlin (s, y)| = 1k ; [(k+2)n+v]e ™ ) .

_ (ke y) [ ) #1][(k+3)+2] e [ -3e™e™ +3e™e™ |

1 2 3
Therefore,
[(k+3)a+v]y ! (k ) |: k+ +1:|[ k+ +2:| (kn+v) X _Qals g2h s 41 3 s 420 205y
e pk,k+3(5,Y)L = 5 3 [(e -3e™e™ +3e Se‘)-(e s-3e™e™ +3e eS)J
- (kIX) [(k+é)+l:| |:(k+3X)+2:| e(kx+v)s |:e3xx -3eMe? 4 3pPspht L@t 433 —383“]
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Simplifying,

t

ollkp] _ (ked) [(kr) 1] [(k+)+2] g

s 1 2 3
Now, from (2.13), P, ., (s,s) = 0. Therefore,

(kt3) [(kt )1 [(k+2)*2] oy

Pik+3 (S1t)

[eaxx - 3eMe?x 4 3ePseht _ em]

e[(k+3)x+v]tpk’k+3 (S,t) — : . . [esxx - 3eMe?* 4 32 - e3xs:|
Equivalently,
Dy (S1t) _ (k+ %) I:(k+%)+1:| [(k+%)+2] e(kxw)s e—[(k+3)x+v]t I:l } 3e)\se_)¢ + 3e215e_2kx _ e3xse,3xt}
’ 1 2 3
: (k+%) [(k+%)+l] [(k+%)+2] o (kr)(i-s) [1_ 3e(1-9) 4 3 2M(1-s) e3}\(t-s):|
2 3
— (k+%) I:(k+%)+1:| I:(k+%)+2] e—(ka)(t s) (1 _ e-x(t s))
1 2 3
- (k+l)|:(k+%)+1:||:(k+%)+2:| e—(kk+v)(t s) (1 _ e—)»(t—s))
3!
— I:(k+%)+1:||:(k+%)+2]!e-(ka)(t-s) (1 _ e-x(t-s) )3
31 (k+y-1)!
kK+¥+2 3
_ (Krt+v)(t-s) _ aMt-s)
= ( g je (1 e ) (3.20)
By induction, assume
K+f+n-2 n-1
= (k+v)(t-s) (4 _ @-Mt-s)
Prken.1(S:1)= [ :] ¥ je (1 e ) (3.21)

From (3.16), we have for n > 0,

gpm (5,0)+[(k+)2+ v ]pyson (5:8) = [(k+n-1) 25V ]peons (1)

ke Yina k+3+n-2 e—(kk+v)(t-s)(1_e-k(t—s))n-1
A n-1
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Integrating factor = ef [(k#n)ntv]de

- e[(k+n)}‘+v:|t

Thus,

0 +n)A+v k+¥+n-2 TR ()€ - s IR
P (50 ]t}:[(“n-l)mv][ -1 jem N (F

eM

K+X+n-2) (csvenps 2s\" 1
=k(k+%+n-l) r Qlkrien e"“(l- € J

k+¥+n-2 e(k v

= 7»(k+%+n-l) +7+n)7~senme—(n—l)kt (CM ) e“ )n -1

n-1
k+¥+n'2 K+¥+n)As n-1
=Mk+¥+n-1 A e( $+n) eM (M-
(kti+n-1) =0 (- e)
Integrating both sides, we have
vyl kK+¥+n-2 +¥4n st n-
Prsen (5y) €07 =X(k+%+n—1)( - je(k P e (e - e) Ty
, . . S

Let € - e* = u. Then du _ re or dy = dTUe'”. Also, when y=s, u=e*-e* = 0 and when

y=t, u=e"-e",

Therefore,

+n)tv k+X ) een se“—e’"S s
Lk ]tpk,km(s,t):X(k+%+n-1)[ +5+n je(k on)i [ e Ny ;du
0

(D/—\
=~
+
>l<
+
>
H
1
o=
S |S
I
o @
@,
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Equivalently,

(k+%+n-2)! e(k+%+n)xs

Psern (S:1) = (k+%+n'1)(n-1)!(k+x -1 n

_ we_(k%m)(t -s)A (em e )n

ni(k+y-1)!
_ [k+%+ n -l)e_(kﬂtJrn)(t_s))\ (1_e-7»(t-s))”
n
Therefore,
k+l+n‘1 -(k+Y+n)(t-s -AM(t-s n
O I A

This is a Negative binomial distribution with p=e™""*) and q=1-¢™""*

e—[(k+n)k+v]t (em _exs )n

(3.22)

It depends on the length of the time interval t -s and on k and is thus stationary and not

independent.

3.3.4 Polya Process

For the Polya process, A, = 1+ ak A
1+ Aat

From equation (3.1), we have

t
_J‘[1+ak J)»dx
1+ ax
-—es

Pk (S:)
N
_ e-(1+ ak)xjs'[ler] X
Letu=1+2dax —=> d—u:ka ord—uzdx
X Y|
Limits

X=Ss = u=1+2Aas
X=t = u=1+\at

Therefore,

1+)at
) 1+ak]7L du

pac(st)=e T
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k+1
1+Xas a
In 1+\at
e

C(1+%as) "
1+)at
For n> 1, equation (2.11) becomes

%pkm(s,t){m}xpkm(s’t){“a(“”_1)}xpkk+n-1(s,t) (3.23)

1+ Aat 1 + Aat
Forn=1

0 1+a(k+1 1+ ak
'apwﬂ“‘)*{—zfx;—q*mkﬂ“”*=L+xm}k“k“”>

_(1+ak N 1 +Aas e
1+ Aat 1+Xat

_(1+ak |[1+Aas k+%x
1+ Aat )| 1+Aat

7{1+a(k +1)Jdt
Integrating factor = e * '™

= (1+2at) 4"

Multiply the equation above by the integrating factor, we obtain

k+1
%[(1 * xat)(k+%+l) pkk+l(sat)j| =(1+ Xat)(“;*l)(l + ak ](1 +kasj N

1+ Aat J{ 1+Aat

= (1+ ak)(L +xas) "2

Integrating, we have

t 1
= (1+ ak)(1 +kas)k+§ ky|:

S

1+ 2ay) U pey i (s.y)

1
a

(1 +2at) Y (s.t) = (14 ak) (1 +has) T A(t - )
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Therefore,

(1+ak) (1 +2as) " 2

Peicer(Sit) = (1+>\’at)(k+§+l) (t-s)
_(k+ D)1 +ras) F ‘s
= (1 N )\’at)(k+é+1) ( )
k+1
1+las) “ai(t-s)
)= (k +12 3.24
Prca(88) = +a)(1+mj 1+ Aat (524
Whenn=2
0 l+a(k +2 l+a(k +1
apkk”(s,t)+{ﬁ}bpkk”(s,t):{#}kakﬂ(s,t)
_(k+i+1 . (k + 1) 1 +)as k+%a?»(t-S)
1+ Aat Y01+ hat 1 + Aat
ol ax)z(t-s)
= (K +2)(k + L +1)(1 +2as)" (—1
( a)( a )( ) (l + xat)k+§+2

1
+a(k + 2)}»&
1+ )at

Integrating factor = e {

k+l+2

= (1+ Aat)

Multiply equation the above with the integrating factor, we have

6‘[ k+l+2 k+l+2 k+1 (a}\r)z(t's)
—|(1+2at) * " p.. s,t}= k+2)(k+2+1)(1+2at) ° "(1+ras) * ——~——7'=
Sl 20 ] = G ey

=(k+H(k+L1+1)(1 +Xas)k+%(ak)2 (t-s)

Integrating, we have

t

(L+2ay) P peras (5,y) = (k+2)(k + 2 +1)(1+2as) " (ar)’

(y -s)dy

S

O Sy
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2
=(k+1)(k+1+1)(1 +Xas)k+1—(a;) {t - 2st + sz}
2
= (ke 1) 1 e 1))t B (oo
Therefore,
1 1 k+§ 2
(511 = (k+1)(k+1 +1)(j +Aas) * (ak) (t-s)
) (1+ Xat)k+a+2 2
_(kr)(k+i+1)(1+nas) 7 (Ra(t-s) Y
2 1+ hat 1 + Aat
C(k+EH) (142as ) (a(t-s) )
S (k+L-1)120 {1+ hat 1+ Aat
1 k+% ) 2
_ [k +2{71 +1J (::ll-_+kasj (Xa(t s)j (3.25)
+ Aat 1 + Aat
Forn=3
0 1+a(k +3)] 1+a(k+2
apk,k+3(s't)+ ﬁ )"pkk+3(sat):[ﬁjxpkk+2(s’t)
a [1+a(k +3)] 1+a(k+2)). (k+3+1) (1+aas) " (Ra(t-s) )
= )+ L (st) = | —— L | o =7
o Prxea S )+_ L+oat | D »(5:1) ( 1+\at 2 1+\at 1+at
_ () i)k o2)(uras) )’ (o
(1+7uc1t)k+E+3 2
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1
+a(k + 3)}» a@
1+ )at

Integrating factor = ej{

= (1+ 2at)* 3
Multiplying the equation above by the integrating factor, we obtain

k+2)(k+2+1)(K+2+2)(1+2as) "t (ra)’ (ts)
1y -8
(L+xat) "+ 2

a +14 +1+
O na) "y, (5. = (12a0) 10

= (k+2)(k+L1+1)(k+1+2)(L+Xas)"

Integrating, we have

w

t

+14 +1 Aa
(L 2a) () - )

5 j(y-S)zdy

(k) (et 41) (ke +2)(1+Das)

t
We wish to integrate _[ (y-s)zdy

Letu=y-s = g—;zl

Limits

When y=s, u=0 and when y=t, u=t-s
Therefore,

jy _s)dy = ju du_{‘ﬂt'sz{(t;f -o}

H 0

Thus,

t

(1 + )Lay)(k+§+3) Drkss (S, y)s =

(k+2)(k+2+1)(k+2+2)(1+2as)<"* %x(t 38)

Therefore,

)= (k+1)(k+2+1)(k+1+2)(ra)’

3
5 (1+7Las)k+%x(t ")

(1+ Xat)(k+%+3)pk’k+3(s,t 3
Re arranging
(k+1)(k+1+1)(k+1+2)(2a)’ x(1+Xas)k*€ (t-s)

2.3 (1+ at) 7Y

Pik+s (S’ t) =
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t) =
pk,k+3(s’ ) 31 1+ Aat 1+ Aat

(k+;)(k+;+1)(k+;+2)(1+>»as JK*(Xa(t-s)T

_ (k+1+2)! (1+Xasjk+;[ka(t-s)j3

(k+1-1)131{ 1+ hat 1+ \at
Therefore,
K+1+2)(14%as | ra(t-s)Y
t) = a 3.26
Pasa(:1) ( 3 J[lmatj ( 1+ Aat (3.26)
By induction we assume that whenn=j—1
k+1+(j-2))(1+2as ) "* (ra(t-s) )"
_(s,t) = a IS true. 3.27
P (1) ( j-1 J[lﬂmtj 1+at (3:27)
When n =},
0 1+a(k+j) 1+a(k+j-1)
apkvkﬂ(s’t) + {W kpk,k+n (Sat) = 1+ Aat 7\‘pk,k+j-l(sat)
Equivalently,
P 1+a(k+j 1+a(k+j-1)], (k+2+(j-2))(1+2as )" (Aa(t-s
_pk,k+j(sit)+ # kpk,k+n (Sot): # A . ( ) (
ot 1+ )at 1+Aat j-1 1+Aat 1+Aat

(ar)’ (1+2as)<"
(1+nat) <"

()"

)'!(1+a(k+j-l))

Now we solve the equation above by use of the integrating factor

1+a(k+])}xdt
1+)at

Integrating factor = ej{

= (1+2at)*" )
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Multiplying the equation above by the integrating factor, we have
(k+2+(j-1)) (1+nas)"?
(K+2-D)(j-2)! (14 2at) )

(1) (t-5)"

a +1+j +1+j
S @era) Ty ()| = (1))

Integrating, we have

C_ (krie(D)
s (k+1-1)1(j-1)!

. 1 . t i
(1+2ay)* " p, L (5 y) (1+2as)"* (ar)' [(y-s)dy

t .
We wish to integrate I(y-s)"ldy

letu=y-s = d—uzl
dy

Limits
When y=s, u=0 and when y=t, u=t-s

Therefore,

s[5 {170

0

Thus,

(1+7“at)(k+%+j)1°k,k+j(S’t) B % (1+Xas)"* (aL) ( ]

Equivalently,

(k+1+(j-1))  (1+2as) (ak)jM

(k+%-1)ljl (1+ ;\,at)(k+%+j) J

_(k+1+(j-1)) (1+ras “*s Aa(t-s) j
j 1+Aat 1+Aat
Therefore,

o t) = K+I+j-1)(1+has o ka(t-s)j
Py (8:1) = j 1+ )at 1+ Aat

(it k+1-1)(1+ has o ?»a(t-s)j
j 1+ )at 1 + Aat

Py i (Si1) =
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Further,

1+ Aas
1+ Aat

Let P =

Then,
q=1-P
_ 1. 1+ Aas
1+ Aat
_1+hat-1-2as
1+ Aat

_ Aat - Aas
1+ Aat

_ha(t-s)
1+ Aat
Thus,

. k+1 j
jtk+i-1)(1+2as) *(ra(t-s)) .
(s, t) = a ,1j=0,1,2,3, ..., 3.28
Pk (5:1) ( i j[l+latj (1+kat ! (3:28)

Aa(t -
is a negative binomial distribution with p = 1+ has dqg= a(t-s)

and g = ———=. It depends on the
+ Aat 1+ Aat

length of the time interval t - s and on k and is thus stationary and not independent.
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CHAPTER FOUR

Probability Distributions for Transitional Probabilities Using Langranges

Method

4.1 Introduction

In this chapter, we shall solve equation (2.11) using the Lagranges method. We shall solve this

equation for all the four pure birth processes starting with Poisson Process, then the Simple

Birth process, the Simple Birth Process with immigration and finally the Polya Process. The

general definitions for this Method are given in the first section.

4.2 General Definitions

Now, from (2.11), we know that

0
apk,k+n (S!t) + }\’k+n (t)pk,k+n (S’t) = )\‘k+n-l(t) pk,k+n-l(s9t)'

Let p;;(s,t) = P\, (S.t). Then, equation (2.11) becomes

g{pn (S't)} =-4(t)p; (s, t) + A, ()p; .1 (s, 1)

Define transition Probability generating function

G(stz) Zp” 5,t)z

=302 (Sincep,(s.8)=0 j<i)

Boundary Condition

Pii(s8)=1p;(s5) =0V j=i

(s.s2) Zp” 5,s)

Multiplying equation (4.1) by z' and summing over j, we obtain

i{&at{p” S t }}ZJ = Z?» le 5, t ixj-l(t)pi,j'l(s,t)zj

j=i j=i
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Thus

S 2D 0lf2 = Sa0m 602 + 25k 002 @2

j=i j=i

4.3 Poisson Process

When 2, (t) =

Therefore,

A, equation (4.2) becomes

o0

Z [p,J st} z pij (s, t)7! +szp,jl t)zi
=

i=

= :Zi(z -D)hpy(s.t)2

ig[p” s,1) ] JZ.::(z Yap, (s,t)2
:Z.g[p”(s H]e'=(z ‘1)”,-2 pi;(s:1)7
ig[p.ms t)]z' = (z-1)AG(s.tz)
aﬁi[pu s.t)]2' = (2-1)1G(st2)
.
22 [py(s0)]7
s i

G(s.t.z) =(z-1x
9 G(stz)
% =(z-1)x

dlogG(stz)=(z-1)r

Integrating with respect to t

_falogG(s,t,z) = I(z -1)Aox

logG(stz) =(z-1)At + ¢
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Taking exponential both sides, we have

Whent=s

But

Thus

G(S,t,Z) - e(z-l)kwc
— ke(Z-l)M

G(stz) =k gl M

G(ssz) = kel” ™™

G(ssz) =Y. p(ss)2 =7

i

G(S,t,Z) = Zi e'(z'l)%s e(z.])m

= i Q@ D(t-9)

p;« (s,1) is the coefficient of z" on G(s,t,z).

Therefore,

G(stz) =2 gl# - It-s)
- Zjez}\(t-s) -k(t-s)

— Z] e-?»(t-s)e?»(t-s)z

G(stz)=72 e'““”iM

- nl

e'x(t's)(X(t - s))n 72"z

n=0 n!
- e-X(t-S)(X(t -S)) n+i
- nzz(‘; n! :
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Letk=n+i. Then

e (1 - 5))'

Pik(sit) = ol

Thus

e ) (h(t-s))

P (sit) =

n=0,1,2,...

4.4 Simple Birth

When A, (t) = jA, equation (4.2) becomes

O
za[p” (s, t] JZ:JXp” (s,t) JﬁLzZ: (- D)ap;;(s,t)z"

j=i j=i

= Zijkpij(s,t)zj'l + 2’ i(J -DApy(s.t)z"?
=i

j=i
Therefore,

Ms
Y| >

{pIJ st} iz z-1)jip;; st)
J:I

—
1

2 S (s =2l 915k, 5,04
=i j=i
62 G(stz)=2z(z- 1)7~%G(Satvz)

0 0
— G(s,t,z) - -D)A—G(s,t,z)=0
" (stz)-z(z-1) pe (s,t,z)

The auxiliary equation

ot oz _9G(stz)
1 -z(z - 1) - 0
Taking the first two equations, we have
at _ 0z
1 -z(z-1)a
0z
-AOt =
z(z-1)

47

which is a Poisson distribution with parameter A(t - s).

(4.5)

(4.6)
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Integrating, we obtain

_MZJ' 0z

z(z-1)

_ roz 0z
_-J'?+ —

=-Inz+In(z-1) +c

C=-7»t+lnz-ln(z-1)

o +h{ij
z-1

Taking another pair, we have

ot _ 9G(stz)
1 0
0ot = 0G(s.t,z)

Integrating both sides,
foat=[oG(stz2)

c=G(stz)
Therefore,

G(s,t.z) = y(u) where u = e_wln[ﬁj
Then

u=et 2
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Using boundary condition with t = s, we have

G(ssz)=12

Now,

B M i

G(stz) =

Mt -s)
Ze
) (4.8)
1- Z(l _ e-x(t—s))

Let p= e—?»(t—s) and q= 1- e—?»(t—s)

P, (s t) is the coefficient of z" onG(st,z).
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i i N j+n 1 n n
=20 S [ e
Therefore,
StZ — i 2n(]+n 1Jp|qnzlzn
= (j+n-1 +n
Z(J jplqnzl
- n
Let k=i+n
n=0,1,2
j+n-1) . |
F’.,(S,){ ) ]pq
Jrn-1) Gy At-s)\"
1_
ey )
Thus

Py (sit) = [Hrr: 1](ex<r-s>)i(1-e-ut-s))“

Where K=i+n andn=0,1,2, ...

which is negative binomial distribution.
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4.5 Simple Birth with Immigration
In this case A;(t) = jA + v

Equation (4.2) now becomes

i%[pij(s’t)]zj =- i(ﬁL +V)p;;(s,t)z +z i [((J-1)x+v]p;(s.t)2™

j=i j=i j=i+l

= 3 kpy () 2y py (s.0) 2424 S (-)py; (1) 22y Sy (s.1) 2"

j=i j=i j=i+l J=i+l

= -Xzzw:kpij (s,t)zj'l- VG(s,t,z) +7° Xi (j-l)pij (s,t)zj'2+sz(s,t,Z)

j=i j=i+l

= (22 A- M)gljpij (s,t)zk'l + (ZV — V) G(s,t,z)

Therefore,
93P (s,1)2 = Az (z - 1)% G(stz) + v(z - 1) G(si.2)
i
0 0
aG(S,t,Z) - Az(z - 1)5 G(s,tz) =v(z-1) G(st,z) (4.10)

Auxiliary equations

ot oz 0G(stz)
1 - Xz(z - 1) B V(z - 1) G(s,t,z) (4-11)

Selecting the first two,
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ot 0z

1 :-Xz(z—l)
0z
_;\‘at:
z(z-1)
-xat:—la“iaz
Y4 z-1

Integrating both sides

-MZ-J-%52+J. oz

1
z-1
-M=-Inz+1In(z-1)+c

-M+Inz-In(z-1)=c

C=-M+ln(ij
z-1

Taking the last two, we have

0z 0G(st,2)

-hz(z-1)  v(z-1)G(s;tz)

Multiply both sides by v(z - 1)

vz 8G(S,t,z)

Az G(stz)
va_ oInG(stz)
Az

Integrating both sides, e have

V [0z
5 —:jaInG(s,t,z)

z

% Inz+c=InG(stz)

v Y
A

G(S,t,Z) — eInz i — eInz ~ec -7

'
><

k

\

k=2"G(stz)

From (i), let
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From (i) and (ii),

2 G(s1.2) = y(u)

\

G(stz) =z y(u)

Boundary condition t =s.

G(ssz)=2'=2z*

Therefore,

v(u)
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-_ At-s) i+
=z 1- 2(1_ ems)ﬂ

Letp=e"""Yand q=1-p=1—e"""%. Then

G(S,t,z):z[ 0 TX

1-09z

p;« (s,1) is the coefficient of z"of G(s;t,z).

Glstz) =2 (1- qz)'(1+%)

: sz( . %)j('QZ)n

n=0 n
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k=i+n:n=0,1,2,...

I+¥+n-1) ;..
(e =m0 = e o

Thus
i+YX+n-1 i+y n
L. ’t = A -X(t—s) A 1_ —X(t—s)
N e
Equivalently,
pij (S,t) _ (I + % : n- l}e.(t-s)x(wx) (1 ) e-k(t-s))n (413)

This is a negative binomial distribution function.
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4.6 Polya process

In this case kj(t) _| 1t A
1+ Aat

Equation (4.2) now becomes

> O i | 1+a) 1+a(j-1 :
Za[pij(s,t)]z = JZ_;L " M:t}kp” (s.t)z' +z Z{ )}xPi,j-l(sat)ZJ '

j=i

) L +}antHi 1+ ai)p,(s.t)2 -2 Y (L+a(i- 1))p”'1(s’t)zj-l}

i j=i+1

Expanding, we have,

=0 - A
S 20 s0]e =] [ SoenzraSkn (02 a2t 3 (0 a0

j=i j=i j=i+l j=i+l

Equivalently,

2G s.t.z) [ } (stz)+ az—G(s,t,z) -2G(stz) - zzaiG(s,t,z)}
ot 1+Aat oz

(1+}i»atj (st2) { (s.t.2) az_G(s,t,z) +2G(stz) + zzagG(s,t,z)}
z

=(z-1)G(stz) +za(z - 1)§G(s,t,z)

Re writing the above equation, we have

(l+ \at
A

j%G(s,t,z) “za(z-1) 2 6(st2) = (2 -1)G(st.2) (4.14)

0z
Solving using Lagrange’s equation
Auxiliary equations

At ez 0G(stz)
1+\at - za(z - 1) - (z-1)G(s.t,2)

(4.15)

Taking the first two equations, we have

AOt _ 0z
1+kat -za(z-1)

-Aaot 0z 0z 0z

1+kat_z(z-l)_ ;4_:

Integrating both sides, we have
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af o _ oz, oz
1+M\at z z-1

-In(1+2at)=-Inz+In(z-1)+c

-In(1+2at) +Inz-In(z-1)=c

'”{(1 + Xaf)(z : 1)} -°

z

TS 0

Taking the last two, we have

oz  0G(stz)

-za(z-1) (z-1)G(stz)

Multiplying both sides by (z — 1), we have
1oz 0G(stz)

- —=—— 2 =0InG(st,

az G(st,z) " (S Z)
Integrating,

1.0z

-=|—=10InG(st,

~15 _[ nG(stz)

-%In z+c=InG(stz)

1

e e’ =G(stz2)

'
P |

kz®=G(stz)

1

k=2z2G(stz) (ii)

From (i) and (ii), we have

1

25 G(st2) = w(u(t))

G(st2) = w(u(t))z

Using the boundary condition t = s, we have

1
a

57



From (i)

z

(1+nat)(z-1) u(t)

“O(z-Y =7 +Zxat)
2u(t)-u() (1 +Zxat)

Therefore,

7 =

u(t)(1 + 2at)

u(t)(1+2at)-1

Thus,

v(u(s))

G(ssz) =

Therefore,

u(s)(1+2at) )

u(s)(1+ Aat) -1

u(s)(1+2at) )

u(s)(1+ Aat) -1




G(S,t’z)_(uzj(t)(1+7»as) ]”iz

1
a

t)(1+ Aas) - 1
i+ 1
z a
1+ A
| @)@t .
Z
1+ Aas)-1
(1+ Aat)(z - 1)( + has)
) 2(1+ has) T
- z(1+ Aas) - (1+2at)(z - 1)
(1+ kasj :
G(stz) = L+t 7
1+ Aas
V4 -1(+1
H(“ ?»at)] ]
i+1
(1+ Xas] )
1+ Aat i
= Z
1-7/11- 1+ Aas
(1 + Aat)
i+£
1+ Aas ?
3 1+ Aat /
1+ Aat—1-— Aas
1-2z
H 1+ Aat H
Therefore
i+t
[1+ ?»asj a
1+ Aat i
o612
1+ Aat
Let p = 1+ Aas
1+ Aat
q=1_p:1_1+?¢1s _ Aa(t -s)

1+ Aat 1 + Aat
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P, (s,)is the coefficient of z" on G(st,2)

k=i+n, n=0,1,23,...

Thus

_ _(i+i+n-1\(1+ ras i )ua(t-s)n
Py (8:8) = Piien (8:1) _£ n ][1 + Xatj [ 1+ )at J (4-17)

forn=0,1,2, ...
Which is negative binomial distribution.
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CHAPTER FIVE
INFINITESIMAL GENERATOR

5.1 Introduction
Now, we wish to solve equation (2.11) below which was derived in Chapter two. This time, we

will use a matrix method.

0
Epk,k+n (S’t) + Mo (t)pk,k+n (s,t) = }‘k+n—l(t) pk,k+n-1(sot)

Fork=0,1, 2,3, .. equation (2.11) becomes

k=0
0 _
apjj (1) = -APy(st) + Ay (5t)
= -MPy(s.t)
k=1
0 _
EPJ'M (5:1) = ~RurPypus (5,1) + Ay (s, 1)

= NPy (5,1) = Ajuapjes (5:1)

5'31142 (5:1) = “AoPipa (8:8) + Apjja (51)

= AurPa (8:1) - APz (5 1)

—Piia(81) = APy (S,1) + Aiopjiu (s.1)

= MuaPjjez (8:1) = AjuaPyja (s, 1)

— P (81) = AP (88) + Apapypa (sit)

= MjsaPjjea (5:1) = AjaPyis (s,1)
k=n
0 _
5Pii+n (8:8) = =M Pijen (8,) + AjipaPyiana (5 1)

= 7\’j+n—1pjj+n—1(sﬂt) - }\‘j+nij+n (Sat)
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These equations forms a matrix expressed as follows

gp“ (s.t) (=&, 0 0 0 0o . . 0

%pj‘m(&t) kj _7‘j+1 0 0 0 0
0 A -\, 0 0 0

apj,j‘Fz(s,t) " "

5 0 0 7\‘j+2 —kj+3 0 . 0

apj,jw(slt)

; = 0 0 0 kj+3 _7‘j+4 0

api,iw(slt)

5, 0 0 0 0 0 A —A

apj'j*' . (S,t) j+n-1 j+n

5.2 Solving Matrix Equation
0
—p(s,t)=Ap(s,t
P t) = Ap(st)

0
~ 't
th(s )_

p(s.t)
dlogp(s,t) = Adt

Integrating both sides, we have

Jt'alog p(s.y)dy = jAdy

62




Taking the exponential of both sides
p(S,t) _ eA(t—s)

Therefore, from Taylor expansion,

5 (A )"

p(s,t) =
(sit) 2
o0 A"(t-s)k
:Z o
k=0

If all the eigen values p, of A are distinct, then
p(s,t) =e*""* = U diage"" v (5.2)

Obtaining the eigen values of A,

A —pl[=0
A - n 0 0 0 0 0 0
A hu-p 0 0 0 0 0
0 M Mgt 0 0 0 0
0 0 Mz Agm 0 0 0
0 0 0 ST B 0 0 =0
0 0 0 0 0 . Az Aok
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Taking (n +1)x(n + 1) matrix, we have
}\'J P-)( }\'J+l H)( J+2_“’)(_}\‘j+3_u)(_}\‘j+4_u)"'(')\‘j+n_u):O
0ty )y )y )y 00y 1) =

Ryt 1) (M 4 1) (A 1) (1) (g 1) (b0 +12) = 0

Solving, we obtain

(
(-
(-2)
(

B==-X; OF W ="-A,, OF W =-A,, OF ...OT B =-RA,,
Assume that A i 1=0,1, 2, ..., nare distinct. We obtain n + 1 distinct eigen values. Next we

obtain eigenvectors corresponding to n + 1 eigen values. Let

Zj+n

The eigen vector e;,; for p = -,

jH

1=0,1,2, ... is given by

2, 0 0 0 0 .. 0]7]/[gz z,

A A 00 0 .. 0 ||z, 2,

0 Ay Ay O 0 .. 0 ||z, 2,

0 0 A, Ay O . . 0 ||z, Z.,
X =->\‘j+i

0 0 0 Mg Ay 0 Zjg Ziq

0 0 0 0 0 '}\‘j+k Zj+n Zj+n
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I | jrk i+l j Zj+1
Z.,, = Y z
j+1 >"j+1 _ 7“] j
Let z; =1
Z.,, = d
j+1 kj+1 _ 7‘4;
M1 Zjay = Maa Zjp = =M 25,
Zivy = a Zin
iz = A
Nk
}\‘j+1 - >"j 7‘-j+2 - }\’j
M2 Zing = MaaZjg = =N Zj13
— 7\‘J'+2
Ziyz = 7\,j+3 i 7\.j Ziyy
_ )“j 7\’j+1 7‘1‘+2
(Rjer =) (A0 = 25) (M50 - 1)
Similarly
_ /S S NP S

j+n

(A~ xj)(xj+2 ; xj)...(xj+n - xj)

— . }\‘j+k—1
k=1 )"j+k- }\’j
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The eigen vector g;

j+1 —
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ej+2 = )\. }\.

(eJ ej+1 el+2 J+n) then
_ . . .
?»j 1 0
A =N
A Aiq 1
(7‘1+1 }\'i)()\'J*‘Z 7‘1) kj+2 - 7‘,‘+1
7‘]}\‘]+l7\‘]+2 7\']+1;\' }\‘j+2
(xj*l B 7\'”“)(%1*2 _7“1')(7”143 - ) ( j+2 7\'J+l)( j+2 " ) Mg -,
n n A n }\‘j+k—1
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P(s,t) = Ue™" U, (s.5)

Pirk(sS) =

0

The inverse of matrix U is given below

1 0
- 7‘; 1
Muh
}\‘1'7\‘1'+1 - 7\'1'+1
(7‘1+2 ) 7‘1)(7‘142 - 7»,-+1) Ajez=hjn
Ut = S Ay
(7”1'+3 ) )“J' )(}‘J+3 }‘J‘+l)(7“i+3 _}\'J'+2 ) (7‘142' 7‘1+1)(7‘j+3 ‘7“141)
n-1 A n-2
-1)" itk n 1 jrk-1
_ (-1) 0 (Aen Aot ) H(x,w xﬁl)
_e A (t-s) 0 0 0
0 e Mjuc(t-5) 0 0
0 0 e Mk (t-5) 0
ediagA(t-s) _ 0 0 0 e'}‘j+k(t'5)
0 0 0 0

68

n -2 I—I

o O O O

jowc(£-5)

- 7‘]+2
(7‘]+3'7“j+2)

n-3
j+k+2

k=0 (}\'J+k+3 7‘]+2)

(5.4)

(5.5)




Next

'y
sy
Aj A
(Rivz =) (A2 P
U™ pj(ss) = A A Mo

ediagA(t—s)U-l pjj+k (S,S) —
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_ e‘}”J(l' )
e i )_Xie 4 (1-5)
Ma=dp o My -
M M et + A eh A + A Ay e hilts)
(x"”_ 7»,-)()»]42—7\].) L T N (7~j+z-7~j)(7»j+z-7»j+1)
P(S't) i A M Mo o hs) ] A Mg Ay e M) + A Mg Mjn g it ) A M Mo e i)
(qu')\j)(}\hz')&j)(kjﬂ'}"j) (7»,41' }"j)()"j+2_)"j+1)()"j+3' 7"j+1) (xi*2-)’1)(}”1*2'}‘j+1)(}"j+3' }‘i+z) ()\'j+3-)\'j)(}\’j+3-)"j+1)()¥j+3')\.j+z)
Mia & M) R Miwa  Aje 1 (t5) . n Mo A )Lme-).ﬁ(rs) .. (_1),, n-1 M
L k=1 (7\]+ k'xl') k=2 7»j+k - 7»]+1. (7\]+1-7Lj) k=3 ()»iﬂ-ﬂ - Ki+1).(xj+2_kj)' (}”i+2')”j+1) 11 (th— }Lhk)
Therefore,
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Pijen (S:1) =
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5.3 Simple Birth Process
A =(+i)A

]

k=0
k#v
n-1 n o ariMt-s)q-vA(t-s)
=0 1l S
k=0 v=0 )\’n H(k _ V)
k=0
k#v

k=0
k#v
—e'j}”(t's)(j(-l-nl-)lj')! 3_ . ne>»(t ) . szx(t-s) N S-n(r-s) .
’ [T« TIk-1 TJI(k-2) TI(k-3)
=t =0 S 2

Therefore

Pjjun (5,8) = €740

: 1\ - A(t-s) -2%(t-s) -3A(t-s) -4 (t-s)
(j+n-1)! 1+(_1)1 e L e e e L© N
n! 1.(n-1)!  21(n-2)! 31(n-3)!  41(n-4)!
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Simplifying,

(j+n-1)Inty o e’

Pjjen (S:1) = e_n(t-S)Wn_!;‘(-l) k!(n-k)!

- e—jk(t—s) (j+n-1)! Zn:(_l)k n! (e—k(t—s))k

B nt(j-1)! & 7 ki(n-k)!

jn-1) (n )
- -jA(t-s) _ A Mt-s)
e n kz(; ) ( e )

jtn-1
= { Je-n(t-s) (1 . e-k(t-s))”

n
Therefore

jtn-1

Pjjun (8:1) = [ }(e“t”)j (1-e") n=0,1,2.3, ... (6.8)

n
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5.4 Simple Birth with Immigration

Now, recall that

k=0
ki
Inthiscase A, = jA + v
n-1 n e—((j+i)k+v)(t—s)
pJJ+”St: (J+k}\'+V)Zn
TIL(G+ 002+ ) - (G + )
k=0
ki
n-1 n e'((l“)}“*")( )
= ( jtk)a+ V) -
=0 = Tk -i)a
k=0
ki

n-1

(v +v)(t-s) ( +k)\4+V)Zne

k=0

(i n-1 n e'
J+vts [J+k+ j Z -

k=0

n-1

= e'(J'“V)(‘-S) AN H

k=0

n -in(t-s)
[J‘ b+ %) >
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n-1
Djjn (s,1) = 7N (

k=0

jzn:em

k= 0
k=i

Expanding the expression inside the summation sign

n-1

- 0A(t-s) - A(t-s) 2(t-s) -1A(t-s) - n)(t-s)

P (5,8) = €T (34 K)o ——4 45 e et o
< (k-0) [T(k-2) ](k- (k-r) (k-n)

“t oy 2 i 0

(v)(es) T 1 g M) g 2H1-s) -1(t-s) o H(t-s)
H(J+ +k) i |+ YA - - + ..+
k=0 n! ( 1)(n-1)!t (-1)(-2)(n-2) (-1)" rY(n-r) I

- e_(jhv)(t_s)ln;l[( .+1+k) i+(-l)e'7h(t»s) .\ (_1)2 e 2(t-s) . (_1)r e (t-s) . . ( l)n e A(t-s)
™5 n! (n-1)! 2(n-2) ri(n-r) n!
k=0 : :
Therefore,
n-1 n _1)r e")‘(t's)
S t - e jk+v t§ (
pJJ+n( lk:!( )r:O r!(n _ r)

o (10D () e

1+¥ n r o -r(t-s)
_ e (PN -1 @ () e
e - Z

_ gt (1410 -1 & () e
] (j+¥-1)tnt i r(n-r)

) n r=0 r!(n-r)
= gy [ IR -1 ( e'x(t-s))r
n = \ T

_ j+%+ n-1 e.(jxw)(t—s) (1 - e’x(t-s))n
n
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Therefore

D,n (51) = ((J'Jf%)*“ - 1je-(i+x)x(t-s) (1 ) e.x(t.s))n

n

Equivalently,

Pjjen (5,1) = ((h%)m ) 1j(e'“”) )(H) (1-e7) n=0.12, .. (5.9)
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5.5 Polya Process

In this case, kj = k(llJr—&]
+

n-1 n e' +v

p“+n St = H}\‘J+k n

k=0 VZOH(}\‘ﬁk '7‘]+v)

Substituting, we have

e.[“a(“")jk(t -5)

1+ Aat

>

k=0
k#v

e'(l +1i(jx:tV)JMt )

1+ Aat

(1+aj+ak-1-aj-avj

1+ Aat

e_[1+a(j+v)}(t_s)

5

v=0 7\3
k -
1_[1 + kat( V)

k=0
k=v
n e'[l +1i(jxa+tV)]}‘(t's)
v=0 Aa "o
k -
[1 + Xat] L,[( V)
k#v

o [MJX(I -5)

e 1+ )at
e
= I(k-v)

k=0

k=v

77

vzoﬁwu a(j+ k)} ] x[“ a(j+k)
1+ Aat 1 + Aat

J




(et
. n- . n e t
a" [JG+i+ k)2 —=
= & TT(k-v)

k=0

[N

Pijen (S:1)

=
1l

o

<
|

i [L&i]w i s) e H C
=e lk:O[(J + % + k) Z(; Ere———
) = T1(k-v)

But Eo[(k -v) = (-1)" v!(n - v) and ﬁ(j+%+ k)= (J(’} i;

k#v

eneay (e | (e T
1
a

-1)! ;‘ vi(n-v)!

pjj+n (S’ t) =
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(i rened) (Ehhes [ s
n
Therefore,
Pl n-1 (1+3aj A(t-s) _ax(t-s) n
. (S,t)Z (J a ) ] e [1+Mtj (1 g Lt (5.10)

This is a negative binomial distribution.
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CHAPTER SIX
FIRST PASSAGE DISTRIBUTIONS FOR PURE BIRTH PROCESSES
6.1Derivation of F, (t) from p, (t)
Let p, (t) = Prob (X(t) = n) and F,(t) = Prob (T, < t) where
X(t) = the population at time t and T, = the first time the population size is n.

Consider the following diagram

Time 0

Th t

Size X(0) X(Tp) =n X(t)

For a birth process

T, <t = X(T,) < X(t), ie n < X(t)
)

- Prob (T, <t)=Prob [ X(t) 2 n]

F,(t)=1-Prob [X(t)<n]

=1-Prob [ X(t)<n-1]
Thus

_ (6.1)
j=0
Next,
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6.2 Poisson Process

6.2.1 Determining F, (t) for Poisson Process

j=0
L (At)
_1 - At (
T

j J!
n-1 (th n-1 .}\‘tjl
:_{_ -Xeh J|)+Z)”J(J? ext}
j=0 j=0
I PGPS () Mgt
j=0 j! i=1 J!

Expanding the expression inside the summation sign, we get

()= ae™ it Gl G By

Therefore

e “(kt)"'l A"

Which is gamma (n,A)

(6.2)



6.2.2 Mean and Variance of f, (t) for the Poisson Process

Mean

n

E(T,) = j:t%e.m ol gt

—_ OO—)»tn
_Tjoe t" dt
Lety=n2t=t=Yanddt =
A A
Therefore,
Ao ynldy
E(T)=—| e’ = -
VR
_ﬁx o J.Oe y" dy
1 nm
=—Xn+l1l=—
Aln Aln
_n
A
Variance

irs }mee’y y""* dy
0
1

1 n(n +1)
~ x[n+2=—=x(n+1)xnxln = 2
[n A Tn (n+1) A

But Var T = E(T?)- [E(T)]". Thus,

>

2
VarT:w-%
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Simplifying,

Var T = — (6.4)
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6.3 Simple Birth Process

6.3.1 Determining f, (t) for the Simple Birth Process

Initial conditions: whent =0, X(0)=0

P

]

()=e*(1-e™)

Therefore,

Differentiating both sides with respect to t, we get
f,(t)=(n-1)(1-e™) " (e

=A(n-1)e

Definition of Exponentiated Exponential Distribution

Let F

Then

f(x)—ﬁ—a[G ] g(x

If

j-1

n-1 n-1
=1-> P(t)=1-
i=0 j=0
n-1

_ (1_ e7Xt)n—l

M(l _ e—kt)n_z; t> 0’ n= 2’ 3’ 4,

) is called exponentiated pdf.

g(x) =Ae™ (exponential pdf), then G(x) =

84

) =[G(x)]" where G(x) = the old or parent cdf and F(x) = the new cdf. o> 0.



- f(x) = a[l - e'“]a_l re ™

= ock[l - e'“}w e

is called exponentiated exponential pdf or generalized exponential pdf with parameters A and
a.

Put o = n -1, then we have

S f(x)=A(n-1)e™ [1 - e'“]

n-2

Thus
f,(x)=a(m-1)e*[1-e*]"  t>0,n>1 (6.5)

IS an exponentiated exponential distribution with parameters A andn - 1.

Initial Condition: X (0) = n,

j—1
P.(t) =( J Je"O“ (1— e’”°“) j=n,n +14n, +2, ...

n, -1
L= R0 -5 1 h0| -~ § SR

i P(t) = i( ) _1lje”°“ (L-em) " =1

1=ng j=ng no -

% i nJ_ll e—nokt(l_e—ngkt)jn0:|20
L i=no 0
[(n-1/ 5 _ - w (i _ -
% nJ 11 e—no}»t (1 _e nokt)J 0 n (nj 1l)e— ng At (1 _ e—nokt)J 0} -0
Li=no\''0 ™ i=n\"o T
d = J_l —ngAt - Nght i=no _ _i = J_l — gt - NoAt i—ng
E,Z n, -1/ (-e™") }_ dt{;“(no—lje (-em) }

But j=n, +k wherek=0,1,2, .....

fn (t) _ %{ni (no +k - 1je—nom (l _ e—ngkt)"} (66)

otk=n Ny — 1
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ey
d Sar\1 7t

:a_(l-e ) J

- (- (- ) R e)

=(n-Yre™(1-e*)”’

6.3.2 Mean and Variance of f, (t)for the Simple Birth Process

Initial Condition: X(0) =0

Mean
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k=0

E(T,) = >~<n-l>§{<- 1>k(”;2]15 : e'“*”“dt}

y dy
ddt=
(k+Dn 0T K+

E(T,)=A(n-1)[ te? kz( ](- ) de
=i(n-1 [ jj e Mk gt

Puty=(k+1)rt=t=

n ‘ zjjowt “ K rl)x (k iym}

_l)k[”kzj[ f teyxyzldy}




Putk +1=
n-1(_ k _1
E(Tn):i ( l) x[n_ j
Aol ] J
1 K1) )
L (r-)
=} J J
no1( q\k*2 i
_1 (-1) X(n-lj
Mo J

Next, we wish to proof that
j-1 : - j-1
(_ 1)J+1x [n - ]jxé[ _ Z 1.
=1 J i
Proof
From the identity

Lax+x2 4o +xntz X i.e
1-x
n-1 1_Xn
k
kZ::OX T 1-x
If we put x =1-t we have
n-1 - _ n
(-1) = 1-(1-1)
b’ 1-(1-t)
_ [1-(1-t)“}
t
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n-1

> (-t)f=[1-@-t) [t o<t<1

k=0

Integrate this identity w.r.t t. Thus

inj(l -t) dt= j[l (-1 |t ot

n-11
LHS= Y [(1-1) dt
k=09

Putu=1-t = du =-dt

n-1 0 n-1 1
LHS= )" Juk.-du: > Iuk.du
k=0 1 k=0 o
_ -l [ yktl L _ n-1 1
_k; {k+1l_ k; k+1

RH.S = Hl (-1 |t dt
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n-1

Hence E(T,) = ! Z—l
(el

End of proof

Variance

Next

:X(n—l)

-
[N
(¢]
z
Ngh
IN)
VR
=
~ 1
N
N—
1
(¢]
z
~—~—
&
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£(77)- x(n-”:i{(' " ] iylﬂ}

Putk +1=j
_ 2 n-1 . '1
()= 8w (")
i=0 J !
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6.4 Pure Birth Process with Immigration

6.4.1 Determining F, (t) for Pure Birth Process with Immigration
Initial Condition: X (0) = n,

Now, for simple birth with immigration,

SORCAOE (e G NCEE)

-

A (1)=1- 2,1
-
1 n-1 (k+|:—1](em)m(l efm)k
ng + k=0

. ik:[k + llr(n _1j(e_“)m - e-u)k} .
Therefore
S B e S
-85 (Y era-en)
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_d 1 e\ (1) S (rt+n-ng+m-1)! Y
e (e S ey
:g 1 e_Mm _e_mn—no °°(n-n0+m-2)! r (i+n-n0+m-1) -e'“r
dt (m-l)!( ) ) r;) (n-n,-1)! ,1:! (i+n-n,) ¢ )}

Now,

00

1—[i+n-n0+m-1_n+m-n0-1n+m-n0 n+m-n,+1
s i+n-n, n-n, n-ng+1 n-n,+2

n+2m-n,-3 n+ 2m-n,-2 n+ m-ny,-1 n+ 2m-n,
Nn-ne+m-2n-n+m-1 n-ng+m n-n+m+1"

1
(n—ny)(n=ny +1)(n—ny +2)....(n —ny + m - 2)

(n—n, —1)!
(n—n, + m-2)!

0 R e e e
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_ E 1 at(m-1) A" Mo
dt{(m gre ) }
= MR e g (- e
= (m}fl) : e M (1-e™) °{-(m -D+(n-ny)et(1-et) }
e e 0 e - o)
- e ) e+ (m e -m g
— (m}_‘l)le‘(m-l)kt(l_ M)n {(n_no +m_1)e At _m+l}
Butm=n, + v
A
(no + X - 1) !

no+ Y.
o
A “(nohtv-r)tfq _ -at\MTMo _ S -

_(nomV-xj'xe (1-e™) {(nr+v-n)e™ - (ngh+v-1)

)
_ 1 -(no +v-) t 0 - At
'(noxw-xj, P L-e ) (v )™ - (ngh+ v -1}

y !

Thus,
1 e-(nomv-x)t(l_e-m)”'”"{(nmv-x)e-“-(n0x+v-x)} (6.9)
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5.4.2 Mean and Variance
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6.5 Polya Process

6.5.1 Determining f, (t) for the Polya Process
Initial Condition: X(0) =0

F(t)=1- nipj(t) where p;(t) = [j+ a1

: J P g, j=0,1,2,3,.... p;(t) canalso be
j=0 ]

1 .
j* -1 1 o aat Y, .
written as p;(t) = ( 1] (1+ }LaJ (1 +}»at] ;. j=0,1,23,..

1 .
+1-1 1 Y[ nrat Y
1-1){1+2rat) \1+2rat

1
1_1) (Xat) (1 + Xat) ( 1]; t>0andn =1, 2, 3,..

Differentiating both sides with respect to t, we have

n-1 ;_ -
(1) = j [” j;" (rat)(1+haty 07

=0

[u—

H

n- 1.1 (J+%} (j+1+;]
( I* i j{jax kat 1+ Aat) -5+ )ak(lat) (1+2at) }
i=0 a

I LETE T A frd)ndj+ o1 - (i+3)
fn(t)—k{jzo[ %_J (j+%)a (kat) (1+2at) -j_zl 1 ja(rat) " (1+2rat)
But

nas (1] et S e

(1+2rat) T (1+2at)

O O -i(“;lj_( (a1)

(1+2at) Toune 1+?»at)u :
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AMn-1+1L) (kat)n'l

-0 (14 Xat)ml

Er)h ey
n-1
o x (”Fi) (a) oo nso0
; n (1+2at)
‘ 1 n-1 _n-1
= aK[I(nF a) X (X ) tné ,t>0,n>0
1+ at)
‘ N .n-1
_ (n+|_;) y (ra) t 1
1 n 1 n+=
) (ra) (t+ &)
1 1 \a ¢n-1
fn(t):(n+a)x(“) . t>0,n>0 10 Lo
E In "a a Aa

Definition of generalized Pareto distribution
Let X\0 ~ Gamma (a, 9) and 0 ~ G(X, B).

Thus a gamma mixture of a gamma distribution is given by

Puty=(x+p)6 = 0= Y_ and do = dy . Therefore,
X+ X+B
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Caxe) Ly Y dy
f(x)‘ﬂmle (ij P
_Xu-lﬁkx 1 ©

— -y a+k-1d
ry el R

0
Xu—l A 1
= X xX|a + A
|E |7\' (X + B)a+)\, a

Therefore,

a-1

— OH'XX Ay X .
f(X)— |Tx |7\’ (X +B)u+x,

x>0

Back to equation (6.12), replace x by t, a by nand A = 1 Therefore
a

1 a ¢n-1
f(x)= N e xP _: Further, let p = L Therefore
m % (t + B)”+§ 7\43,

a Aa

This is generalized Pareto (a Gamma mixture of Gamma) distribution.

Note that since J.f(t)dtzl, then
0
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6.5.2 Mean and Variance of f, (t) for the Polya Process

Initial Condition: X (0)=0

Mean
E(Tn):thn(t)dt
0
1
© 1 )a ¢n-1
_J.tx||2n—4|-_l;x (xla) tnldt
0 a (t+ﬁ)
1
n+1i 1)a "
= m(lk)J' —- dt
a 0 (t+71a)
_n+%(%)gw {n+y-1
G l(t T &
*oa
1
LN O (O (R
e ‘ + 1 i
a (n+3) (ra)’
_m, N __n  _ n
1 -1 ha(ti-1) A-ha
_n
E(T”)_x(l-a) = 0O<ac<l1
Variance
1
» 1 \a ¢n-1
E(tz):.[tzx |En+|_l;x (xla) tn+1 dt
0 a (t+ﬁ)
1
n+d (k) s g
Il
()
1
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_ n(n +1) _ n(n +1)
(k - Xa)(k - 2?»3) % (1 - a)(l - Za)

for 0<a<1 and 0<2a<1.

or equivalently for 0<a<1 and 0<a< %

therefore 0 < a < %

var (T,) = E(TZ) - [E(T,)T
n(n+1) o
M(1-a)(1-2a) 2a%(1-a)’

n(n+1)(1-a)-n*(1-2a)
22(1-a)’(1-2a)

n+n)(l-a)-n?+2an?
(1-a)

22 (1-a) (1-2a)

n’-n%a+n-na-n®+2an?
22(1-a)’(1-2a)

an®+n-na n(an+1-a
ar (T,) = — . = — ( i )
A(1-a) (1-2a) A*(1-a) (1-2a)
1_
var (T)= =M™ 3D sy ad 0<a<t (6.15)
A*(1-a) (1-2a) 2
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CHAPTER SEVEN
SUMMARY AND CONCLUSION

7.1 Summary

In this thesis, we derived the Kolmogorov forward and backward differential equations for
continuous time non homogenous pure birth process and then solved the forward Kolmogorov
differential equation using three alternative approaches. We were able to generate distributions
arising from increments from pure birth processes by the applying the three alternative

approaches.

7.1.1 General Kolmogorov Forward and Backward Equations
The general forward Kolmogorov differential equation is;

0
apk,k+n (S’t) + 7\’k+n (t)pk,k+n (S’t) = )\’k+n-1(t) pk,k+n-1(s’t) (211)

With initial conditions: p,, (s,s) =1and p,,.,(s,s) = 0 for n > 0.

The general Backward Kolmogorov differential equation is;

gpii(s't) == M (8)pij (8, 6) + (8) Py (s, 1) (2.14)
7.1.2 Poisson Process

From the Poisson process, we found the distribution of the increments to be a Poisson
distribution with parameter A(t - s)
A(t-s)T
Pekan(Sit) = e'“"ﬂu; n=0,12,.. (3.6, 4.5)
' n!

This is independent the initial state and depends on the length of the time interval, thus for a
Poisson processes the increments are independent and stationary.
The first passage distribution is

St n-1 n
fn(t):&: A e™t" ' fort>0;n=1,23,... (6.2)

Which is gamma (n,A)

The mean of the first passage distribution was found to be E(Tn) = (6.3)

> |5
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The Variance of the first passage distribution was found to be Var T = % (6.4)

7.1.3 Simple Birth Process

From the Simple birth process, we found the distribution of the increments to be Negative

binomial distribution with p=e™"* and q=1-e"""

k+n-1 :
pk,k+n(s,t)=( +nn ]e'“k("s)[l-e'“”)]. (3.15,4.9,6.8)

It depends on the length of the time interval t -s and on k and is thus stationary and not
independent.

The first passage distribution when n, =1 is
f.(t)=A(n-1)e™ (1 - e’“)n_z; t>0,n=2,3,.
which is an exponentiated exponential distribution with parameters A andn -1

Zjl (7.7)

The mean of the first passage distribution was found to be E(Tn) =

—

7.1.4 Simple Birth with Immigration

From the Simple birth process with immigration, we found the distribution of the increments to

be Negative binomial distribution with p=e™'"*) and q=1-¢™""*

K+240L) (ersontesn (o s
pk,k+n(s,t)=( o je(“ Ko (1Y (3.22,413,59)

It depends on the length of the time interval t-s and on k and is thus stationary and not

independent.
The first passage distribution is
1

fo ()= oy
O

A e'“)n'no {(M+v-21)e™ -(nh+v-1)]

A

7.1.5 Polya Process
From the Polya process, we found the distribution of the increments to be Negative binomial

Aa(t -
distribution with p = 1+ has and q=1- 1+ Aas _ 2( S).
1+ )at 1+Xat 1+ Aat

102



jrk+1-1)\(1+2as < Xa(t—s)j
(s, t) = 2 3.28,4.17,5.10
Pekes (5:1) ( j j (1 + xatJ ( 1+ )at ( )

It depends on the length of the time interval t -s and on k and is thus stationary and not

independent. The first passage distribution IS
1
‘ 1 1 \a tn—l
f, (t) = (n+ a) X (“) -, t>0, n>0, 1 > 0, 1 >0 which is a generalized
1 In "*a a W]
(1 4)
Pareto distribution.
n
E(T,)= O<ax<l 6.14
1.
var (T, )= an(n+za Y , n>0 and O<a<1 (6.15)
A*(1-a) (1-2a) 2

7.2 Conclusion

In each case of the birth processes, the various approaches lead to same distribution. The
distributions that emerged from increments in pure birth process were power series
distributions and were all discrete.

The first passage distributions that emerged from pure birth process were continuous

distributions

7.3 Recommendation for Further Research

(1) Determine the distribution emerging from pure birth processes when the birth rate is a
distribution function.

(2) Determine the distribution emerging from pure birth processes when the birth rate
change over certain time intervals

(3) Determine the distribution emerging from pure birth processes when the birth rate is a
survival function

(4) Determine the distribution emerging from pure birth processes when more than one

births are allowed over between time t and t + At
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