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ABSTRACT 

Several  Philosophers,  Mathematicians  and  Physicists  have  in  recent  years  tried  to  

interpret  general  relativity.   General relativity or the general theory of relativity is the 

geometric theory of gravitation published by Albert Einstein in 1916.  Most  of General relativity  

are  Einstein’s  predictions  which  were  subject  to  interpretation. Mathematicians  and  

Physicists  have  tried  to  test  and  apply  the  predictions.  The  aim  of  this  study  was  to  

establish  the  tests ,  applications  and  future  development  of  general  relativity  such as  how 

general relativity can be reconciled with the laws of quantum physics to produce a complete and 

self-consistent theory of quantum gravity.   

The  study  has  looked   at  the  predictions,  tests  and  their  applications.  The  predictions  

have  been  tested  by  international  observatory  bodies  such  as,  National  Aeronautics  and  

Space  Administration  (NASA).   This   predictions   have  found  their  applications  in  study  

of  the  universe.  But  some  of  the  predictions  have  not  been  fully  tested,  their  research  is  

still  on,  such  as,  the  production   of    gravitational  waves.  However, it is still an open 

question as to how the concepts of quantum theory can be reconciled with those of general 

relativity.  Despite major efforts, no complete and consistent theory of quantum gravity is 

currently known, even though a number of promising candidates exist. 
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CHAPTER   1: Introduction 

 

1.1 General Relativity  

General relativity or the general theory of relativity is the geometric theory of gravitation 

published by Albert Einstein in 1916.  It is the current description of gr 

avitation in modern physics. General relativity generalises special relativity and Newton's law of 

universal gravitation, providing a unified description of gravity as a geometric property of space 

and time, or spacetime. In particular, the curvature of spacetime  is directly related to 

the four-momentum (mass-energy and linear momentum) of whatever matter and radiation are 

present,  p  =  where  E is  mass-energy, c is velocity  of  light and  

are  space linear momentum. The relation is specified by the Einstein field equations, a system of 

partial differential equations. 

1.2  Predictions of General Relativity 

Some predictions of general relativity differ significantly from those of classical physics, 

especially concerning the passage of time, the geometry of space, the motion of bodies in free 

fall, and the propagation of light. Examples of such differences include gravitational time 

dilation, gravitational lensing, the gravitational redshift of light, and the gravitational time delay. 

General relativity's predictions have been confirmed in all observations and experiments to date.  

Einstein's theory proposes the existence of black holes—regions of space in which space and 

time are distorted in such a way that nothing, not even light, can escape—as an end-state for 

massive stars. There is ample evidence that such stellar black holes as well as more massive 
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varieties of black hole are responsible for the intense radiation emitted by certain types of 

astronomical objects such as active galactic nuclei or microquasars.  

The bending of light by gravity can lead to the phenomenon of gravitational lensing, where 

multiple images of the same distant astronomical object are visible in the sky. General relativity 

also predicts the existence of gravitational waves, which have since been measured indirectly; a 

direct measurement is the aim of projects such as LIGO and NASA/ESA Laser Interferometer 

Space Antenna. In addition, general relativity is the basis of current cosmological models of a 

consistently expanding universe. 

1.3 Problem Statement  

Although general relativity is not the only relativistic theory of gravity, it is the simplest theory 

that is consistent with experimental data. However, unanswered questions remain, the most 

fundamental being how general relativity can be reconciled with the laws of quantum physics to 

produce a complete and self-consistent theory of quantum gravity. 

Soon after publishing the special theory of relativity in 1905, Einstein started thinking about how 

to incorporate gravity into his new relativistic framework. In 1907, beginning with a simple 

thought experiment involving an observer in free fall, he embarked on what would be an eight-

year search for a relativistic theory of gravity. After numerous detours and false starts, his work 

culminate in the November, 1915 presentation to the Prussian Academy of Science of what are 

now known as the Einstein field equations,  
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 These equations specify how the geometry of space and time is influenced by whatever matter is 

present, and form the core of Einstein's general theory of relativity.  

The Einstein field equations are nonlinear and very difficult to solve. Einstein used 

approximation methods in working out initial predictions of the theory. But as early as 1916, the 

astrophysicist Karl Schwarzschild found the first non-trivial exact solution to the Einstein field 

equations, the so-called Schwarzschild metric, 

   

 This solution laid the groundwork for the description of the final stages of gravitational collapse, 

and the objects known today as black holes. In the same year, the first steps towards generalizing 

Schwarzschild's solution to electrically charged objects were taken, which eventually resulted in 

the Reissner-Nordström solution, now associated with electrically charged black holes. 

   

where 

τ is the proper time (time measured by a clock moving with the particle) in seconds,  

c is the speed of light in meters per second,  

t is the time coordinate (measured by a stationary clock at infinity) in seconds,  
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r is the radial coordinate (circumference of a circle centered on the star divided by 2π) in 

meters,  

Ω is the solid angle,  

                                          

rs is the Schwarzschild radius (in meters) of the massive body, which is related to its 

mass M by  

   =                                                 

where G is the gravitational constant, and  

is a length-scale corresponding to the electric charge Q of the mass  

 

                                                   

where 1/4πε0 is Coulomb's force constant.  In 1917, Einstein applied his theory to the 

universe as a whole, initiating the field of relativistic cosmology. In line with 

contemporary thinking, he assumed a static universe, adding a new parameter to his 

original field equations—the cosmological constant. By 1929, however, the work of 

Hubble and others had shown that our universe is expanding. This is readily described by 

the expanding cosmological solutions found by Friedmann in 1922, which do not require 
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a cosmological constant. Lemaître used these solutions to formulate the earliest version 

of the big bang models, in which our universe has evolved from an extremely hot and 

dense earlier state.  Einstein later declared the cosmological constant the biggest blunder 

of his life.   

During that period, general relativity remained something of a curiosity among physical theories. 

It was clearly superior to Newtonian gravity, being consistent with special relativity and 

accounting for several effects unexplained by the Newtonian theory. Einstein himself had shown 

in 1915 how his theory explained the anomalous perihelion advance of the planet Mercury 

without any arbitrary parameters. Similarly, a 1919 expedition led by Eddington confirmed 

general relativity's prediction for the deflection of starlight by the Sun during the total solar 

eclipse of May 29, 1919,  making Einstein instantly famous. Yet the theory entered the 

mainstream of theoretical physics and astrophysics only with the developments between 

approximately 1960 and 1975, now known as the Golden age of general relativity. Physicists 

began to understand the concept of a black hole, and to identify these objects' astrophysical 

manifestation as quasars.  Ever more precise solar system tests confirmed the theory's predictive 

power,  and relativistic cosmology, too, became amenable to direct observational tests.  

     

 

  

Figure 1 
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A Hubble picture showing a quasar core 

Quasars show a very high redshift, which is an effect of the expansion of the universe between 

the quasar and the Earth. They are among the most luminous, powerful, and energetic objects 

known in the universe. They tend to inhabit the very centers of active young galaxies and can 

emit up to a thousand times the energy output of the Milky Way 
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Chapter 2: Evolution of General Relativity 

 

2.1.  From classical mechanics to general relativity 

General relativity is best understood by examining its similarities with and departures from 

classical physics. The first step is the realization that classical mechanics and Newton's law of 

gravity admit of a geometric description. The combination of this description with the laws of 

special relativity results in a heuristic derivation of general relativity.  

2.2.    Geometry of Newtonian Gravity 

At the base of classical mechanics is the notion that a body's motion can be described as a 

combination of free (or inertial) motion, and deviations from this free motion. Such deviations 

are caused by external forces acting on a body in accordance with Newton's second law of 

motion, which states that the net force acting on a body is equal to that body's (inertial) mass 

multiplied by its acceleration, 

              F   =   ma                                                          (2.1)          

  The preferred inertial motions are related to the geometry of space and time: in the standard 

reference frames of classical mechanics, objects in free motion move along straight lines at 

constant speed. In modern parlance, their paths are geodesics, straight world lines in curved 

spacetime.  
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According to general relativity, a ball will fall the same way in an accelerating rocket as it does 

in a gravitational field, such as on Earth. Conversely, one might expect that inertial motions, 

once identified by observing the actual motions of bodies and making allowances for the external 

forces (such as electromagnetism or friction), can be used to define the geometry of space, as 

well as a time coordinate. However, there is an ambiguity once gravity comes into play. 

According to Newton's law of gravity, and independently verified by experiments such as that of 

Eötvös and its successors,  there is a universality of free fall (also known as the weak 

equivalence principle): the trajectory of a test body in free fall depends only on its position and 

initial speed, but not on any of its material properties.  A simplified version of this is embodied 

in Einstein's elevator experiment, for an observer in a small enclosed room, it is impossible to 

decide, by mapping the trajectory of bodies such as a dropped ball, whether the room is at rest in 

a gravitational field, or in free space aboard an accelerating rocket generating a force equal to 

gravity.  

Given the universality of free fall, there is no observable distinction between inertial motion and 

motion under the influence of the gravitational force. This suggests the definition of a new class 

of inertial motion, namely that of objects in free fall under the influence of gravity. This new 

class of preferred motions, too, defines a geometry of space and time—in mathematical terms, it 

is the geodesic motion associated with a specific connection which depends on the gradient of 

the gravitational potential. Space, in this construction, still has the ordinary Euclidean geometry. 

However, spacetime as a whole is more complicated. As can be shown using simple thought 

experiments following the free-fall trajectories of different test particles, the result of 

transporting spacetime vectors that can denote a particle's velocity (time-like vectors) will vary 

with the particle's trajectory; mathematically speaking, the Newtonian connection is not 
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integrable. From this, one can deduce that spacetime is curved. The result is a geometric 

formulation of Newtonian gravity using only covariant concepts, i.e. a description which is valid 

in any desired coordinate system.  In this geometric description, tidal effects—the relative 

acceleration of bodies in free fall—are related to the derivative of the connection, showing how 

the modified geometry is caused by the presence of mass.  

2.3.  Relativistic Generalization 

As intriguing as geometric Newtonian gravity may be, its basis, classical mechanics, is merely a 

limiting case of (special) relativistic mechanics.  In the language of symmetry: where gravity can 

be neglected, physics is Lorentz invariant as in special relativity rather than Galilei invariant as 

in classical mechanics. The defining symmetry of special relativity is the Poincaré group which 

also includes translations and rotations. The differences between the two become significant 

when we are dealing with speeds approaching the speed of light, and with high-energy 

phenomena.  

Special relativity is defined in the absence of gravity, so for practical applications, it is a suitable 

model whenever gravity can be neglected. Bringing gravity into play, and assuming the 

universality of free fall, an analogous reasoning: there are no global inertial frames. Instead there 

are approximate inertial frames moving alongside freely falling particles. Translated into the 

language of spacetime: the straight time-like lines that define a gravity-free inertial frame are 

deformed to lines that are curved relative to each other, suggesting that the inclusion of gravity 

necessitates a change in spacetime geometry.  A priori, it is not clear whether the new local 

frames in free fall coincide with the reference frames in which the laws of special relativity 

hold—that theory is based on the propagation of light, and thus on electromagnetism, which 
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could have a different set of preferred frames. But using different assumptions about the special-

relativistic frames (such as in free fall), one can derive different predictions for the gravitational 

redshift, that is, the way in which the frequency of light shifts as the light propagates through a 

gravitational field. The actual measurements show that free-falling frames are the ones in which 

light propagates as it does in special relativity.  The generalization of this statement, namely that 

the laws of special relativity hold to good approximation in freely falling (and non-rotating) 

reference frames, is known as the Einstein equivalence principle, a crucial guiding principle for 

generalizing special-relativistic physics to include gravity.  The same experimental data shows 

that time as measured by clocks in a gravitational field called proper time, does not follow the 

rules of special relativity. In the language of spacetime geometry, it is not measured by the 

Minkowski metric. As in the Newtonian case, this is suggestive of a more general geometry. At 

small scales, all reference frames that are in free fall are equivalent, and approximately 

Minkowskian. Consequently, we are now dealing with a curved generalization of Minkowski 

space. The metric tensor that defines the geometry—in particular, how lengths and angles are 

measured—is not the Minkowski metric of special relativity, it is a generalization known as a 

semi- or pseudo-Riemannian metric. Furthermore, each Riemannian metric is naturally 

associated with one particular kind of connection, the Levi-Civita connection, and this is, in fact, 

the connection that satisfies the equivalence principle and makes space locally Minkowskian 

(that is, in suitable locally inertial coordinates, the metric is Minkowskian, and its first partial 

derivatives and the connection coefficients vanish).  

2.4.  Einstein's Equations 

Having formulated the relativistic, geometric version of the effects of gravity, the question of 

gravity's source remains. In Newtonian gravity, the source is mass. In special relativity, mass 
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turns out to be part of a more general quantity called the energy-momentum tensor, which 

includes both energy and momentum densities as well as stress (that is, pressure and shear).  

Using the equivalence principle, this tensor is readily generalized to curved space-time. Drawing 

further upon the analogy with geometric Newtonian gravity, it is natural to assume that the field 

equation for gravity relates this tensor and the Ricci tensor, which describes a particular class of 

tidal effects: the change in volume for a small cloud of test particles that are initially at rest, and 

then fall freely. In special relativity, conservation of energy-momentum corresponds to the 

statement that the energy-momentum tensor is divergence-free 

              

 This formula, too, is readily generalized to curved spacetime by replacing partial derivatives 

with their curved-manifold counterparts, covariant derivatives studied in differential geometry. 

With this additional condition—the covariant divergence of the energy-momentum tensor, and 

hence of whatever is on the other side of the equation, is zero— the simplest set of equations are 

what are called Einstein's (field) equations: 

                                      

On the left-hand side is the Einstein tensor, a specific divergence-free combination of the Ricci 

tensor and the metric. In particular, 
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is the curvature scalar. The Ricci tensor itself is related to the more general Riemann curvature 

tensor as 

                          

 

On the right-hand side, is the energy-momentum tensor. All tensors are written in abstract 

index notation.  Matching the theory's prediction to observational results for planetary orbits (or, 

equivalently, assuring that the weak-gravity, low-speed limit is Newtonian mechanics), the 

proportionality constant can be fixed as κ = 8πG/c4, with G the gravitational constant and c the 

speed of light.  When there is no matter present, so that the energy-momentum tensor vanishes, 

the result are the vacuum Einstein equations, 

                                                                                         

There are alternatives to general relativity built upon the same premises, which include 

additional rules and/or constraints, leading to different field equations. Examples are Brans-

Dicke theory, teleparallelism, and Einstein-Cartan theory.  
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CHAPTER   3: Definition and Tests  of  General  Relativity 

3.1. Definition and Basic Properties 

General relativity is a metric theory of gravitation. At its core are Einstein's equations, which 

describe the relation between the geometry of a four-dimensional, pseudo-Riemannian manifold 

representing spacetime, and the energy-momentum contained in that spacetime. Phenomena that 

in classical mechanics are ascribed to the action of the force of gravity (such as free-fall, orbital 

motion, and spacecraft trajectories), correspond to inertial motion within a curved geometry of 

spacetime in general relativity.   There is no gravitational force deflecting objects from their 

natural, straight paths. Instead, gravity corresponds to changes in the properties of space and time, 

which in turn changes the straightest-possible paths that objects will naturally follow.  The 

curvature is, in turn, caused by the energy-momentum of matter. Paraphrasing the relativist John 

Archibald Wheeler, spacetime tells matter how to move; matter tells spacetime how to 

curve.http://en.wikipedia.org/wiki/General_relativity_resources - cite_note-34  

While general relativity replaces the scalar gravitational potential of classical physics by a 

symmetric rank-two tensor, the latter reduces to the former in certain limiting cases. For weak 

gravitational fields and slow speed relative to the speed of light, the theory's predictions 

converge on those of Newton's law of universal gravitation. As it is constructed using tensors, 

general relativity exhibits general covariance: its laws formulaed within the general relativistic 

framework—take on the same form in all coordinate systems. Furthermore, the theory does not 

contain any invariant geometric background structures, i.e. it is background independent. It thus 

satisfies a more stringent general principle of relativity, namely that the laws of Physics are the 
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same for all observers. Locally, as expressed in the equivalence principle, spacetime is 

Minkowskian, and the laws of Physics exhibit local Lorentz invariance.  

3.2. Model-Building 

The core concept of general-relativistic model-building is that of a solution of Einstein's 

equations. Given both Einstein's equations and suitable equations for the properties of matter, 

such a solution consists of a specific semi-Riemannian manifold (usually defined by giving the 

metric in specific coordinates), and specific matter fields defined on that manifold. Matter and 

geometry must satisfy Einstein's equations, so in particular, the matter's energy-momentum 

tensor must be divergence-free. The matter must, of course, also satisfy whatever additional 

equations were imposed on its properties. In short, such a solution is a model universe that 

satisfies the laws of general relativity, and possibly additional laws governing whatever matter 

might be present.   Einstein's equations are nonlinear partial differential equations and, as such, 

difficult to solve exactly.  Nevertheless, a number of exact solutions are known, although only a 

few have direct physical applications.  The best-known exact solutions, and also those most 

interesting from a Physics point of view, are the Schwarzschild solution, the Reissner-Nordström 

solution and the Kerr metric, each corresponding to a certain type of black hole in an otherwise 

empty universe,  and the Friedmann-Lemaître-Robertson-Walker and de Sitter universes, each 

describing an expanding cosmos.  Exact solutions of great theoretical interest include the Gödel 

universe (which opens up the intriguing possibility of time travel in curved spacetimes), the 

Taub-NUT solution (a model universe that is homogeneous, but anisotropic), and Anti-de Sitter 

space (which has recently come to prominence in the context of what is called the Maldacena 

conjecture).  Given the difficulty of finding exact solutions, Einstein's field equations are also 

solved frequently by numerical integration on a computer, or by considering small perturbations 
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of exact solutions. In the field of numerical relativity, powerful computers are employed to 

simulate the geometry of spacetime and to solve Einstein's equations for interesting situations 

such as two colliding black holes. In principle, such methods may be applied to any system, 

given sufficient computer resources, and may address fundamental questions such as naked 

singularities.  

3.3.    Tests of General Relativity  

At its introduction in 1915, the general theory of relativity did not have a solid empirical 

foundation. It was known that it correctly accounted for the "anomalous" precession of the 

perihelion of Mercury and on philosophical grounds it was considered satisfying that it was able 

to unify Newton's law of universal gravitation with special relativity. That light appeared to bend 

in gravitational fields in line with the predictions of general relativity was found in 1919 but it 

was not until a program of precision tests was started in 1959 that the various predictions of 

general relativity were tested to any further degree of accuracy in the weak gravitational field 

limit, severely limiting possible deviations from the theory. 

 Beginning in 1974, Hulse, Taylor and others have studied the behaviour of binary pulsars 

experiencing much stronger gravitational fields than found in our solar system. Both in the weak 

field limit (as in our solar system) and with the stronger fields present in systems of binary 

pulsars the predictions of general relativity have been extremely well tested locally. 

The very strong gravitational fields that must be present close to black holes, especially those 

supermassive black holes which are thought to power active galactic nuclei and the more active 

quasars, belong to a field of intense active research. Observations of these quasars and active 

galactic nuclei are difficult, and interpretation of the observations is heavily dependent upon 
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astrophysical models other than general relativity or competing fundamental theories of 

gravitation, but they are qualitatively consistent with the black hole concept as modelled in 

general relativity. 

3.3.1. Perihelion Precession of Mercury 

Precession is a change in the orientation of the rotational axis of a rotating body. It can be 

defined as a change in direction of the rotation axis in which the second Euler angle (nutation) is 

constant. The orbit of a planet around the Sun is not really an ellipse but a flower-petal shape 

because the major axis of each planet's elliptical orbit also precesses within its orbital plane, 

partly in response to perturbations in the form of the changing gravitational forces exerted by 

other planets. This is called perihelion precession or apsidal precession. 

Discrepancies between the observed perihelion precession rate of the planet Mercury and that 

predicted by classical mechanics were prominent among the forms of experimental evidence 

leading to the acceptance of Einstein's Theory of Relativity (in particular, his General Theory of 

Relativity), which accurately predicted the anomalies.  
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Figure 2 

The orientation of Mercury's orbit is found to precess in 

space over time, as indicated in the adjacent figure (the 

magnitude of the effect is greatly exaggerated for 

purposes of illustration). This is commonly called the "precession of the perihelion", because it 

causes the position of the perihelion to move around the center of mass. Only part of this can be 

accounted for by perturbations in Newton's theory. There is an extra 43 seconds of arc per 

century in this precession that is predicted by the Theory of General Relativity and observed to 

occur. This effect is extremely small, but the measurements are very precise and can detect such 

small effects very well 

Under Newtonian physics, a two-body system consisting of a lone object orbiting a spherical 

mass would trace out an ellipse with the spherical mass at a focus. The point of closest approach, 

Figure 3 
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called the periapsis (or, as the central body in our Solar System is the sun, perihelion), is fixed. A 

number of effects in our solar system cause the perihelions of planets to precess (rotate) around 

the sun. The principal cause is the presence of other planets which perturb each other's orbit. 

Another (much more minor) effect is solar oblateness. 

Mercury deviates from the precession predicted from the Newtonian effects. This anomalous rate 

of precession of the perihelion of Mercury's orbit was first recognized in 1859 as a problem in 

celestial mechanics, by Urbain Le Verrier. His re-analysis of available timed observations of 

transits of Mercury over the Sun's disk from 1697 to 1848 showed that the actual rate of the 

precession disagreed from that predicted from Newton's theory by 38" (arc seconds) per tropical 

century (later re-estimated at 43").  A number of ad hoc and ultimately unsuccessful solutions 

were proposed, but they tended to introduce more problems. In general relativity, this remaining 

precession, or change of orientation of the orbital ellipse within its orbital plane, is explained by 

gravitation being mediated by the curvature of spacetime. Einstein showed that general relativity  

agrees closely with the observed amount of perihelion shift. This was a powerful factor 

motivating the adoption of general relativity. 

Although earlier measurements of planetary orbits were made using conventional telescopes, 

more accurate measurements are now made with radar. The total observed precession of Mercury 

is 574.10±0.65 arc-seconds per century  relative to the inertial ICFR. This precession can be 

attributed to the following causes: 
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Sources of the Precession of Perihelion for Mercury 

Amount (arcsec/Julian century) Cause 

531.63 ±0.69  Gravitational tugs of the other planets 

0.0254 Oblateness of the Sun (quadrupole moment) 

42.98 ±0.04 General relativity 

574.64±0.69 Total 

574.10±0.65 Observed 

The correction by 42.98" is 3/2 multiple of classical prediction. 

Thus the effect can be fully explained by general relativity. More recent calculations based on 

more precise measurements have not materially changed the situation. 

The other planets experience perihelion shifts as well, but, since they are farther from the sun and 

have longer periods, their shifts are lower, and could not be observed accurately until long after 

Mercury's. For example, the perihelion shift of Earth's orbit due to general relativity is of 3.84 

seconds of arc per century, and Venus's is 8.62". Both values are in good agreement with 

observation.  The periapsis shift of binary pulsar systems have been measured, with PSR 

1913+16 amounting to 4.2o per year.  These observations are consistent with general relativity.  

It is also possible to measure periapsis shift in binary star systems which do not contain ultra-

dense stars, but it is more difficult to model the classical effects precisely - for example, the 

alignment of the stars' spin to their orbital plane needs to be known and is hard to measure 

directly - so a few systems such as DI Herculis have been considered as problematic cases for 

general relativity. 
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3.3.2.  Deflection of Light by the Sun 

  

Figure 4 

Deflection  of  light  sent  out  from  the  location  shown  in  blue,  near  a  compact  body  

shown  in  grey.   

Henry Cavendish in 1784 and Johann Georg von Soldner in 1801 had pointed out that 

Newtonian gravity predicts that starlight will bend around a massive object.  The same value as 

Soldner's was calculated by Einstein in 1911 based on the equivalence principle alone. However, 

Einstein noted in 1915 in the process of completing general relativity, that his 1911-result is only 

half of the correct value. Einstein became the first to calculate the correct value for light bending. 

The first observation of light deflection was performed by noting the change in position of stars 

as they passed near the Sun on the celestial sphere. The observations were performed in 1919 by 

Arthur Eddington and his collaborators during a total solar eclipse,  so that the stars near the Sun 
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could be observed. Observations were made simultaneously in the cities of Sobral, Ceará, Brazil 

and in São Tomé and Príncipe on the west coast of Africa.    

The early accuracy, however, was poor. The results were argued by some  to have been plagued 

by systematic error and possibly confirmation bias, although modern reanalysis of the dataset  

suggests that Eddington's analysis was accurate.  The measurement was repeated by a team from 

the Lick Observatory in the 1922 eclipse, with results that agreed with the 1919 results and has 

been repeated several times since, most notably in 1973 by a team from the University of Texas. 

Considerable uncertainty remained in these measurements for almost fifty years, until 

observations started being made at radio frequencies. It was not until the late 1960s that it was 

definitively shown that the amount of deflection was the full value predicted by general relativity, 

and not half that number. The Einstein ring is an example of the deflection of light from distant 

galaxies by more nearby objects. 

3.3.3. Gravitational Redshift of Light 

In astrophysics, gravitational redshift or Einstein shift is the process by which electromagnetic 

radiation originating from a source that is in gravitational field is reduced in frequency, or 

redshifted, when observed in a region of a weaker gravitational field. This is as a direct result of 

Gravitational time dilation, frequency of the electromagnetic radiation is reduced in an area of a 

higher gravitational potential. There is a corresponding reduction in energy when 

electromagnetic radiation is red shifted, as given by Planck's relation, due to the electromagnetic 

radiation propagating in opposition to the gravitational gradient. There also exists a 

corresponding blueshift when electromagnetic radiation propagates from an area of a weaker 

gravitational field to an area of a stronger gravitational field. 
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If applied to optical wavelengths this manifests itself as a change in the colour of visible light as 

the wavelength of the light is increased toward the red part of the light spectrum. Since 

frequency and wavelength are inversely proportional this is equivalent to saying that the 

frequency of the light is reduced towards the red part of the light spectrum, giving this 

phenomena the name redshift. 

 

 

 

The gravitational redshift of a light wave as it moves upwards 

against a gravitational field (caused by the yellow star below). 

 

Redshift is often denoted with the dimensionless variable , 

defined as the fractional change of the wavelength. 

                  (3.1) 

Where   is the wavelength of the electromagnetic radiation (photon) as measured by the 

observer. is the wavelength of the electromagnetic radiation (photon) when measured at the 

source of emission. 

Figure 5 
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The gravitational redshift of a photon can be calculated in the framework of General Relativity 

(using the Schwarzschild metric) as 

              1+z    =     (3.2) 

where denotes  G  Newton's gravitational constant, M the mass of the gravitating body, c the 

speed of light, and r the distance between the center of mass of the gravitating body and the point 

at which the photon is emitted. The redshift is evaluated in at a distance in the limit going to 

infinity.   When the photon is emitted at a distance equal to the Schwarzschild radius, the redshift 

will be infinitely large. When the photon is emitted at an infinitely large distance, there is no 

redshift. The redshift is not defined for photons emitted inside the Scharzschild radius. This is 

because the gravitational force is too large and the photon cannot escape. 

Einstein predicted the gravitational redshift of light from the equivalence principle in 1907, but it 

is very difficult to measure astrophysically (see the discussion under Equivalence Principle 

below). Although it was measured by Walter Sydney Adams in 1925, it was only conclusively 

tested when the Pound–Rebka experiment in 1959 measured the relative redshift of two sources 

situated at the top and bottom of Harvard University's Jefferson tower using an extremely 

sensitive phenomenon called the Mössbauer effect.  The result was in excellent agreement with 

general relativity. This was one of the first precision experiments testing general relativity. 

3.4. Modern Tests 

The modern era of testing general relativity was ushered in largely at the impetus of Dicke and 

Schiff who laid out a framework for testing general relativity.  They emphasized the importance 
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not only of the classical tests, but of null experiments, testing for effects which in principle could 

occur in a theory of gravitation, but do not occur in general relativity. Other important theoretical 

developments included the inception of alternative theories to general relativity, in particular, 

scalar-tensor theories such as the Brans–Dicke theory;  the parameterized post-Newtonian 

formalism in which deviations from general relativity can be quantified; and the framework of 

the equivalence principle. 

Experimentally, new developments in space exploration, electronics and condensed matter 

physics have made precise experiments, such as the Pound–Rebka experiment, laser 

interferometry and lunar rangefinding possible. 

3.4.1.    Post-Newtonian Tests of Gravity 

Early tests of general relativity were hampered by the lack of viable competitors to the theory: it 

was not clear what sorts of tests would distinguish it from its competitors. General relativity was 

the only known relativitistic theory of gravity compatible with special relativity and observations. 

Moreover, it is an extremely simple and elegant theory. This changed with the introduction of 

Brans–Dicke theory in 1960. This theory is arguably simpler, as it contains no dimensionful 

constants, and is compatible with a version of Mach's principle and Dirac's large numbers 

hypothesis, two philosophical ideas which have been influential in the history of relativity. 

Ultimately, this led to the development of the parameterized post-Newtonian formalism by 

Nordtvedt and Will, which parameterizes, in terms of ten adjustable parameters, all the possible 

departures from Newton's law of universal gravitation to first order in the velocity of moving 

objects. This approximation allows the possible deviations from general relativity, for slowly 

moving objects in weak gravitational fields, to be systematically analyzed. Much effort has been 
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put into constraining the post-Newtonian parameters, and deviations from general relativity are 

at present severely limited. 

The experiments testing gravitational lensing and light time delay limits the same post-

Newtonian parameter, the so-called Eddington parameter γ, which is a straightforward 

parameterization of the amount of deflection of light by a gravitational source. It is equal to one 

for general relativity, and takes different values in other theories (such as Brans–Dicke theory). It 

is the best constrained of the ten post-Newtonian parameters, but there are other experiments 

designed to constrain the others. Precise observations of the perihelion shift of Mercury constrain 

other parameters, as do tests of the strong equivalence principle. 

One of the goals of the mission BepiColombo is testing the general relativity theory by 

measuring the parameters gamma and beta of the parameterized post-Newtonian formalism with 

high accuracy.  

3.4.2. Gravitational Lensing 

A gravitational lens refers to a distribution of matter (such as a cluster of galaxies) between a 

distant source (a background galaxy) and an observer, that is capable of bending (lensing) the 

light from the source, as it travels towards the observer. This effect is known as gravitational 

lensing and is one of the predictions of Albert Einstein's General Theory of Relativity. 

around a massive object (such as a galaxy cluster or a black hole) is curved, and as a result light 

rays from a background source (such as a galaxy) propagating through spacetime are bent. The 

lensing effect can magnify and distort the image of the background source. 



26 

 

Unlike an optical lens, maximum 'bending' occurs closest to, and minimum 'bending' furthest 

from, the center of a gravitational lens. Consequently, a gravitational lens has no single focal 

point, but a focal line instead. If the (light) source, the massive lensing object, and the observer 

lie in a straight line, the original light source will appear as a ring around the massive lensing 

object. If there is any misalignment the observer will see an arc segment instead. This 

phenomenon was first mentioned in 1924 by the St. Petersburg physicist Orest Chwolson,[1] and 

quantified by Albert Einstein in 1936. It is usually referred to in the literature as an Einstein ring, 

since Chwolson did not concern himself with the flux or radius of the ring image. More 

commonly, where the lensing mass is complex (such as galaxy groups and clusters) and does not 

cause a spherical distortion of space–time, the source will resemble partial arcs scattered around 

the lens. The observer may then see multiple distorted images of the same source; the number 

and shape of these depending upon the relative positions of the source, lens, and observer, and 

the shape of the gravitational well of the lensing object. 

There are three classes of gravitational lensing:  

(i) Strong lensing: where there are easily visible distortions such as the formation of Einstein 

rings, arcs, and multiple images. 

(ii)  Weak lensing: where the distortions of background sources are much smaller and can only 

be detected by analyzing large numbers of sources to find coherent distortions of only a few 

percent. The lensing shows up statistically as a preferred stretching of the background objects 

perpendicular to the direction to the center of the lens. By measuring the shapes and orientations 

of large numbers of distant galaxies, their orientations can be averaged to measure the shear of 

the lensing field in any region. This, in turn, can be used to reconstruct the mass distribution in 
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the area: in particular, the background distribution of dark matter can be reconstructed. Since 

galaxies are intrinsically elliptical and the weak gravitational lensing signal is small, a very large 

number of galaxies must be used in these surveys. These weak lensing surveys must carefully 

avoid a number of important sources of systematic error: the intrinsic shape of galaxies, the 

tendency of a camera's point spread function to distort the shape of a galaxy and the tendency of 

atmospheric seeing to distort images must be understood and carefully accounted for. The results 

of these surveys are important for cosmological parameter estimation, to better understand and 

improve upon the Lambda-CDM model, and to provide a consistency check on other 

cosmological observations. They may also provide an important future constraint on dark energy. 

(iii)   Microlensing: where no distortion in shape can be seen but the amount of light received 

from a background object changes in time. The lensing object may be stars in the Milky Way in 

one typical case, with the background source being stars in a remote galaxy, or, in another case, 

an even more distant quasar.  

Figure 6  

 

The effect is small, such that (in the case of strong lensing) even a galaxy with a mass more than 100 

billion times that of the sun will produce multiple images separated by only a few arcseconds. Galaxy 

clusters can produce separations of several arcminutes. In both cases the galaxies and sources are quite 

distant, many hundreds of megaparsecs away from our Galaxy. 
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 Figure 7 

 

 

Bending light around a massive object from a distant source. The orange arrows show the 

apparent position of the background source. The white arrows show the path of the light from the 

true position of the source 

One of the most important tests is gravitational lensing. It has been observed in distant 

astrophysical sources, but these are poorly controlled and it is uncertain how they constrain 

general relativity. The most precise tests are analogous to Eddington's 1919 experiment: they 
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measure the deflection of radiation from a distant source by the sun. The sources that can be 

most precisely analyzed are distant radio sources. In particular, some quasars are very strong 

radio sources. The directional resolution of any telescope is in principle limited by diffraction; 

for radio telescopes this is also the practical limit. An important improvement in obtaining 

positional high accuracies (from milli-arcsecond to micro-arcsecond) was obtained by combining 

radio telescopes across the Earth. The technique is called very long baseline interferometry 

(VLBI). With this technique radio observations couple the phase information of the radio signal 

observed in telescopes separated over large distances. Recently, these telescopes have measured 

the deflection of radio waves by the Sun to extremely high precision, confirming the amount of 

deflection predicted by general relativity aspect to the 0.03% level.  At this level of precision 

systematic effects have to be carefully taken into account to determine the precise location of the 

telescopes on Earth. Some important effects are the Earth's nutation, rotation, atmospheric 

refraction, tectonic displacement and tidal waves. Another important effect is refraction of the 

radio waves by the solar corona. Fortunately, this effect has a characteristic spectrum, whereas 

gravitational distortion is independent of wavelength. Thus, careful analysis, using 

measurements at several frequencies, can subtract this source of error. 

The entire sky is slightly distorted due to the gravitational deflection of light caused by the Sun. 

how general relativity can be reconciled with the laws of quantum physics to produce a complete 

and self-consistent theory of quantum gravity. 

. It measured the positions of about 105 stars. During the full mission about 3.5×106 relative 

positions have been determined, each to an accuracy of typically 3 milliarcseconds (the accuracy 

for an 8–9 magnitude star). Since the gravitation deflection perpendicular to the Earth-Sun 
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direction is already 4.07 mas, corrections are needed for practically all stars. Without systematic 

effects, the error in an individual observation of 3 milliarcseconds, could be reduced by the 

square root of the number of positions, leading to a precision of 0.0016 mas. Systematic effects, 

however, limit the accuracy of the determination to 0.3% (Froeschlé, 1997). 

In future, Gaia spacecraft will conduct a census of a thousand million stars in our Galaxy and 

measure their positions to an accuracy of 24 microarcseconds. Thus it will also provide stringent 

new tests of gravitational deflection of light caused by the Sun which was predicted by General 

relativity.  

3.4.3. Gravitational Lensing 

Irwin I. Shapiro proposed another test, beyond the classical tests, which could be performed 

within the solar system. It is sometimes called the fourth "classical" test of general relativity. He 

predicted a relativistic time delay (Shapiro delay) in the round-trip travel time for radar signals 

reflecting off other planets.   
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Figure 8:    High-precision test of general relativity by the Cassini space probe (artist's 

impression): radio signals sent between the Earth and the probe (green wave) are delayed by 

the warping of space and time (blue lines) due to the Sun's mass. 

 

The mere curvature of the path of a photon passing near the Sun is too small to have an 

observable delaying effect (when the round-trip time is compared to the time taken if the photon 

had followed a straight path), but general relativity predicts a time delay which becomes 

progressively larger when the photon passes nearer to the Sun due to the time dilation in the 

gravitational potential of the sun. Observing radar reflections from Mercury and Venus just 

before and after it will be eclipsed by the Sun gives agreement with general relativity theory at 

the 5% level.  More recently, the Cassini probe has undertaken a similar experiment which gave 

agreement with general relativity at the 0.002% level. Very Long Baseline Interferometry has 

measured velocity-dependent (gravitomagnetic) corrections to the Shapiro time delay in the field 

of moving Jupiter. 
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3.4.4. The Equivalence Principle 

The equivalence principle, in its simplest form, asserts that the trajectories of falling bodies in a 

gravitational field should be independent of their mass and internal structure, provided they are 

small enough not to disturb the environment or be affected by tidal forces. This idea has been 

tested to incredible precision by Eötvös torsion balance experiments, which look for a 

differential acceleration between two test masses 

A version of the equivalence principle, called the strong equivalence principle, asserts that self-

gravitation falling bodies, such as stars, planets or black holes (which are all held together by 

their gravitational attraction) should follow the same trajectories in a gravitational field, provided 

the same conditions are satisfied. This is called the Nordtvedt effect and is most precisely tested 

by the Lunar Laser Ranging Experiment.  Since 1969, it has continuously measured the distance 

from several rangefinding stations on Earth to reflectors on the Moon to approximately 

centimeter accuracy.  These have provided a strong constraint on several of the other post-

Newtonian parameters. 

Another part of the strong equivalence principle is the requirement that Newton's gravitational 

constant be constant in time, and have the same value everywhere in the universe. There are 

many independent observations limiting the possible variation of Newton's gravitational constant,  

but one of the best comes from lunar rangefinding which suggests that the gravitational constant 

does not change by more than one part in 1011 per year.  

3.4.5.    Gravitational Redshift 

The first of the classical tests discussed above, the gravitational redshift, is a simple consequence 

of the Einstein equivalence principle and was predicted by Einstein in 1907. As such, it is not a 
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test of general relativity in the same way as the post-Newtonian tests, because any theory of 

gravity obeying the equivalence principle should also incorporate the gravitational redshift. 

Nonetheless, confirming the existence of the effect was an important substantiation of relativistic 

gravity, since the absence of gravitational redshift would have strongly contradicted relativity. 

The first observation of the gravitational redshift was the measurement of the shift in the spectral 

lines from the white dwarf star Sirius B by Adams in 1925. Although this measurement, as well 

as later measurements of the spectral shift on other white dwarf stars, agreed with the prediction 

of relativity, it could be argued that the shift could possibly stem from some other cause, and 

hence experimental verification using a known terrestrial source was preferable. 

Experimental verification of gravitational redshift using terrestrial sources took several decades, 

because it is difficult to find clocks (to measure time dilation) or sources of electromagnetic 

radiation (to measure redshift) with a frequency that is known well enough that the effect can be 

accurately measured. It was confirmed experimentally for the first time in 1960 using 

measurements of the change in wavelength of gamma-ray photons generated with the Mössbauer 

effect, which generates radiation with a very narrow line width. The experiment, performed by 

Pound and Rebka and later improved by Pound and Snyder, is called the Pound–Rebka 

experiment. The accuracy of the gamma-ray measurements was typically 1%. The blueshift of a 

falling photon can be found by assuming it has an equivalent mass based on its frequency (where 

h is Planck's constant) along with , a result of special relativity. Such simple derivations ignore 

the fact that in general relativity the experiment compares clock rates, rather than energies. In 

other words, the "higher energy" of the photon after it falls can be equivalently ascribed to the 

slower running of clocks deeper in the gravitational potential well. To fully validate general 

relativity, it is important to also show that the rate of arrival of the photons is greater than the rate 
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at which they are emitted. A very accurate gravitational redshift experiment, which deals with 

this issue, was performed in 1976, where a hydrogen maser clock on a rocket was launched to a 

height of 10,000 km, and its rate compared with an identical clock on the ground. It tested the 

gravitational redshift to 0.007%. 

Although the Global Positioning System (GPS) is not designed as a test of fundamental physics, 

it must account for the gravitational redshift in its timing system, and physicists have analyzed 

timing data from the GPS to confirm other tests. When the first satellite was launched, some 

engineers resisted the prediction that a noticeable gravitational time dilation would occur, so the 

first satellite was launched without the clock adjustment that was later built into subsequent 

satellites. It showed the predicted shift of 38 microseconds per day. This rate of discrepancy is 

sufficient to substantially impair function of GPS within hours if not accounted for.  

Other precision tests of general relativity  not discussed here, are the Gravity Probe A satellite, 

launched in 1976, which showed gravity and velocity affect the ability to synchronize the rates of 

clocks orbiting a central mass; the Hafele–Keating experiment, which used atomic clocks in 

circumnavigating aircraft to test general relativity and special relativity together;  and the 

forthcoming Satellite Test of the Equivalence Principle. 

3.4.6. Frame-Dragging Tests 

Tests of the Lense–Thirring precession, consisting of small secular precessions of the orbit of a 

test particle in motion around a central rotating mass like, e.g., a planet or a star, have been 

performed with the LAGEOS satellites,  but many aspects of them remain controversial.  The 

same effect may have been detected in the data of the Mars Global Surveyor (MGS) spacecraft,  
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a former probe in orbit around Mars; also such a test raised a debate.   First attempts to detect the 

Sun's Lense–Thirring effect on the perihelia of the inner planets have been recently reported   as 

well. Frame dragging would cause the orbital plane of stars orbiting near a supermassive black 

hole to precess about the black hole spin axis. This effect should be detectable within the next 

few years via astrometric monitoring of stars at the center of the Milky Way galaxy. By 

comparing the rate of orbital precession of two stars on different orbits, it is possible in principle 

to test the no-hair theorems of general relativity. 

 The Gravity Probe B satellite, launched in 2004 and operated until 2005 detected frame-

dragging and the geodetic effect. The experiment used four quartz spheres the size of ping pong 

balls coated with a superconductor. Data analysis continued through 2011 due to high noise 

levels and difficulties in modelling the noise accurately so that a useful signal can be found. 

Principal investigators at Stanford University reported on May 4, 2011, that they had accurately 

measured the framing effect relative to the distant star IM Pegasi, and the calculations proved to 

be in line with the prediction of Einstein's theory. The results, published in Physical Review 

Letters measured the geodetic effect with an error of about 0.2 percent. The results reported the 

frame dragging effect (caused by the Earth's rotation) added up to 37 milliarcseconds with an 

error of about 19 percent.   

3.4.7.   Strong Field Tests 

 

Pulsars are rapidly rotating neutron stars which emit regular radio pulses as they rotate. As such 
they act as clocks which allow very precise monitoring of their orbital motions. 
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Figure 9: Model of a pulsar rotating around its spin axis and emitting radio waves along its 

magnetic axis 

Observations of pulsars in orbit around other stars have all demonstrated substantial periapsis 

precessions that cannot be accounted for classically but can be accounted for by using general 

relativity. For example, the Hulse–Taylor binary pulsar PSR B1913+16 (a pair of neutron stars in 

which one is detected as a pulsar) has an observed precession of over 4o of arc per year 

(periastron shift per orbit only about 10-6). This precession has been used to compute the masses 

of the components. 

Similarly to the way in which atoms and molecules emit electromagnetic radiation, a gravitating 

mass that is in quadrupole type or higher order vibration, or is asymmetric and in rotation, can 

emit gravitational waves.   These gravitational waves are predicted to travel at the speed of light. 

For example, planets orbiting the Sun constantly lose energy via gravitational radiation, but this 

effect is so small that it is unlikely it will be observed in the near future. Gravitational waves 

have been indirectly detected from the Hulse–Taylor binary. Precise timing of the pulses shows 

that the stars orbit only approximately according to Kepler's Laws, – over time they gradually 

spiral towards each other, demonstrating an energy loss in close agreement with the predicted 
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energy radiated by gravitational waves. Thus, although the waves have not been directly 

measured, their effect seems necessary to explain the orbits.  

A "double pulsar" discovered in 2003, PSR J0737-3039, has a perihelion precession of 16.90o 

per year; unlike the Hulse–Taylor binary, both neutron stars are detected as pulsars, allowing 

precision timing of both members of the system. Due to this, the tight orbit, the fact that the 

system is almost edge-on, and the very low transverse velocity of the system as seen from Earth, 

J0737−3039 provides by far the best system for strong-field tests of general relativity known so 

far. Several distinct relativistic effects are observed, including orbital decay as in the Hulse–

Taylor system. After observing the system for two and a half years, four independent tests of 

general relativity were possible, the most precise (the Shapiro delay) confirming the general 

relativity prediction within 0.05% . 

3.4.8.   Gravitational Waves 

A number of gravitational wave detectors have been built, with the intent of directly detecting 

the gravitational waves emanating from such astronomical events as the merger of two neutron 

stars. Currently, the most sensitive of these is the Laser Interferometer Gravitational-wave 

Observatory (LIGO), which has been in operation since 2002. So far, there has not been a single 

detection event by any of the existing detectors. Future detectors are being developed or planned, 

which will greatly improve the sensitivity of these experiments, such as the Advanced LIGO 

detector being built for the LIGO facilities, and the proposed Laser Interferometer Space 

Antenna (LISA). It is anticipated, for example, that Advanced LIGO will detect events possibly 

as often as daily. 
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If gravitational waves exist as predicted, they should be detected by these gravitational wave 

detectors. Finding the existence of gravitational waves as predicted by general relativity is a 

critical test of the validity of the theory. 

3.4.9. Cosmological Tests 

Tests of general relativity on the largest scales are not nearly so stringent as solar system tests.  

The earliest such test was prediction and discovery of the expansion of the universe.  In 1922 

Alexander Friedmann found that Einstein equations have non-stationary solutions.  In 1927 

Georges Lemaître showed that static solutions of the Einstein equations, which are possible in 

the presence of the cosmological constant, are unstable, and therefore the static universe 

envisioned by Einstein could not exist (it must either expand or contract).  Lemaître made an 

explicit prediction that the universe should expand.  He also derived a redshift-distance 

relationship, which is now known as the Hubble Law.  Later, in 1931, Einstein himself agreed 

with the results of Friedmann and Lemaître.  The expansion of the universe discovered by Edwin 

Hubble in 1929  was then considered by many (and continues to be considered by some now) as 

a direct confirmation of the general relativity.  In the 1930s, largely due to the work of E. A. 

Milne, it was realised that the linear relationship between redshift and distance derives from the 

general assumption of uniformity and isotropy rather than specifically from general relativity.  

However the prediction of a non-static universe was non-trivial, indeed dramatic, and primarily 

motivated by general relativity.  

Some other cosmological tests include searches for primordial gravity waves generated during 

cosmic inflation, which may be detected in the cosmic microwave background polarization or by 

a proposed space-based gravity wave interferometer called Big Bang Observer. Other tests at 
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high redshift are constraints on other theories of gravity, and the variation of the gravitational 

constant since big bang nucleosynthesis (it varied by no more than 40% since then). 
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CHAPTER 4: Astrophysical Applications 

4.1. Gravitational Lensing 

           The deflection of light by gravity is responsible for a new class of astronomical 

phenomena. If a massive object is situated between the astronomer and a distant target object 

with appropriate mass and relative distances, the astronomer will see multiple distorted images of 

the target. 

Figure 10 

                              

 Such effects are known as gravitational lensing. Depending on the configuration, scale, and 

mass distribution, there can be two or more images, a bright ring known as an Einstein ring, or 

partial rings called arcs.  The earliest example was discovered in 1979;  since then, more than a 

hundred gravitational lenses have been observed.  Even if the multiple images are too close to 

each other to be resolved, the effect can still be measured, e.g., as an overall brightening of the 

target object; a number of such "microlensing events" have been observed.         Gravitational 

lensing has developed into a tool of observational astronomy. It is used to detect the presence 
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and distribution of dark matter, provide a "natural telescope" for observing distant galaxies, and 

to obtain an independent estimate of the Hubble constant. Statistical evaluations of lensing data 

provide valuable insight into the structural evolution of galaxies.  

4.2. Gravitational Wave Astronomy 

Observations of binary pulsars provide strong indirect evidence for the existence of gravitational 

waves. However, gravitational waves reaching us from the depths of the cosmos have not been 

detected directly, which is a major goal of current relativity-related research.  Several land-based 

gravitational wave detectors are currently in operation, most notably the interferometric detectors 

GEO 600, LIGO (three detectors), TAMA 300 and VIRGO.  A joint US-European space-based 

detector, LISA, is currently under development,  with a precursor mission (LISA Pathfinder) due 

for launch in 2012.  

Observations of gravitational waves promise to complement observations in the electromagnetic 

spectrum.[102] They are expected to yield information about black holes and other dense objects 

such as neutron stars and white dwarfs, about certain kinds of supernova implosions, and about 

processes in the very early universe, including the signature of certain types of hypothetical 

cosmic string.  

4.3. Black Holes and other Compact Objects 

Whenever the ratio of an object's mass to its radius becomes sufficiently large, general relativity 

predicts the formation of a black hole, a region of space from which nothing, not even light, can 

escape. In the currently accepted models of stellar evolution, neutron stars of around 1.4 solar 

masses, and stellar black holes with a few to a few dozen solar masses, are thought to be the final 
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state for the evolution of massive stars. Usually a galaxy has one supermassive black hole with a 

few million to a few billion solar masses in its center,  and its presence is thought to have played 

an important role in the formation of the galaxy and larger cosmic structures.  

Astronomically, the most important property of compact objects is that they provide a supremely 

efficient mechanism for converting gravitational energy into electromagnetic radiation.  

Accretion, the falling of dust or gaseous matter onto stellar or supermassive black holes, is 

thought to be responsible for some spectacularly luminous astronomical objects, notably diverse 

kinds of active galactic nuclei on galactic scales and stellar-size objects such as microquasars.  In 

particular, accretion can lead to relativistic jets, focused beams of highly energetic particles that 

are being flung into space at almost light speed. General relativity plays a central role in 

modelling all these phenomena, and observations provide strong evidence for the existence of 

black holes with the properties predicted by the theory. 

 Black holes are also sought-after targets in the search for gravitational waves. Merging black 

hole binaries should lead to some of the strongest gravitational wave signals reaching detectors 

here on Earth, and the phase directly before the merger ("chirp") could be used as a "standard 

candle" to deduce the distance to the merger events–and hence serve as a probe of cosmic 

expansion at large distances.  The gravitational waves produced as a stellar black hole plunges 

into a supermassive one should provide direct information about supermassive black hole's 

geometry.  

        Simulated view of a black hole (center) in front of the Large Magellanic Cloud. Note the 

gravitational lensing effect, which produces two enlarged but highly distorted views of the Cloud. 

Across the top, the Milky Way disk appears distorted into an arc. 



43 

 

                                                  

 

Figure   11 

 

 

 

4.4. Cosmology 

The current models of cosmology are based on Einstein's field equations, which include the 

cosmological constant Λ since it has important influence on the large-scale dynamics of the 

cosmos,where gab is the spacetime metric.  Isotropic and homogeneous solutions of these 

enhanced equations, the Friedmann-Lemaître-Robertson-Walker solutions,  allow physicists to 

model a universe that has evolved over the past 14 billion years from a hot, early Big Bang phase.  
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Once a small number of parameters (for example the universe's mean matter density) have been 

fixed by astronomical observation,  further observational data can be used to put the models to 

the test.  Predictions, all successful, include the initial abundance of chemical elements formed in 

a period of primordial nucleosynthesis,  the large-scale structure of the universe,  and the 

existence and properties of a "thermal echo" from the early cosmos, the cosmic background 

radiation.  

Astronomical observations of the cosmological expansion rate allow the total amount of matter 

in the universe to be estimated, although the nature of that matter remains mysterious in part. 

About 90% of all matter appears to be so-called dark matter, which has mass but does not 

interact electromagnetically and, hence, cannot be observed directly.  There is no generally 

accepted description of this new kind of matter, within the framework of known particle physics  

or otherwise.  Observational evidence from redshift surveys of distant supernovae and 

measurements of the cosmic background radiation also show that the evolution of our universe is 

significantly influenced by a cosmological constant resulting in an acceleration of cosmic 

expansion or, equivalently, by a form of energy with an unusual equation of state, known as dark 

energy, the nature of which remains unclear. A so-called inflationary phase,  an additional phase 

of strongly accelerated expansion at cosmic times of around seconds, was hypothesized in 1980 

to account for several puzzling observations that were unexplained by classical cosmological 

models, such as the nearly perfect homogeneity of the cosmic background radiation.  Recent 

measurements of the cosmic background radiation have resulted in the first evidence for this 

scenario.  However, there is a bewildering variety of possible inflationary scenarios, which 

cannot be restricted by current observations.  An even larger question is the physics of the 

earliest universe, prior to the inflationary phase and close to where the classical models predict 
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the big bang singularity. An authoritative answer would require a complete theory of quantum 

gravity, which has not yet been developed. 
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CHAPTER 5: Advanced Concepts 

5.1. Causal Structure and Global Geometry 

In general relativity, no material body can catch up with or overtake a light pulse. No influence 

from an event A can reach any other location X before light sent out at A to X. In consequence, 

an exploration of all light worldlines (null geodesics) yields key information about the 

spacetime's causal structure. This structure can be displayed using Penrose-Carter diagrams in 

which infinitely large regions of space and infinite time intervals are shrunk ("compactified") so 

as to fit onto a finite map, while light still travels along diagonals as in standard spacetime 

diagrams. 

 Aware of the importance of causal structure, Roger Penrose and others developed what is known 

as global geometry. In global geometry, the object of study is not one particular solution (or 

family of solutions) to Einstein's equations. Rather, relations that hold true for all geodesics, such 

as the Raychaudhuri equation, and additional non-specific assumptions about the nature of 

matter (usually in the form of so-called energy conditions) are used to derive general results. 

    

5.2. Horizons 

Using global geometry, some spacetimes can be shown to contain boundaries called horizons, 

which demarcate one region from the rest of spacetime. The best-known examples are black 

holes: if mass is compressed into a sufficiently compact region of space (as specified in the hoop 

conjecture, the relevant length scale is the Schwarzschild radius), no light from inside can escape 
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to the outside. Since no object can overtake a light pulse, all interior matter is imprisoned as well. 

Passage from the exterior to the interior is still possible, showing that the boundary, the black 

hole's horizon, is not a physical barrier.  

Early studies of black holes relied on explicit solutions of Einstein's equations, notably the 

spherically symmetric Schwarzschild solution (used to describe a static black hole) and the 

axisymmetric Kerr solution (used to describe a rotating, stationary black hole, and introducing 

interesting features such as the ergosphere). Using global geometry, later studies have revealed 

more general properties of black holes. In the long run, they are rather simple objects 

characterized by eleven parameters specifying energy, linear momentum, angular momentum, 

location at a specified time and electric charge. This is stated by the black hole uniqueness 

theorems: "black holes have no hair", that is, no distinguishing marks like the hairstyles of 

humans. Irrespective of the complexity of a gravitating object collapsing to form a black hole, 

the object that results (having emitted gravitational waves) is very simple. 

 Even more remarkably, there is a general set of laws known as black hole mechanics, which is 

analogous to the laws of thermodynamics. For instance, by the second law of black hole 

mechanics, the area of the event horizon of a general black hole will never decrease with time, 

analogous to the entropy of a thermodynamic system. This limits the energy that can be extracted 

by classical means from a rotating black hole (e.g. by the Penrose process).  There is strong 

evidence that the laws of black hole mechanics are, in fact, a subset of the laws of 

thermodynamics, and that the black hole area is proportional to its entropy.  This leads to a 

modification of the original laws of black hole mechanics: for instance, as the second law of 

black hole mechanics becomes part of the second law of thermodynamics, it is possible for black 
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hole area to decrease—as long as other processes ensure that, overall, entropy increases. As 

thermodynamical objects with non-zero temperature, black holes should emit thermal radiation. 

Semi-classical calculations indicate that indeed they do, with the surface gravity playing the role 

of temperature in Planck's law. This radiation is known as Hawking radiation. 

There are other types of horizons. In an expanding universe, an observer may find that some 

regions of the past cannot be observed ("particle horizon"), and some regions of the future cannot 

be influenced (event horizon).  Even in flat Minkowski space, when described by an accelerated 

observer (Rindler space), there will be horizons associated with a semi-classical radiation known 

as Unruh radiation.  

5.3.  Singularities 

Another general—and quite disturbing—feature of general relativity is the appearance of 

spacetime boundaries known as singularities. Spacetime can be explored by following up on 

timelike and lightlike geodesics—all possible ways that light and particles in free fall can travel. 

But some solutions of Einstein's equations have  regions known as spacetime singularities, where 

the paths of light and falling particles come to an abrupt end, and geometry becomes ill-defined. 

In the more interesting cases, these are "curvature singularities", where geometrical quantities 

characterizing spacetime curvature, such as the Ricci scalar, take on infinite values.  Well-known 

examples of spacetimes with future singularities—where worldlines end—are the Schwarzschild 

solution, which describes a singularity inside an eternal static black hole,  or the Kerr solution 

with its ring-shaped singularity inside an eternal rotating black hole.  The Friedmann-Lemaître-

Robertson-Walker solutions and other spacetimes describing universes have past singularities on 
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which worldlines begin, namely big bang singularities, and some have future singularities (big 

crunch) as well.  

Given that these examples are all highly symmetric—and thus simplified—it is tempting to 

conclude that the occurrence of singularities is an artefact of idealization.  The famous 

singularity theorems, proved using the methods of global geometry, say otherwise: singularities 

are a generic feature of general relativity, and unavoidable once the collapse of an object with 

realistic matter properties has proceeded beyond a certain stage  and also at the beginning of a 

wide class of expanding universes.  However, the theorems say little about the properties of 

singularities, and much of current research is devoted to characterizing these entities' generic 

structure.  The cosmic censorship hypothesis states that all realistic future singularities  are safely 

hidden away behind a horizon, and thus invisible to all distant observers. While no formal proof 

yet exists, numerical simulations offer supporting evidence of its validity.  

5.4.   Evolution Equations 

Each solution of Einstein's equation encompasses the whole history of a universe — it is not just 

some snapshot of how things are, but a whole, possibly matter-filled, spacetime. It describes the 

state of matter and geometry everywhere and at every moment in that particular universe. Due to 

its general covariance, Einstein's theory is not sufficient by itself to determine the time evolution 

of the metric tensor. It must be combined with a coordinate condition, which is analogous to 

gauge fixing in other field theories. 

 To understand Einstein's equations as partial differential equations, it is helpful to formulate 

them in a way that describes the evolution of the universe over time. This is done in so-called 

"3+1" formulations, where spacetime is split into three space dimensions and one time dimension. 
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The best-known example is the ADM formalism.  These decompositions show that the spacetime 

evolution equations of general relativity are well-behaved: solutions always exist, and are 

uniquely defined, once suitable initial conditions have been specified.  Such formulations of 

Einstein's field equations are the basis of numerical relativity.  

5.5.  Global and Quasi-Local Quantities 

The notion of evolution equations is intimately tied in with another aspect of general relativistic 

physics. In Einstein's theory, it turns out to be impossible to find a general definition for a 

seemingly simple property such as a system's total mass (or energy). The main reason is that the 

gravitational field—like any physical field—must be ascribed a certain energy, but that it proves 

to be fundamentally impossible to localize that energy.  Nevertheless, there are possibilities to 

define a system's total mass, either using a hypothetical "infinitely distant observer" (ADM mass) 

or suitable symmetries (Komar mass).  If one excludes from the system's total mass the energy 

being carried away to infinity by gravitational waves, the result is the so-called Bondi mass at 

null infinity.  Just as in classical physics, it can be shown that these masses are positive.  

Corresponding global definitions exist for momentum and angular momentum.  There have also 

been a number of attempts to define quasi-local quantities, such as the mass of an isolated 

system formulated using only quantities defined within a finite region of space containing that 

system. The hope is to obtain a quantity useful for general statements about isolated systems, 

such as a more precise formulation of the hoop conjecture. 
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CHAPTER  6: Quantum   Theory  and  General   Relativity 

6.1. Relationship with Quantum Theory 

If general relativity is considered one of the two pillars of modern physics, quantum theory, the 

basis of understanding matter from elementary particles to solid state physics, is the other.  

However, it is still an open question as to how the concepts of quantum theory can be reconciled 

with those of general relativity. 

6.2.  Quantum Field Theory in Curved   Spacetime 

Ordinary quantum field theories, which form the basis of modern elementary particle physics, 

are defined in flat Minkowski space, which is an excellent approximation when it comes to 

describing the behavior of microscopic particles in weak gravitational fields like those found on 

Earth.  In order to describe situations in which gravity is strong enough to influence (quantum) 

matter, yet not strong enough to require quantization itself, physicists have formulated quantum 

field theories in curved spacetime. These theories rely on classical general relativity to describe a 

curved background spacetime, and define a generalized quantum field theory to describe the 

behavior of quantum matter within that spacetime.  Using this formalism, it can be shown that 

black holes emit a blackbody spectrum of particles known as Hawking radiation, leading to the 

possibility that they evaporate over time.  As briefly mentioned above, this radiation plays an 

important role for the thermodynamics of black holes.  

6.3. Quantum Gravity 
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The demand for consistency between a quantum description of matter and a geometric 

description of spacetime,  as well as the appearance of singularities (where curvature length 

scales become microscopic), indicate the need for a full theory of quantum gravity: for an 

adequate description of the interior of black holes, and of the very early universe, a theory is 

required in which gravity and the associated geometry of spacetime are described in the language 

of quantum physics.  Despite major efforts, no complete and consistent theory of quantum 

gravity is currently known, even though a number of promising candidates exist. 

 Attempts to generalize ordinary quantum field theories, used in elementary particle physics to 

describe fundamental interactions, so as to include gravity have led to serious problems. At low 

energies, this approach proves successful, in that it results in an acceptable effective (quantum) 

field theory of gravity.  At very high energies, however, the result are models devoid of all 

predictive power. One attempt to overcome these limitations is string theory, a quantum theory 

not of point particles, but of minute one-dimensional extended objects.  The theory promises to 

be a unified description of all particles and interactions, including gravity;  the price to pay is 

unusual features such as six extra dimensions of space in addition to the usual three.   In what is 

called the second superstring revolution, it was conjectured that both string theory and a 

unification of general relativity and supersymmetry known as supergravity  form part of a 

hypothesized eleven-dimensional model known as M-theory, which would constitute a uniquely 

defined and consistent theory of quantum gravity.  

Another approach starts with the canonical quantization procedures of quantum theory. Using the 

initial-value-formulation of general relativity. the result is the Wheeler-deWitt equation (an 

analogue of the Schrödinger equation) which, regrettably, turns out to be ill-defined.  However, 
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with the introduction of what are now known as Ashtekar variables,  this leads to a promising 

model known as loop quantum gravity. Space is represented by a web-like structure called a spin 

network, evolving over time in discrete steps.  

Depending on which features of general relativity and quantum theory are accepted unchanged, 

and on what level changes are introduced,  there are numerous other attempts to arrive at a viable 

theory of quantum gravity, some examples being dynamical triangulations,  causal sets,      

twistor models  or the path-integral based models of quantum cosmology. 

 All candidate theories still have major formal and conceptual problems to overcome. They also 

face the common problem that, as yet, there is no way to put quantum gravity predictions to 

experimental tests (and thus to decide between the candidates where their predictions vary), 

although there is hope for this to change as future data from cosmological observations and 

particle physics experiments becomes available.  

6.4. Modern research: General  Relativity and Beyond 

General relativity is very successful in providing a framework for accurate models which 

describe an impressive array of physical phenomena. On the other hand, there are many 

interesting open questions, and in particular, the theory as a whole is almost certainly incomplete. 

 In contrast to all other modern theories of fundamental interactions, general relativity is a 

classical theory: it does not include the effects of quantum physics. The quest for a quantum 

version of general relativity addresses one of the most fundamental open questions in physics. 

While there are promising candidates for such a theory of quantum gravity, notably string theory 

and loop quantum gravity, there is at present no consistent and complete theory. It has long been 
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hoped that a theory of quantum gravity would also eliminate another problematic feature of 

general relativity: the presence of spacetime singularities. These singularities are boundaries 

("sharp edges") of spacetime at which geometry becomes ill-defined, with the consequence that 

general relativity itself loses its predictive power. Furthermore, there are so-called singularity 

theorems which predict that such singularities must exist within the universe if the laws of 

general relativity were to hold without any quantum modifications. The best-known examples 

are the singularities associated with the model universes that describe black holes and the 

beginning of the universe. 

 Other attempts to modify general relativity have been made in the ``- 

context of cosmology. In the modern cosmological models, most energy in the universe is in 

forms that have never been detected directly, namely dark energy and dark matter. There have 

been several controversial proposals to obviate the need for these enigmatic forms of matter and 

energy, by modifying the laws governing gravity and the dynamics of cosmic expansion, for 

example modified Newtonian dynamics. 

 Beyond the challenges of quantum effects and cosmology, research on general relativity is rich 

with possibilities for further exploration: mathematical relativists explore the nature of 

singularities and the fundamental properties of Einstein's equations,  ever more comprehensive 

computer simulations of specific spacetimes such as those describing merging black holes are 

run,  and the race for the first direct detection of gravitational waves continues apace. More than 

ninety years after the theory was first published, research is more active than ever. 
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