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The present work considers the donor states in a
GaAs/Gal—xAles QWW of circular cross section. Several
trial wave functions are used to describe the ground state
of the donor impurity. Using these trial wave functions the
binding energy of the donor impurity in the ground state is
determined for the hydrogenic case €(o), and for the
non-hydrogenic case, €(r).

The binding energy for the first excited state is also
determined using a trial wave function which is orthogonal
to the ground state trial wave function. Here again the
calculation is carried out for the hydrogenic case €(o0), and
for the non-hydrogenic case € (r).

It is found that in the ground state the binding energy
increases with decreasing QWW radius for both the hydrogenic
(e (0)) and non-hydrogenic (e(r)) cases. However, the

binding energy increases much more rapidly with QWW radius



in the non~hydrogenic than in the hydrogenic case. The
spatial dielectric function leads to substantially enhanced
binding energy.

For the first excited state the binding energy also
increases with decreasing QWW radius but here the screening
effect of €(r) is negligible.

It is seen from the present work that the binding

energy of a donor in a GaAs/Ga Ales increases with

1-x
decreasing QWW radius and that for the ground state binding
energy it is sensitive to the screening effect of €(r).
This is because in the first excited state the donor

electron does not approach the impurity ion as closely as in

the ground state.
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I. INTRODUCTION
In recent years, the development of thin film growth
techniques, such as molecular beam epitaxy (1,2,3], liquid
phase epitaxy [4], and metal organic chemical vapor
deposition (3,4] have made it possible to fabricate quasi-
two and quasi-one dimensional structures. An example of the
quasi-two dimensional structure is a GaAs layer sandwiched

between two thick slabs of Ga Ales. This structure is

1-x
called a quantum well (QW) since the (x-dependent)
discrepancy between the band gaps in the two semiconductors
effectively confines a free electron to the GaAs layer. An
example of the quasi-one dimensional structure is a Gaas
wire of circular, rectangular or triangular cross section,

embedded in a Ga Ales matrix. This structure is called a

1-x
quantum well wire (QWW), and for the reason mentioned above,
in this structure a free electron is confined to the Gaas
wire.

An imperfection that is critical in the fabrication and
performance of GaAs electronic devices is impurity
substitution, where a foreign atom intentionally (by doping)
or unintentionally replaces either a Ga or an As atom at a
regular site. The foreign atoms may remain neutral, promote
electrons as donors, acquire electrons as acceptors, or act
as charge traps. The type of effect that an impurity

exhibits in the GaAs lattice depends on its valence state

and binding energy. Impurities lying at shallow energy



levels can readily contribute to the conduction process.

The nature of impurity energy levels in a QW or in a
QWW is of considerable interest. A number of potential
device applications (see Sect. V.A.) such as photodetectors,
fast pulse lasers, phototransistors solar cells, and fast
electronic switches [4,5] are the motivating factors for
research into the behavior of impurities in the QW and Qww
structures.

A number of workers ([4,7,8,9] have studied hydrogenic
impurity states in GaAs QWW of various cross sections. Some
of these workers have used variational calculations to
determine the binding energy of a donor as a function of the
QWW radius. In these calculations the image charges on the
interfaces arising from the dielectric mismatch between GaAs
Al _As are neglected. In the variational

1-X""x
calculations, a one-band spherically symmetric effective

and Ga

mass was assumed. This is reasonable since P. Sercel and
K.J. Vahala [7] have shown that for infinite potential
barrier, the effective mass of the charge carriers is
independent of the QWW radius. In most of these
calculations the donor impurity was located on the axis of
the QWW (on-axis). Lee and Spector (8] performed a general
calculation for an impurity located anywhere in the GaAs QWW
but determined the binding energy only for an on-axis donor.
These binding energies of the donor have been

calculated with the assumption that the depth of the



potential well between GaAs and Ga,_ Al As is infinite
[8,9]. It is found in all these calculations using wires of
circular cross sections that the binding enerqgy increases as
the QWW radius decreases. Calculations by Osorio, et al.
(10], using a QWW of rectangular cross section, confirm this
trend.

A non-hydrogenic donor in a Gal_xAles/GaAs/Gal_XAles
QW has been considered by Csavinszky and Elabsy both for
infinite [11) and for finite [12] QW depths. In the non-
hydrogenic calculations the static dielectric constant of
GaAs is replaced by the spatial dielectric function of Resta
(13], and Cornolti and Resta (14]. Weber et a]. [(15)
considered a shallow on-axis hydrogenic impurity for an
infinitely long QWW of rectangular cross section. These
authors assumed an infinite potential barrier and replaced
the static dielectric constant with the spatial dielectric
function proposed by Hermanson [16]. This dielectric
function is independent both of the location of the impurity
and of the shape of the QWW cross section. The spatial
dielectric function referred to POsSsesses complete spherical
symmetry. Weber et al. ([17] have found that the effect of
the spatially dependent screening of the donor ion becomes

less pronounced as the impurity approaches the edges of the

QWW.



Tn these calculations [17] they found a substantial
increase in the on-axis acceptor binding energy with respect
to the binding energies obtained with the static dielectric
constant. The importance of the spatially dependent
screening diminishes as the QWW cross section increases.
This finding has its origin in the spreading out of the
donor wave function. Thus, the effect of the spatially
dependent dielectric function on the binding energy is
important only for very small (less than 200 a.u.) QWW cross
sections.

The objective of the present work is the determination
of the binding energy of on-axis hydrogenic and non-
hydrogenic donors in the ground and first excited states.
The donor impurity is considered to be located in an
infinitely long GaAs QWW of circular cross section, and the
pbarrier potential is assumed to be infinite.

The objective stated above is achieved by using
different types of trial wave functions for the ground state
of hydrogenic and non-hydrogenic donors. In the case of the
hydrogenic and non-hydrogenic donors in the first excited
state, the trial wave function used is constructed from the
sum of the ground state hydrogen atom wave function and the
first excited state hydrogen atom wave function with an
appropriate envelope wave function to satisfy the boundary
conditions. The wave function for the first excited state

is orthogonal to the ground state trial wave function.



In the present calculations the parabolic band
effective mass Hamiltonian is used with m* = 0.067 m, (8].
The static dielectric constant used in the hydrogenic case
is that of the bulk GaAs, e(o) = 12.56 (8], and the spatial
dielectric function used is that first suggested by
Hermanson [16]. The constant c represents the screening
distance beyond which e€(r) = €(o) and is determined to be
c = 0.8 a.u. The procedure leading to this c-value is
discussed in Section A.2.

The organization of this work is as follows: Section
II presents the theory; Section II.A. deals with the ground
state binding energy of an on-axis donor with ordinary
Bessel function as the envelope wave function. This section
is divided into two parts: (1) hydrogenic donor, and (2)
non-hydrogenic donor. 1In Section II.B., the binding energy
of an on-axis donor is considered but here the envelope wave
function is a spherical Bessel function. Again, this
section is subdivided into two parts: (1) hydrogenic donor,
and (2) non-hydrogenic donor. Section II.C. considers the
binding energy of an on-axis donor but this time the
envelope wave function is unity. This section is also
divided into two parts: (1) hydrogenic donor, and (2) non-
hydrogenic donor.

Finally, Section II.D. deals with the binding energy of
an on-axis donor in the first excited state. This section

is subdivided into two parts: (1) hydrogenic donor, and



(@ non-hydrogenic donor.

Section 11l presents the data obtained in tabular form
Section 1V shows the plots of the binding energy as a
function of the QWW radius for the on-axis hydrogenic and
non-hydrogenic donors both in their ground and in their
first excited states.

Section V is a presentation of the results and
discussion of these results. Section VI gives the
conclusions. Section VI consists of a brief summary of
techniques used in the measurement of the binding energies
of donor impurities in GaAs.

Section VIl lists papers published and lectures
presented which have resulted from this thesis. Literature
citations by other researchers are given iIn Section Vin
and Section IX contains the Appendices which present the
details of the calculations and discussion of the numerical

integration techniques employed iIn this work.



IT. THEORY

A. GROUND STATE DONOR ITMPURITY

A.1. Ground State Binding Energy of an On-Axis
Hydrogenic Donor Impurity with an Ordinary

Bessel Function as the Envelope Wave Function.

In the present work, the variational method [18] is
employed in calculating the ground state binding energy of
an on-axis hydrogenic donor as a function of the QWW radius.

Assuming a parabolic conduction band with a
corresponding scalar effective mass m* and neglecting image
forces, the Hamiltonian in circular cylindrical coordinates

is given by [19]

h? e? + Volp)
H= - -——2m* C(O) [pz + 22]1/2 B P

_ 1)1 0 d d° - 1 _
T zm*{p ap[p ap] : azz} €(0)[p? + z2]\/2 + Vp(p) II-A.1

after setting h2 = 1 and e2 = 1 and where m* = 0.0667 me is

the effective mass of an electron at the bottom of the
conduction band of GaAs, €(0) = 12.56 is [8] the static
dielectric constant of GaAs, while VB(p) is the potential
energy barrier which confines the electron to the GaAs
cylinder of radius a, such that

o p < a

Vo (p) =
B -} p > a .



The coordinate p = (x2 + yz)% measures the distance
perpendicular to the axis of the QWW, and the coordinate z
measures the distance along the axis of the QWW. Both p and
z have their origin at the (point) donor ion. The geometry
of the structure is illustrated in Figqure 16.

The trial wave function used in the calculation, is

that suggested but not used by Lee and Spector (8], hamely
¥.0(p,2) = NJ,(k,,p) e BVeT+ 22 II-A.2

where N is the normalization constant, and 8 is a
variational parameter. The function Jo(klop) (20] is a
Bessel function of order zero (called the envelope wave
function) and argument klop. The quantity k10 is related
[(21] to the first zero of the Bessel function Jg-

In the present work, the function Jo(k o) is replaced

by J_(ap), where & = k,, is given [22] by

2.4048
k =q =

10 a
Thus, when p = a

2.4048
Jo(ap) = Jo (———;——.a) = Jo(2.4o43) = 0
Similarly, when p = 0

2.4048

I, (——— p) =Jg(0) =1

o)
a



The detailed calculations of the normalization
constant, and the expectation values of the kinetic,
potential, and total energy operators, are given in Appendix
A.

The above quantities are related by

<H>=<T>+<V> II-A.3
where < T >, < V >, and < H > are, respectively, the
expectation values of the kinetic, potential, and total

energy operators, and are given by

_ _p? «? II-A.4
CT>= 5o 7 2me
1 '{apJﬁ(ap)R;(ZBp)dp
<V>=- —57 Taia II-A.5
[ 0275 (ap) Ky (2Bp) dp
_ _Pp? ?
CH> = 5— + 3
II-A.6

1 f:pJf(ap)Ko(zﬁp)dp

e(o) 'ﬁ:ngﬁ(ap)ka(zﬂp)dp

The normalization constant is obtained from

IV2 = [41tfoa pZJg(ap)Kl(zpp)dp]_l II‘A.7
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In Equations II-A.5 and II-A.6 the quantities K, and K, are

1
the modified Bessel functions [23] of order zero and one,
respectively, and of argument 2fp.

In the variational approach, the minimum energqy,
E in(3)/ is obtained by minimizing the expectation value of
the total energy < H > with respect to the variational

parameter f3,

d < H >
a8

=0 II-A.8

The minimizing value of B is then substituted back into
Equation II-A.6, for a given value of the quantum well wire
radius.

The expression for the expectation value of the total
energy is not analytical. The minimization procedure
involving B must be done numerically. The details of the
numerical procedure and accuracy are given in Appendix IX.F.

This procedure leads to the minimum energy Emin

(a) for each
QWW radius a.

The binding energy E (a,B8) is then obtained by
subtracting Emin(a,ﬂ) from the "free" particle energy

Ep oe(@) [24]- Egpge(a) is the energy in the absence of the

hydrogenic donor ion.



11

One can then write

Eb(afP) = Efree(a) - Emin(a, p)

g _| a2 +
2m* 2m* 2m*

3 Bo@maem o,

e(o) Jo
_ jl
P: o i 0@1 (ctp) KO 2 fip)p
2/n* g - -
47021 (ap)iC1(2Pp)dp) 11-A.10
P2 + 1 A
2m* e(o) B
where
A = fppdo(ap)iCo@2Pp)dp 11-A.11
and
B = 30 fa23”(ap) 1L 2R dp -

The calculation of the free particle energy Efree(@) Iis
given in Appendix E.

The numerical results for the binding energy EM@,/3) ,
the minimizing values of the variational parameter 0, and
the respective QWW radius a, are presented in Table 1. The

plot of as a ~unc™™on °f the QWW radius a is shown

in Figure 1.
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A.2, Ground State Binding Enerqy of an On-Axis
Non-Hydrogenic Donor with an Ordinar Bessel

Function as the Envelope Wave Function.

In the case of a non-hydrogenic donor in the ground
state, the static dielectric constant of GaAs is replaced by
the spatial dielectric function of GaAs. In the present
work, the spatial dielectric function used is that suggested
by Hermanson [16]. This function has recently been used by

Oliveira and Falicov [17]. The analytical form of this

function is

1 _ 1 - 1 - -
e(z)  elo) ( e(o))e TI-A.13

The quantity €(o) in Equation II-A.1 is replaced by e(r) in
Equation II-A.13. In Equation II-A.13, r = vp¥ ¥ 27 s
the position of the electron, and c is a constant that is
determined in the present work by requiring that, in the
screening region, €(r) should agree as well as Possible with
the spatial dielectric function of Resta [(13]. In other
words, €(r) approaches 1 for small r and €(o) for large r.
The Fourier transform of II-A.13 also should fit the
dielectric constant of GaAs, i.e., 12.56. It should also be
noted that the dielectric function II-A.13 js independent of
the location of the impurity in the z direction.

This goal is achieved by plotting e(r) as a function of
r for various values of c until the appropriate value of c

is obtained. The value of c which is used in the present
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work is ¢ = 0.8 (a.u.)-l. The numerical results for e(r) as
a function of r are displayed in Table 15, and the graph of
€ (r) against r is presented in Figure 15.

It can be seen from Equation II-A.13 that €(r) becomes
unity as the distance r from the (point) donor ion goes to
zero. It is also seen from the same equation that e (r)
becomes € (o) as the distance r from the (point) donor ion
goes to about 9 a.u..

The expectation value of the total energy, < H >, is
then calculated using the same method as in II-A.1. The
expression for the expectation value of the total energy
becomes:

< H' >=<T>+ < V' >

=< T>+<V>+ < AV >

=< H > + < AV > IT-A.14

f:pJf,(ap)Ko(zBp) dp

_ Bz, a2 1

2m+  2m*  €(0) .ﬁ:szﬁ(ap)R;(ZﬁP)dP
II-A.15
e (o) fo’szﬁ(ap)Kl(’z!BP)dP

where < H' >, < T > and < V > have the same meaning as in

II-A.4, II-A.5 and II-A.6, and < AV > is given by
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a 2 1
_ (e(o0) - 1) fo pJo(ap)Ko[(zp + _c.)p]dp

<AV > = (o)

[ 0233 (ap) K, (2Bp) dp

IT-A.16
The minimum energy E, (a,B8), is then determined in a
manner similar to that used for the hydrogenic donor, except
that in this case there is an extra term in the potential
energy due to the extra term in the dielectric function.
The binding energy is then obtained by subtracting the new
minimum energy E ; (a,B8) from the free particle energy

(a) .

The numerical values of Eb(a,ﬁ), the minimizing value

Efree

of 3, together with the respective values of the QWW radii
are presented in Table 2. A plot of E (a,B) as a function

of the QWW radius a, is displayed in Figure 2.

B.1. Ground State Binding Energy of an On-Axis
Hydrogenic Donor with a Spherical Bessel Function

as the Envelope Wave Function.

In this section, the ground state binding energy for an

on-axis hydrogenic donor is calculated using (instead of the
ordinary Bessel function) the spherical Bessel function (25]
Jg (ko) -

The Hamiltonian for the total energy is the same as the

one used in section II.A., that is:
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_ 1 1 93 3 &
H= - ——_ | = 9 |,_9
2m= { p Op [pap] " 22 }
II-B.1
- 1 .V (p)

C(O) [pz + 22] 1/2

where the terms retain their definitions as given in

Equation II-A.1.

The trial wave function used in this calculation is

given by
P..(p.2) = NJ,(up) eBVoT+27 II-B.2
where [25]
, _ Ssin
Jolap) = T)EE II-B.3

is the spherical Bessel function of order zero and argument

Mo, [26] where u is given by

= AN =
=% ,n=1,2,3

It is seen from II-B.3 that jo(pp) has the following

properties:

jo(pp) = 0 at p = a, i.e. at the radijius of the QWW, ang
Jo(mp) = 1 at p = 0.

The detailed calculations for the éxpectation value of
the total enmergy < H > are presented in appendix D. The
expression for the expectation value of the total energy is
non-analytical and the minimum energy Emin(a,ﬁ) for each

value of the QWW radius a is obtained by numerical
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techniques. The expression for the expectation value of the
total energy is given by

<H>=<T>+ <V >

2 2N2 a
- - —2-“—”m—f—— [pidup) K (2Bp) dp

2nN2h? [a
- —%— fo Jalup) K, (2Bp) dp
2 2 a |,
- 2""}”*1" [ pdotmp)n, (k) K, (2Bp) dp
2 2 a .
- 4"hm* Ny fo p? Jo(pp)In, (kp) K, (2Bp) dp

2127812 a .
» ZRABI (% ji(ke) Ky (2Bp) dp

- ATNe (% 2(up) K, (2Bp) dp
IT-B.4
where the normalization constant N can be expressed as
N? = [41tf:p2j§(up)K1(2[3p)dp]-l II-B.5
and
n,(pp) = - S°SEP II-B.6

kP

where no(x) [26] is the spherical Neumann function of order
one.

The binding energy is obtained by subtracting the
minimum energy Emin(a'ﬁ)' obtained by minimizing < H > with

respect to 3, from the free particle energy E The

free(a)'
result is a long complicated expression:
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Eb(al p) =

h?a? _{ 2mh2P2N?

S LBV (%o 5Z(up) K, (2Bp) dp

2mh2N? e
- —j%;——'j; Jg(pp)Ra(ZBp)dp
2wh2uN? a ;
- 22T [ p Fo(up)n (up) K, (2Bp) dp
2w h2p2N? a ;
R [ e 35me) K (2p) dp
4 hz N2 a .
- —“—I-n%*‘—— fo p? Jo(pp)n,(rp) K, (2Bp) dp

_ 4mN2e?

) f: P.jﬁ(up)K;(Zﬁp)dp‘} II-B.7

B.2. Ground State.Binding Enerqy for an On-Axis
Non-Hydrogenic Donor with a Spherical Bessel
Function _as the Envelope Wave Function.

As in II-A.2, the static dielectric constant €(o) is
replaced by the spatial dielectric function e(r), which is
given by Equation II-A.13 as

1 - 1 _ 1 -
e(o) elo) ( e(o))e

aln

II-A.13

The expectation value of the total energy now has an
extra term compared with the hydrogenic donor case of

Equation II-B.7. This expression is now given by
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h2B2N2 pa )
<H> = - 2ZLBN fo p Ji(rp) K, (2Bp) dp

2m=

2mhIN? e
- 2R [ 5iep) Ky (2Bp) dp
2 2 a .
- 2“};*” [0 Jotrp)n (k) K, (2Bp) dp
24122 a .
* 2—”%1‘— fo P Ji(rp) K, (2Bp)dp

2 2 a .
B, AMEE_M_ [7 P Go(mp)n (up) K, (2Bp) dp

_ 4nne?

EIe [ e itme) K (2Bp) ap

4wN2e?[e(o)-1] [2 .2 1
, ] [ EH T AT =) pldp

II-B.8

The minimum energy is obtained by numerical methods.
The result, Emin(a,B), is then subtracted from the free
particle energy Efree(a) to obtain the binding energy
Eb(a,ﬁ). The numerical results for Eb(a,B), the minimizing
values of B, and the respective QWW radii a are displayed in
Table 5. A plot of E, (a,B8) as a function of the QWW radius

a is presented in Figure 5.



19

C.1l. Ground State Binding Enerqy of an On-Axis
Hydrogenic Donor with an Envelope Wave Function
of Unity.

The wave function used here is that of a simple
isolated hydrogen atom embedded in a Gaas cylinder
surrounded by a Gal_xAles matrix. The wave function does
not vanish at the boundary, namely at p = a, but is finite
at p = 0. This is a drawback in this choice of trial wave

function.

The Hamiltonian used is the same as that in Equation

II-A.1, i.e.,

-1 /198, & | 1

IT-a.1

The trial wave function is given by

P..(p,2) = Ne B+ II-Cc.1

The expectation value of the total energy is obtained by
determining the expectation value of < H >. The details of
the calculations are presented in Appendix C.

The result is given by

npr _ [, PKo(2Bp) cp
mn* foaszl (2‘3‘)) dp

<CH>=- II-C.2

This is a non-analytical expression and the

minimization is carried out using numerical techniques.
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C.2. Ground State Binding Enerqgy of an On-Axis
Non-Hydrogenic Donor with an Envelope Wave
Function of Unity.

The spatial dielectric constant in Eq. II-A.1 is

replaced by the spatial dielectric function

1 1 1
e(r) = e(o) + (1 - m)exp[ -‘% sz + z° . IT-A.13

The resulting expression for the expectation value of the
total energy is again non-analytical and the minimum energy

is determined numerically from

[ oK, (2Bp) dp

<H >=B - _1
a
2mx e(o) f 02K, (2Bp) dp
o
II-C.3
2 1
(e(o) - 1) fo PK, [ (2P + ;)p]dp
€(o) a_,
[o*x 2Bp) ap
With the above expression, the binding energy becomes
2 faPK (2Bp) dp
E,,(a,rs)=—2“—-+ B__ _1 , PXo
Im* 2mx e(o) a 5
[ *p2K, (2Bp) dp
(=]
II-C.4
a
1
(o) - 1) [, PKol(2B + 2rpl1dp

G(O) foaszl(zpp)dp
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The numerical results for Eb (@,/3), 0, as function of the QWW
radius a are presented in Table 8, while a plot of the
binding energy Eb (@,/J) as a function of the QWW radius a 1is

shown In Figure 8.

D-1- Binding Energy of the First Excited stat.ft nf »
On-Axis Hydrogenic Donor Impnr-i.tv with~ ~
the Envelope Wave Function. q
In this section the first excited state binding energy of an
on-axis hydrogenic donor is calculated. The Hamiltonian 1is
the same as i1n Eguation 1I1-A_l, and the quantities are as

defined in Section I11_A_1:

2m* P dp  dp
11.A_1

1

e(o) [p2+ 22]]/2 VB (p)

The trial wave function is given by
W2s(p,z) =NJa(ap) [e-"""~r7T + k [2 - X<+ 22°] e -VFT7*- ]

11-D .1
Here K is an orthogonality constant and X is a variational
parameter which i1s determined when the minimization of the
expectation value of the total energy 1is done. This

expectation value 1is given by

<H>=<Y¥s [H]s > 11-D.2
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The expression is very long and is given in Appendix E. The
expectation value of the total energy is then minimized to
obtain Emin(a,k) and the result is subtracted from the free
particle energy E. . (a) to obtain the binding energy
E, (a,B). Most of the integrals in the expectation value of

the total energy are non-analytical and therefore have been

evaluated numerically.

D.2. Binding Enerqgy of the First Excited State of an
on-Axis Non-Hydrogenic Donor.

The Hamiltonian for the expectation value of the total

energy now has an extra term and is given by

_ 1 ]1 8 91, 2 } _ 1
H=" Zm { p Op [p dp dz2 e(o) [p? + z2]2/2
- VpTe2t
[C(O) - 1] e c + VB(p)

e(o) [pz + ZZ] 1/2

IT-D.3
The expectation value is given by
<H>=<Vq | H'| ¥pq >
=<¢25|Hl¢zs>+<¢'25|AV|¢zs>
II-D.4

The extra term in the expectation value of the total energy
is due to the spatial dielectric function which has been

substituted for the static dielectric constant.
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Again, the expression for the expectation value of the
total enerqgy is non-analytical and the rest of the
calculations are done numerically. The expression is given
in Appendix E.
The minimum value of the expectation value of the total

energy, E (a,\), is subtracted from the free particle

min
energy Ec(a) and the result is the binding energy Eb(a,k)
In sections D.1 and D.2 the parameter f is determined by the

technique presented in section A.
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III. TABLE CAPTIONS

The extensive numerical results of this study are
presented in this chapter as a sequence of tables. The unit
of the QWW radius is the atomic unit, (ao), those of the
variational parameters B and A are the inverse atomic unit,

(agl) and the binding energy is given in millielectron

volts, meV.

Table 1. This table shows the results for the on-axis
hydrogenic donor with an ordinary Bessel
function as the envelope wave function.

Table 2. This table shows the results for the
non-hydrogenic on-axis donor with an
ordinary Bessel function as the envelope
wave function.

Table 3. This summary table shows data from Tables 1 and
2 on the same page for comparison.

Table 4. This table shows the results obtained with
the spherical Bessel function as the
envelope wave function for an on-axis
hydrogenic donor.

Table 5. This table shows the results for the spherical
Bessel function as the envelope wave function

for the non-hydrogenic donor.



Table

Table

Table

Table

Table

Table

Table

Table

6.

l10.

11.

12.

13.
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This table shows the results for the hydrogenic
and non-hydrogenic for comparison in the
spherical Bessel function case.
This table shows the results for the unit
envelope wave function.
This table shows the results for the case of
non-hydrogenic donor with unit envelope wave
function.
This table shows the data for the hydrogenic
and non-hydrogenic donor with unit envelope
wave function.
This table shows the results for the 2s excited
state hydrogenic donor with the ordinary Bessel
function as the envelope wave function.
This table shows the results for the non-
hydrogenic donor in its first excited (2s)
state with the ordinary Bessel function as the
envelope wave function.
This table shows the results for the hydrogenic
and non-hydrogenic donors in the first excited
states.
This table shows results for the ground state
and first excited state hydrogenic donors (with
an ordinary Bessel function as the envelope

wave function).



Table 14.

Table 15.
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This table shows the results for the
non-hydrogenic ground state and first excited
state with the ordinary Bessel function as the
envelope wave function.
This table shows the data used ([(17] in the
determination of ¢ = 0.8 in the spatial

dielectric function.



TABLE 1

a (a.u.) B x 1072 (a.u.)” E (a,8) (meV)
5.0 1.963 158.51
10.0 1.556 118.55
20.0 1.207 73.63
30.0 1.035 57.48
40.0 0.926 47.96
50.0 0.852 41.55
60.0 0.792 36.91
70.0 0.747 33.35
80.0 0.710 30.53
90.0 0.680 28.22
100.0 0.654 26.30
120.0 0.613 23.27
140.0 0.582 20.98
160.0 0.557 19.18
180.0 0.537 17.73
200.0 0.521 16.52
300.0 0.474 12.67
400.0 0.456 10.59
500. 0 0.452 9.30
600.0 0.456 8.45
700.0 0.463 7.85
800.0 0.472 7.43
0.488 6.88

1000.0

27
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TABLE 2

a (a.u.) B x 1072 (a.u.)'1 E (a,8) (meV)
5.0 3.219 343.73
10.0 1.918 147.44
20.0 1.306 81.07
30.0 1.080 60.38
40.0 0.953 49.45
50.0 0.868 42.45
60.0 0.806 37.50
70.0 0.757 33.77
80.0 0.719 30.84
90.0 0.687 28.46
100.0 0.660 26.49
120.0 0.618 23.40
140.0 0.585 21.08
160.0 0.560 19.25
180.0 0.539 17.76
200.0 0.523 16.55
300.0 0.574 12.68
400.0 0.456 10.59
500.0 0.452 9.31
600.0 0.456 8.45
200. 0 0.464 7.86
800.0 0.473 7.43
0.489 6.90

1000.0




TABLE 3

HYDROGENIC DONOR NON-HYDROGENIC DONOR
a | Bx102 | Ep(aB) B x 1073 | Eg(a,8)
(a.u.) (a.u.) l?meV) (a.u.) }?meV)
5.0 1.963 158.51 3.219 343.73
10.0 1.556 118.55 1.918 147 .44
20.0 1.207 73.63 1.306 81.07
30.0 1.035 57.48 1.080 60.38
40.0 0.926 47.96 0.953 49.45
50.0 0.852 41.55 0.868 42.45
60.0 0.792 36.91 0.806 37.50
70.0 0.747 33.35 0.757 33.77
80.0 0.710 30.53 0.719 30.84
90.0 0.680 28.22 0.687 28.46
100.0 0.654 26.30 0.660 26.49
120.0 0.613 23.27 0.618 23.40
140.0 0.582 20.98 0.585 21.08
160.0 0.557 19.18 0.560 19.25
180.0 0.537 17.73 0.539 17.76
200.0 0.521 16.52 0.523 16.55
300.0 0.474 12.67 0.574 12.68
400.0 0.456 10.59 0.456 10.59
500.0 0.452 9.30 0.452 9.31
600.0 0.456 8.45 0.456 8.45
700.0 0.463 7.85 0.464 7.86
800.0 0.472 7.43 0.473 7.43
1000.0 0.488 6.88 0.489 6.90




TABLE 4
a (a.u.) B x 1073 (a.u.)" Ey (a,B) (meV)T

20.0 6.026 1911.55
30.0 5.602 1015.40
40.0 5.217 618.37
50.0 4.910 418.02
60.0 4.656 302.99
70.0 4.446 230.89
80.0 4.257 182.68
90.0 4.091 148.80
100.0 3.957 124.04
120.0 3.728 90.95
140.0 3.539 70.35
160.0 3.386 56.60
180.0 3.252 46.93
200.0 3.144 39.84
300.0 2.767 22.03
400.0 2.551 15.08
500.0 2.423 11.53
600.0 2.341 9.52
700.0 2.288 7.90
800.0 2.257 7.06
2.272 5.80

1000.0
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TABLE 5

a (a.u.) B x 1073 (a.u.)”? Ep(a,B) (mev)
20.0 6.356 1969.64
30.0 5.754 1016.61
40.0 5.306 619.17
50.0 4.970 418.43
60.0 4.697 303.26
70.0 4.473 231.09
80.0 4.277 182.82
90.0 4.116 148.91

100.0 3.975 124.16
120.0 3.740 90.01
140.0 3.550 70.39
160.0 3.390 56.63
180.0 3.260 46.96
200.0 3.150 39.86
300.0 2.770 22.04
400.0 2.555 15.08
500.0 2.425 11.53
600.0 2.340 9.41
700.0 2.290 8.03
800.0 2.260 7.06
1000.0 2.245 5.80
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TABLE 6
HYDROGENIC DONOR NON-HYDROGENIC DONOR

(a?u.) eafu%?:i E?éibf) ﬁafu%?:i r EQ&Z%Q) |
20.0 6.026 1911.55 6.356 1969.64
30.0 5.602 1015.40 5.754 1016.61
40.0 5.217 618.37 5.306 619.17
50.0 4.910 418.02 4.970 418.43
60.0 4.656 302.99 4.697 303.26
70.0 4.446 230.89 4.473 231.09
80.0 4.257 182.68 4.277 182.82
90.0 4.091 148.80 4.116 148.91
100.0 3.957 121.04 3.975 124.16
120.0 3.728 90.95 3.740 91.01
140.0 3.539 70.35 3.550 70.39
160.0 3.386 56.60 3.90 56.63
180.0 3.252 46.93 3.260 46.96
200.0 3.144 39.84 3.150 39.86
300.0 2.767 22.03 2.770 22.04
400.0 2.551 15.08 2.555 15.08
500.0 2.423 11.53 2.425 11.53
600.0 2.341 9.52 2.340 9.41
700.0 2.288 7.90 2.290 8.03
800.0 2.257 7.06 2.260 7.06
1000.0 2.272 5.80 2.45 5.80
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TABLE 7

a (a.u.) 8 x 1072 (a.u.)” E (a,8) (mev)
20.0 9.761 787.10
30.0 8.268 367.11
40.0 7.333 217.26
50.0 6.696 146.45
60.0 6.219 107.15
70.0 5.841 82.91
80.0 5.542 66.81
90.0 5.284 55.52
100.0 5.085 47.25
120.0 4.746 36.12
140.0 4.468 29.08
160.0 4.328 24.30
180.0 4.169 20.88
200.0 4.069 18.32
300.0 3.831 11.62
400.0 3.990 8.86
500.0 4.408 7.51
600.0 4.484 6.82
700.0 5.105 6.47
800.0 5.224 6.27
5.304 6.07

1000.0
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TABLE 8

2 (a.u.) B x 1073 E,(2,8) (mev) |
20.0 9.980 788.47
30.0 8.837 367.65
40.0 7.393 217.54
50.0 6.736 146.71
60.0 6.239 107.25
70.0 5.861 82.98
80.0 5.562 66.87
90.0 5.303 55.57
100.0 5.105 47.29
120.0 4.766 36.14
140.0 4.525 29.10
160.0 4.328 24.32
180.0 4.189 20.87
200.0 4.070 18.33
300.0 3.831 11.62
400.0 3.990 8.87
500. 0 4.428 7.51
600.0 4.846 6.83
700.0 5.104 5.88
800.0 5.241 5.82
1000.0 5.3515 6.08




TABLE 9

HYDROGENIC DONOR

NON-HYDROGENIC DONOR

3

- -3

(aa.‘u. ) ea).(u%())—l E?I(DZ"’?) P w10 | Ekir(nae{f;)
20.0 9.761 787.10 9.980 788.47
30.0 8.268 367.11 8.837 367.65
40.0 7.333 217.26 7.393 217.54
50.0 6.696 146.45 6.736 146.71
60.0 6.219 107.15 6.239 107.25
70.0 5.841 82.91 5.861 82.98
80.0 5.542 66.81 5.562 66.87
90.0 5.284 55.52 5.303 55.57
100.0 5.085 47.25 5.105 47.29
120.0 4.746 36.12 4.766 36.14
140.0 4.468 29.08 4.525 29.10
160.0 4.328 24.30 4.328 24.32
180.0 4.169 20.88 4.189 20.87
200.0 4.069 18.32 4.070 18.33
300.0 3.831 11.62 3.831 11.62
400.0 3.990 8.86 3.990 8.87
500.0 4.408 7.51 4.428 7.51
600.0 4.484 6.82 4.846 6.83
700.0 5.105 6.47 5.104 5.88
800.0 5.224 6.27 5.241 5.82
1000.0 5.304 6.07 5.3515 6.08

35
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TABLE 10

a (a.u.) A x 1072 (a.u.)'l E (a,\) (meV)
20.0 0.6875 735.42
30.0 0.5940 327.86
40.0 0.5330 185.12
50.0 0.4900 119.03
60.0 0.4543 83.10
70.0 0.4256 61.40
80.0 0.4023 47.31
90.0 0.3826 37.64
100.0 0.3656 30.84
120.0 0.3379 21.68
140.0 0.3164 16.23
160.0 0.2994 12.67
180.0 0.2851 10.23
200.0 0.2735 8.49
300.0 0.2338 4.35
400.0 0.2128 2.91
500.0 0.1993 2.26
600.0 0.1895 1.91
200.0 0.1816 1.70
800.0 0.1748 1.53
0.1619 1.27

1000.0
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TABLE 10

a (a.u.) A x 1072 (a.u.)7? Ep(a,\) (meV) f
20.0 0.6875 735.42
30.0 0.5940 327.86
40.0 0.5330 185.12
50.0 0.4900 119.03
60.0 0.4543 83.10
70.0 0.4256 61.40
80.0 0.4023 47.31
90.0 0.3826 37.64
100.0 0.3656 30.84
120.0 0.3379 21.68
140.0 0.3164 16.23
160.0 0.2994 12.67
180.0 0.2851 10.23
200.0 0.2735 8.49
300.0 0.2338 4.35
400.0 0.2128 2.91
500.0 0.1993 2.26
600.0 0.1895 1.91
700.0 0.1816 1.70
800.0 0.1748 1.53
1000.0 0.1619 1.27




TABLE 11

a (a.u.) A x 1072 (a.u.)?t E, (a,\) (meV)
20.0 0.7459 735.96
30.0 0.62112 328.11
40.0 0.54938 185.28
50.0 0.49971 119.13
60.0 0.46170 83.17
70.0 0.43155 61.46
80.0 0.40683 47.36
90.0 0.38638 37.68
100.0 0.36882 30.76
120.0 0.34040 21.71
140.0 0.31860 16.24
160.0 0.301100 12.69
180.0 0.28621 10.25
200.0 0.27404 8.50
300.0 0.27197 4.95
400.0 0.21309 2.92
500.0 0.19934 5.26
600.0 0.18957 1.92
700.0 0.182045 1.70
800.0 0.17520 1.54
0.16225 1.27

1000.0

37
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TABLE 12
HYDROGENIC DONOR NON-HYDROGENIC DONOR
a A x 10:i Ep(a,\) A x 10::;_ |I (a,\)
(a.u.) (a.u.) (meV) (a.u.) timeV)
20.0 6.87 735.42 7.46 735.96
30.0 5.94 327.86 6.21 328.11
40.0 5.33 185.12 5.49 185.28
50.0 4.90 119.03 4.99 119.13
60.0 4.54 83.10 4.62 83.17
70.0 4.26 61.40 4.32 61.46
80.0 4.02 47.31 4.68 47.36
90.0 3.83 37.64 3.86 37.68
100.0 3.66 30.84 3.69 30.76
120.0 3.38 21.68 3.40 21.71
140.0 3.16 16.23 3.18 16.24
160.0 2.99 12.67 3.11 12.69
180.0 2.85 10.23 2.86 10.25
200.0 2.73 8.49 2.74 8.50
300.0 2.34 4.35 2.72 4.95
400.0 2.13 2.91 2.13 2.92
500.0 1.99 2.26 1.99 2.26
600.0 1.89 1.91 1.89 1.92
700.0 1.82 1.70 1.82 1.70
800.0 1.75 1.53 1.75 1.54
1000.0 1.62 1.27 1.62 1.27
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TABLE 12

HYDROGENIC DONOR NON-HYDROGENIC DONOR

a A X 10:1 (a,\) A x 10-_3 |I (a,\)

(a.u.) (a.u.) (EeV) (a.u.)" 1 ‘?meV)
20.0 6.87 735.42 7.46 735.96
30.0 5.94 327.86 6.21 328.11
40.0 5.33 185.12 5.49 185.28
50.0 4.90 119.03 4.99 119.13
60.0 4.54 83.10 4.62 83.17
70.0 4.26 61.40 4.32 61.46
80.0 4.02 47.31 4.68 47.36
90.0 3.83 37.64 3.86 37.68
100.0 3.66 30.84 3.69 30.76
120.0 3.38 21.68 3.40 21.71
140.0 3.16 16.23 3.18 16.24
160.0 2.99 12.67 3.11 12.69
180.0 2.85 10.23 2.86 10.25
200.0 2.73 8.49 2.74 8.50
300.0 2.34 4.35 2.72 4.95
400.0 2.13 2.91 2.13 2.92
500.0 1.99 2.26 1.99 2.26
600.0 1.89 1.91 1.89 1.92
700.0 1.82 1.70 1.82 1.70
800.0 1.75 1.53 1.75 1.54
1000.0 1.62 1.27 l.62 1.27
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TABLE 13
GROUND STATE 1ST EXCITED STATE
HYDROGENIC DONOR HYDROGENIC DONOR
NEEGRIERESEE N
5.0 1.963 158.51
10.0 1.556 118.55
20.0 1.207 73.63 0.6875 735.42
30.0 1.035 57.48 0.5940 327.86
40.0 0.926 47.96 0.5330 185.12
50.0 0.852 41.55 0.4900 119.03
60.0 0.792 36.91 0.4543 83.10
70.0 0.747 33.35 0.4256 61.40
80.0 0.710 30.53 0.4023 47.31
90.0 0.680 28.22 0.3826 37.64
100.0 0.654 26.30 0.3656 30.84
120.0 0.613 23.27 0.3379 21.68
140.0 0.582 20.98 0.3164 16.23
160.0 0.557 19.18 0.2994 12.67
180.0 0.537 17.73 0.2851 10.23
200.0 0.521 16.52 0.2735 8.49
300.0 0.474 12.67 0.2338 4.35
400.0 0.456 10.59 0.2128 2.91
500.0 0.452 9.30 0.1993 2.26
600.0 0.456 8.45 0.1895 1.91
700.0 0.463 7.85 0.1816 1.70
800.0 0.472 7.43 0.1748 1.53
l1000 0 0.488 | 6.88 0.1619 1.27
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TABLE 13
GROUND STATE 1ST EXCITED STATE
HYDROGENIC DONOR HYDROGENIC DONOR
a gx102 | B @ | Ax1032 | E@N |
(a.u.) (a.u.) ?meV) (a.u.) ?meV)
5.0 1.963 158.51
10.0 1.556 118.55

20.0 1.207 73.63 0.6875 735.42
30.0 1.035 57.48 0.5940 327.86
40.0 0.926 47.96 0.5330 185.12
50.0 0.852 41.55 0.4900 119.03
60.0 0.792 36.91 0.4543 83.10
70.0 0.747 33.35 0.4256 61.40
80.0 0.710 30.53 0.4023 47.31
90.0 0.680 28.22 0.3826 37.64
100.0 0.654 26.30 0.3656 30.84
120.0 0.613 23.27 0.3379 21.68
140.0 0.582 20.98 0.3164 16.23
160.0 0.557 19.18 0.2994 12.67
180.0 0.537 17.73 0.2851 10.23
200.0 0.521 16.52 0.2735 8.49
300.0 0.474 12.67 0.2338 4.35
400.0 0.456 10.59 0.2128 2.91
500.0 0.452 9.30 0.1993 2.26
600.0 0.456 8.45 0.1895 1.91
700.0 0.463 7.85 0.1816 1.70
800.0 0.472 7.43 0.1748 1.53
1000.0 0.488 6.88 0.1619 1.27




TABLE 14
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GROUND STATE

NON-HYDROGENIC DONOR

1ST EXCITED STATE
NON-HYDROGENIC DONOR

Wiyt AT | mad | L ey
5.0 3.219 343.73
10.0 1.918 147.44
20.0 1.306 81.07 0.7459 735.96
30.0 1.080 60.38 0.6211 328.11
40.0 0.953 49.45 0.5494 185.28
50.0 0.868 42.45 0.4997 119.13
60.0 0.806 37.50 0.4617 83.17
70.0 0.757 33.77 0.4315 61.46
80.0 0.719 30.84 0.4068 47.38
90.0 0.687 28.46 0.3864 37.68
100.0 0.660 26.49 0.3688 38.76
120.0 0.618 23.40 0.3404 21.71
140.0 0.585 21.08 0.3186 16.28
160.0 0.560 19.25 0.3011 12.68
180.0 0.539 17.76 0.2862 10.25
200.0 0.523 16.55 0.2740 8.50
300.0 0.474 12.68 0.2719 4.95
400.0 0.456 10.59 0.2131 2.92
500.0 0.452 9.31 0.1993 2.26
600.0 0.456 8.45 0.1896 1.92
700.0 0.464 7.86 0.1820 1.70
800.0 0.473 7.43 0.1752 1.54
1000.0 0.489 6.90 0.1622 1.27




TABLE 15
c = 0.8
r €(r)

0.0 1.0
0.25 1.3280497
0.50 1.747448
0.75 2.2724965
1.00 2.91280
1.25 3.66918
1.50 4.5297
1.75 5.468
2.00 6.4446
2.50 8.3294
3.00 9.87526
3.50 10.96446
4.00 11.6523877
4.50 12.057308
5.00 12.2858288
5.50 12.41174
6.00 12.4802058
6.50 12.5171628
7.00 12.5370344
7.50 12.547696998
8.00 12.553411678
9.00 12.55811
10.00 12.5594589

12.55995558

41
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IV. FIGURE CAPTIONS

The following figures show the pPlots of the data given

in the tables Chapter III. The same system of units is

employed, that is the unit of the QWW radius is the atomic

unit, (a,), those of the variational parameters B, and A\ the

- [} * -l L3 *
inverse atomic unit, (ao ) and the binding energy is in mev.

Figure

Figure

Figure

Figure

1.

This figure shows the plot of the results for
the on-axis ground state hydrogenic donor with
an ordinary Bessel function as an envelope wave
function.

This figure shows the plot of the results

for the on-axis ground state non-hydrogenic
donor with an ordinary Bessel function as the
envelope wave function.

This figure shows the plot of the results of
the on-axis ground state hydrogenic and non-
hydrogenic donors with an ordinary Bessel
function as the envelope wave function.

This figure shows the plot of the results of the
on-axis ground state hydrogenic donor witn a

spherical Bessel function as the envelope

wave function.



Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

10.

11.

12.

13.

14.
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This figure shows the plot of the results of the
on-axis ground state non-hydrogenic donor with a
spherical Bessel functions as the envelope wave
function.
This summary figure compares the plots of the
results of Tables 5 and 6.
This figure shows the plot of the results for
on-axis ground state hydrogenic donor with
unit envelope wave function.
This figure shows the plot of the results for
on-axis ground state non-hydrogenic donor with
unit envelope wave function.
Figure 9 compares the plots of the results of
Table 8 and 9.
This figure shows the plot of the results of the
on-axis first excited state of a hydrogenic

donor.

Figure 11 shows the plot of the results of the

on-axis first excited state of a non-hydrogenic

donor.

This figure shows the comparative plot of the

data of Table 11 and 12.
This figure shows the plot of the data of

Table 2 and Table 11.
Figure 14 shows the plot of the data of

rables 2 and 12.
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Figure 15. This figure shows the plot of the data

obtained in the determination of ¢ = 0.8

for the spatial dielectric function ([17].
Figure 16. Figure 16 shows the geometrical configuration of

the quantum well wire studied in this thesis.
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V. RESULTS AND DISCUSSION

A. Ground State Binding Ener of On-Axis Hydrodgenic and
Non-Hydrogenic_Donors with an Ordinary Bessel Function

as an Envelope Wave Function.
A.1. Ground State Enerqy of an On-Axis Hydrogenic

Donor.

In this sub-section the results for the ground state

energy of on-axis hydrogenic and non-hydrogenic donors are

presented. A comparison is also made of the two results.

These results were obtained using a trial wave function with

the ordinary Bessel function of Equation II-A.2 as an

envelope wave function.

Table 1 shows the numerical results of the binding

enerqgy Eb(a,ﬁ) of Equation II-A.6 as a function of the Qww

radius, a, of a hydrogenic donor. Also shown are the

minimizing values of the variational parameter B. The

binding energy, as a function of the QWW radius, a, is

plotted in Figure 1.

It is seen from poth Table 1 and Figure 1 that the

binding energy Eb(a,ﬁ) for large QWW radii, a, is constant

at a value of 6.88 meV. This compares favorably with the

bulk value given by D.R. Wright [27]-

As the Qww radius decreases, the binding energy

At a QWW radius a, smaller than twice the Gaas

he increase in the binding energy with

increases.

Bohr radius [8]), ©
decreasing QWW radius becomes more and more pronounced and

reaches a value that is about twenty three times the bulk

value at a radius of about 5 a.u.
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A_.2. Ground State Binding Energy of an On-Axis
Non-Hvdrogenic Donor.

The results shown in Table 2 were obtained with the

static dielectric constant replaced by the spatial

dielectric function of Equation 11-A.13. This changes the

calculation of the expectation value of the potential

energy.
Table 2 shows the variation of the binding energy

Eb(a"£)/ with the QWW radius a. In Table 2, the minimizing

values of the variational parameter
the envelope wave function is the ordinary

are also shown. As in

the case of A.Il,

Bessel function.
Figure 2 shows the dependence of the binding energy

Eb@/3) on the QWW radius a. Here, again, the binding

energy for a large QWW radius has about the same value as

that in bulk [27] GaAs. It 1s seen from Figure 2 that the

hindd1Ng energy increases with decreasing QWW radius until at

about a radius of 5 a.u. 1t becomes about fifty times the

bulk value.
+ thp for Hvdrogenic and

A- 3. MAn ﬁ@rl?oaeﬂfet mﬁ% -

Table 3 compares the ﬁ>@}g%ﬂ§¥c and non-hydrogenic donor
as functions of the QWW radius a.

I/\
Dindmg energies Er%aﬁﬁ
Th - the variational parameter /? are

the minimizing valfues of t

also shown.
Of the binding energy Eb (@,0)

Figure 3 shows the plots or
a for both hydrogenic and

as a function of the Qww radius a



non-hydrogenic donors. It is ssen from both Table 3 and
Figure 3, that the binding energies for both the hydrogenic
and non-hydrogenic donors are about the same at a large QWW
radius but begin to show significant differences at about a
< 8 a.u.. When the QWW radius becomes much smaller than

5 a.u., the binding energy for the non-hydrogenic donor is
about twice that of the hydrogenic donor.

Thus, Table 3 and Figure 3 reveal that the screening of
the donor 1on by the spatial dielectric function displayed
in Equation I11-A_.13 begins to be important for a QWW radius
of a < 80 a.u..

The finding that the binding energies of both the
hydrogenic and non-hydrogenic donors are sensitive functions
of the QWW radius, and increase as the radius decreases, IS
in agreement with the results by Lee and Spector [8] who
used a different trial wave function with one variational
parameter. It should be mentioned, however, that Bryant
[28] has found that the binding energy first iIncreases and
then decreases as the DM FA4iys decreases. This is
attributed to the tact that in the calculations by Bryant a
finite potential barrier wan u.ed, »bil. In the present

calculations by Bryanf’g ?fﬁ?fgfbﬂé%ﬁ al barrier was used,

while iIn the present calculations, and in those by Lee and

Spector [8], an infinite barrier height is assumed.

angsian donor wave function.
Furthermore, Bryant used a £404z14nh-

In the calculations off RFRBFEREES §8Y4 and [28] and in



the present work, the non-parabolicity of the GaAs
conduction band is not considered. This effect, for on-
center donors, in a Gal xAlIxAs/GaAs/Gal xAlxAs QW has been
considered by Chaudhuri [28] and Bajaj [29], while iIn the
same effect for off-center donors has been iInvestigated by

Csavinszky and Elabsy [30].

B. Ground State Binding Energy of On-Axis Hydrogenic and
Non-Hydrogenic Donors with a Spherical Bessel Function
as Envelope Wave Function.

B.1. Ground State Binding Energy of an On-Axis
Hydrogenic Donor.

In this sub-section the results for the ground state
energy of on-axis hydrogenic and non-hydrogenic donors are
presented. The results were obtained by a trial wave
function with spherical Bessel function of Equation I1l1.b.2.
as envelope wave function.

Table 4 shows the numerical values of the binding energy
E (@ B) as a function of the QWW radius a, for an on-axis
hydrogenic donor. The minimizing values of the variational
parameter f1 are also shown. The binding energy, E*(@,/?), as
a function of the QWW radius a, is plotted in Figure 4.

It 1s seen from both Table 4 and Figure 4, that the
binding energy for a large QWW radius is 5.80 meV which
compares favorably with that given by Wright [27]. As the
QWW radius decreases, the binding energy increases until at

very small QWW radii the binding energy tends to iInfinity.
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B.2. Ground State Enerqy of an on-Axis Non-Hydrogenic

Donor.

The data shown in Table 5 were obtained with the static
dielectric constant € (o) replaced by the spatial dielectric
function €(r) in the calculation of the expectation value of

the potential energy. The values listed in Table 5 are

plotted in Figure 5.
It is seen from both Table 5 and Figure 5, that the

binding energy approaches the bulk value for a large QWW

radii. As in the case of the hydrogenic donor, the binding

energy increases with decreasing QWW radius, ultimately

approaching infinity for very small QWW radii.

B.3. Comparison of the Results for Hydro enic and

Non-Hydrogenic Donors.
Table 6 presents a comparison of the binding energies,

as functions of the QWW radius, of hydrogenic and non-

hydrogenic donors. Figure 6 shows plots for the two cases.

It is seen from both Table 6 and Figure 6, that the binding

energies are about the sane at a large QWW radius and

compare favorably with the bulk value {27). However, as the

QWW radius decreases pelow about a < 100 a.u., the results

begin to differ markedly, with the binding energy for the

non-hydrogenic donor pecoming bigger than that of the

hydrogenic donor. Thus binding energies of both the

hydrogenic and non-hydrogenic donors are again sensitive

functions of the QWW radius, as was seen to be the case when
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the ordinary Bessel function was used as an envelope wave
function. The binding energies obtained with the spherical
Bessel function as envelope wave function are, however, much

larger than those obtained with the ordinary Bessel function

as the envelope wave function.

C. Ground State Binding Energy of On-Axis Hydrocrenic and
Non-Hvdroaenic Donors with Unit Envelope Wave

Function.

c.1# Ground State Binding Energy of an On-Axis
Hydrocrenic Donor..

In this sub-section the results for the ground state
energy of an on—-axis hydrogenic donor are presented. Table
7 shows the variation of the binding energy, Efe(a,/S), with
the QWW radius a. The variational parameter 0O assumes only
one value. This 1s calculated from the expectation value of
the total energy, that is given by an analytical expression.
In this case too, the binding energy assumes the bulk value
for a large QWW radius. The binding energy then increases
with decreasing QWW radii and approaches very large values

at very small QWW radii, a < 20 a.u.

Figure 7 shows the plot of the binding energy as a

function of the QWW radius.
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C. 2. Ground State Binding Energy of an On-Axis
Non-Hvdrogenic Donor.

Table 8 shows the values of the binding energy,
Eb(a,® , as a function of the QW radius a. With the use of
the spatial dielectric function in the calculation of the
expectation of the potential energy, the expectation value
of the total energy is no longer analytical.

The plot of the binding energy as a function of the QWW
;acid. ius given iIn Figure 8. It is seen from both Table 8
and Figure 8, that at large QWW radii the binding energy is
about that of the bulk value. Again, as iIn the case of
other trial functions, the binding energy for the non-
hydrogenic donor becomes much larger with decreasing QWW

radius, then the binding energy for the hydrogenic case.

c 3 comparison of the Results for the Ground State of
Hydrogen-io *nd Non-Hydrogenic Donor Binding
Energies
Table 9 shows a comparison of the binding energies as
functions of QWW radii for the on~axis ground state of
hydrogenic and non-hydrogenic donors. The minimizing values
of the variational parameter 0 are also shown iIn Table 9 for
comparison.
Both Table 9 and Figure 9 show that for large Qww radius
the binding energies of the hydrogenic and non-hydrogenic
donors are about the same and approach the bulk value.

However, for a QWW radius of a < 90 a.u., the binding energy

of the non-hydrogenic donor increases more rapidly with



decreasing QWW radius than that of the hydrogenic donor.
This effect has been observed in all three cases that have
been presented in this work. In addition, the binding
energy as a function of QWW radius determined with unit
envelope wave function is observed to be iIntermediate
between the values obtained with the ordinary and with the

spherical Bessel functions as envelope wave functions.

n Flrst EXC|ted state Binding Energg
¥ - - - and Non-Hvdrogenic Donors

QU|ruary Bessel Function as the Envelope
wavp. Function.,
in this section the calculated binding energies, as
functions of the QWW radii, are given for the first excited

state of on-axis hydrogenic and non-hydrogenic donors.

D1-* l1EMtFvci+°H state Binding Energy of an On-
Hydrogenic Donor”

Table 10 shows the numerical results for the binding
energy E.(a,X)y , the optimal V&lH§S of the variational
parameter X, and the respective QWW radius a, for the first
excited state of an on-axis hydrogenic donor.

Figure 10 shows a plot of the binding energy as a
function of the QWW radius. It is seen from both Table 10

and Figure 10, that the binding energy iIncreases with

decreasing QWW radius.
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D.2. First Excited State for an On-Axis

Non-Hydrogenic Donor.

Table 11 shows the numerical values for the binding

energy when in the calculation of the expectation value of

the potential energy the static dielectric constant € (o) is

replaced by the spatial dielectric function €(r). Also

shown are the corresponding values of the QWW radius a, and

the minimizing values of the variational parameter A.

Figure 11 shows the plot of the binding energy E, (a,A),

as a function of the QWW radius a. It is seen from both

Table 11 an Figure 11, that the binding energy increases

with decreasing QWw radius until for a small wire radius it

approaches infinity.

D.3. Comparison of the Results for the.First Excited
State Hydrogenic and Non-Hydrogenic Donox
Binding Enerdies.

Table 12 presents values of the binding energy as a

function of the QWW radius in both the hydrogenic and non-

hydrogenic cases. Figure 12 shows the plot of the binding

energy as a function of the QWW radius both for the

hydrogenic and non-hydrogenic cases.

It is seen from poth Table 12 and Figure 12, that there

is very little difference petween the binding energies for

the hydrogenic and non-hydrogenic cases at the same QWW

radius, although the respective variational parameter values

are different. This indicates that the binding energy,

while sensitive to the oww radius, is not too sensitive to



70
the spatial dielectric function €(r). Furthermore, in the
2s state the donor electron does not approach the impurity

jon as closely as in the ground state.

E. Comparison of the Binding Energies for the
Ground State and First Excited State of On-Axis

Hydrogenic Donors.

Table 13 shows a comparison of the binding energies as

functions of the QWW radius for the ground state, and for

the first excited state of on-axis hydrogenic donors.

Figure 13 compares the plots of the binding energies for the

two cases.

It is seen from both Table 13 and Figure 13, that the
binding energy, at a large QWW radius, is much smaller in

the first excited state than in the ground state. As the

QWW radius decreases, the binding energy in both cases

increases. The binding energy of the first excited state

is, however, still less than that of the ground state until

a QWW radius of a £ 120 a.u. is reached. 1In this region,

the binding energy for the first excited state begins to

increase much faster with decreasing QWW radius, than the

binding energy in the ground state hydrogenic case.



71

F. Comparison of the Binding Energies for
Oon-Axis Ground State and First-Excited State

Non-Hydrodgenic Donors.

Table 14 shows a comparison of the binding energy as a

function of the QWW radius for the non-hydrogenic ground
state and for the first-excited state. Figure 14 shows

plots of the respective binding energies as functions of the

QWW radius. It is seen both from Table 14 and Figure 14,

that the binding energy for the first excited state is much

smaller than that for the ground state at a large QWW

radius. Again, as the QWW radius decreases below a < 120

a.u., the binding energy for the first excited state

increases much faster than that for the ground state. This

may be an indication that the 2s trial wave function is not

very good.

G. Concludind piscussion.
(a) The type of impurity dono
They can be identified by Zeeman

rs studied here are the

shallow level type.
Furthermore, hy
rtant in GaAs because hydrogen is the

splitting [31]. drogen and hydrogenic type

of impurity are impo
normal environment jin which GaAs is heated to remove other

impurities.
(b) The lattice constant mismatch (32] between GaAs and

0.5) is very small and this makes it easier

G ~
al_xAles (x
to grow them by molecular peam epitaxy-. The MBE is used to

quantum wells which are then etched, for

fabricate layered

example, by photolithography, jinto quantum well wires.
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VI. CONCLUSION

A . Binding Energy of the Ground-State-of-On-Axis
Hydrogeni n and Non-Hvdrogenic Donors”

(O From the results obtained iIn the present work, one
concludes that (@) the binding energies of both the
hydrogenic and non-hydrogenic donors approach the bulk value
for a very large QWW radius but (b) as the QWW radius
decreases, the binding energy iIncreases. The 1Increase 1In
the binding energy becomes more and more rapid as the QWW

radius decreases below about a < 80 a.u. and thereafter

approaches iInfinity.

@ As the QwW radius GRRYRES6S below about a # 80 a.u*,

the binding energy of the N9n- Hydrogenlc donor begins to

4van that of the hydrogenic donor,
increase more rapldly th’a yarogent

This indicates that Yelow 8B8HE & < 80 a.u. the screening

/Helectrlc functlon begins to be more
effect by the spatial di

and more iImportant.

3, ra. ahov. two conclusions apply to .11 trial ».v.

function, ,,..d in th. P~*»t wort .to.pt th.t th. v_.lu.s of

g dlfferent In each case and that the
the binding energles ar

--al dielectric function also begins
screening effect of spatia

4 much larger QWW radii,

to become more importan
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B. Binding Ener of the First Excited State of

on-Axis Hydrogenic and Non-Hydrogenic Donors.

(1) In the case of the first excited state, the binding

energy for both the hydrogenic and non-hydrogenic donors is

much smaller than in the ground state at large QWW radii.

However, the binding energy is still a sensitive function of

the QWW radius. The increase in the binding energy with

decreasing QWW radius is 1less rapid than in the case of the

ground state. It is found that at a QWW radius of

a < 120 a.u., the rate of increase of the binding energy for

the first excited state begins to exceed that of the ground

state. This finding may be an indication of the breakdown

of the quality of the 2s state wave function.

(2) There is no significant difference between the binding

energy of the on-axis first excited state hydrogenic donor
and that of the non-hydrogenic donor. This conclusion

pertains to all QWW radii. This means that the screening by

ectric function is 1
for the ground state. This is

the spatial diel ess important for the

first excited state than

n excited-state wave function is more spread

expected since a

out than a ground-state wave function.

C. General conclusion from the Study.

The study finds that the pinding energy of a hydrogenic

r impurity generall
eads to the phenomenon of

and non—hydrogenic dono Y increases with

decreasing QWW radius. This 1
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quantum confinement which was first observed by Sakaki et

al. [33] in the form of negative differential resistance.

Furthermore, this purely quantum mechanical effect can

be explained in the following way. The band gap A of a GaAs

is much less than the band gap of Gal_xAles. In the

GaAs/Gal xAles boundary, the conduction band edge in GaAs

lies at a lower energy then the conduction band edge of

1ence band edge of GaAs lies at a

G Al _As and the va

a_,
higher energy than the valence ba
s a quantum well and the Ga,_, Al As acts

nd edge of Gal-xAles'

Thus the GaAs acts a

as a potential barrier. Thus & donor electron in a

G xAles/GaAs boundary would

3 _xAl,As on making the Ga,_
literally drop into the caAs well and effect can be

exploited to construct qguantum well wire lasers with very

Precise energy (wavelength).

One other advantage of the quantum confinement of the
donor impurity is that it is then localized, thus reducing
its effectiveness in terms of range as a scattering center.
Thus the quantum confinement of the donor impurity reduces

its effectiveness to degrade conduction.

D. Measurement of the ponor Binding Enerdgiles.

Some of the technigues that have been used in the
heasurement of the impurity pinding energies are
Photoluminescence [34,33/ 36), Raman scattering (36] and far-
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infrared magnetic spectroscopy [36] of intra Impurity
transitions on a series of center-doped QW"s. However,
there are as yet no reliable experimental data on Impurities
on QWW [38,39,40] although experiments of references

[34,35,36] have confirmed the iIncrease iIn binding energy

with decreasing width of QW.

E. Applications.

GaAs has certain electrical and physical properties
which makes 1t more attractive than silicon iIn certain

device applications. Some of these are discussed below.
(@ The transferred electron effect [41]: This is a

property of quan%_um w%lll% and chuantum well wires, 1i1n which

, |ffuse towards the surface. They
photoexcited electroné

n _ K ”0 rcrv %o romore them to the valleys
acquire enough klnetlc energy to B

) N FxDloitation of this effect has
of the conduction band. P

i jrjient photoemission with guantum
resulted In more e FICIen B 9

. - - _ 5, 0ut to 1.6 M, although this
efficiences as high as 5

operation requires a temperature

_irect band gap material and because of
(M GaAs is a direct

wnties In 1t (typically 3500 - 4000
the hlgh electron mobilise
—*ful oBtoelectronlc properties. It
(cm2/Vs) [45]. It has useful
mn he important in device

IS expected that the QWW wil

, their potential as QW lasers [44].
applications because of

ate continuously at heat-sink
These lasers can operate )
expects as In quantum well

temperatures. Furthermore,
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lasers, that the QWW lasers will have other advantages over
other lasers used for electronic and communication devices,

because of their small size, simple structure and ease of

operation [44].
(c) Woodall et al. [45] have developed heterojunction

solar cells which show higher power conversion efficiencies

than corresponding silicon solar cell
(d Others [46] have developed a GaAs/Ga”~A"As

. —cxstor of relatively high optical
heterostructure phototran

n +1 T hese have been extensively
gain and short response tim .

. , n “"mnnication systems [47].
used 1n optical fTiber communlca%l y [47]
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VII. Papers Published and Lectures Presented
(which have resulted from this study to date)

"Variational Calculation of the binding energy of
hydrogenic donors located on the axis of a quantum wel)

wire”. (Lowell, Massachusetts, April 1990) (with p,

Csavinszky). Bulletin of the American Physical Society

35, 1546 (1990).

"A variational approach to the binding enerqgy of a donor

in a gallium arsenide quantum well wire". (with p,

Csavinszky). (The Third Atlantic Theoretical Chemistry

Symposium, Orono, Maine, May 1990).

"Dielectric response of a GaAs/Ga,_ Al As quantum well

wire to the presence of a donor ion located on the axis

of the QWW of circular cross section”". (with P.

Csavinszky). (New Haven, Connecticut, October 1990),

Bulletin of the American Physical Society (to be

Published).

"Binding energy of on-axis hydrogenic and non-hydrogenic

Ales quantum well wire of

donors in a GaAs/Ga;_y
(with P. Csavinszky).

Ccircular cross section”.
Physical Review B (accepted for publication, January 17,

1991),
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IX. APPENDICES

A. Details nf the Calculations of the Ground State
Binding Energy with N Envelope Wave Function

in the wave TfTunction of the Is state, the normalization
constant i1s determined as follows.

z \ _-BfR+Z*
YIs(p,2) =N B /FQJja

the integral

Sis Tlsdx 1 A1l
AII space
IS evaluated as:
-2PW +ZT =1 A. 2
N*FXde Fap Jo<«p>dP L dz e
i} . — o< follows:
The iIntegrations are now don
dz eiZf>\/?’h A.3
dz e—2P 2 =2/"
Let A 4
r2 = p2 + z2
before
22 _ r2 _ p2
2z dz = 2r dr
rdr A.5

rdr



Substituting A.4 and A.5 Into A.3, with a change

from O to o to p to 9, gives

82

of limits

2 dz e-B/A2+zl ~1odrre 2or A. 6
b JIr2- p2
Use iIs made of the formula [44]
r~x2 p2ule™™™dr =2 — pMPAUr (PP) A*7
\h N\
which for v=h and M = %, as ' A«61 becomes.
2 - "FFENT = 2P*1(2pP) A-8
Jb w2 - P2
Therefore, the normalization A.2 becomes.
2 N HAyJc2(«P>*1<2PP>dP = 1
4 nN>@ PV @(«P)N(2pp)dP =1
JO
and the normalization CtmgtanEI\l\ll is Tinally given by
N*= [4* (823] («P)

Jo

A.9



Pal dilation iI-lp Rinding Energy — In the Jds
fo% IL nH* Statft iIn CvUMHra 1 Coordinates with the

Trial Function
Y Is(p,2) = N Ja(ap

Here the detailed calculations for the binding energy
Eb@, /3 as a function of the wire radius for the Is (ground)

state 1s shown.

The Hamiltonian Ungg%gF H
c HMined by Equation A.2. The

iIs defined by Equation A.l

and the trial wave function

expectation value of H is given vy

H=T+V

) - energy operator and V is the
where T is the Kkinetic e o t
These quantities are given in

potential energy operator,

cylindrical coordinates by.

d +
To- s pup P dz2

and

function of GaAs IS
where e() , the spatial diel

defined by Equation I17A*



Now
a2 I a + a2 + a2
dz? p ap ap2 dz2
Then
+ d 7 Is(p,2)
P Op
NJO(gp) (-PP) e-P/p2-z*
p Jpr-~r-z2
oNH (dp) g-py2+Z7
P..,\.
Pc70(ap) P g-pv/?"7
P /p7r7™n
Therefore,

_d NJo{Up) e RAR +**
p

a\H @P) epAgR+77
= P~

-P'pJ-0(@p) ghP2+7

- 13

- 14
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Consideration of the first term In Equation A.14, leads to:

dp L N'J_ { -aj”
= - «f) Ye-w>< ) - (@) rsg g—P\/p’Z+22
= - aN _ g
- aiVU! (ap) ~pp 1 gPwp"
Vp2 + 72 1

y 2In@p)  al2ap) 1 RAARez2
= -a

QfiNJi (gp) P e-RAR7
PrTAT

2

aPpiJi (ap)  -p2+
Vp2 + A



Using the relation [45]

J2@p) 5, J1@) - @P)

The result for the first term A.14 becomes:

aNJO@p) @p) aNJO(@p)
2

strTz2 ]

Performing the same operation on the second term in Equation
A.14 leads to:

M d j -PpJ-0@P) ep#ARez |
dp [ vAR + J

| -pc70(ap) e .A-rp- app” (@p) e A/pR7Zz2

1 7p2 + A

Pp2)}c (ap) pv -rTT + P2P2J0(«£I
[p* + z2]2R2 2 + Z7]



Now

62
—a;?‘yls(pl Z) =

'—8'2‘5 N J,(ap) e-BVpT + 27

o apy 2 |- Bz
e Vo + 2%

= NJo(aP) -B + ~ ﬂzzz
Jp? + 2° [p? + z2]3/2

4

__ﬁfﬁf——- } X e‘B\/p! +* z:

[p? + 2%]

- 2
Addition of A.13, A.15, A.16 and A.17 yields V¥, (p,2).

The detailed expression for this quantity is

—aNJ (ap) _ BNT, (ap)

a?NT,(ep) | aNJ, (ap)

) 2
2
BNT,(ep) _ a2NJ, (ap)

G

o pNT, (ep)P apNT, (ap) P
AP By ——————
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.17



$NJa(ap) p2 + P2WO(ap) p2
[p2 + 22] 32 [p2 + 22

pAWo (ap) + 8NJa(ap) z2

yp2 +2z2 tp2 + z2] 32

+ P2WIO(P) z2 1 x
[p2 + z2] I

F-J0 (@p) P"Jo<gP) / +.,2
[p2 + z2]32

P2ATlo(ap) (2 +2z2 _ a (ap)
[p2 +z2]

2«PA1IJO(gp) p 1X
P2+ z2 ]

2PiVIO(<P> + pa~fap) - a2lKD(ap)
WPr r ?

2aP-Wir(ap)pll x s Ppj -

J



-2Pift70 (ttp)
*IsV2 T Is = Nnya(ttp) 7p2 + 22

2f>aNJ1 (ap) p

- a2xJo(@p) + L

+P2MJ 0 (ocp)

x e—IStf—T?

= | -2sn200 (@aP*+ P ~ (aP}

- aN2Jl <aP) + 2apW210(ap)(«P)P }

X e—

gives
Multiplication of this equation by 2m*

BLIEEP V2 Y Is
2m*

, 2 . £2p2yv2 («)
ms\p2 + Z
h*ap”r2I"P>3JI1P1T"

h2a2N 230 (AP} - 24+ 7°¢
s /i VP



The calculation of expectation value of the kinetic energy

operator T proceeds as follows:

<T>=s'r'plsT‘plsdT

h2pN? fzﬂ a8 fapJﬁ(ap)dp f,. dy o-2BVFTTE
m* o o . ‘/pz_+_}_z_

_ h2pcNE 2 272 - ~2pVpT T 2T
= f defopJa(ap)dpf_ndze b

+

h2a?N? (2 T - 2T
e fo do fo pJs (ap)dp f_.. dz e

_ h’epN? fzn do fapZJo(ap)Jl(ap)dp fﬂ dz e-2BVe? + 27
m* (o] o -

The § integration gives 27, and < T > becomes

<T> = ( h?a? _ h—zﬁz-) 2nN? fapJﬁ(ap)dp f” dz e-2BVeT + 2
2m* 2mx* o -

2 2 @ -2BpVp v z2
. DEBN anapJg(ap)dpf dz €
m* 0 -~ JpZ ¥ z%

2
_ h2ap2niN® [ 92, (ap) Iy (ap) dp
mx o

[~ dze T
[ ==
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.21

.22
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Of the z integrals

L] dz e-Zva! + Z

I,(z) = | o
and
B R i

already been evaluated in the
the second one Iz(z) has Yy

calculation of the normalization constant, and the first one

is evaluated as follows

- * = -2Bzdr
« dz e 2pVp? + 27 -2 f r e2 -dr
Lm J;T:‘gf e r(r2p?)

2 f‘” e-2br (r? - p?) V/2dr
P

2K, (2Bp)

"

In obtaining A.25, the same procedure and substitutions have

i A.7.
been used as in Equations A.3, A.4, A.5, A.6 and



Then < T > becomes

<T>= Anh};fEl\lZ. 30a pj@(ap) KO(2Pp) dp
47|/é727;2Af2 joa p2<7j (ap)J<rl(2Pp) dp

"nh2aN2 g 23 2(ap).K1(2Pp)d
2 fop (ap).K1(2Pp)dp

_ 47uh2aPi\L f a p2J2(ap) j-i(ap)”o(2Pp) dp
Vol JO

Now

Jo P

can be further integrated by parts to yield

fa p2J0(ap)J1l(ccp)KO(2?p)dp
JO
i f2\fF pXO02Fp) dp
2a Jo dp
J—éago‘ Ja(@p){ Zpir0(2Pp)-2Pp2*(2pp)} dp
= —ng Ja(ap) p2ro2PP) lo
22 joa pJ2(ap) (2PP)c®P - -fl /o P2j°(aP)*i(2Pp)dp

= Jo(ap) p20(2Pp) |o

A fppd(.p)*i(2fp>rfp -4 [VALpMT.APp'dp

a Jo

A. 27



Considering that the iIntegrated part vanishes at the

boundaries, the whole integral becomes:

j‘oa p2J0(ap) Jx(ap) KQ(2Pp) dp

=0 I, rRo(ap)X-0(2pp)

- P J-Q N2 d

£ " (ap)™(2pp)dp
A. 28

Substituting A.26 back iInto the expression for the Kkinetic

energy Eguation A.26 leads to the following results:



N _ 4772PT2
m*

2nh2BN 2
nm* ﬁ

2nhmia2\|2 Rl r21CapXr @@)dp

Anh2apiv2 1
m* a

47A2P20\2

m D

Anh2Piv2
7N

446A 2PN 2
27N

&Nh2QN 2
2m* Jo

4nh2PIV2 ¢«

m* lo

&%h2EN2

m* lo

Now

=
N2 =B | 2p2(ap)(2Pp)dp

Equation

1-A.7
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Substituting this i1nto Equation A.27

leads to
T h2a2 + h2P2
<> opr 2/
A. 28
The expectation value of the potential energy Iis
calculated as follows:
<v>=1 Vis Vwlwx
W7 g-BAR+*
e2inr2 + 7
e (o)
4Ke 2172 f27dfa pJo(“P)~N(2PP)dP
e (0) ne
Which on substitution of
-1
3 s
- p2)-J (ap)ini (2Pp)
become:
fap~(ap)ifo<2PP)dp
_ e2 J
<V>=- e(0) ‘iﬁpVo(ap)Ai<2PP)dp
A. 29

and therefore
The rest of the

integrals are non-analytic

) = _div Here the static dielectn
are carried out numerically-

’ used i1nstead of the spatial
constant €(o) has been

dielectric function e(r)
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The expression for the expectation value of the total

energy now becomes:

< H>=c¢cT> +<V>

h2a2 + h2P2
2m* 2m*

apJ@(ap)K0(2f,p)dp

f
J
J‘apZJI(ap) fq(2pp)dp

e

The expectation value of the total energy iIs now minimized
with respect to the variational parameter 0. The result,
N Hhm —t—he free particle energy E"-(a)

Emin(a"?)" is subtracted T / h N r t
to yield the binding energy (%'& us, one arrives a

h2a h2a2 + h2P2
EAa, FD = T 2m* 2m*

02 ij*<«P>*° (2Pp)dp

© Jy JI°<*PIKi(2Pp)dp

. TMpJ™(ap)KO(Zfip)dp
h2P2 + e ————-m——-
2m* e(o) rap2t2 @p) iCipp)dp
Jo
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Calculation of the expectation value of the potential
energy, using the spatial dielectric function, proceeds as
follows:
=

1 +1ll— 14l e C
e () e® \ e(0)

11._A_13
enerdV now becomes
energy

The expectation value of the potential

*

<V>==p2TY -

1 +1le(@ -1
e 2N\NP dJaP¥P fxdz 7Is e(o) I e<0)

(S eft
X o2+ z2]12
*1.7%X
pdd fagpdp L[pdz zZ]12
e (0)
+Zz°

Vis™
RaO) - 1) P d9 i+ pdp £, B .+ ZH M

f*
e(o0) Jo j°
A. 31



9S

2 _ 2, .,
Let @3 + (/c) = 7 and r " P

2 2 2

then z = r - P
zdz = rdr
rdr
dz = ——
z

rdr

A. 32

Therefore,

i} (e(0) - 1)2zrtdsp
AV = e (0)

) dre Yr
3 plGapde 2.3, o,

£O_ ~ 1 40w
e{o)

«  3PIP«xp)~np)dp



This expression 1s now added to the expression for the

expectation value of the total energy in Equation A.30

result 1is:

h2p2 + 3} [ ——
Et@ O 23* e(0) Tap2jl

e2.(© ~ D
r

+

The

A3
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Details r,f ths Calrelations of the Ground State Bindin
Fnprav with Envelope Wave Function”

The normalization constant is obtained as follows:

1 =N/ visv13 &

=N> @ /; P ji<pp>dp £ dz

=4 N ToaPZJo(pp)’\<2Pp)dp

Therefore, the normll%gﬂgﬂ constant becomes

N2 = _ _
4* r P2 2(pp)*i(2pp)dp

a
4i155asin2pp}fl(2Pp)dP

=
= P [Atfzsin2P pifl (2] Jp)dpl
B. 2
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= " H nn Value_gf_thg Kinetic Ener,
Calculation of the E{] —gT_thg

<T >

(Up) e PR ¢-1

71s(p.z)=

i a i
V2 Pis (p,2) E, 3% D Y Is(P.2)

+ J1 T15(P™)
az*
B. 3
The first o differentiation gives.
a- sin.pp_ e/p2+z1
1 JL - pp
p P 3p.
n a d jnfdE gP/yyn™ 7
o 5p PSP pp
N d -sintf +
pp  3p P2 P
B.
ppsinjiP. X e

N $ f _-sinjip. + pcospp

imp ap 1 p

psiJipjl_ | x e
fp2 + Z°



The second p differentiation leads

N J sinpp _ pcosPP

PP I P2 P
sinpp (~Ppl— - p2sinpp
-13p) _ _PsinHE=

+ pcospp

0,Bpcospp hnsinup(-el

VT T "7r

. -PW
ppsinpg, (-pp) X €

[p2 + z2]

pwsinPP  + QNcospP

Nsin\ip Ncosvip +
pp3 "P7-

BWcospp PNSIWNIp__

vPATP® Py an  STRTTZZ

p2i\rpsinjjlP1 x e

PATPSINUP m + ZIATTAT)

[p2 + 22]32
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B.5

B.51



ND
3
G,

p aZ?2
re— Gz e—F\//p2+22
pp dp /p2 + Z:
Nsinpp P bz: 3/2
+
op yp2 + A [p2 + 27
@z2 < e-P/p2-71
+ [p2+ "2
bNsirNip ﬁNSi”p'zZ]g/z
pptjor+ 21 PPIP:

P2AOiJilP z2 I X e N @R*Z/
HP [p2 + z2I

BAfsiripp e-I>W ez"

Hp/ p2 + *T

- , pXsinpp e-PP
pilsifiVP z2 e-plp2*zi + pp [p2+ 22
HP [p2 + z2]3°2
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Adding Equation B.5 and B.6" gives the following expression

for V2 WIs(p,2)

_ppero- Smiip Licos/jp
V VuiP'z) =7 n3 02

Psinpp u2sinnp _ uPcospp

P2 + 2 P yp2 +

' P Pp2sinnp

62p2sinpp Bsinpp | Psinpp—_ -
PP2+T2 PIP2 + Z7]

p2sinpp__ z2 1

pp2+ ]
B.7

Ve-Ri*qr  psinpp @ 22 OBINPR(p2+ 22
P Plpj 22 plp2 +

uQcospp + _sinpp  PCOSPP
vip2 + P

p2sinpp psinpp
P~

B.7*
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2UPcos™p + _sinylP
dp2+ p

= n fJISISEP
P | ]

ucosp.p _ AZSinPP_J

x f B2sinnp .
Pl p2 p2+zl p

licosp.p _ p2sinPP_ f % e P8
n2 P

B-8

_ _ is now multiplied by Hs to
The result iIn Equation B.8 ' W mUTTIpEL y

obtain:

Nsin\ip e =Pu/?
Vis V2V Is = HP

@sinp.p _ 210cosp.p sinpp _ PEESJIP

P2

u2sinp.p

B-9



This expression is further multiplied by 2m* . This
gives
h2
y 13 oo V2Y IS
sin2pp

h2N2 \ p2sin2™p _ 2p.psin]ipcospp + p4
2n2n>* 1 P3

LLsinupo°sPP- | x e PR
03 ]

hWsin”~P +

22/ p2 /fiph

haN2sindif , hfwl£inii£COSiif
2~ P

h2w2sin2PP | x e 'Dy@**T
2m* p2
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B. 10
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now obtained.

The expectation value of the Kkinetic energy Iis
by integrating the terms in B.ll one by one:

__.I A) _2 ‘4
havaN2 [hdo [* STM. dp T dz e

<T> 2mAR A°
- dz ¢z
h2fi2 p doO fa dp / i+ 7"
MLl °
hav £ do £+ PSIN%P dz e W2
21P\i2 P4
JAinppcosp>E dp dz e"BRAR
. haiz s
- PR+ 2T
, « PSInZpp dz e
N h22N"2 r2’ do f po
m B.

Using the integrals

G o PTRT  2PX1QGEDP

and

= 2 KO Fp)dp

expectation value of the

the final expression for the

kinetic energy #s:

12



4 ATA 2|32 sinpp cospp O (2Pp)dp
m* X

2« hAN2 fain2np
m*p2 P2

2nhAN2 Ca sinup coslip » @pp)dp
m*p p

+ 2twcA2)/2 Fasin2pp jg(2Pp)dp
m?> Jc

2nA2P2i2 fa sin2pp- Jq(2pp) dp

+ 4Tth2fiN2 ra SiNpp COSPP KOG pp)dp
Ml A°

2nivia SIN2pp. jAUPp)dp
Jn p2 P2
2izhN2 ca sinpp cospp ™ (z2pp)dp

+ mp e p

A2P2
2m*

where
N2 + p2[4it £* sin2pp ~ (2 pp)dpl

has been used in the last term.

- 13

-14
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The determination of the expectation value of the potential
energy with the spatial dielectric function is done as

follows:

e () e(0)
11-A_13
where

e (0)

p ouantjtv in the expectation value of
IS treated as a small quanri y

the total energy:

B. 17
<H>=<T>+<vVv>+AYV
iready been determined in
where < T > and <V > have a
Equations B.13 and B.15.
a Psinz2Hp. dp X
*/, : 2p2 :
A V:——ef(os <o) " 1)N hZp
-(P+
» dz e @
L VP2 +
B. 17 *
INAIL AN dp
- 1) fa_sinNif 2P + ~
e (0 P2 B 17 I



Therefore, with the spatial dielectric function, the

expectation value of the total energy becomes.

.S 2Nh2P2W2 £+ sin2ltf K @pp)d
TN fO' P| @pp)dp
+ 4nh2P Nia Sinpp cospp ko(2Pp)dp
ma A
2nhw Fa sinlihf jr(2pp)c?p
mp2 ~e P -
2lihnn2 fa sinpp coSPE y*sppicfo
1 n
aiteN2 fa _Sinlif o(2(3p)dp
%ﬁ%? eTo) ° P
. . d
| M2 . smPZpIO_ p p
e(©P

=<H>+ & Vv
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1th static dielectri tant
The binding energy E’\(a,[%\ with static dielectric constan
e(0) 1s given by:

h2a2 ;
Eb{a,P) = — <H

hoe 2 202N 2 si"FE’P- 2Pp) dp
m* NP2

4 Tth2$N2 fa sinpp cospp K0(2$p) dp
m"p

2kh N2 faisite- (2Pp)dp
L 2

2Nh2N2 f asinpp cogjif.

AneN2 Fa niliis- K0(2Pp) dp

+ AV = meTof-~ p

2m’
B. 19
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W . with the spatial dielectric
The binding energy ?é,pj , i e sp e

function e(r), 1Is given by.

h 2q2 2nh2$N 2 Jiaaj i£P"£ K1(2pp)dp
2m*

E'(a, P) =

[ “sinjip cospp KOQ@ ~p)dp
m"'p ne

2Ala2v2 fa _siEJE. (2pp)dp
e2

2132 fa jJini£E £28ME ~(2pp)dp
+ — rh’rbf" *° p

1212 Aeed f* i0(2pP)dP
FNM- N P L D
2 ra SirJAE »+- )p P
42 @) 4
- e
B. 20

=<H>+A"

B.20"
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Here the detailed calculation Sf §fe normalization

constant 1is given.

1 =1 TIs *1_ dT

n2 c § pdpeSd

412sz0 P2 ~N(2PP>dP

Therefore,

N2 = 47: Jy P2 <Z2pp)dp

£ th binding energy of an on 2Xis
The detailed calculation ° ©

donor proceeds as follow

YIs(qp/*> =N e

I1.c.1
Now

V2



Operating

the p part ¢he result is:

V2 Yis(p,2)

at e -Py/*~rp-
p

N d (~Pp) g-Pvip2**'
P 3 w2+ 2

N d . pple~PR+z2 |
p p { Vi2+22 )

N[ 213 eP*z+ + Pp3e~Pra*2
P { /p2 + z2 P2 + 22232
P2p3
[p2 + 27

2PJV e-PAP2*  + PIVp2 e~V * «
yp2 + 122 fp2 +22) 312

P2yp2 * %2
ay[)pz + 22

115

on the wave function with V2, first beginning with

C.23



The z part of the differentiation is performed as

follows:
e P/fR+21
Vi Yls(p,z) e
dz | JP-TP-
2 * Hk
n e-P7@T?r P z2 e-BAP
=N _[p2+ 2232~
PP+
w22
) e—P\N PivVz: .
2+ 7 22
vP
eP/NYN T
+

+22]



2
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N NsN"2) Zs obtained by adding Equations C.24 and C.25

resulting in:

v7,.(p,z) =- 2W e-We2" + PiVp2 e-Pv/T" 7

AP+ Z2 o2 + 22132

p2 IV p2 e~Rfa *22
P2 + zZ]

PN e~-RAR**a pN z2eV/AT
ViR + z2 2 + 22132

P2N z2 e~WP2+2*
[p2 + z2]

3P,, e- N |

p2jy (P2 + z2) e-MA "
[p2 + z2]

23N e-M2T  + p2”/™ e-vSF-n*
viR2 + Z2

Therefore,

20 N e-WP2*12

V2 Y Is(p, 2 VA2 + 22

+p2 e-"2*Z

C. 26

c.26"
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Multiplication of Equation G.5° by - and
gives

7* (.2 er]nz* v2 YIs(p,z)

Wp 2+ 2zT

h2p2W2 e~Qin ***
2m’
C.27

Integration of the two terms iIn Equation C.30 gives the

) _ . T > The iIntegration proceeds as
expectation value or

follows:

<T>_/, /(e

= JilMi f2n df p dp _

/" Tpdp [ dz e72PP242]
217 °

_A4ffAW2 fap X0(2pp)dp
n Jo

4tA2P222 ra p2 J?i(2Pp)dP

AT
C.28
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The evaluation of the expectation value of the potential

energy with the static dielectric constant proceeds as

follows:
cy>= & T Q.2 ., 557 ¥Is(p.2)ox
e (©
e-RAR+
eN2 «
e ) /p2*~ZT
A4neN2 rap WQEPp)cip
e(0 Jo
C.29
. 1nn nf the energy become!
The expectation ValUe OL L11C
<H > <J>+<U)
r P ¥Qpp)FP h2p2
h2Pi2 Jo -—-———--— oyrrs
m * f a p2 -CI.(ZpP)C’P
Jo
aneN2 fs P KO(2Pp)dp
e(0 J°
c. 30

,, tlo dielectric constant i. repined by the
When the stati

I+

. ,, the expectation value of the

spatial dielectric functio , fashion-
is calculated in the following fashion,
potential energy IS cat

<yve>=< N>+ AV c. 31

=- kVhe@® 7
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,  \f2+Z2
1 + (€0 -D e C
=-ew /” de/; Pdp/“ce e(0) g @)
« e-RAR N
TpT>ZT
e-RfR+71
2neXN2 fandp ['dz
e(o) Jo stpNrTH
e @PrMRH
Jo - dz N2 + 1N
e(0)
C.32
The first term becomes N
471e2*2 rap wo(@Pp)dp =
e(@® U
and the second term becom
~ PAL(2P + ~>P]dp
———————— ST5)
= ,, for the expectation value of the
and the expression 1
potential energy becomes i
[ pKj(2P + - )P]
e2eo 1l Jo - ————-
<\ >=" V&T r p2~(2pP)X%
C.33

fapdd(2Pp)dp
e2 |L
9To) J *pX1(@2Pp)dp
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- ¥or the expectation value of the total energy
The expression fTor tne kap

now becomes:
Ch">=<H>+ AV

fap knerp)

<T> - - .
eo fap2jq(2rp) dp
Jo C- 34
Kj(2p + P]dp
e2(e(0) -11
ejo) Ioa p2X1(2Pp)dp
_ _ the binding energy becomes:
With this result,
hn <T>+
(a,P) = onm*
* C. 36
X

= ,. using numerical techniques.
are obtained using

final results
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De Calculation of the Binding Energy of an On-Axis

Hvdroaenic and Non-Hvdrogenic Donor in the
First Excited (2s) State.

In this appendix are presented the detailed
calculations for the binding energy of an on-axis donor in

its first excited 2s state.

The trial wave function is chosen as

-XKVR2+2z2e-W™* }

where X 1s a variational parameter, /2 is the variational
parameter which was obtained in the calculation of the
binding energy of the Is state of an on-axis hydrogenic
donor using the static dielectric constant e(o). K is the
orthogonality constant. This constant appears since
02s(p,z) 1s orthogonalized to tls(p,z) the ground state

trial wave function. The orthogonality requirement 1is

D. 1"
This can be written as:

f{AN J2{P)

*
- XKAN jUaPisp1 * 22 e ®+HOW 2" ] 02

0

D. 2



where A is the normgfllgg%fg

o . N cancel out and the remaining mtegr
quantities A and N cancel

can be evaluated from.

~ Z1
apJi(ap)dp /_dz e paE
[: w /.
_PHOW +2
Ky g /.3p da(ctp)dP 1,,dz e
-(P+X)-171™ 7
dzJdVv+z2 e
-~ yom i f @iw)de 11

term of D*3 gives
Integration of the first

’_mp

Ja(ap)dp [_, dz

Jo 49 p

= 4nf_ 2 2 @p)Ki @Pp

d .4 becomes:
while the second term

_@+XwP
oK ‘?1 a0 1=aF,él,(ap) dP /,,dZ e

a , _I2/ -K—i(R
=8 * K{B’Sap)

n constant in 1ls(P,z)- The

123

D.3

D. 4

D.5

D. 6

D.7
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The third term D.5 yields

-CAML ¢ 21
XKFf2Z2dQFfF“P (P)APE£ dz 6

= . Zn XK Soa P M(«P){ 22010[(P-X)p]

20iC [(P+A) | dp
¥ MXTp )

D.8

:-47iA,X"j6 P » 35 (« P )" { (P+X)P> dP
_ 47ax. Tap2lo (@) ¥ t<P+X)p ) dp

"Xp+ax jo

4.4 and D.5/ one obtains

Adding D .3,

477 XX {8 P3]1(«P)IF[(P+X)PIdP

47eXX_ ra p2 Jo(ap)X1[(P+x)pldp

D.9
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Solving for K gives

K2 | 3p2r(ap)[(PHADP]dp

- X [* P3 JO(HP>*0C(P+X)p]dp

Jo

fap2j(ap)™iC(P+X)p]dp } D. 10
G+A) 0

= f‘oa p2]j («p>*i (2Pp)dp

Thus
ra 02Jo (ap)a (2Pp) dp
K=- 7-——— i ffVF (ip MM P A pPdp D. 11

- X Fa p3r («P>N[(P+X)pldpl
Jo

i i constant N proceeds
of the normalization

The calculations

from D. 12
d* S,,dt =1



126

D.12.a
*, = NZJO@P)G—Z\
D.12.b
.
+ 4XAr2)Ja(aP>e E2
3 D.12 .c
] e GV +ar
- 2AIW2Jo @PMWPYrT_N
D.12.d
e-2AMR2 e>*
+ 4X2V2Jo (ap)
e_zxw ‘Z_r D .12 .e
e AfD+7T D.12 .f
+ xX2if2v 2§ ° (@p)
D.12 .g
-2X>/p2 + z7

+ XKN2jl(@p)z2 e
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In detail, one can write

a.

N2f2dd Jap Jo (ap)dp dz e"2n 2~ 2

= 4eN2 3 p2Jo (“P>Ki (2Pp) dp

D.12.1

4KN2 fndd f P d'o(ap)dp T dz e CAY2 + 22

= 16nKN2JO [ @2JHap)K1l

2+z2 e DY 4 %77
- 2XKN2j2 dd f «P) L dz J* @

= —Xi<V2 Jfos dp pJa(«p){ 20 XOLP+A) pl

20K, [P+9 Pl dp
nrxj

8 . . e . P3 [(P+X)p]dp

81ItXKN2 Tap2j|@p)/M(PrA)pldp
C+A)



o1*% 1
4Kh 232 ad F* PJa(«p)dp F dze=21* lezZl

= 1671 hr\%‘ p2Jaa

XKN22” d6 7/ P j2(ap)dp J_dz '/p2 +z e-2vP2*Z

r . pifl(2Xp)
-SUXKN2 3/ dp P J2(ap){2P2"<2XP) ¢ X

16w ¥/ VI > p > N Qip,dp

- 242 +
|-

4itx2K 28 p“J 2 (ap>*i(2*P)dp

128
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XKN2 j** dO P P>dP L e Zv/PN T
,f A
= 2NXKN2T* dp p Jo(*“P>] + X

= 2nK*Nz J1Z)V N < “p>A(2Xp)dp

+ 2 AX2N 2 Fap™Ja™p) K [(2Xp)dp
Jo

can now be obtained from the
The normalization consta
g- The result 1is

sum of D.12.a, b, c*
+ 16 N /J\é N C PN [(PHEXD)pIdP

~8M i W2 44 p33° Cp)N t(P+X)PIdP

BItXKNz_ fa p212(ap) Xi [P+ P]dp
Tp+XT K
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- 8nKA2 fapdp)  Kx3Ap)

P \K N2 [ p4i\ (ap) k. (2Ap) dp

t21 kN2 [pZ|(ap)jq(2Ap)dp D-13

21 \KNE* p2 f (ap) AT (2Ap) dp

From the above expression the normalization constant is

liven by

-1XK2 Jf03 p3Jo @P) Ka(@Xp) dp
+ 2XXK2 .]f03 p*j I{ap)K1(2Xp)dp

+ 2 fap2o (aP) Ki(ZAp)dp

+8K f p2Jo (ap) Ki[(P +X) p1 dp
- 4XK fap3lo @P) Ko[(P+A) p] dp

_ f:f)ZJ J%(ap) K1IL(P+\)pldp

he rest of the integration is done numerically.
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The calculation of the 8§B ctation value of the kinetic

energy 1s now given below.

i} - r the kinetic ener in circular
The Hamiltonian #%} 9y

cylindrical coordinates 1is

a d2 D. 15
T = T an Da\
One can then write
T N = D. IS
| Ju a i+ JII_ $2$(p,z)
- ok~ § p__dp p1s$ 3z2)

many terms involved in this calculation, it

Since there are tiations term by term
. nt to do the differentiation
IS convenient no U

] D.17 .a
$2s(p/Z) =NJI0(«P)e VT
D.17 .b
A
+2 KNJ O(P>eVFB
D.17 .

X K Ja@PP:



The p-differentiation is performed first; thus the Tirst

term D.17.a yields

_d (,  alki(ap) e A
7 dp 1

ppIQ(ap) e-pyp +7Z7

Pp2J0 (ap) e_RAY,

—d < apsi(aP) /r +z°
p dp

f J@p)

| - aJrap) ~ ap o@PH P

a3i(ap)  OpFoCpl
+

p2p3J0(@P) 1 x ePN
[P2 + z2] J

132



M | - alx(ap) - c2pJ-O(ap) + aJ™ccp)
P I

aPp2JF'i(ap) _ 2PPJ"o(apL

N 2j 3/2 [p2 + Zz2]

[p-
x e~-PW ¢2
2pWJ0(ap) + 2pctMil(gp) P
-a 2MJ0(«p) Ve yp2 + z
UM~Awipil . }
+1~N7 7N b2+z1 J
X e
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D.17 .a



Differentiation of D.17.b leads to

M o alp a il
IpclO(ap) e
2KN d -aJAap) ele2+ - /\2+ 2
p dp V2 + 2
Ap2),(cp)
2KN d < a -Xy/pP+z2 -
- apJx(ap) e N
p 5p 2+ 122
Ji(ap)
2KN 1 - aJj (ap) - ap 2 cep) -
P |
«pj, (<*p) (-*P> 2XpJ 0(«P)
vV + zT
gA.p2] 1(«p) ApV”*ap) , A2p310(«p)

yAT/\r + i7/\u+ Z2]3/_2 tpz + 22]

X e—A-\@+A

I
]
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Differentiation of D.17.b leads to

[
= 2KN d 1 ap” (@) e-x + 2 Xp2Jo(ap) e AR2
P d ey

KN _ani@p)  ap al@Em @R

P

apIx@p) ¢Ap) _ 21pc0(@p)
VY2 + Z2 VAD + 72

aAp2Ji(ap) + Ap330(@p) + AZp3H@EP) J
MY+ 22 [p2 + z2]32 [p2 + z2] J

X e-AuR+75
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which simplifies to

4 axxkJTJIMitpIP

-2al > +
2al1 TWJI>p) ip+ 2"

4A KN Jp(ap) 21 if W J0(gp) P

------------ [p2 + 22]32

?XXK N Jjap) P I x e"Wp2 *?
+ JATTZ] I

D.17.b "
Differentiation of D-17-C gi
aVN +Z]
Xiov J_ Fp JL Jo(®) <2*tZ#%e
- r'" apr 9P
AAL+
XKN.3 (p[ -aldj. (ap) e
=-—-Ff a1l 1
NopWp3 LT- e XfP
PIO(P) e-AN+Z - PIPEETT B
I.m./\ P
ALy +Z°
XKN JL (-aJ,(«Py w2 72 ¢
= — aP 1
Au/p + 2
p2J0(ap) e-AMxTa - *p2I0(«p> e b
2+ Z°
A P
c a / 2 + Z. 77
“XKN | —agx@@py 20T WP
T?2" 2pt/0@P

.
_ aAp2Ji (apWpP
ap2si @py  APHTERTE @2+ 22
p
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ocp2li(a P3J0< P!
_oop2li(ap) - 2 s 22

A }
2ApJa(ap) + alp2ji(ap) » /p2+z* J

X e—\wfrd*zT
7 -pr + aXK N J
| a2xk N Jo(*P) ~
2\KN J,,(«
- aXX N Ix@@p)-

aXKN J, («P>P xkN J0(ap)P2

7ID2 + z¢

Njc(op)_p; + 2\ N J0(@p)

XN Jn(«p)P2 |

- aXxX2KN /ptTAt J

D.17 .c
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Differentiation with respect to z of D.1, results m

a2 | e-PW + + 2ih e_xpr T2
@0 az?2
7225‘
2 k 4p2+ 22 } x e~x%5p
a 1 pze fF*1**r 2XKz eNW/FQ+2
Lazy /p2 + z2 wer Fz2
XKz e X/F'7 z2 XiCyp2 + A~ (Xz) e "'/*?" 72
T * z
- +_ pn _ Wy
= NJ, (u JL_’) + '[p2 + 22]3. P 7 A
vV +z
31*Z2 + 3AING -
/2 + 77
N\
+ XX~ VKz X e

"[or —+2z*



-PivI0(ap) i PVcl0(ap)z2  paJO@EP) Z2

Wp2 + 22+ [p2+2232  [p2429 O ° e

3XKNJg @) ~ 3XKNJqg(ap) z2 ~ 3XXKNJIQ(ap) z2
vip2 + 22 tp2 + 22]32 + [p2 + 272

f XKNIQG@py  <ENIQ@PIZ gz
vip2 + 22

D.

Addition of all the terms in Equation D.18 yields Vg$28.

This quantity can be expressed by
~PNJO (ap) $NJO(ap) z2

VX _
vi2 + Z2 + N2132
PANO(P) 22 | e -Pyp-777 + 3XKNJO (cp)
2. ... \ ve2 22
3XKNJO(@p) z2 + 3XKNJa(@p)z?
[p2+ 2232 [p2 + 22
XINIG@P) 22 g A 2
+ XXNJIQ @) Wip2 + 72
2PNJO @)
* a0 S + 22

2PN (@p) p PNJO(ap) p2
Vip2 + 22 [p2 + 2232

+ PM70(«p) P2 1 5 o pypsse + £ 20KNIq (2p)
[p2+122 ]

138

18



4axXXMI1(@p) _ 4 AW O(»P)
+ g2 *

2XKNJ,,(aP)p2 + 2XKNJIOEp) p2
[02 + 22132

+ aXKNJO kP I*/ Y + ~

cNI-,(«P) P () P

2XXWIO(«P> | X e-W'R-=T
"r7Nrr?r |

P2tz s

XXWJj«P> P2 + 24.2XWJo C*P)

XXWIOC*P>P
aXKNILEP>P 2+ 2°



Multiplying the terms in Equation D.20.a to D.20.j by $*

*2

and (--—- ) results in:
2m

* n2

$26 (____: D-20-a)
2m

= 3h2XKN2J a{ap)

SJinmjlia e.2Nr7ir
nPy/pT~T~ZT

3h2XXN212(ap) “yjrrp -
m*

which, upon integration, becomes

~hZ D. 20 .
L *2s (Zm* a

BhMKN2 r be r P IRP§ dP pu*p>dP r
0 Jo J-c VIR + 22]

dg o-P+A)Ip2+122
+ eh~KINI [2ndd fap Jg(ap) dp f "
J~‘

i jo Jo WUp2 + z2

3h2>j<§|*<z\|2J[02kde*r(;apJf(ap) dp r;dz e-2N 7
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12nhzXKN2 rapjl(ap) wo[¢® + A)pl chp

m 10
ATCAA 2 rapj2(ap) p(ACYD
m” Jo
\2nh2XXN2 fap2j2(tp) K1(2Ap)dp -20. a
> ne

The second terms yields

5/ r*}E D.20 .b
2/

h2P~2J"o(@P) e-2p/P"

2h2fAN2I1 («P)  e-PRAR
mJIp+z™>

h28\KN2JI| (ap) e-*®sTtrA .20 .b
m

D »o.b" are carried out, the

When the integrations m

- results
following E&XPressligh

_J*L D.20.b
23 *
L 2m
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ro dr e AOVEFZ2
, 2@, PdE@EP) dpJe  yp2+ z2
S, W/ <</
™
rdz e-@C VR *Z*
h2Qi)1(KN_ Jum > /- p d2@p) dp

47u'32P’\Zj J2¢p) MOEPpP)dp
272 )dlp

, Finh2BKN2 j Ca D J2@p)iCo((P+X)P]dp

- m

dnh 2p3<<KVw_L Jroa p: D-2°"b

D. 20_’\ yields

JIL D.20.C

S 2m"

-(ptA) W'
= 3h*KNzJ@P) e

6h2UEE- J|(« e
m

] 2+ e
+ SPXK 2V 23° (@p)V



integration, these terms vyield:

12nh”™ml fap2 I1(@ap) Ki [P+ R
m* Jo

ATZR2N2KNL  f a p2 Jo(ap)™ i (2AP)dp
m* Jo

12MTh W KW ra P2J32@p)KO2Xp) dp
— ,ﬁ?" Jo

5 q P2 Ja(ap)”i (2Xp) Cp

JIL D.20.C

| = 2m*

-CAYp

3hnkN*r2' do /; p je(ap)dp L dz
- W* Ja Cc

/\ /\ ‘ 1 1}
__e,hﬁqu |.j0 0 | 0 J' (“p)dp / - dz

3n2XK*N2 £2<d0 /* PJI~“p)dp  dZ
+ —— 71 Jo 0

Ash



120 I p2d | («p)™i[(P +*)p]dp

2ABh2\2KR Ta p2 JJ(ap)Jq(2A.p)dp
1) Jo

17« h2VK Nz Td3 j2(ap)ifo(2a-P) dp

stch 2x2k 2Nz [« 02 Jo (ap> daf>

+ —
v al D.20.C*

while D.20.d becomes:

J il bp.20.4d

<5 2m*

ApZtfrJaPi e 2BAY™T
2m

f2p2XW21=(«P) e PR/ T

W *j2(aPiypHH

h2B2)j " (gPL
z.n.

h2$2KN2JB(aP) e-(vArT

erppzrzr D200

N2P2XKN2J1 (@ VP



Integration of D.20 .d" yields

h2
s D-20.d

=~ * p2128{0Lp)KL(23$p)dp

T - ;L @ P2Jo(ap)K1[(P+Z.)p]dp

+ 4*]1SENT *p3jz@) [Fi+X)
m* Je°

P AR E L pVa(ap)tl(PA)pldp
*« (- £,-20“e )

A2A3CT2) g (ctp) yip2 + g2 g p.DVFTAT
AT
+ h XK N 2% C*P) »fr ~~ZT e~2C[ **2

—  h2XIKKA 2X@p) p2 e-2*~7 7

ANgr2r 3] (ap)z2 e 2V TTr
ATr*

D.20.d

D.20.e "
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- _ _ , D-20.e1 becomes
On iIntegration with respect to p and

2 nhww?2 tp3j @)X 0[(P+M)p]dP

m>*> °

2Nh2XXN2 p p2)2(@ap ) [P+A)pldp
+ m*(P+*> Jo

AN VK N2 Fap~(«p)”(2iP)dP
+ ———A Je

Bh2XKN2 (a”JA@RKORXP)IP
—-*  Jo

D. 20.e
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on iIntegration these terms iIn D.20.f yield

j>(C- i ~D20-Fr

Aith2¢A2 rap2kc(ap)Ji(ap)ACL[(P+-)P]dP

8-Kh2*ym 2 fapij0(ap) Ji(otp)™i(2Xp)dp

4 f* p*Jo@P)Ji<«P>*0<2*p)dp
....................... A Jo

D.20.Ff
2Ith2X\X2/2 p p3jo@)I-1(«p)x1(2;lp)dp ~

Jil D.2Q-9
25 Zm*

D. 20.Ff
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n Integration become:

\
D.20.f dt
/

12ith2zaXKN2 fa p2jo@p) J1(ap)O[(P+A.) p] dp
n Ne

24 Tap21a(
+ m" Te)

7 anh2xkN2 r>p || (ap) if0(2Xp) dp

m* ©

L 7izhegx2k N2 = p3jo(ap) J1(ap)K1(2Xp)dp D-20-f

* m* Jo
N2-D.20.g
25 2m L
e-WsF?~rp:
2m*
h2aXKN2JIP"<

h2n2x m 23 o («P)V/p? + D.20.9

2m
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Integration of the three terms iIn D.20.g gives the following

result:

f$2%5'2m* J

T 271A292ij2 r

+ AR Z Fap23i (ap)r I [(PHOPIdp

r*= p3j2(«p)iro[(Pn)p]dp
U Jo

- 2nh2akkKN_ r3p2jt @p K [(E+X) p] dp D.20.g"
m*P+X) J°

h2 5 20 h
2rn*

2s

h2aPN2J0(ctp)Jl(ap) e 2PV -77r
m* \JR2 + z2

2h2a~KN2J0(ctp)Jlapp e.- @O 7 r
m* yiR2~\~z2

h 20L$XKN2IQ (&p) P g-CAYR+2

m*
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Integrating D.20.h, one obtains

h2
D.20.h dx
L = 2m>*

'II

faP JI@F>) KoEf,pd
e JaP Ji@>)KoeEr.pdp

+ A*h2&2”~ 1 PV|(ap)Jd<ri(2Pp)dp
m* Jo

SnhAmj P | (ap) jof (P+A) p] cip

m* J

, ATrA2P2N  fap2j2(ap)Ki[(p+X)p]dp
m>* Je

ATZR2RUKER) [* p2j2(ap)KL1[(P+K)pldp
m > Jo

Anh2CL$XKN2 C* p2jo@p)jl(ap)K1[(™+X)p]ldp D .20.h
m* Jo

— 82 p.20.1
$l3 Zm* Q

h2a2XN2J0 (fiP) ™A VR2+2
m* ~

2h22aK N2 () e-DAR+2

7 =

_ hAXKANT j2(@ap) Jp~T-~ e-2Wp2*22 D. 20
Y4



D.20.1 on integration, becomes.
L At- D.20.i  en
{ )

Anh2@XN2 rap2 j-2 (ap) Kx[P+A)p] dp
m>* Jo

finh2aX N2 Tap2JZ (ap) kx(2A,p) dp
+ m Jo
ATZh2e2XKN 2 Ca p3 jA ©-pXO(2\p)dp

m* °

2 "ntMAIME Fa p21A (ap)KL(2Xp)dp
n Jo

) last term D.20.j yields
Finally/ the

(_A2D.20.J

2s Zm*
. +N
hA2KN2 j 2(apy P2 + 2 e € 2
2m*
h2a2XK2N2 j 2(ap) e
Afc....

hzan kN2 | 2(ap) P2 e-2iyFTH
t 24

hhra2X2K2N2 j| (ap) z2 e-21I'/fp_r2r
+ 2/
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D.20.1"

D.20.3



On integrating D.20.jJ one obtains

d2 p 20 .jf dt

/

2nh2ca2XKN2

m

fog piJa {ap)KO{(P+A) pl dp

2nh2a2\KN2 n
A P+A) 50% PZ{B @ Lo Pl

4 Kh2n<':12XK2N 2 fé’ p21& (ap) Ka(@\p) dp

2nh2a2k N 2 Jfg pZ3R (ap)K1(2Xp)dp

m

27 2a2X2K N 2

m

;oa p4Jo (ap) K1(2Ap) dp

|Zh202K 2N 2 JQFO% -2 %2)@gap)  (2lIp) dp

m

nh~ranKW [* pij2@p)Kj2Xp)dp
D* Jo

1.20.j"
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Now, the kinetic energy terms, comprising D.20.a to D.20.j,
can be added together and simplified by making use of the

following notations:

RL = f p2 ar(ap) (2Pp)dp E. 1
R2 = fa p2 ¥o(ap) (A-p)dp E. 2
RS = f pa jZ(ctp) K1(2Xp) dp E. 3
R4 = f 3p3Jo (*p) KO(Kp) dp E. 4
RS = rap3J3(ap) KOL(P +A) p] dp E.5
Re = fap2jf(ap)ig[(P +")p]dP E- 6

R7= £V j1(@p)ial(P+)pldp =7
= fap3J3(ap)*(2Xp)dp E.8
JO
= Jfoa p3 J3(ap)N(2PP>dP E.9
E. 10
110 = f@ P It («p)t [(PH*>PIAP
E. 11

= r P J3(ap)Ko<2*P)dP
J0



In the

[44] -

integrations above, use was made of the relation

P2 Jo(ap) (ap) ka(2xp) dp

_ KO (2Xp) p2dp
25 \]r(‘)\[ 4ap i2€<)

t i Faj2cp) {2pi"0(2A.p) 2XpzK1(2kp) 3} dp
2a Jo

Jliap) KO(2\p)\a
2a

1 T3pll(ap)KO(2kp)dp
a 1io

1 £~ p2Jl(ap) Ki(.2xp)dp
a 1o
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- 12

vanishes at the boundaries and

The integrated part of E.12

the result is

f p*j0(ap)J1(ap)K0(2Xp)dp

JO

) 1 fap~J2(ctp)K1(2Xp)
1 [apJ2(ap)Kj2Xp)dp a Jo
a Jo

- 13



The fTinal expression for the expectation value of the

kinetic energy becomes:

<T>= 13cth22XXN2 RQ + 101i1h2F>XKN2 R?

2nh 2XKN2 v 111th 2AK N 2

——————————— R4
m m*
27Th2P2iV2 ~ + 2uh 2P2AKN?2 RS
m m
+ Anh2RPXKN2 2 AN 2XXKN2 -~

M+ (P +A) * (P +A)

2Nh2XKN2 R3 _ 2nh2pXXKN2 R5
m m

7Tnh2a2XK2N2 R4 + 5nh2aZX N2 RR
T m*

2nh2a2X2K N2 R _ 2nh2pXXN2 R5
m i

2nh2d 2 R1

E. 14
m

The expectation value of the potential energy with the

static dielectric constant £(@©) 1s determined as fTollows:
<V>=- <*m" 17 1 >

+ 22T ®2. )N
e (0
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$2s [P2 + 22 12 5

=_ edxn@) | ., F.2
6 (O) VP + Z>
4 eXN2 @ )+
e (0 YW + 22 k-3
2e2XKN2J 2 (ap) i+z, =
6 (o) -CA VDI -
4e 2K N 251 (ap) Ay 2 - 5
e(0) W@+ z2 )
4 4e2XK2N23a(ap) ~Ah +2 T
e (0
F. 7

e2X2K 2N 23 a (ap) "p2+ Z2

e (0)

The integration of the terms F.2 to F.7 yield the following

results for the potential energy:

& (F.2) eft = G(_(ﬂi FZJ{)ZR dd jfap Jo @p) dp x

dz e-2Pp2+
ViR + Z2

AICAVZ [+ b 32@p) O EPP)
HeA2 [+ p J2@p) O@PP )
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(F-3>

4e2KN2 r2n
e (0 fo*<®  p Jo (ap) dpJf: dz

16neXN2 r= 2,
e(3)-—- Jo P Jo(aP)KO[(p+X)p]dp

f (F. 4) dx

2\e 2KN2 r2n
e ©) go dQ ,fo p Jo (ap) dp j@dz e~ 5+ 22

F.4
REOASUE N & Jo (ap) KEP+A) p] dp
F. 5 o
4eXKN2 p2n M /=a @ dz e~Xk"
sy o 4T e Blaylp JO LR

16ize K N 2
o o Jif)a p JB (ap) KO lp) dp
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dx

bhe2k N2 K2 3 ) r
GTo) Jo dd aP 5 Jo(ap)dp
F.6

16 INe2k N2 ca > 7.

iTo)— Jo

| ()

e2X2K2N2 r2n
e (0) c <*p Jo (cep) dp f~ dz/p222 e 2A

*
e(o) J

2n e 2XK 2N 2 .
e(0) jﬁ? p2jl1 (ap)K1(2Xp)dp
F. 7

and using the notations of

Adding all the terms F.2 to F.7,

Eguations E.l to E.lIl, the expectation value of the

potential energy, with the static dielectric constant e(o0)

becomes:
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dae N2 DQ _ 16uwe XN2 R1Q

e (0 e(o)
N\eXN2 oo _ 16ne2KNj Ril
e (0) e (@
16* XeKXKNR2 R4
e(o) e(o)

2N\eXN2 RrR2 F.8

eTol~

- - Jjielectric constant is replaced by the
When the static di

) t-here are additional terms in
spatial dielectric Tfunction, there

of the potential energy. These
the expectation va ue

o are determined as follows:
additional terms a —

r vh * F.9
e—(o)\—lLe N2s dx
AV ="¢e2£ N e (0)

. IUH "D . .

T _/ptat—\VV ¢
+ 4/ Cj
[
2XK|| 2e v
1A+ yr 4+
4 K2 e
2 *7?
z2 e (

-4

L Kp =2 i el
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Integrating the terms one by one yields:

At/ = - g2]e(0) -11 N2 [2n WY
e (0) lo* dd 1o p J°(aP)dP

4Ke2 fe(o) - 1 IN2 ¢[2*
c(0) 1 pJa@)ap

f Cize—(t**‘i )V

\Ip2 + z2

2\Ke2fe(@© -11\2 £
e (o) fo dQ fap Ja(ap)dp

X ace (P )

4X2e 2 -11w
e [2(8) IOZ( dd jos p Ja(ap)dp

~(2i ¢+-)WF
o € )

/I
~P2 + Z
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— e2 {!tOi“l ] N2 f - p<7°<«P) «> dz e-i- * % )/\

AreNg(o)-I1]A (28 pJ@ap)dp f dz /FT7Fe
e (0) J J

(o} Jo

)

) (2P 4 -

47ie2
e re({) \

(o} 11| api2(ep)

|
C))p dp

_ 167T<Te2re(o) -1 ] r* pM(ap)*0[(p+Aa+—- 1p

e (0) Jo \ dp

STrAire2 fe(o) - 11722 T3p2j2(ap)ifi[fp +A+-i-)p dp
e (0 Jo \

167Ce2fe(o) -11 rapj-Jfap)® p2a+3)p dp
e (0) J°

16nKe2 fe(o) ~1]N\ fap2Ja(ap)Kl 2A + - ] P dp
1) Jo

47t12i62e2 fe(o) - 1] p2d2(ap)” & 2A+—C _p dp
I
e(o) 1 2A + —



163

E. Calculation of the Free Particle Energy

In this appendix, the details of the calculation of the
free particle energy are presented.

The Hamiltonian for a free particle in cylindrical

coordinates 1is given by

+ A Jt +JL |

H = - / —
2m*  { dp2 P dp p2 (3p2 dz2 j

H. 1
The wave function for the free particle Hamiltonianl is:
* = Rnl (P)e 1 (*)zm(z)
cotl nl, ST @
H. 2

where

and L i1s Length of the cylinder.
For the cylindrical case with f = 0, and (p/a) = 1

JnE(XnE) = 0, the first node of the ordinary Bessel

function. Then one has:

= AnoJno (kmo ~
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The normalization constant Ano is obtained from

1=1 dt

/ Ao Jmo | ko R j e Ao Jro | kro M | e lk: dx

= A= a8 f “p JBb (Ao r ) dp

X T dz el{kK)z

Therefore,

2it p JA (Ao | dp J'*" dz ei® =2

-1
2t f*p JAL jdp dxrei



The Kkinetic

energy 1Is

&
a

*no

determined as

0™ ("o 4
ap



The differentiated p-part becomes

Therefore,

@ , 1
dp2 P

“noJ1( “no a )

ap

( Xno )
ap

e iz
V 2ptno(P"2)
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The z-differentiation yields

xR d ei*z 1
"= J. 1X -2

dz2 Vrof>/ I"°aj0%g\aze |

= Jo 1 £ dz { 1kelkz}

= Jo ( )L 1

= -k2Ja(*,, -F)e"*

H. 9
After multiplication by — , the V. "“no(p,z) becomes,
2m

Jil v 270

B Zm&

2117*a2 2m*
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Multiplying H.10 by >x*(p,z) and integration of the free

particle kinetic energy yields

h2
om* V2 tnofP. 2) dz

A2 3§ h2Xno2 , h2k?2 . q
no 2m a2 = 2m ro: i no P

X Jf dz e lik Bz

| h2X20 + h2k?2 q
\ 2m*a2 2m* P

h~L + AZE2

2m*a?2 2m*
h2a2 + hZxk?2
2m* 2m>

where



For the ground state j-0, hence k

energy becomes

T >free

For the first node n = 1 and Xno

and @ becomes
2.4048
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O and the free particle

o = 2-4048 [45]

H. 13
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F. Numerical Integration Techniques

The algorithm used i1s the Q DAGS [47] which 1i1s a
general purpose integrator. It uses a globally adoptive
scheme to reduce the absolute error. It subdivides the
interval [A,B] and uses a 21-point Gaussian-Kronrod rule to
estimate the integral over each subinterval. The error for
each subinterval 1is estimated by comparison with the 10-
point Gauss quadrature rule. This subroutine is designed to
handle functions with end point singularities. However, it

performs as well on functions which are well-behaved at the

end points.

G. Units Used in This Wk .

The QWW radiir are given iIn atomic units, where 1 atomic

unit is twice the bohr, aQ, and the bohr is given by

a_ = 5.29 x 10 2cm

The units of energy are 1In meV. From guantum mechanics one
has (e2/a ) = 27.2 eV. Since the energies involved iIn this
work are much less than this, 1t Is necessary to use meV,
where 1 eV = 1000 meV. For example, the binding energy of a
hydrogenic donor in bulk semiconductors 1is given by

B edn*
Ed= 5 e(0)2h2

If one substitutes m - 0.067 n
e(o) = 12.56

one multiplies by 1000 and 27.2 eV one obtains Ed .78 meV

which i1s the bulk value for GaAs.



Sample Program

PARAMETER (NSTEP=1000,BETA0=0.006,BETA1=_05E-3)

c NOw

EXTERNAL FI1, F2, F3

REAL*8 MASS, EPSILON, ESQU,B,BETA,BETA2,N2,V ,H,E

REAL*8 RESULT(NSTEP), A(19)

REAL*8 INC, LOW, UP, ERRREL, ERRABS, ERREST,ALPHA,ALPHAZ2

REAL*8 RI, R2, R3
INTEGER I, J, INDX

COMMON BETA,BETA2 ,ALPHA,ALPHA2
CALL ERRSET(208,280,-1,1)

INC = (BETAO-BETA1)/NSTEP
LOW=0.0

ERRABS = 0.00001

ERRREL = 0.5e-6

ESQU = 1.0

EPSILON = 12.56

UP = 1000.0

ALPHA = 2.4048/UP

ALPHA2 = ALPHA**2

MASS = 0.067

PI = 3.14159

WRITE (6,*)"a= ",UP
WRITE(6,%)" E-VALUE

BETA =BETAO +INC

BETA

LOOP THROUGH THE BETAS FROM BETAO TO BETA1 IN NSTEP STEPS.

CALCULATE <E> FOR EACH BETA AND STORE

DO 2 J=I1,NSTEP
BETA =BETA -INC
BETA2 =BETA**2

c CALCULATE N2.V.,H
CALL DQDAGA(1I,LOW,UP,ERRABS,ERRREL ,RI ,ERREST)

CALL DQDAGS(2,LOW,UP,ERRABS,ERRREL,R2,ERREST)
CALL DQDAGA(2,LOW,UP,ERRABS,ERRREL,R3,ERREST)

C CALCULATREEUNR Y1 O vy 57588 BARRAY

DEFINEN?HE FUNCTIONS F1...F3 FOR THE
double precision function F1(R)

IN ARRAY RESULT.

-N2*R2/12.56-N2*(11.56/12.56)*R3

H = O.5*BETA2/MASS

S ile (6,%) RESULT (J), BETA
CONTINUE
STOP

REAL*8 R,BETA
COm°»RBET»<DBsKi (2 0,bets,b)

return

double precision FUNCTION F2(R)

REAL*8 R,BETA
COMMON_BETA

P2 = (R)*DBSKO(2.0*BETA*R)
return

END

INTEGRALS



DOUBLE PRECISION FUNCTION F3(R)
COMMON BETA

F3 = (R)*DBSKO((2.0*BETA+1.375)*R)
RETURN

END
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