()

Uy
"FINITE ELEMENT METHOD APPLIED TO SOME BOUNDARY

VALUE  PROBLEMS

BY

!

IYAYA C.C ( WANJALA

This dissertation is submitted in partial
fulfilment for the degree of Masters of Science in Applied

Mathematics in the Department of Mathematics.

UNIVERSITY OF NAIROBI

JUNE - 1882

EWIVBRSITY OF HAIROE
! LIBRARY



B S

DECLARATION

This disserttation is my own work and has not been

presented for a degree in any other University.

Signature . @* ..........

IYAYA CHEBAYI CHARLES WANJALA

This dissertation | has been submitted for

examination with my approval as University Supervisor.

Signature ..002%&@ ........

Prof. B W OGANA



ACKNOWLEDGEMENT

The Scholarship that enabled me to pursue to completion aof the

in
M

Course 1in Applied Mathematics was sawarded by the courtesy of the
University of Nairohi. I am indeed grateful for the golden favour.

My special thanks go tn several of my Lecturers. Prof. #W.B tgan:
granted some of his time an helped to create the stmaosnp

completion nof this project was possible. He has a large measure of my

gratitude for suggesting the writing of this projeet in the Ffirst nlace
and for giving much active encouragement throughout the working. He hac
been most helnful in reviewing parts of the manuseript, nrovadans

stimulating ide=as
Alfred W Manyonge, D .0O. Adongo, A.A. Wasike .M. Makyekho (T A S) anc
Fredrick Okelle (Computer Technician), whose .friendship and researct
association were most treasured during this writing of nroject
my sincere appreciation.

I am also indebted to Florence Kayere and Irene Karima (secretaries.
who tirelessly gave me excellent typing assistance.

My parents Charle=s Tyaya and Rinah Nakhanu are the sole basement ot
my being. To them, T express king size sincere appreciation.

Finally, I am gratefunl to my wife Knite for her natience anc

understanding while enduring the book widow syndraome faor aver =a

Wambaya was tooth leass by then , but he remained patient with hac
grandmother Diana Makaola who deserves much more thanks for her
immeasurable tolerance

and love for her grandson.

1.C.C.H.



CONTENTS
CHAPTER ONE

[
CHAPTER TWO

2.
.
Z
2.
2
&

CHAPTER THRE

S
6
E

\2 . :

Introduction

Discretization of continuum
Linear_Interpolation of Functions
One Dimensional Simplex Element
Two Dimensional Simplex Element
Complex Elements

Natural Coordinates

Page

w»

o O o

10
11

A FINITE ELEMENT FORMULATION OF SOME BOUNDARY VALUE PROBLEMS

3.

3.
3.

3.
CHAPTER FOUR

1

2
3
4

I R

Results
Conclusion

Appendi x

references

B W N

Finite Element Equations

14

One Dimensional Heat Transfer
Two dimensional Heat Transfer

Point Sources

ASSEMBLY OF ELEMENT PROPERTIES

Coordinate Transformation
Assemling the parts

Torsion of Noncircular Sections
Introducing Boundary Conditions

Example 1

20
24
27

29
30

31
37
38
42
48
48

59



- CHAPTER ONE

1.1 GENERAL INTRODUCTI ON

The Finite Element Method (FEMD 1is one of the
numerical analysis techniques for obtaining approximate
solutions to a wide variety of engineering problems.
Others are finite difference and boundary element methods.
Suitability ‘of any method depends on the nature of tLhe
problem to be solved.

The basic premiée of the FEM is that a solution
region can be analytically modeled or approximated by
replacing it with an assemblage of discrete elements.
Since these elements can be put together in a variety of
of ways ,they can be used t6 represent exceedingly complex
shapes.

In a continuum problem of any dimension the field

variablerpossesses infinitély many values because it is a
function of each generic point in the body or soclution
region. Thus the preoblem is one with an infinite number
-of unknowns. The finite element discretization procedures
reduce the problem to one of a finite number of unknowns by
dividing the solution region into elements and by
expressing the unknown field variable In terms of assumed
approximating function within each element. The
approximating functions are defined in terms of the values
of the field variables at specifiedlpoints célled nodes or
nodal points. Nodes usually lie on the element boundaries
where adjacent elements are considered to be connected.
In addition to Loundary nodes ,an element may also have a

few interior nodes. The nodal values of the field wvariable



and the interpolation fﬁnctions for the elements completely
define the behaviour of the field variable within the
elements. For the finite element representation of a
problem, the nodal values of the field variable become the
new unknowns. Once these unknowns are found » the
interpolation functions define the field variable througout
the assemblage of elements.

Clearly, the nature of the solution and degree of
approximation depe;d not only on the size and number of the
elements used but also on the interpolation functions
selected. Often functions are chosen so that the field
variable or its derivaties are continuous across adjoining
element boundaries.

An important feature of the FEM which sets it

apart from other approximate numerical methods is the

ability to formulatei éolutions for individual elements
before putting them together to represent the entire
problem. In essence a complex problem reduces to
considerably simplified problems.

FEM has also a variety of ways in which one can

formulate the properties of individual elements. These

are basically four approaches:
Cid Diréct approach.
Ciid> Variational. approach
Ciiid Weighted residuals approach
C(ivd Energy balance approach.
Regardless of the approach used to find the
element properties, the solution of a continuum problem by

the FEM always follows an orderly step-by-step process.
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The summary of how the FEM works is:
Ci> Discretize the soclution region into afinite
number of elements
Ciid> Select interpolation functions
C(iiid Find element properties
(ivD Perform coordinate transformation if need be
(vD) Assemble the element properties to thain the
system equations

Cvid Solve the system equations

Cviid make additional computations if desired.
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CHAPTER TWO

= ! DI SCRETI ZATION OF CONTINUUM

The discretization of the domain into a series of
elements is }(he first of a series of steps that must be
performed when solving a problem.This particular step
depends on the use of engineering judgement. Tﬁe
application of poor or improper judgement will produce
inaccurate results even though all of the other steps are
rigorously adhered to. Since there are no setrules for
reaching this goal because of the vastly different
circumstances encountered from one problem to another ,some
hel pful guidel ines emerge from- the large amount of
experience in finite element analysis.

The first gquestion one must subject oneself to

are the kind of elements to use and whether one should mix

severai different Lypeéréfmeléﬁénté. The answers to these
questions depends on the physics of  the problem under
study. Often one type of element is used to represent the
continuum unless circumstances dictate otherwise. The most
popular and versatile elements,because of the ease with
which they can be assembled to fit complex geometries, are
triangular elements in 2-dimensions and tetrahedral
elements in 3-dimensions. These elements cgn have any
number of .exterior and interior nodes depending on the type
of interpclation functions defined for them.

A uniform element mesh is easy to construct,but
it may not always provide a good representation of the
continuum. In regions of the solution domain where the

gradient of the field variable 1is expected "~to vary
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relatively fast, a finer element mesh should be used. It
is convenient to place nodes and element boundaries at
locations where point external actions are applied and
where there are abrupt changes in the continuum. If the
boundary of the region has any corners,nodes should also be
placed at these corners.More elements should be used in
régions where .Lhe boundary is irregular than in regions
where it is smootﬁ.

The continuum should be discretized so as to give
the element a well proportioned shape (lengths of the sides
should not be very differentd . Long, narrow elements
should be avoided becagse they lead to a solution with
directional bias that may not be correct.

Provided that the the elements obey the
requirements for a convergent solution, we may expect that
the more élements we use to model the solution domain,the
better the accuracy of our résults.

Eaie LINEAR INTERPOLATION FUNCTIONS

The FEM is ba§ed upon the concept of
approximating a continuous function (temperature, pressure,
displacement, etcd by a discrete model that is composed of
a set of piecewise continuous functions which are defined
over a finite number of elements. The most popular form of
the element function is the pol ynomial. Thé order of the
pol ynomial depends on the number of items known about the
continuous function at each element node.

Finite elements can be classified into three
groups according to the order of the element'polynomial.

These groupings are simplex,complex and multiplex
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(Oden,1972>.

Simplex Elements have an approximating polynomial
that consists of the constant term plus the linear
terms. The number of coefficienté in the polynomial is equal
to the dimension of the coordinate space plus cne.

Complex Elements have a polynomial function
consisting of the constant and linear terms plus second,
third and higher order terms as they are needed. The
compleg elements can have the same shapes as the simplex
elements, but they have additional boundary nodes and may
also have internal nodes.

The multiplex elements have poelynomials
containing higher order terms but the element boudaries
must be parallel to the coordinate axes to achieve
inter-element continuity. The element boundary of the
simplex and complex elements are not subjected to this
restriction. | -

For the purpose of this project only the simplex and
Complex elements will be considered. The discussion of the
complex only covers quadratic triangular elements but
multiplex elements along with the isoparametric elements
are beyond the scope of this project. Also only one and
_two dimensional simplex element formulation will be
considered.

2.3 ONE DIMENSIONAL SIMPLEX ELEMENT:

This is a line segment with a length L and two nodes,

one at each end as below:
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F—x%, —
Fig.2.1.

The nodes are denoted by i and j and the nodal values by QL

and @f The origin of the coordinate system is outside the
element. The polynomial function for a scalar quantity, &,
is

¢ = a1 + azx 2.3.1

The ccefficients al and aJ can be determined by using the

nodal conditions.

¢ = & at x = x
1 L 2
¢ = &5 at x = x
J J
~which-result 4n-a pair of equations: )
¢ = o + ox
L 1 2 1
& =

a + ax
1 2

J 3

which yield

a = ¥&x - ¥x ;
1 v} i
=
&« = & - &
3 B h When solved. Equation (2.3.1>
then becomes = ° R
Cx, =x (x - %X
_ J 3 i@ .

@ — i+ SR s b 2. 3.2

The linear functions of x in (2.3.2) are called shape
functions or interpolation functions and are denoted by N.
Each shape function must have a subscript to denote the
node it is associated with. The shape functions in (2.3.2>

are



N = 3 and N =

Equation (2.5.2) can also be written using matrix notation

@ = N& + N®& = [NI<{®> 2.3.3
Lo S y
where
(Nl = [N)ﬁ] is a row matrix and
L
-3
(&> = Qt is a column vector
J
1,0 at. node i
Ni. Nj= 0.1 at node j respectively. These values are

characteristic of shapé functions.

2.4 TWO DIMENSIONAL SIMPLEX ELEMENT:

This is a triangle with straight sides and three
nodes oneat  each corner. Lebelling' of nodes is
counterclockwise from node 1 »which is arbitrarily

specified. = - . .

= a ta X +ta
? 1 2 3)’

14

1.
Fig.&.a
The interpolating polynomial is
¢ = a +ax + ay c.4.1

1 2 3



with the nodal conditions

¢=% at x=X .y=Y
1 3 i 8

=% at x=X . y=Y
b] S

¢=§k at x=Xk,y=Yk

and (2.4.1) produces the system of equations

¥ =z a +« aX+ay

3 1 Z 1 2

¢ = a + aX+a¥

J 1 z2 ) 3
= a o

2 g € A e X

which yield

a‘=C1/2A)x ,

[[X,Y - X Y ]§ 4+ [X Y - X Y ]Q, +* [X Y - X Y ]§ ]
j K k "o ki v k) v i vk

_ _ _ _ c. 4.2
o, =C1-24> [[YJ Yk]§>t + [Yk Yi]QJ + [YL Yj]§k]

a =(1/2A).[[X —X]Q + [X_— X]§,+ [X - X]Q]
3 k i)t v k)i 3 i)k

where the determinant

1 X Y

1 1
1 , Y| = 2A 5 3
1 XY

k k

and A is the area of the triangle
- Putting these values of a. a, and o in (2.4.1> and
rearranging we obtain

¢ = Ni§>L + rSQj + Nkék 2.4.4

where
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N = 1/2A.[a +.bx + ¢ y] and |b = Yk - Y
4 : 4 ] ’ t 2. 4.8
cJ = Xt = Xk
C L‘x‘J - YJX‘
N = 1/2A.[a + by + ¢y ]and = k= L] i Y 3
k k K k
c, = XJ = X‘
The evaluation of Nt at node i produces
N =1/2A.[a + B¢ +c‘y]
i s 3 1
The terms within the bracket are the value of
the determinant in (2.4.3>. Thus N = C(1-72A> C2AD =1 at
1%

node i+ and it is zero at nodes two and three.
The scalar quantity ¢ is a function of a set of
__shape functions which are linear in x aﬁd Y. This means
that the gradient in either the x or Yy direct;ons will be
constant. A constant gradient within any element means that
many small elements have to be used to approximate a rapid
change in the value of ¢.

2.5 COMPLEX ELEMENTS

Quadratic triangular element

It has six nodes I[Brebbia,C1987>) and the

interpolating pelynomial is

Nl

Fig 2.3
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¢ = a + o x # oy + a‘xz + axy 4 adyz 2.8:.1
The a can be determined in a similar way as 1in the
previous discussion. However, the algebra becomes more
involved as the number of nodes increases. The direct
derivation of the shape functions is an alternative and
preferable method.

Thus a general equation for calculating the
interpolation functions for an n”’order triangular element
may be expressed by the following simple formul a

[{Silvester, C1872D1]

N ¢L ,L_ ,L> = N CLD>N _CLDON CL)OD
a3y "1 2 T3 a & 3 20y 3
i’ nl —i1+1
wher e N (LY = [ 1 ];a >1 2.8.2
a1 ] B =
=1 L .
=1 ;o a=0
For Nﬁsz) and NrCLaj the formula has the same form . nis
the order of the polynomial. For this particular case,n=2.

e i =

2.6 NATURAL COORDINATES

A coordinate system that relies on the element
geometry for its definition and whose coordinates range
between zero and unity within the element is known as a
natural coordinate system.

The determination of the system of equations for
the nodal wvalues involves the integration of the shape
functions or their derivatives or both over the element.
This integration is easier when the interpolation equation
is written in terms of an element coordinate system 1.e a
coordinate system located on or within the boundaries of

the element.
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The use of natural coordinates 1in deriving
interpolation functions is particularly advantageous
because special closed forms of integration formulas can
often be used to evaluate the integrals in the element
equations.

The basic purpose of a natural coordinate system
is to describe the location of a point inside an element in
terms of coordinates associated with the nodes of the
element. We denote the natural coordinates as
Lf‘=1.2,”...n). where n is the number of external nodes
of the element.

The integral equations which simplifies the
evaluation of length and area integrals are summarised

below [Zienkiewicz-(1875)]): .

f L?Lgdl = ) | 2.6.1
! Ca+b+1D!

I L?L;L;dA = al'ble! 24 - z2.8.2
A Ca+b+c+2D!

In this case the area coordinates LI Lzand L3

correspond to the shape functions NUNJ and NV

Equation (2.6.13 is used to evaluate integrals

that are a function of the length along an edge of the
element . Tﬁé'qdénifﬁyrlrihus is the distance between tLhe
two nodes that define the edge under, consideration. The

real convenience of ce.6.1> and c2.6.2> will become

apparent when we consider specific applications.
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CHAPTER THREE

A FINITE ELEMENT FORMULATION OF SOME BOUNDARY VALUE PROBLEMS:

3.1 FINITE ELEMENT EQUATIONS:

Suppose that the variable ¢ is to be found in
a three-dimensional solution domain Q bounded by the
surface TI. For steady-state problems the field equation
to be solved is the quasi-harmonic equation expressed in

general terms as

a a¢ a 8¢ a T ¢ _
—a—xCKxx—a;-D + E;CKyyWD * ECKZZ—aTD + Q=0 3.1.1
where K ,K LK and Q are given functions independent of
%X Yy zZ
¢ but can be functions of x,y and z. The quantities
K ,K and K are bounded away from zero in Q. The
. XX Yy z2

physical interpretation of the parameters in (3.1.15
depends on the particular physical p}oblem.

The description of the field problem 1is not
__complete until boundary conéition; are specified i.e
equation €3.1.1> must be solved subject to additional
constraints imposed on the boundary surface. Usually, on
some part of the boundary: the value of ¢ is a specified
function as

¢ = (x,y,z> on S1 CDirichlet BCO | 3.1.2
while the remainig part of the boundary we have the

condition

g 1 ap 1 ¢ 1 _ _
o < Ky Y TR TarKe - gy =90
on S2 CCauchy BCD 3.1.3
where q and h are known a priori and l;(.l ,» and lz in

(3.1.3) are direction cosines of a vector that is normal
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to the surface. The gnion of Siand SZ forms the complete
boundary I”

Equation €3.1.1) along with the boundary
conditions is the governing equation for a
three-dimensional heat transfer (Kreith-1873> . In this
case Kxx.Kyy.and Kzzare th thermal conductivities ,Q is
the internal heat source or sink, q is the heat flux over a
portion of the surface ,and h is the convection
coefficient. The field variable ¢ is the temperature. The
governing eqguations for one-and t wo—-dimensional heat
transfer can be obtained from (3.1.1> by noting that
a¢s3y = O andrsor 8¢-dz = O. If both g and h are zero on a
portion of the boundary where ¢ is not specified, then

(3.1.3) reduces to

g 9%t ¢ 1., . 9 L

~ — . +

xx OX Kyy'a—y— Y zz Oz = 2 Red ik

whigh is a condition for zero heat Lransfer Can insulated

»

boundary>.

With appropriate specifications of the parameters
in the equations €3:.1.12, C3:.1:.28); and €C3.1.3), the
governing equations for the torsion of noncircular solid
sections [Timoshenko and Goodier-(19702>], the irrotational
flow of fluids [Vallentine-(1950>), confined groundwater
flow [Harr-C1962>), fluid-film lubrication [Huebner-(1975))
etc are derived from the gquasi-harmonic equation (3.1.1D.
The formulation that follows is in terms of heat transfer
However it is as good a% the general case.

The calculus of. variations provides an

alternative method of formulating this heat transfer
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problem. Variational calculus states that the minimization
of the functional

2 b4 2
o . ‘0¢’ [0¢] o) _
X = f _Ec-i— I}\xx ax< N Kyy Oy * Kzz [02] = ')] g

v
{ [q¢ +1 hig - ¢w>z]ds 3.1.5
s 2

requires that the differential equation (3.1.1> with its
boundary conditions (3.1.2) and (3.1.3) be satisfied.
Thus, any temperature distribution that makes y (3.1.3), a
minimum also satisfies the governing differential equations
and , therefore , is a solution to the problem under
study.

Equation (3.1.%> is the starting point for
determining the temperature at each noae. We minimize
(3.1.5> by using our set of element funcgions. each defined
over—a single element and in terms of nodal wvalues. The
nodal values {§5 are the unknown values in our formulation.
Since they determine the value of Lhevfunctional X sthe
minimization of xy must be done with respect to these
quantities.

The objective of this section is to perfom this
T{ﬁ@@};é}ignvgprphe ggngral formulation given in (3.1.95).
Here the functional is minimized before the evaluation of
intergrals. This approach allows the selection of element
characteristics most applicable to a particular problem at
a time we solve the problem.
| Equation (3.1.5> can be rewritten by definin; the

matrices as




XX

Yy

)

i
O O X
o R O

o]

W

[N

~N

so that

= 1 T
X fvTa‘ [{g} [DI<g> - 2¢Q]dv + js ¢q ds +

.

f [ 1 Heg? - 2od  + &> D]ds 3.1.8
8 é— [o 4] (s o]

Now the functions for ¢ are not continuos over the entire

region but, instead are defined over individual elements.¢W)

,the integrals in (3.1.8) are separated into the individual

elements, yielding
E

x = z [fv(e) ia- [(g(w}'r[D(e)J{g(e))] dv

e=1

(e) . (e) (e) (&)
B f (e) ¢ Q .+ f (e ¢ Q e ¥
v s

. - T
J~ 1 h® [ 606 - 2699 + @2 ]ds] 3.1.9
ey =— 9] ®
s c
2
where E is the total number of elements . Equation

(3.1.9> can also be written symbolically as

E
(e)

Y = x 5 b - IS S = 2 x 2:.1.10
=1

e
where XW)iS the contribution of a single element to x.
The minimization of xy occurs when

E
)

E
(e -
Ox z XW) = Z 9x = 3.1.11
e=1

a{%®>

a{&>

e=

The derivatives ax“?/a<§> in (3.1.11> cannot be
evaluated until the .integrals in'C3.1.9) have been written

in terms of the nodal values (&). Recall from (2.3.3> that
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¢ = [NI<&>

therefore ¢ = IN“®1<2>. 3.1.12
and we can evaluate (3.1.86),which along with (3.1.12> can

be subsituted into the appropriate places in (3.1.9).

Thus
(@) — =
[o¢ amNs® ans®’ g’
ax e 3
. ax ax % &1
—- 1—%% } NS’ ANS®’ NG $2
{g } = = | o &y T &y S}
(e)
g-z‘e aNi®  aNz®’ ang®’ Fp
L | 3 '——az _oz . s W e —"——az ] J

o { o) = [ 5.1.14

where [B] contains information related to the derivatives

of the shape functions. These terms are preséntly unknown
because the shape functions have not been specified.

Utilizing (3.1.12) and (3.1.14) allows the element integrals
in (3.1.9 to be written as |

&> _ _
x J ol coTs
ol

(e)>. T

1T D1 18"1¢8>  av

- I QIN®I1<@> dv + [ qIN®1¢8> de +
(e s(e)

v
i

(e’

[ 1 h <& T INITIN®I<8>ds -
e 2—

2

T ) (e
il 2¢, [NT1<@>ds + I o, D@, ds 54 g
(e) s c
= 2
2
The quantities Q,qg,¢,and h are known coefficients. They
o]

are left within the inteqgr al because it is possible for
them to vary over the element . The differentiation of
(3.1.15> with respect to {(¥> is accomplished quite readily

when the differentiation rules of matrices,
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e

S

(Segerlind-(1976) as shown in Appendix B] are utilized.

Integral by integral differentiation of (3.1.15) yields;

a 1 T (& T, (e (@) _
33> Ivfe>? (> I(B ) (D IIBT1<®> dv =

I (6)(B(°)JTID 1B’ 1¢3> av

a T

(e) _ (e)
s I (o, Q I[N 1<®> dv={ (e, QIN'T37av
v v
a (e) , _ N (e), T
oy J o, alN 1<@>de={ ., GIN ] ds
S

1
1 1

(e). T

P i h <87 [N 1ITEIN®1¢8>ds =
S

&> ;e’é
B IN'* 1T e " 1B as
[ e

s
2

a (e _ (e), T

s f h ¢ [N 1<{¥>ds = j h ¢_ [N l'ds
(e) S-(e)
2 2

1] h ¢> ds = 0O 3.1.16
(@) — "
s 2
2
The element contribution.ax“”/a{é},to __the total. .

minimization process W Ox 7 0K¥>,1s

-

e)

(¢

X
a _ (e> T Ce) (e)
S . - [ J v‘e’[B 1°ID 1B ") dv +

hINITIN® as ]<§> - I QN1 Tayv
f 4 e ) (e> .
(e) . T (e)>. T
o (e, 4a [N ) ds - f h ¢ [N ] ds 3.1.17
Sl S(e)

2

This set-of integrals can be written in the condensed form

(e) :
ax = [K®1¢8> + <) 3.1.18
EIED)

where
Ik‘®?) = [‘[ (B " 1% 118" av =
(e)

J-(e)h IR "1 N ™as ]
S

3 3.1:39
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and

{r‘(e)} = J~ Q[N(e))'l‘dv
(e)

v

(e) T (e, T
B f(e)q[N_ }'ds fh¢’m[N 1'ds 3.1.20
s (e
1 S
2

The final system of equations is obtained by substituting

(3.1.18> into (3.1.11) giving

E
dx = ECIK‘."’J{@} + <> =0 3.1.21
a{&> e=1
or
[KI<& = <F>
E
where (K] = [qu) 3.1.22
e=1
E -
B o = - E{f“”} | 3.1.23
e=1 ‘

The integrals in €3:1:19) define an element
conduction matrix 5 TK ¥, and the integrals in (3.1.20> define
the element force vector.(fmg..

AN

The evaluation of these integrals is discussed

in the specific application areas in the follows sections:

3.2 ONE DIMENSIONAL HEAT TRANSFER

Consider the one-dimensional heat flow in an_

insulated rod (fig. belowd. The rod is

ki
2
T (1) 2> T
1+e (1>—> Te (z—a+a
L L

Fig. 3.1

attached to a wall and has a specified heat input q. Thg

other end is free and has a convection coefficient h and a

surrounding media temperature of Tm‘OC : The rod 1is

insulated, therefore, no heat loss occurs from the



cincumferential surface.
The governing differential equation

temperature distribution within the rod is
d’T

XX v

dx

K =0

with boundary conditions

daT P _
e + g =0 at x=0
and
K ex + h(T - T > = O at x=L
xx dx ®

where the Kxx is the thermal conductivity of the material.

The heat flux ,q, is positive if heat is moving out of the

rod.

The functional representation of the governing

r

differential equation is

2L
r o ATy . L _ 2
o —gxx {d_xJ' dv + fs [qT ¥ 172 hCT T D ] ds

The minimization of x 1is done w.r. t T

temperature which is the unknownd.

The rod is represented by two line elements with

the nodal values T, T, and T
1 2 3

for the temperature are:

Tu)~=mN{”T RVLE
1 1 2 2

@ 2 2>
g = N"T_ + N T
z 2 3 2

where the shape functions are those defined in (2.5.2),

namely

3. e.

3. 2.

Cnodal

2.2.5

The functional formulation separates into

2
% dTC 0

for the

!

3

=

The element eguations
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2
j 1.2 h[TCx)—T )] ds 3.2.6
Sz [o o]

where s, and s, are the surface areas where g and h are
specified. The value of xy is obtained by substituting for
the temperature, T(x)>, and evaluating the integrals.

The derivative of the temperature enters into

the volume integral,(3.2.6). Differentiating ((3.2.9>
yields
1)
__dT_. = .l_. C-T + T DO
dx (1 1
L
(2)
A= A kT + TS 3.2.7
dx L2 2 3

The integral quantity x 1is separated into its element
components, and these components are minimized with respect
to the nodal values before the integrals are evaluated.

For this particular case,

)

7 5 ;—i‘—‘i)v 4»—7(—2)———:‘— —— — - 3.2.8

where xm is the sum of the integrals for element one and

(2>

¥ is a similar sum for element two. Thus
(1) c't’ 2
* i jvu) -—“)C —Tx * Tz) dy * f (1)qT1dS 3.2:9
= I8 s
2 C(Z) 2 h 2
x =I<z>—C—T+T)dv+I —CT_ -Tad“ ds
v 5. (2 2 3 B(z>a 3

1) (£)_,. (L) 1 2) {2)..,.02) (2).
where C = A K Z L and C = ATK 7 L

XX S —
We now differentiate each component of x with respect to

all the values. Starting with xm

< %)

1y _ C _ _
Ox = [ — C-T + T) C-1ddv + [ qds
dT1 | s
1)
_a_Xu) = fv(z> C—( 1)( —Tt + Tz) dv
dT2 L
ax’ =0 3.2.10
dT3

Evaluation of the integrals produces a set of equations
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that can be written as

cY ¢ o . qA‘
3}5“) _ _C(n cPo Tz + O 3211
aT 0 O O T3 O

Differentiating the second component gives

ax(Z) - o
aT1
C(Z)
3" = [ @ — C-T + TDC-1> dv
O—T—z v L(Z) 2 3
C(Z)
x? = [ @ — C-T + TD> dv + [ h(T-Tod ds
— v (2 2 3 (2> 3
dTs L .

o o o . o
ax‘z’ ) o C<z> C(z Tz . o 3.2.12
D 0o —c®’ 1c® +na.) Ta ShAC e

once the integrals have been evaluated. ‘ :

- The minin{iné.;tr,ion of x with respect to the nodal

values is

ox _ ox't, oax'¥_ g . 3.2.13
K> HKT> {T>

Thus if we sum (3.2.11> and (3.2.12) and set the result

equal to zero , we will obtain the desired system of

equations as:

Cu) —C”) 0] qA

_C(l) [C(1)+C(Z)J ‘-C(Z) T: + O * = g
o -c® (c“® a3 T, ~hA,Te 0
or
[KI<T> = <F> 3.2.14

The important concept to be realized in the
procedure just discussed is that the system of equations

can be constructed an element at a time. The element by
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element summation indicated in €3.2.13> 18 a 'very
methodical procedure and is readily implemented on the

digital computer.

3.3 TWO DIMENSIONAL HEAT TRANSFER:
The kind of element used is a three-node
triangular element. The shape functions for this linear

triangular element are

N, =1/2A Ca_ + b_x + c_yd, = i,3.k
3 3 e e & J 3 904
where aﬁ.bﬁ,and Cﬁ are defined in [2.6. 3]. The temperature
is given by '
i
T = I[N N N1 KLT 3.8.2
i ] ) S 1
. ,
k
where kaa.and Tk are the nodal temperatures
counterclockwise around the element from ngde .
The gradient matrix,[Bl,is
b b, bk
(Bl =128 |~ 3.3.3
c,. e
L 3 k
and the material property,[Dl,is
K e}
(D1 = | ¥ 3.3.4
K
Do I (. SR F T 1 . o
The element conduction matrix then follows. The
first term becomes
.2 i bj bk ! xx O
e s I 1Y L o o k ]
v Sow L ik ¥y
b b, bk
x |57 dv 3.3.5
e e €

Assuming a unit thickness of the element, the element of
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voiume dv becomes dA with the integration over the area.
All the terms wunder the integral sign in (3.3.5 are
constants; thus, they can be removed yielding

- T
fv (8)T(DICBIdv = (B)T(DI(B] IA 94 = Al i BLDS 2.5

Evaluating the matrix product yields

b b bb  bb CcC C .C CC

(k') = Ko L bt j k|, Kyy CI.CL CL 3 thk
b b b b b - C

It S| 1k 4A it )l 1k

bkb_L bka bkbk CRCL CkCJ Cka

The second integral .J; RINITIN) ds,must be evaluated over

a surface.

Substitution for [N] in terms of the shape'functions and

perfoming the matrix multiplication gives

NN NN NN
I v Kk

N N NN NN
I 33 Ik

Nth NkNj Nka

| hINITINlds = hf ds 3.8.7
s s

The shape funétions are dependent on x and y; therefore, the

products NN etc. cannot be removed from under ‘the
v ) =

integral sign. - In addition,the value of the integral
depends on which surface is experiencing the convection
phenomenon. For example,if the side between nodes i+ and ;

is subjected to convection, then Nk is zero along this side

and the integral reduces to

. NN NN O :
fs hIN)'[N)ds = hf_ NN NN o ds 3.3 8
J J

0} o o

The evaluation of the product terms in (3.3.72 is
easily done if area coordinates and the related formula are

empl oyed.
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Heat lost by
conwection
Nk = O along
this side

Fig.3.2

Assuming that L is measured from the side opposite node

,we can write

If we assume the side between nodes + and j to be the one
experiencing the convection phenomenon, then

Nk = L3 = O along this surface and (3.3.7) becomes
T L1L1 LaLz @

J; hINITINIds = nf |, 5 5 5 % 0 dL 3.3.9

21 2 2

o} e} O
where ds = tdl and we have assumed a unit value for t.
There are two types of products in (3.3.9 a squared
quantity .L: or Lz and a cross product, L'iLz' Starting

with the squared term we have

(o]
2

2 2 g
L, dt = | LiL dl = 2/0! L. = 1.,
fh,- ! by czvovisr M 4

where the LJ is the length of the side between nodeé v
1

and j. Integration of the cross product term gives
§y dgl gt = 1l3¢ 1. =1
ST 1+ i+is7 o L3

Substitution of these results into (3.3.89> gives

. 2 1 0
J; hIN) {Nlds = hlij - s o dL 3.3.10
S o 0o o0

Similar treatment is done for sides between nodes ; and k



O

= o

and nodes k and .
The three integrals in the element force vector
are also easily evaluated if area coordinates are employed.

Assuming Q constant within the element we have

1
j[NJTQ dv=Qj[N)T dv = of |Lz|dv = qv 3.3.11
v ot v v 3

La

B2 b pe

The heat within the body is distributted equally to the
three nodes. The integrals

I, (N)Tg ds and I (N)JThTw ds are both of the form
1

2
5
J N } ds 3.1.12
s N)’C

and only one needs to be evaluated. Since it is a surface
integral,(3.3.12) is subjected to the same considerations

that were encountered when discussing (3.3.7). The results

depend on which side of Lhe element is subjected to the
heat flux or the convection phenomenon h. Assuming g is
constant over the surface, the integral (3.3.12) is
- 1
J_ tNI'gds = qt {1 3.3.13
s 1)
O
same treatment applies to sides between nodes j and k and k
and i. s e B
The values of f IN)ThTwo ds are identical to (3.3.13D
=

except that g is replaced by hTw .

3.4 POINT SOURCES

A point or line source is said to exist whenever
the generation of heat Q or fluid occurs within a very
small volume or within a very small area. Physical
examples of line sources include steam and ~or hot water

pipes within the earth and conducting electrical wires
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embedded within a product. In each case , the
cross-section area of the pipe or conductor is very small
compared with the surrounding media. Point sinks are also
used in gruondwater problems. They occur as pumps that are
removing water from an aquifer.

Consider the triangular element in figure (3.3>
below with a line source Q“ located at XO.YO. Since the
heat source is located at a point,Q is no longer a constant
throghout the wvolume but is a function of X and Y. Using
unit impul se functions, S(x-xod) - and SCy-yod
{Kaplan-C(1962>],we can write

Q = Q*éCX‘XODéCY“yO) 3.4.1

The integral

i J; (tN1TQ dv now becomes
T * i
j;~{+ﬁ)%}<i§—=*ﬁif‘“ N} S6CxX=%02ECy—yoddxdy 3.4.2
A [N? i
k
assuming a wunit thickness. The integral of a function

multiplied by an impulse function,however,is simply the

function evaluated at Xo and Yo. Therefore

A8
[, tN17Q as =Q*J N b 3.4.3
v 1 Ix=xo

A N
kJy=Yyo
x .
.Q A point source
(xo,Yyod within a trran

gular element
Fig.3.3

Eqution (3.4.3) states that when a point (lined source is

located within an element ,the proportion allocated to each

node is based on the relative values of N\'Nj and Nk which

are evaluated using the cocordinates of the point source.

¥hen subdividing a continuum that contains a
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pointCline) source,it may be convenient to place the source

at a node.

ST S —
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CHAPTER FOUR
ASSEMBLY OF ELEMENT PROPERTIES

4.1 COORDINATE TRANSFORMATIONS:

It is generally more convenient to derive the
element characteristics in a local coordinate system . The
local coordinate system may be different for each element
in the assembly . Thus if local coordinates are used , it
is necessary before the individual element can be assembled
to transform the element equations so that all element
characteristics are referred to a common global coordinate
system.

The element matrix equations to be transformed

have the standard form

[] {x*} - {b"} | | 4.1.1

where the asterisk designates a local reference system. if
there exists a transformation matrix [¢) between the local

and global systems , then we may write

G
ardeimee fi) H{b}' | e

where the column vectors (x> and (b> are referenced to a
global system. Putting (4.1.2> and (4.1.3> in (C4.1.1>

there results

or



or

where

(4] ("I

Equation (4.1.5> gives the element matrix referenced to
the global coordinate system provided that [§>J—1 existis.
If the column vectors <x*> and {b*> are directional
gquantities such as nodal displacements and forces ,then
Lhe transformation matrix 1s simply the collection of the
direction cosines relating the two systems. In this case ,
the transformation matrix [®] is an orthogonal matrix with
the property that its inverse equals its tr#nspose i.e
(8171 = 117 : 4.1.6

and thus we may write

4.2 ASSEMBLING THE PARTS

— ---—Having found the algebraic equations describing
the characteristics of each element the next step is to
combine all these equations to form a complete set
governing the composite of elements. The procedure for
constructing the system equations from the element
equations is the same regardless of the type of problem
being considered or complexity of the system of elements

The system assembly procedure is based on the
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fact that at nodes where elements are connected the
value(s?2 of the UthéWh nodal variable(s) is (ared the
same for all elements connecting that node. The

consequence of this rule is the basis for the assembly
process.

Introduction ?nd illustration of the essential
features of assembly is made using an elementary example.

4.3 TORSION OF NONCIRCULAR SECTION

The 'assembly procedure is demonstrated
through solution of torsion of noncircular sections
probl em.

The problem is to calcuiate the shear stresses in
a ;oncircular shaft subjected to a twistiné moment T about

_the Z axis. The shear stress components at any peoint can

pe calculated using Standard St. Venant egquations:

T = 3¢ 8y, T = -3¢/ 0x 4222
ZX zZy :
where ¢ is the stress function. The governing differantial
equation is
52 2 "
1 ¢ + 1 8¢ + 20 =0 A 'S B
G %2 G 6yz e

with ¢=0 on the boundary. G in (4.3.2> is the shear modulus
and © 1is the angle of iwist per unit length. The zapplied

torque T is calculated once ¢ is known using

W

T = aj PdA 4.3,
Arec

The stress function represents a surfzazce covering

the cross section of the shaft. The twisting moment is
proporticnal to the volume under this surface while the
she siresses are related to the zr=dients in the x v

ol rections.



Assume the shaft to be made of a single material.

Than (4. 3.2) becomes

whose functional representation is

2 2
x = fv{1/e.[q£__]»+ 1/2.[qg__] = aee¢]
I 2

x ay
which from equations (3.1.12> and (3.1.14> of chapter (3

fl
o
=S
W
)

can be rewritten as

x = [ [1/2{g}T[DJ{g}-CEGe)¢] dv 4.3.6
v

P 3x . O
¥ = = ' '
where {g’ {a¢/ay} and [D] o Lyy ]

The column vector <{g> 1is related to the shear

stress components in this application,while [D] becomes the

identity matrix since k %=k y=1; The minimization of x
X Y .

w.r.t {&> results in the set of linear equations

E o E
z_[ B 1T iD®11B1dvee> = Etf (N 1Tczceddv
& V(e) & ()

v

where [N®) is defined in (c.5.3) and [EB®),the gradient

matrix,is defined by (3.1.4).

The square shaft is used to illustrate the
evaluation and the assemblage of the element matrices into

a set of linear equations. ) —

. 2
shaft is 1 cm

shaft has fo stry,therefor. :
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eighth of the total cross-section needs to be analysed.

This fractional partion of cross section is divided intoe

four elements as shown bel ow:

§’6 2
4> -
@ 1 0.5
4 @5
3D
c1d £z)
$1 @ v
B 3
Fig. 4.2.

The element interpolating polyhomials are:

¢u) _ Nu)i’ " N‘”@ + 08 + NP5+ 0% + OB
1 1 2 2 3 4 4 S S
¢? =08 + NP +NZs_ + 08 + NP8+ 03 4.3.7
1 2 2 3 3 4 I - =
¢ =08 + NP5+ 03+ NVs + NV + 03
1 z 2 3 4 4 5 5 o
¢ =08 +02 +05 +N¥s +NYs_ + NYs
‘ . 2 3 4 4 5 5 6 ©

The general equation for the element stiffness matrix is:
(K1 = [ 8°°71T ) av
v

since [D)=1 for the torsion of noncircul ar section.

. > : : : ; :
Evaluation of I[B®1 involves differentiating [¢@H with

respect to X and Y. Confining the attention to element one,
o' _ | ana® anz®’ . ongt S
Ox ax g ax
L o e s o o]
=
o™ _ | et et oaet
oy oy ey ay
:——.[C(i) A;i) C(i) 0 \)}
2A(1/ 4 4 4



The gradient (8" is

b 8] b
. 1 2 4
(
[B7) = (1> (1) o (1)
1 2 4
The area for this element is

The b and ¢ coefficients are

DL 2

bs =Y, *y_“ =0. é‘S C1
1> - (1)=
bz =Y,y 0.28 C1
(1> _ R _
b1 =YY, R Cz

Putting these values in (4.3.8) we get

-4 £ O O

(£ 5
3N -4 O 4

and the p;oduct

i1

4 O]
4 -4
W, T- (4, = O 0Oi|-4 4
]
[B717IB ) o 4 l:o—4
o 0
o o
e -16 0 s
=16 32 O “1B
O O O O
0O -16 O -16
— 10O (@) O O
o o .0- 0

The element

C4.3.102 so that we have

£33 T

[x* =fB‘“J[B‘“)f ds =
(1>
v

unit Since A

(1) _

0O
-0
3.
X -X =0
2 4
X =X
4 1
X =X =0.285
1 2

OO0 OO0

=132

O

O

> O
QO

OOj

B84

QOO0 0 OCQ

1>

pn. (1) -
Thus 1.2A =186

=—0.25

stiffrness matrix

N
%

{

uming

4.3. 10

is the integral of



1 -1 o 0 0 Ol

14 2 O -1 o0 o

) o o0 c 0 o o0
(k" = 1.2l0 -1 o =1 o 0
o o o 0 o0 o

o o o o o o

The evaluation of the volume integral
(1> o
1
{f(l)} - J\ ZG’“)G 4
1)

v (

1
dv

Ak
N

[

€9

+
|

oo =z

is easily done by employing the area

discussed in chapter two.

*>
W

.11

coordinate system

Defining the area coordinates as

1) (1 (& §)

L. =N ; L =N_""; and L_=N 4.3:.12
11 2 2 3 4
The volume integral becomes
. [L1]
¢% 1) .
> = [ 26 L_| dv 4.3.13
1) 2
v O
L4
e
i
Assuming a ur’t thickness and using the area
integral for area ccordinates(2.7.2)>,yields
(1
> el
{_f(n) _ 26(1)9.4“ 4. 3.14
= fo
a
O
o
element on2 1S

2 svi1at l ons T
The system of eguatlons fo

1>

(kPi1¢a> = £

gwIvE

pSITY OF NAIROM



1 -1 O o © Ol [@1] ' 1 ]

=1 b o -1 _(‘)‘ Ol |®2 Z’G”)BA(” 1

o o0 0 O Off®s| T3 0 | 4.3.15
or 1210 -—1 0 -1 ¢) O |®e| ~ 1

0O © 0 0 0 0|l¥s o)

9 e} O 0O 0 C\_‘ E-c_{ e

A similar set of equations can be calculated for
each of the other elements using identical procedure.

The assemgléd stiffness matrax contalns
stiffness cceoefficients obltained by directly adding the
individual el ement stiffness coefficients in the
appropriate locations in-the global stiffness matrix . Thg
resultant load vector for the system is also obtained by
adding individul element loads at the appropriate locations
in the column matrix of resultant nodal loads. ' Before
ggding various element matrices, first expand them to the
Zimension of the matrix . The relation between the sysiem
matrix and the degrees éf freedom inveolved is that if the

system has n degrees of freedom ,the system matrix (K] will

be a square matrix of J mension nxn.
. (e
Mathematically if [k] is the element matrix

then the global system matrix is obtained as:

2 i 3 5 : C£Y s $£2)
[kl = z (k3 = [k + [k) + .....
e=1 -

where m is the total number of elements in the assemblage.

The same Sfmmation principle applies for finding
the column vectors of resultant external nodal actions from
the element subvectors

™
. e ey T )
Lk = Y TR 4,215
P
€ =4

(e, : - .
where <{R> C is the anried column vectco frp, shemer *



and m is the total number of elements

Though fr;%;a simple example , in principle the
general procedure that applies to all finite element
systems has been outlined.

The matrix formed is banded and sparse. The
system matrices are sparse because each element has

relatively few nodes gompared to all the system nodes and
only a few elements share each node. Numbering ;f the
nodes causes the system matrices to be banded. The system
coeffic;ent matricés are usually symmetric-a characteriétic
that can often be wused to advantage in storing the
matrices.

The complete scolution of the above used example

is found in section (4.95D.

4.4 INTRODUCING BOUNDARY CONDI TIONS:

After assembly of the system equations the final
equations will always huve the form

nxXn nx1i n
[K) {X> = <]

A %
o
W

4.1
regardless of the type of problem.

For a unigque sclution of equation (4.4.12> at
least one and sometimes more than one nodal variable must
be specified and [K} must be modified to render it
nonsingul ar. The required number off specified nodal

variables is dictated by the physics of the problerm. There

re a number of ways Lo introduce boundary conditions to

[\

equation (4.4.13. Nodal wvariables should be introd

y that leaves h-s original numbe

(‘\

y

o
A
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o
]

unchanged and avolids ma jor restructuring of computeer
storage. Two of the methods are:
1D Nodal variables are included in (4.4.1D while

retaining nxn system of equations to modify the matrices

k> and {R> as follows [Felipa & Clough-C(18702,
Seaerl i nd=-1978) e T T¢ = ¥ At = 3 3 Vs . ~

s = el J s 24 L i = i 255 SJAOSTT L < S

prescribed nodal variable, the ith row and the 1th column
of [K] are set equal Lo zerc and Ku is set equal (o unity.
The term RL of the column vector (K> is replaced by the
known value of Xi. Each of ihe n-1 remaining terms of {(R>
is modified by subtracting from it the value of the
prescribed nodal variable multiplied by the appropriate
column term from the original [K] matrix. this priocedure
|
is repeated for each prescribed Xi urtil all of thém have
been included.

As an example with only four system egquations;

equation (4.4.1) expands to the form

(X K K K 71 ) S
T11 12 13 Y14 {Ex L
K K K K X R
21 2z 23 24 2 2
) = 4 t
K K K K }
31 32 33 34 X R
3 3
K K K K L>( R
a1 42 43 44 | 4 Ls
Suppose that for this system nodal variables X
. 1
zs X = and X_ = 5. When these

arnd X are specified
3 1 1 3 3

boundary conditions are inserted, the equations become

2 - N

1 O O ¢} , r = )
i 1 |
O K O K E -K 3 -K 3 |

33 24 2 174 23
= t
O O 1 O ' } 3 ¢

(3
i e ' a & 1
K i) ' o=k 2
I 4 ey Ue Jus 3
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W
©

1

This setl of equations; unaltlered in dimension is

now ready Lo be solved for all nodal variable

n

) Another way is to medify certain diagenal term

i}

of [k] according to the easy method suggested by . The

diagonal term of [k]) associated with a specified nodal

. . 15
variable is multiplied by a large number, say 1 %10

¥

vhile the corrte

N

ponding term 1n {(RY 1s replaced by the
specified H;éal variable multiiplied by the same' large
factor multilplied by the corresponding diagonal term. This
procedure is repeated until all prescribed nodal variables
have been treated.

Thus the example is modified into the form

— 15 W o
K % 107 K 10779
11 12
K K
2% 22 $
K K._ 10'°
31 32
¥ K
| 41 42 )
After made S wWe

proceed with ithe

4.5 EXAMPLE 1

Find Lhe shear
noncircular shaft =sz=ubjected Lo a twist:ing moment T about

the Z axis.

™ _ = - 0usOx



]

where u is the stress function.

[}

The basic equation is the Poisson's equation i.e

ilCh.Qﬁ_3+§_Ch du >= ¢ 4.5.2
ox Téx oy a8y ‘

where h and h are the material constants in the x and vy
X v J

directions and c represents the right hand side constant in
— Boundary conditions are of the form

i U= u  on Fi Fotential given | ) 4.5.3

i g = hdédun_ + h 8un -
Xa?.\ 53/ Y on rz 4.5. 4

where [ = F1+F2, n and n are direction cosines of the
Y
normal to the boundary with respect to the x and y axis
The case of St.Venant torsion is governed by the

following equation

B Csdud+ 8 4 0ud = -2e s
dx G 8x ’ y G b
G is the shear modulus,e the rate of twist. For the

purpose of the prog omming (in standard Fortran 77D.

h =h =1-G; c¢c = -Z2& 4.5.6
» v
o - * L
L different variable u iz used such ithat
x
u = usGe 4.8.7
and then eguation (35.1.5> becomes
2 x 2z X = s
g’u + gu = -2 4.5 8
: z z
I 3y
The torsionzl moment is given by
T = JGe = 2[[udxdy 4.5.9
m 4 E
where J 1s the torsional rigidity of tithe sectiocn under




~r X
J=z fJu dxdy 4.
and the stresses are given by
L% x
T = Gedu T = -Gedu 4
Xz — Yz —

3y - ax

&)

with a=2, b=1. The section is divided inte 24 elements

shown in the figure below. The total number of

and boundary conditicns in potentials are given over

nodes is

.11

The case study considered is elliptical defined

8
=S
=

boundary nodes C in this case the values there are assumed

i S 2
to be zerod. 2 * 2 44
£ SAN S S
st 0@
/ \ .. 7 \
7, \@ PR S S V@B N\ se
e 5 s \IQ ! \ : 4 “"'k / le
4 @"\ / @ i / @ ' ‘W(" Q_.@‘Q\ .
'2', 1% & / L/ IRWAd) _‘;-,/.'@'369
Ab ¢ 15\ i9 o L33 33 oy e N[O
H Yq " £ L 3 -
3}00 A @ // i \

&; \ ,/." )7,/’4 SLP
et
Fig. 4.3 2 4s *°

Elliptical section divided into Elements.

pages 42 to 47. The programming exerci

The resulis to the _Example above fcllows from
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The exact C(Analytical) solution of torsional
rigidity is J = 5.026
The sclution worked out using FEM is given by
J =2 x 2.3767 = 4.753
exacl-worked solution -
» 100

=lexacl =scolulion

The absoclute relative error

‘ _ B5.088-4.7883. . .
Fror s —————— *x10C =%.4
5, 020

(=

CONCLUEI ON
es

compares quite favourably against the exact value.

the method is worthwhile applying to appropriate boun

vazlue problems.

From the computation, we observe that the r
Hence

dary



|  APPEND/X A

FROGRAM TORS
I LT P %***%“*?#*ﬁ*%**ﬁ(!x%f IR AR SIS SES LSS ELT LSO IR TR EL SIS S
S a poisszon eguation af a torsion af noncircular sect

i prnhirm of Lharter Tour using second order triangles

ST EP RS E SR ETES ST ELEETPEER TS EEPRESHPELSEP PSS ETRSESE SR ETESR SR SRS S
xT anL HAND STIFF ELAGSR

AMETER(ND=6%9)

STON X(NS)  Y{NG), 1N\,nu),rh tF O) g IBINGY TK{100,20)

0] P1E;
&AL (N?) ,RENO(Z00) ,ELS I (8,8)M(Z20)
COMMON NN NE . NEN, ND FyNNENME,EG,C

s imitialization of program parameters
IS S TSRS SL 2O RSP OLES S LSS S X*#%*tt*#xixtx*»t*ﬁxixﬁtx

M X IMUM NO. FO NODES ALLGCWED

L MHE = IMU NUMBER OF ELLMENTQ ALLOED

el if= DEYPUM MO, OF B Y ONODES ALLOWED

s DIMENSION FUR THE TO07sL MATRIX OF THE PRULDLE

FNOCHMX=COLUMN DIMENSION FOR THE TOTAL MATRIX OR MAX. E“ND%I“1H ALLOK
¥ NDF=NO. OF DREGREES OF FREEDOM FER NODE
NUMBER OF NODES FER ELEMENT

ENDFEL=TOTAL NUMBER OF DERREES CF FREEDIM FOR ONE ELEMENT
AR RN R R R AN ER R AN R R R R RN R R SRR RS Rk kR by

MNN=100
MHE=100

MNE=60

PR X =100

NCHX=20

N =

|"4E—“£:\ :

MDFEL =NDF xNNE | =
OFEN(S,FILE="A:TOF.dat’ ,STATUS="0LD" )

¥ fApply the analveis steps

%

¥ oinmput

*$$ﬁ%vékﬁ¥"” *#%*%%S%r*$# CEEREERR Rk kR

Call IMPUT } 'H‘l\.. FROF . AL, IB,REND, h"'JD 1
%ﬁ**¥$¢k*$¥?x #**#%ﬁé‘%*ﬁ¥X#*“% EEEEEREET H Y

Ak ekl em
b ¥ u?. o \? o

Y

- H %

% % SES T
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*
IF(MS)7,7,8 \
7 WRITE(S,107) -
107 FORMAT (/¥ XAXERKORS DETECTED FREVENT ANALYSIS¥ A% /)

G0 TO 999
j]r\,@j\ci:;ﬁ of boundary condztaions
I TESEERE S TS S PSSP S SRS EECESREL PR ST ETEES
a8 Coll BOUND(TR AL (RENC,d 2 NRMX (NCMX )
Bk kKo kR R R EORRROIOR R K OICROR OO OO KR RO R ok k
¥ Sclution of the system of equations
EE R R AR O AOR O R R R RO R R RN KRR R KRR KR K

Coall SLESI(TH.AL.V NRMX,NCMX)

LSS ESCP PSR LT EPT S EL PSR CL DS SEEEE SRS S
¥Ciieck for error conditios

IF(MS)7,7.9
tComputation of secondary results
A A ERRAE R RN RN XX RN R R Rk kA kX

L CALL FORCE(KON,FROF,REND,X,Y .AL)
#»t##*.#k*$*¥‘1*1¥*%¥*4**$*$#%Y##*#i*¥#¥
*Cutput -
IR TSR LSS RLDOEE LSS C LSO ELD S s

CALL OUTRT (AL (REND, KON
EEENEEEREF XS LA LR N KA A

9% 3TOF
EnD
RS SRS SEL RS LSSRI OSSO ELEEEREER RS RE ST
SUBROUTINE IMFUT(X,Y.EOMN,FROF, AL, IEB,RENDBAND)
#**#*#ﬁ#*%#‘%*#**X*#X*‘f%iﬁwipmwkii CEERF A EE AL LR EE A
F W=6n auxiliary vector to temporarsly stors a st of fluxes

¥on element sides

e 0 T B {f e

71, IB(N7),

1A D P
b L1 S ,\




= NODRL COORDINATES

1 CNUMBER OF ELEMENTS R e T S
S NUMBER OF BOUNDARY NODES: " (15,74, N
S O CONSTANT HX R o U e T T
47 CONSTANT HY Y S E o P

5 CONSTANT C© s FL1O.2. /4%,

3

FORMAT (STL10AF10.2)

YFRead nodal coordinates in array X and Y

&

A

o2

. .
T v PR
yhesd

2OM &

T
A

i
ach of the element zids

FORMAT(I10,2F10.
- FORMA T(lld<~r1(h,.
IN@”IHE(FILE—“HTQL,EXIST;yES)

) FEdﬁkl i\lpl(l),.\l),Y(i)
 CONTINUE

ELSE
Write(¥. %) "DRTA O
sndif
do &1 i=1.mn
ﬂRITE(u;A"Ipl(l)u<‘ ) <Y1
_CONTINUE
INOGUIRE(FILE
t

3 N e
K 5 I {‘y"::

al o NON EXISTENTS

o

}I

B

-DATAH

Mmoo
i
S

}
DNEN(E,FIL AR RS
element comnectivi

0
[l

1 NODES

FORMAT (7
FORMAT(

do &35

\\'

TX . ONODE' ,eX, X' 9, "

LU eSS

Joits




ompute haif-bandwidth
FERLFEERFE RSN R R KRR KN % K

CALL BAND(KON) ~—
SRR CT AT S SRS RS SIS LRSS =
mad boundaury node data and store the prescribed unbkinown
alue in array reno

7&\\.~c\

’}TMAT( F4X . BEOUNDARY CONDITION DATA /7EX . NODE
-SCRIBED VALUES' )

N{Z,FILE="a:FO182.dat’ .STATUS="0LD")

DD 7 “j=1 ,NEN

READ(S¥)JII (3 ) crenol(d)
WRITE(S,28)3J(3) . renac(])

TE(ETI=1)=] '

-
‘Y”'ﬁ—ﬁv‘
']‘}“7
'?rr"r,

o

s

[«
'

I g S R PR
CONT INUE
FORMAT (110 ,F10.4)
FORMAT(I10,F1C.4)
RETURN
END ) f
FFEYFRRRER RN RN RN F R AR A #**X*%l%i?i# $33 3332 TSR IEREL
SUBROUTIME ASSEM(X,Y.EON,FROF, JELST AL (NRMX ,NCMX ,NDFEL )
Jﬁii*#¥m$#$*$$f*#$¥¥$**¥$““****'*"9 8 %****¥#Xmii”f1$im#if}'
FARAMETER(NB=53)
DIMENSION X(NS),Y(NE), RONCZ00) , TEINRMX (NCMA) (ELST (NDFEL ,NDFEL)
1, FROF(Z00) ,ALINEG)
COMMON NN, NE , NEN (NDF ,NNE ,N, M8 ,E,G,C

1‘ _.{ g

i=s2mbling of the total matriw for the problem

v

DF:N\;.FiLEZ'ﬁ: OF . d

i

L ETATUS="0LD"

4]

i

lear the totel stiffress matriu

i)
i

-

DD 1C
DO 10y
K] i 8 (e i =U.O




8373 -
OFEN(S . FilE="f: UF.dat’ (87 ATUS="tld ")

iNeo l=Number of current olement R
‘N1.Nf'&;:NHWbUr ot friret.second.and third element node
T
»

&D1 .00 DOELENGTH OF FIRST,SECOND,AND THIRD ELEMENT SIDES

LaNNEX (NEL-1)+1

NI=KON(L)

N2=KON(L+1)

NT=KON(L+2) ) .
MNA=<ON(L+3)

- NE=KON(L+4)

N&=KON(L+5)

DI=SORT ((X{NT)=X{NI) ) ExT+ (Y (N2)=Y(N1))*%D)

SORT € (X (M) =X (N2 Y 2T (Y (M) =Y (NZ) 1 hx2)

no

b 4w s UING SRRV & S Sid R IR O R e

rCompute second row (C2) and third row(CI).of matrix C
¥ A=hArea of slement

CECLI=SY NS )Y (NS)
CE{Z2)=Y(NIZ)-Y(N1)
C2(3)=Y(N1)-=Y (NZ)
CZ(1)Y=X (NIZ)-X (NI
CZ{Z2)=X(N1)-X{N3Z)
CI(I)=X(NZ)=-X(N1) :
A=(CR2(L)RCE(E)-C2(2)xCI (1)) /2.0
DO 5 I~1,¢
C2AI)=C2(I1)/(2.0%A)
-5 WY r"(L)--. I/ {2.0%A)
2(4)=C2(1)
C3(4}=E3(i)

¥Check Tor error conditions
IF(AYL,1.,.2

1 WRITE(S,101) MNEL

101 FGRM T ¥XE¥ZERD OF MEGATL < AREA FOR ELEMENT: . I5

>4 R S
biad frics L
L o =
-4 e ]
e o
x & b
- -
* s
-
N
o] TN e
o - L
1¢ - {353
1 j
- ‘




- B4 =
ELST(Z 6 =EL37 (1,
ELST(4.2)=(4.0/3 ”‘*ﬁ*((c’(l)*(C?(Q)4” O¥C(3) )02 (2 %
$C2(D)HED (V) RE+ (CT L) R (CT (D) +D 00T (2N +CT (2R (O (D) +
b

(T Y)EB) -——
ST AL, A= (4,03 0)KAR (O (1) X (U2 (1) 402 (3 +C2(2) X (C2 (1) +
ACI(I) ) VKEF(CIL)R(CT(1)+CT(T))+CI(IIF(CI(LI+D LOICI(T) ) )*E
7 O/3.0)¥A¥ ((CT(2) (2. 00D (I +02(T) ) +0D(TIK(CD( L)+
2)E{D.OKCTCL)+CT{3) )+CT ()R (CI(L1)+CT(T)) ) XG)

11 ELET(1,J)=ELET(J

xCompute element vector
*(FFl—i\

\wl\“Ag(Vl +(FROF(E+1)¥D1+FROFP(K+2)¥D3) /6.0
AL\Nh;nﬁL(N”)+(PRGP(K+l)*Dl+PRDP(K+E)*DE)/&.O
QLkN3)~QL\Nu)+(PRDP(K+E)*EE+PR3P(K+3)*WZ)/b.

LING)=AL (N4 )+FPROF(K+1)XD1%(2.0/3.0)+CC

ALU(NS)Y=AL(NSY+FROF K+ Z2)XDEE (2. 0/3. 0 +CC

AL (N&)=AL (N&) +FROF(K+Z)XD2¥ (Z.0/2.0)+CC

C_“SE(Q)
PS5 ETURN

EP:
ISP SS SRS S SSRGS DEE SRS IR LSS SIS T ISHT SR L REEESOLEEE S

SUBROUTINE ELASS(NEL KON, THMELMAT (NEMY (NCHMX ,NDFEL)
*#t*#ﬁ*itttﬁi%**#ﬁi**&#***&*tiﬁx%“i&*x*m**t*%x**%x*%ﬁizi*
¥This program stores the element matrix for element nel in
¥the totsl matrix Tor the problem

COMMON MM NE  MEM (MDF O NNE N MELE,G,C
DIMENSION ¥0ON P00 TMINRMY (NOMX ) L ELMAT (NDFEL JNDFEL )
¥MEL=Current element number

M l=Mumber of start node
FEZ=NMNumber of end node




- NS

l=T14k
GO T 40

D
r-.

o

[ 8 <]

IS DRSS

EEFEREF N

1Store the transpose of am off diagonal matrix

FR=J2+k
10=d1l-kR+1
b=l 24K
DO SO L=k1.NDF
EC=IC+L
IFINI-N2Y48,450,48
fi2=T1240L
GO 70 [0
Ki=11+L
TM(ERC)=TM(ERELCY+ELMAT (K1 (K2)
l'*’;' Teht
ENL
IS SRS EEETEEOR SRS ESPEEOLESECEERDEN
SUBROUTINE BOUND{TE AL . REAC IR NRMX (NCMX )
PSS SRS GRS T LS SRS SRR RSSO RCES DS

FARAMETER(NB=&E)

/
DIMENSION AL (NB)  IB{NEZ) ,REAC(NE) , TE (NRMX  NCH

COMMON NN, NE , NEN,NDF , NNE N, MS,E,G,C

10

DOO100 L=1,NEN
Li=(MDF+1)%(L-1)+1
NO=TE{LL)
E1=NDF X (NO-1)

DO 100 I=1,nNDF
LZ=L1+1
IF{IR{LEYYIQOD, 10,100
kR=K1+1
DO 20 J=2,MS

Ei=ER+I-1
IF (N-#EV)Y30, 20,20

ixX



= B8 - i
COMMON NN NE (NEN (NDF NNE N.MEE,G.C
OFEN(HB,.FILE= a:top.dat LLSTATUS="ald ")
N1=N-1
DO 100 K=1 N1
C=A(k. 1)
Fl=lk+1
TF(ARS(CI=0,000001)1,1.,3
1 WRITE L.?)k
' FORMAT (C XEXXSINOULARITY IN ROW,I5)
:J T 200
= NI=kK1+ME-2
"~MIN(NI,N)
DO 11 J= 2. MS
i1 D{J)=A(kK,J) s
Do 4 J=k1i.,L :
?“T—P+1

5(K):B(K)/(C+l)
DO 10 I=Ki,L
. =K 142

C=D(KZ)

DO 5 J=I,L
R [
K3=d—k+d -

5 AT KZ)=A(I  KD2)-C¥A(K . ED)
10 . B(I:—B(I)—C%E(R)
IF(ABS(A(N,1))-0.00
100 CONT INUE
101 BE(N)=E(N)/(A(N,1)+1)
DO 200 I=1,N1
K=N-1
Ki=k+1

NI=KE1+ME-I

01)1,1,.101

L=MININT N
Lo 200 J= K1,L
CE=J-kA4L
200 BE(EY=RB(E)-A(K, KZ)¥RB{I)
“LﬂﬁE(ﬁy
ZE0 RETUR

¥Compute second row (€3 third row (cF




xAa=Area af element times o

CROL)=Y(N2)Y=Y(N3)
C2{2)=Y{(NI)=Y(N1)
C2(Z)=Y{(NL)=-Y(N2)
CI{iLy=xX(NI)=X{N2)

fﬁ(?\zi(N1)~X(N3)

CTUZ)=xX(NIZ)=-X{N1)
A=(CZ(1)XCT (”\—Cbkﬁ)*CZ(l))
b & I=1,3
C2(I1)=C2(I1)/(A+1)
3 CI(IN=C3(I)/(A+1)

iCompute derivatives of problem variable ofr each element

sss ¥ ORETTY wiq N
ST w i“?E’.L_. S .

RENOQ(L+1)=C2(2)% (4. 0XxAL (NA)-AL(N2))+C2 {3 % (4.
1 ¥AL(NE)Y—AL (NZ))+2.OXC2 (1) kAL (NL) &

FEND(L+ZY=CR (2% (4. O¥AL(NE) -AL (N2 +CEZ (I ¥ (4. O¥AL {IN&)Y—-AL (NZ))

1+Z.0XxCE(LYXAL(NZ)

RENO(L+Z \‘“”(1\*(4.Q*AL(N4‘—HL(N1‘)+CJ(Z?#(4 QRAL INS)Y-AL(N3))

1+Z2.0%C2(2)¥AL (NZ)

RENC(L+4)=CT (1) ¥ (4. 0%AL (N4)=AL (N1) )Y +CT(3) % (4. OXAL (NS)-AL(NI)

1+5.QkCE(2)YXAL (NZ)

RENO(L+5)=C2{1)%{4. U#hL(Nb)-QL(TW YYFC2EV R (4. 0%AL INSY-AL (NZ) )

L+Z.0XCR2(EYXAL(NT)

FEMO(L+&)=CA(1) % (4, ?*ﬁL(Né}—F—\L(I‘Jl) JHECE(EYR (4. OFAL INSY—AL (NZ))

1+Z2.0%CE(Z2) kAL (NI

100 EE= E+H#(hL‘h~\+HLLNS\+QL(NH\\/t
RETURM
EnD

2SS SRS SSRASELELSS PSSR DEESD S SN S

SUBROUTINE OUTFT{AL ,REND, EON)
232 C LSS LEERE PSSR LELCOR ST TIS LS
¥OQutput of results

COMMON NN, NE ,NERM, .DF ,NNE,N,MS3.E,G.C

U'ﬁl

[

t:d
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WRITE(S.60) T KON(K--T) (RENO(KK) (RENO(KK+1) DN
FORMAT (218 JF10.5)
WRITE (%,70)EE
FORMAT (//2% VALUE OF THE INTEGRAL: F15.4)
WRITE(%,80)

ST/ 71X Q1300 %7 1)

END
% 3K KKK KO HOROKR R OKCE R K R OROR R K OK KOk R X
SURROUTINE BAND({KON)
KKK KK KK KO R KR ROk kKoK Ok R R ok ok ok
FARAMETER (NG=&65)
DIMENSION KON(1)
COMMON NN (NE NBN,NDF (NNE N,MS,E.G.C
OFEN(S,FILE="a:top.dat’ ,STATUS="0ld ")
Ml=NNE-1

ME=0
DO 2 I=1,NE o

LI=NMNEX(I-1)
DD 2 Jd=1.N1
E=Li+d
Ji=J+1

DO 2 K=J1/,NNE
La=1_1+K
L=TAES (KON(LZ2)Y-KON{LI) )
IF(ME=L)1,2.2 '

1 MS=L
2 CONT INUE
ME=NDF ¥ ( ME+1)
WRITE(S,3)MS
WRITE(X¥,3)MS
3 FORMAT (/° ———HALF-EANDWIDTH IS EQUAL TO' IS5, —————m :
RETURN ! .
END

- OF w1 -\‘E“wu i}
wur %)
1Y BRO
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