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Abstract

The datasets from microarray experiments enables the measurement of gene ex-

pression profile of in cells. Statistical models maybe used for classify the samples

into various physiological categories based on the gene expression profile. How-

ever gene classification as a domain of research is not straight-forwad due to some

inherent properties of the data; mainly multidimensionality and the noise.

The thesis studied three aspects of gene expression analysis. That is dimension

reduction, classification of the expression profiles and described the variability of

the gene expression data due to the covariates like age and gender. The dataset

used in the thesis is the GEO dataset GSE34105 . Principle Component Analysis

and Eigen-R2 methods were applied to dissect the overall variation. Subsequently

a linear discriminant classifier was built and the effect of the number of princi-

pal components retained on the accuracy of the linear discriminant classifier was

assessed using the leave-one-out cross-validation approach. All the data analysis

was done in R 3.0.1 and R 2.6.2 and the relevant packages.

The first three components accounted for a cumulative 33.34 % of the total vari-

ance (23.26 % , 6.02 % and 4.06 % respectively). The error rate of the linear

discriminant classifier systematically increased at the number of retained princi-

pal components increased from three to seventy (6 % to 33 %). In our study the

age explained 0.8 % of the variance, the disease condition 26.5 % and gender only

1.59 %. The accuracy of the linear discriminant classifier was highly dependent on

the number of principal components retained. The error rate increased systemat-

ically from 6 % to 33% when the components retained were increased from 3 to

70.

The fact that the first few principal components explained a large proportion of

the variance suggests that there were only a few genes that accounted for the

signiffcant amount of the variance.This aligns with the knowledge that only a few

number of genes present relevant attributes and that the gene expressed data comes

with presence of noise which can be termed as technical and biological distortions

of the data.

In conclusion the proper understanding of the variability of gene expression data is

key to making proper biological conclusions. The appreciation of the contribution

of the variability contributed to other biological factors is important in the study

design.
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Chapter 1

INTRODUCTION

1.1 Motivation

A reliable, precise and timely diagnosis and classification of neoplasms is essen-

tial for successful treatment. Conventional methods for diagnosis and classifying

human malignancies rely on a variety of morphological, clinical, and molecular

variables. However due to the fundamental role played by genes in the neoplas-

tic processes, gene expression profiling may provide more efficient solution to this

complex problem. Golub et al [1], proposed the classification of cancers from

gene-expression data. Currently there is no single classification methodology that

is universally accepted, and the accuracy has been proposed to be dependent on

classification method, gene selection method, and the dataset itself [2, 3].

The area of genetics has grown by leaps and bounds in the last decade. One of

the huge developments is the micro-array gene-expression technology which has

spread across the research community with immense speed. These experiments

give a detailed snap-shot of genetic mechanisms in the cell at various physiological

states. Thus micro-array technology can automate the diagnostic task and im-

prove the accuracy of the traditional diagnostic techniques based on the molecular

activities in the cell. With micro-arrays, it is possible to examine the expres-

sion of thousands of genes at once. Testing for differentially expressed genes can

assist in prediction,diagnosis and classification of cancer cases. Micro-array ex-

periments are thus creating a unique opportunity to improve our knowledge of

the cellular machinery; best done by comparing activity in various states, eg dis-

eased and normal. These experiments provide quantitative information about the

1



Chapter 1. INTRODUCTION 2

whole transcription profile of cells.. The data is subsequently subjected to vari-

ous statistical and analytical techniques to provide biological knowledge. However

gene classification poses multiple unique challenges with no universally accepted

method known to achieve biology relevance and have classification accuracy. Gene

classification as a domain of research poses unique challenges due to the nature

of the data. First, most of these datasets have a small sample size (usually below

200), while having thousands to hundred thousands of genes presented in each tu-

ples. Second, only a few numbers of these (genes) presents relevant attributes to

the investigated disease. Third, comes from the presence of noise (biological and

technical distortions) inherent in the dataset. Fourth is the challenge of achieving

biological relevancy as well as acceptable classification accuracy.

Principal component analysis is a standard dimension reduction tool for multivari-

ate data. In micro-array datasets the standard practice is to have the phenotype

which has a large number of dimensions, represented by a small number of princi-

pal components sometimes referred to as super-genes [4]. In statistical parlance,

the measured features are considered a set of related predictor variables used to

predict the physiological condition. The same principal has been extended to in-

clude more functional analysis by including gene annotation. However in common

practice dissecting the variation of transcriptional levels of thousands of genes in

terms of relevant biological variables like age and sex is commonly ignored. This

would be relevant to account for some variation in the data in form of the noise

(biological and technical distortions). Recently extensions of the principal com-

ponent analysis have however been proposed that can be used here [5]. From a

biological point of view this would help biologists understand the level of variation

in the gene expression data due to the inherent nature of the tissues as well as

epigenetic factors.

Oral squamous cell carcinoma (OSCC) is a frequent neoplasm, which is usually

aggressive and has unpredictable biological behavior and unfavorable prognosis.

Early diagnosis of the disease, would be of immense help to the patient because

prognosis depends on the progress of the disease. Classification of the disease

depending on the unique characteristics with a bearing to the progress speed,

metastasis, prognosis and treatment options would be of utmost benefit to the

patient. Currently there exists no known molecular sub-types of OSCC, thus a

proper understanding of the gene expression profiles in this condition would help
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to identify any unknown molecular sub-types that may be relevant in the clinical

management of the patients.

Thus it is necessary to develop proper profiling methods for oral squamous cell

carcinoma. Furthermore, the gene expression of the oral and circum-oral tissues

affected by other physiological conditions needs to be described and where need-be

controlled in the study design.

1.2 Research question

Does the number of Principal components retained affect the accuracy of the linear

discriminant classifier in gene expression data?

1.3 Study objectives

• To reduce the dimensionality of the gene expression data into a small

• To describe the source of variability in the gene expression micro-array data

• Build a linear discriminant function for the data

• Assess the accuracy of the linear discriminant function

1.4 Biological background

The aim of this section is to provide a basic understanding of human genetics. The

contents of this introductory material can be found in basic biology textbooks and

is thus summarised from one main sources [6]

The material in this section is divided into various conceptual blocks, building up

from the structure of DNA to the process of protein transcription.

The discovery of the DNA structure by James Watson and Francis Crick paved

way for a race for the human genome, characterised by controversies and awe-

inspiring medical implications. This coupled with the ever increasing rate at which

genomes are being sequenced has opened a new area of genome research, functional
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genomics, which is concerned with assigning biological function to DNA sequences

and extending this to other relevant aspects of molecular biology. With the ability

to sequence the human genome, an essential and formidable task is to define the

role of each gene and understand how the genome functions as a whole. Other

potential areas of interest are profiling the phenotype based on the sequence. Inno-

vative approaches, such as the c DNA and oligonucleotide microarray technologies,

have been developed to exploit DNA sequence data and yield information about

gene expression levels for entire genomes.

A gene consists of a segment of DNA which codes for a particular protein, the

ultimate expression of the genetic information. A deoxyribonucleic acid or DNA

molecule is a double stranded polymer composed of four basic molecular units

called nucleotides. Each nucleotide comprises a phosphate group, a deoxyribose

sugar, and one of four nitrogen bases. Each of the nucleotide is formed of a

phosphate group, a sugar and a nitrogenous base. The nucleotides are connected

by a phosphor-diester bond, in which a phosphate group links the 3-hydroxyl group

of one nucleotide to the 5-hydroxyl group of the next, giving rise to directionality

in the polynucleotide chain. Figure 1.1 is an illustration of the famous double

helix structure of DNA that consists of two long strands of polymers formed by

nucleotides, and the backbone of each strand is composed of sugars and phosphate

groups joined by ester bonds. The figure also shows the chemical structure of

DNA double helix, from which we can also see that attached on each sugar in

the phosphate-deoxyribose backbone is one of the four different nucleobases, (

cytosine, guanine, adenine, and thymine). It is the sequence of these four different

nucleobases that encodes the hereditary information of biological organism. In the

double helix of DNA, adenine pairs and bonds with thymine, and guanine pairs

and bonds with cytosine.

While a DNA molecule is built from a four-letter alphabet, proteins are sequences

of twenty different types of amino acids. The expression of the genetic information

stored in the DNA molecule occurs in two stages: (i) transcription, during which

DNA is transcribed into messenger ribonucleic acid or mRNA, a single-stranded

complementary copy of the base sequence in the DNA molecule, with the base

uracil (U) replacing thymine; (ii) translation, during which mRNA is translated

to produce a protein. The correspondence between DNA’s four-letter alphabet and

a protein’s twenty-letter alphabet is specified by the genetic code, which relates
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Figure 1.1: Structure of DNA

nucleotide triplets to amino acids. We refer the reader to the NIH educational

website [6] for an introduction to the relevant biology.

The central dogma of molecular biology deals with the flow of information from

the nucleic acid to protein within the biological system. It was first stated by

Francis Crick in 1958 and re-stated in a Nature paper [7] This has simply been

described as ”DNA makes RNA makes protein”. Two fundamental processes are

involved in the processing of the genes - translation and transcription. The most

fundamental pathway in biological system is the transcription of DNA to mes-

senger RiboNucleic Acid (mRNA) and the translation of mRNA to protein that

is the building block of biological system. Figure 1.2 illustrates the processes of

transcription and translation. Within the cell nucleus, when transcription starts,

the double helix of DNA opens up. The sequence information of a DNA strand is

complimentary transcribed to a single-strand mRNA, which is also a long chain

of nucleotides. Transcription basically transfers the coding information of DNA

to mRNA.
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Figure 1.2: Central dogma

After transcription and several further processes on mRNA, e.g. capping, polyadeny-

lation, and splicing, the mRNA matures and is transported to the cytoplasm,

where amino acids are assembled according to the sequence information encoded

in mRNA to form a chain, with help from other molecules and complexes, like

transfer RNA (tRNA) and ribosome. This is the process of translation. The as-

sembled amino acid chain after further processes, such as folding, becomes protein.

1.5 Micro-array experiments and bioinformatics

We now have the ability to attach a piece of every gene in a genome (all of an

organism’s genes) to a postage stamp-sized glass microscope slide. This ordered

series of DNA spots is called a DNA micro-array, a gene chip or a DNA chip.

Different properties of gene expression can be studied using microarrays, such as

expression at the transcription or translation level, and sub-cellular localization of
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gene products. However, currently much focus has been given on the expression at

the transcription stage, i.e., on mRNA levels. Although the regulation of protein

synthesis in a cell is by no means controlled solely by mRNA levels, mRNA levels

sensitively reflect the type and state of the cell. Micro-arrays derive their power

and universality from a key property of DNA molecules described above: comple-

mentary base-pairing. The term hybridization refers to the annealing of nucleic

acid strands from different sources according to the base-pairing rules. To utilize

the hybridization property of DNA, complementary DNA or cDNA is obtained

from mRNA by reverse transcription. Multiple micro-array systems have been

described and used depending on the manufacturer.

cDNA micro-arrays consist of thousands of individual DNA sequences printed in

a high density array on a glass microscope slide using a robotic arrayer. The

relative abundance of these spotted DNA sequences in two DNA or RNA samples

may be assessed by monitoring the differential hybridization of the two samples

to the sequences on the array. For mRNA samples, the two samples or targets are

reverse transcribed into cDNA, labeled using different fluorescent dyes (e.g. a red-

fluorescent dye Cy5 and a green-fluorescent dye Cy3), then mixed and hybridized

with the arrayed DNA sequences or probes. After this competitive hybridization,

the slides are imaged using a scanner and fluorescence measurements are made

separately for each dye at each spot on the array. The ratio of the fluorescence

intensity for each spot is indicative of the relative abundance of the corresponding

DNA sequence in the two nucleic acid samples.
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Figure 1.3: Steps in micro-array experiment(http://csmbio.csm.jmu.edu)

The data generated thereafter poses some inherent challenges in performing gene

classification. Firstly, the curse of dimensionality whereby there are much more

variables as compared to the sample size; where most of these datasets has sample

size below 200, vs. thousands of genes presented in each tuples. Secondly, most

of the genes in the dataset are not relevant to the disease, thus some methods

of classification applies gene selection before the classification. Thirdly, is the

presence of noise (biological and technical distortion).

The gene expression data set from the micro-array experiment can follow the

following general representation [7]

{G = (i, j) |1 ≤ i ≤ j ≤ m}

Where the columns

G = {−→g1 ,−→g2 , ....−→gm}
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form the expression pattern of genes and the rows

S = {−→s1 ,−→s2 , ....−→sm}

To illustrate the micro-array dataset, an hypothetical table 1.1 is used. It shows

the organisation of the data into m columns to represent the number of genes and

n rows to illustrate the number of samples.

Table 1.1: Illustration of the gene expression dataset

Genes

Sample Gene1 Gene 2 ..... Genem Class

1 G(1, 1) G(1, 2) ..... G(1,m) OSCC

2 G(2, 1) G(2, 2) ..... G(2,m) NORMAL

.... .... ..... ..... ..... ....

n G(n, 1) G(n, 2) .... G(n,m) OSCC

According to a review of the micro-array datasets done [8] , the number of gene

(m) ranges from thousand to hundreds of thousands while the number of samples

(n) is almost always less than 200.

The typical objectives of micro-array experiment are clustering (grouping the

groups of genes differentially expressed), classification (profiling into phenotypes

based on the gene expression), modeling (study the joint probability of the gene

groups).

One necessary part of multivariate statistical analysis in such applications is di-

mension reduction.This is done by either selecting a subset of interesting genes

(gene selection), or producing gene components or super genes combinations of

genes (dimension reduction), or using combination of the strategies.

1.6 Organisation of the thesis

The main research topics discussed in this dissertation include application of PCA

in dimension reduction of the gene expression data, expression profiling by LDA
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and assessment of the classification. This thesis is divided into six chapters. Fol-

lowing this introductory chapter is Chapter 2 which discusses some common di-

mension reduction and classification methods used for cancer expression data as

found in the literature.

Chapter 3 mainly discussed the methodology. The first part discussed the research

question. This discusses the dataset, statistical methodology and the dataset used

on the thesis, including the set-up of the experiment, the sample size and the data

access. The results of evaluations are presented in Chapter 4. Then Chapter 5

discusses my interpretations and opinions and seeks to explain the implications

of my findings, and suggest future research. Chapter 6 is the conclusion section.

Thereafter appendices A and B present the code that we used for the analysis.

Finally is the section on the references to the literature used in the thesis.



Chapter 2

LITERATURE REVIEW

As the bulk of publicly available expression data has grown, a variety of successful

techniques have been proposed for its analysis. Broadly these techniques aim at

assessing the classification or the clustering of the genes. However data collected by

DNA micro-arrays are not suitable for direct statistical analysis, and thus several

approaches have been suggested [1].

There is no one-size-fits-all solution for the analysis and interpretation of genome-

wide expression data [9] , due to the complexity of biological systems, various goals

of disease study and different experiment designs. Many bioinformatics tasks have

been proposed for the analysis of gene expression data, for example, detection

of differentially expressed genes between different biological conditions (or time

points) [10, 11], detection of co-expressed genes/samples [1, 12], classification of

new samples into known disease/phenotype categories [1, 12], and inference of gene

regulatory networks and pathways [13].

The nature of the gene expression dataset poses a few unique challenges. Snousy

et al [11] summarized these challenges.The first challenge is the curse of dimen-

sionality, whereby the sample size is almost always les than 200, while the vari-

ables(genes) run into hundreds or into thousands. Secondly is the issue that only

a few genes have relevance to the condition of interest. Thirdly is the issue of noise

which is the presence of biological and technical distortion of the data. Forth is

the challenge of interpretation and application of the results to bring biological

relevance.

11
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Expression classifiers are important because they can be used for diagnosis pur-

poses in medicine and because they can help to understand the dependencies

between classes (diseases) and features (gene expression values) [14].However,

the problem of building classifiers from micro-array experiments is dimension-

ality sparseness: in general, there are a large number of features (gene expression

measurements) against few examples (patients monitored). In high dimensional

domains like this it is well known that many induction algorithms degrade in per-

formance accuracy and run time. In fact many machine learning algorithms were

developed to deal with high dimensionality. Therefore it is not always straightfor-

ward using such algorithms directly in these datasets. One possible solution to this

problem consists in reducing high dimensional datasets through feature selection

[15, 16] This approach has found use in this area with weighted voting of infor-

mative genes is used by Golub et al [1] whereas Chow et al [17] ] employ support

vector machines (SVM); Such classifiers provide high predictive accuracy but since

they include many features they are not useful for human expert interpretation.

An alternative way to see this problem consists in preserving the logical connec-

tions among features enabling the induction comprehensible classifiers by human

experts, where classifiers are expressed as rules for the labels of gene expression

data [14, 18].

Besides the high dimensionality (large number of features), as mentioned before,

the gene expression domain suffers from dimensionality sparseness: the high num-

ber of features contrasts with a very small number of examples. It is known from

the literature that in such cases classifiers are prone to over fitting [19] because

actually weak/irrelevant features can appear to be relevant simply by chance to

machine learning algorithms due the available data sample [20] Over-fitted clas-

sifiers are characterized by low specialization error but high generalization error,

in other words, there is a significantly increased error on unseen examples when

compared to the training set error [21]

The classification may thus be divided into three broad topics: gene selection,

classification, and performance testing.
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2.1 Dimensionality Reduction

Due to the large dimension of the variable (genes) in the gene expression datasets

dimension reduction has been adopted as the first step in solving the classification

problem.These methods have been shown highly useful for classification with gene

expression data. However, there is lack of comparison studies on those methods

with the relative performance of their performance largely unknown.

Many approaches can be used to meet this goal. Although no standard method of

categorizing then has been adopted, we discuss them depending on the technical

approach used. One approach is to selects a subset of genes based on certain

criteria such that this subset of genes is believed to best predict the outcome.This

selection method uses univariate statistical methods such as t-test and rank test to

to relate the individual gene expression level and the outcome of interest.[22, 23].

Another strategy is to construct gene component which are weighted combination

of genes of lower dimension to represent the total variation of the data These

combinations have been termed as super-genes. Representative approaches are

principle component analysis (PCA) and partial least squares (SLR) [1].

Many methods have been proposed and applied in the data reduction methods,Li

et al [2] compared the result of multi-class classification using many feature se-

lections and classification methods. Eight methods were applied in this study

information gain, twoing rule, sum minority, max minority, Gini index, and sum

of variances, one-dimensional SVM, and t-statistics. The benefit of dimension re-

duction in for classification was clearly exemplified. Pei et al clearly showed that

accuracy of the classification method increased upon reduction of the high number

of the genes. There are different methods for subset selection and each has its own

limitations ([19]).

2.1.1 Principal Component analysis

Principal component analysis (PCA) is a mathematical algorithm that reduces

the dimensionality of the data while retaining most of the variation in the data

set [24]. It accomplishes this reduction by identifying directions, called principal

components, along which the variation in the data is maximal. PCA is a widely

used method of dimension reduction in many areas of research .
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These linear combinations are known as the principal components (PCs). Geo-

metrically, these linear combinations represent the selection of a new coordinate

system obtained by rotating the original system. The new axes represent the

directions with maximum variability and are ordered in terms of the amount of

variation of the original data they account for. The first PC accounts for as much of

the variability as possible, and each succeeding component accounts for as much of

the remaining variability as possible. Computation of the principal components re-

duces to the solution of an eigenvalue-eigenvector problem. The projection vectors

(or called the weighting vectors) u can be obtained by eigenvalue decomposition

on the covariance matrix XS ,

Another interesting issue about the PCA is the choice of the number of the PCAs

to retain. Two approaches may be used to select the number of components

to retain. One can use components that correlate with a phenotype of interest

[25] or use enough components to include most of the variation in the data [26].

However it has been suggested that that no matter what feature selection method

is employed, at least 50 (and frequently more) features would need be chosen and

used for classification in general [27].

Apart from PCA there are a diversity of methods that have been proposed and

used in the literature fo rdimension reduction of the gene expression datasets. T-

test has been applied in this aspect [23] Using this method, t-scores are computed

for all genes and the top p* genes with the best scores are retained. We use both

random subset selection and the t-score based gene selection in the assessment

studies. The challenge with this method is that an arbitrary method for selecting

the level of significance has to be introduced.

Partial least squares regression (PLS) is a statistical method that bears some

relation to principal components regression; it finds a linear regression model by

projecting the predicted variables and the observable variables to a new space.

The objective of constructing components in PLS is to maximize the covariance

between the response variable y and the original predictor variables X. It seeks

for a linear combination of attributes whose correlation with the class attribute

is maximized. In PLS regression the task is to build a linear model, Y = BX +

E, where B is the matrix of regression coefficients and E is the matrix of error

coefficients. In PLS, this is done via the factor score matrix Y = WX with an

appropriate weight matrix W. Then it considers the linear model, Y = QY + E,

where Q is the matrix of regression coefficients for Y . Computation of Q will
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yield Y = BX + E, where B = WQ. PLS has been adopted from the field of

chemometrics [28] In this example the performance of PLS is compared to that of

PCA. PLS proves to perform slightly better on some of the selected datasets.

Sliced inverse regression (SIR) is one of the sufficient dimension reduction meth-

ods. It is a supervised approach, which utilizes response information in achieving

dimension reduction. This method has also been successfully used in some micro-

array data dimension reduction [10]. This method, however, has limitations with

problems where the number of predictors, p, exceeds the sample size, n, and can

suffer when there is high collinearity among the predictors. Unfortunately this is

the usual situation in the gene expression datasets.

Chi-square (v2) attributes evaluate. The chi-square (v2) method evaluates features

individually by measuring their chi-squared statistic with respect to the classes.

The v2 value where V is the set of possible values for a, n the number of classes,

Ai(a =V) the number of samples in the i th class with a= v, and Ei(a = v) the

expected value of Ai(a = v); Ei(a =v) = P(a = v)P(ci)N, where P(a= v) is the

probability of a= v, P(ci) the probability of one sample labeled with the i th class,

and N the total number of samples [13].

This being an active area of research, multiple methods have been proposed and

used in the area of genomic. For example [10]compared eight methods which

included the lesser used methods like information gain, twoing rule, sum minor-

ity, max minority, Gini index, and sum of variances, one-dimensional SVM, and

t-statistics. Symmetry uncertainty- the principle behind this is the mutual de-

pendence of variable. Machine learning algorithms such as LASSO and Random

Forest have embedded capacity to select variables while simultaneously making

predictions, and can be used to accommodate high dimensional micro-array data.

2.2 Classification Algorithm

On the other hand, recent comparative studies([29, 30]) suggest that, as far as gene

selection is applied reasonably, simple and classical classifier such as k-nearest

neighbor(k-NN) perform as well as or even better than more complex methods

including SVMs. Hybrid methods have been suggested and and tested ([31])
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The machine learning methods that have been shown to perform best are the SVM

and Knn [3]

Commonly used classifiers that have been used in this field of study include neigh-

borhood analysis [1], support vector machine (SVM) [8], k-nearest neighbor (KNN)

[29], and linear discriminant analysis (LDA) The literature has multiple algorithms

produced for classification models. These methods have developed from the earlier

methods like nearest neighbor analysis and decision tree to the newer methods like

support vector machines (SVM) [32]. Many studies have showed comparison of

the various methods using a wide variety of datasets. First we introduce the doc-

umentation of the various methods and then we review the studies that compare

the performances of the various methods. compared the performances of the NB

and the DT, SVM and k-NN while applying various gene selection methods. In

their experiment the accuracy ranged between 69.33 % and 90.01 %. In this study

the experimenters used four attribute selection methods Chi-square, Information

gain, Relief- F and symmetric uncertainty. Peter et al compared several methods

and the accuracy attained ranged between 61.2 % to 99.4 %, however the gene

selection method he used was partial least squares. Hong Hu et al brings on board

a few new methods and compared them with the traditional methods. The accu-

racy ranged between 60 % to 98.9 %. Aik Choon et al [17] compared the various

decision tree algorithms (single decision tree and ensemble based decision trees

Bagging and AdaBoost). The accuracy of their experiment ranged between 52.38

% and 93.29 %. Pie et al compared various methods using two datasets . For

binary classification (cancer vs. normal) the highest accuracy (close to 95 % for

GSE3 and more than 99 % for (SE8054) was achieved with AdaBoost and a linear

kernel SVM. For multi-class classification (SRBCT tumor subtypes) we achieve an

accuracy of 100 % with a linear kernel SVM without feature selection and 98 %

after reducing the feature dimension by 4 using the correlation coefficient feature

selection technique. Classification of gene expression data may be categorised into

two broad approaches: class prediction and class discovery. In the first part we

concentrate on the supervised approach, learning from data with class labels from

a dataset consisting of several gene expression values. Such classifiers are impor-

tant because they can be used for diagnosis purposes in medicine and because they

can help to understand the dependencies between classes (diseases) and features

(gene expression values) [14]. In fact many machine learning algorithms were not

developed to deal with high dimensionality. Therefore it is not always straightfor-

ward using such algorithms directly in these datasets. One possible solution to this
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problem consists in reducing high dimensional datasets through feature selection

[10, 15], which can provide the building of more accurate classifiers.

For classifier strategies, Dudoit et al. [1] carried out a comparison of current

methods. The authors concluded that the diagonal linear discriminant analysis

(DLDA) and nearest neighbors (NN) methods were among the few most accurate

and stable classifiers.

Li et al [2] did a comparison for multi-class classifiers: SVM, KNN, and Decision

Tree. They discussed that the SVM was the best classifiers for tissue classification

based on gene expression. However, the best decomposition method for SVM

appears to be problem-dependent. The KNN classifier gave good performance on

most of the datasets which means it is not problem-dependent.

After dimension reduction, standard statistical models can be used for class predic-

tion based on the smaller number of new predictors (e.g. [1]). The class prediction

model we use for this study is the logistic discrimination (LD). This model has

been widely used for binary class prediction problems and has been shown to

perform well in previous studies [15].

All in all the NNs has previously demonstrated very good performance in several

bioinformatics tasks ([23]);

The weighted voting method has been proposed and applied in gene expression

data [1, 33] for classifying binary class data. The assignment of classes is based

on the weighted voting of the expression values of a group of informative genes in

the test tuple. The informative genes are genes that have high correlation with

the class labels. Let the expression values of gene g in n training samples be

represented by an expression vector g = (e1, e2, . . . , en), where ei denotes the

expression value of g in tuple i. Let vector c = (c1, c2, . . . , cn) be the class

vector denoting the classes of tuple i. Let (1(g), 1(g)) and (2(g), 2(g)) denote

the mean and the standard deviation of the log10 of the expression values of g in

class 1 and class 2 respectively. Then, the level of correlation, P(g, c), between

the expression values of gene g and the class vector c is measured using signal-

to-noise ratio(SNR). P(g, c) = (1(g) 2(g))/(1(g) + 2(g)) Intuitively, this metric

favors genes with expression values that span a big range, has small variation

within the same class and big variation between different classes. The value of

—P(g, c)— is proportional to the correlation between the gene expression vector

and the class vector. The sign of P(g,c) denotes which of the two classes the
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gene is more correlated with and the magnitude denotes the degree of correlation.

Positive P-values denotes higher correlation with class 1 and negative P-values

denotes higher correlation with class 2. The larger the magnitude, the stronger

the correlation. The informative genes, IG, are selected as follows: let L be the

user input parameter for the number of informative genes to be selected. Then

the GS method selects L/2 genes having the highest positive P values and L/2

genes having the highest negative values. For each g IG, define parameters (ag,

bg), where ag = P(g, c), bg = (1(g)+2(g))/2. ag reflects the correlation of the

expression values of g in the training data with the classes. bg denotes the average

of the mean log10 expression values of g of training tuples in the two classes. Let

and denote the mean and the standard deviation of the expression values of gene

g in the training tuples. Given a test tuple s, where s = (s1, s2, . . . , sm).

The class label of s is determined as follows: For each gene g IG with expression

value in s denoted by sg, the normalized log10 expression value of g is defined as

Norg = log10((sg )/). Define the vote of gene g as vg = ag(Norg bg), where the

sign of the vote indicates the class(positive for class 1 and negative for class 2).

Intuitively, each informative gene casts a weighted vote for one class, where the

magnitude depends on the expression level of the gene in the test tuple and the

degree of correlation of that gene has over the training set. The total vote for class

1, V1, by IG is the sum of all the positive votes, and the total vote for class 2, V2,

is the sum of all the absolute values of the negative votes. Let Vwin be the total

vote of the class that has the higher total votes, and Vlose be the total vote of the

class with lower total votes. Then the prediction strength, PS, of the vote cast

by IG is defined as PS = (Vwin Vlose)/(Vwin + Vlose). PS denotes the relative

margin on victory over the vote. A prediction strength threshold, pst, is used to

determine if the prediction of the weighted voting is strong enough to assign the

majority class to the test tuple. If PS pst, then the winning class is assigned to

be the class label of s, otherwise, the weighted voting is considered to be too weak

to assign the test sample to the voted class, thus assigning Uncertain as the class

label to the test tuple.

Decision Tree is a flow-chart like structure in which internal node represents test

on an attribute, each branch represents outcome of test and each leaf node repre-

sents class label (decision taken after computing all attributes). A path from root

to leaf represents classification rules. In decision analysis a decision tree and the

closely related influence diagram is used as a visual and analytical decision support

tool, where the expected values (or expected utility) of competing alternatives are
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calculated. A decision tree consists of 3 types of nodes: 1. Decision nodes - com-

monly represented by squares 2. Chance nodes - represented by circles 3. End

nodes - represented by triangles Various decision tree methods exist, Mohmad et al

divides them into two single decision tree methods (C4.5, CART, REPTree, Ran-

dom trees and Decision Stump) and the other gropu being the ensample decision

trees ADTree, Random Forests, Bagging, and AdaBooost.

Khan et al [26] used neural networks for cancer type prediction. The method

consists of three major steps: principle component analysis, relevant gene selection

and artificial neural network prediction.

2.2.1 Discriminant analysis

First applied in 1935 by M. Barnard discriminant analysis is based on finding linear

combinations xa of the gene expression levels x = (x1; : : : ; xp) Discriminant

analysis is a classification problem, where two or more groups are known a priori

and one or more new observations are classified into one of the known populations

based on the measured characteristics. Here, we shall make the following standard

assumptions:

1. The data from group i has common mean vector i

2. The data from group i has common variance-covariance matrix .

3. Independence: The subjects are independently sampled.

4. Normality: The data are multivariate normally distributed.

Linear discriminant analysis is used when the variance-covariance matrix does not

depend on the population from which the data are obtained. In this case, our

decision rule is based on the so-called Linear Score Function which is a function

of the population means for each of our g populations i, as well as the pooled

variance-covariance matrix.



Chapter 1. LITERATURE REVIEW 20

2.3 Performance testing

There are many methods for estimating classification error. The performance of

the proposed algorithm was evaluated by computing the percentages of Sensitivity

(SE), Specificity (SP) and Accuracy (AC). As given in [5],

Sensitivity: is the fraction of real events that are correctly detected among all

real events.

Specificity: is the fraction of nonevents that has been correctly rejected.

Sensitivity, specificity and accuracy of prediction have been calculated according

to the following formulas:

Mohmad et al applied this method successfully in comparing the various classifi-

cation approaches in decision trees. Dudoit et al [23] also applied a re-sampling

and permutation method in testing the performance of the various methods in

classifying various Leukemias.

In this method we use k-fold cross-validation with k=n, the number of samples

in the training set. In each fold we use n-1 samples as training set and test the

classifier on the remaining sample. This procedure is repeated for all samples. The

estimated error is simply the fraction of wrongly classified samples. This method is

computationally expensive as it requires the construction of n different classifiers.

However, it uses almost all the samples in each training subset, thus it is more

suitable for smaller datasets. The focus of this study will be on this cross-validation

method (LOOC). We will perform external 10-fold cross validation as proposed by

Ambroise et al [7] Although the LOOCV is not the best error rate estimator for

the small size sample, an advantage of using LOOCV is it give almost unbiased

estimation and the most important thing is its computational time is faster than

the bootstrap method. The LOOCV also has been used in many studies in micro-

array classification. It is acceptable to perform the LOOCV for parameter analysis.
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METHODOLOGY

3.1 Dataset

The study dataset was obtained from the public database GEO.

The GEO accession GSE34105 dataset is a gene expression profiling of archival

tongue carcinoma and normal tongue tissue.RNA extracted from 78 tongue sam-

ples, 62 tongue carcinomas and 16 non-malignant controls, were successfully anal-

ysed using the whole genome array to obtain gene expression profiles. We accessed

the normalized dataset. The study population was from Umea City, Sweden.

Dataset made public on May 11, 2012.

3.2 Statistical analysis

The analysis was done in a multi-stage approach to achieve the objectives. This

is illustrated graphically below:

21
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Accuring data

and preparation

Data entry

DATASET
Classification

and evaluation

Principal

Component

analysis

Description of variation

objective 1

objective 2

Figure 3.1: Work-flow chart

Data analysis was done using R-2.6.2, R-3.0.1 and the relevant packages - MASS,ggbiplot,ggplot2,eigenR2.

3.2.1 Dimension reduction

Principal component analysis was done to reduce the dimension of the dataset

from the initial 29377. A scree plot was subsequently drawn to guide on the

choice of the number of components to include for the next stage of the analysis.

An extended version of the PCA - eigen R2 was used to estimate the amount of

variance that each of the covariates contributed.

3.2.2 Linear discriminant analysis

This will be done in a step-wise method as outlined below:
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Step 1: Collection of the ground truth or training data.

Ground truth or training data are data with known group memberships. The

datasets from the GEO databases with the classification were used.

Step 2: Computation of the discriminant functions/The classification rule.

Step 3: Use cross validation to estimate misclassification probabilities ( Detailed

section 3.3 below)

This is achieved by transforming the (p) original variables X = [x1,x2 xp] to a new

set of K predictor variables, T = [t1, t2, , tK ], . which are linear combinations of

the original variables. Where (k) is always less than (p).

To illustrate the PCA algorithm the following equations are used.

Suppose that we have a random vector (X ).

X =


X1

X2

...

Xp


with population variance-covariance matrix

var(X) = Σ =


σ2
1 σ12 . . . σ1p

σ21 σ2
2 . . . σ2p

...
...

. . .
...

σp1 σp2 . . . σ2
p


Consider the linear combinations

Y1 = e11X1 + e12X2 + · · ·+ e1pXp

Y2 = e21X1 + e22X2 + · · ·+ e2pXp

...

Yp = ep1X1 + ep2X2 + · · ·+ eppXp

Each of these can be thought of as a linear regression, predictingYi from X1,X2,

... , Xp. There is no intercept, but ei1, ei2, ..., eip can be viewed as regression

coefficients.

Note that Yi is a function of our random data, and so is also random. Therefore

it has a population variance
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var(Yi) =

p∑
k=1

p∑
l=i

eikeilσkl = e′iΣei

Moreover, Yi and Yj will have a population covariance

cov(Yi, Yj) =

p∑
k=1

p∑
l=i

eikejlσkl = e′iΣej

Here the coefficients eij are collected into the vector

ei =


ei1

ei2
...

eip

 First Principal Component (PCA1): Y1

The first principal component is the linear combination of x-variables that has

maximum variance (among all linear combinations), so it accounts for as much

variation in the data as possible.

Specifically we will define coefficients e11, e12, ... , Y e1p for that component in

such a way that its variance is maximized, subject to the constraint that the sum

of the squared coefficients is equal to one. This constraint is required so that a

unique answer may be obtained.

More formally, select e11, e12, ... , Y e1p that maximizes

var(Y1) =

p∑
k=1

p∑
l=i

e1ke1lσkl = e′1Σe1

subject to the constraint that

e′1e1 =

p∑
j=1

e21j = 1

Second Principal Component (PCA2): Y2

The second principal component is the linear combination of x-variables that ac-

counts for as much of the remaining variation as possible, with the constraint that

the correlation between the first and second component is 0
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Select e21, e22, ... , e2p that maximizes the variance of this new component...

var(Y2) =

p∑
k=1

p∑
l=i

e2ke2lσkl = e′2Σe2

subject to the constraint that the sums of squared coefficients add up to one,

e′2e2 =

p∑
j=1

e22j = 1

along with the additional constraint that these two components will be uncorre-

lated with one another.

cov(Y1, Y2) =

p∑
k=1

p∑
l=i

e1ke2lσkl = e′1Σe2 = 0

All subsequent principal components have this same property they are linear

combinations that account for as much of the remaining variation as possible and

they are not correlated with the other principal components

We will do this in the same way with each additional component. For instance:

ith Principal Component (PCA− i): Yi

We select e1i, e2i, ... , epi that maximizes

var(Yi) =

p∑
k=1

p∑
l=i

eikeilσkl = e′iΣei

subject to the constraint that the sums of squared coefficients add up to one...along

with the additional constraint that this new component will be uncorrelated with

all the previously defined components.

e′1e1 =
∑p

j=1 e
2
1j = 1

textcov(Y1, Yi) =
∑p

k=1

∑p
l=i e1keilσkl = e′1Σei = 0,

cov(Y2, Yi) =
∑p

k=1

∑p
l=i e2keilσkl = e′2Σei = 0,

...
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cov(Yi−1, Yi) =
∑p

k=1

∑p
l=i ei−1,keilσkl = e′i−1Σei = 0

Therefore all principal components are uncorrelated with one another.

3.2.3 Cross-validation

To assess ho well the model classification performs to an independent dataset.

In this type of validation, one case in our data set is used as the test set, while the

remaining cases are used as the training set. We iterate through the data set, until

all cases have served as the test set. In order to implement the iteration in R, we

introduce an extra column, that is used as an index to identify the leave-out-case.

Here is the code, for the gala data set in the faraway package.

Cross validation was done using the leave-one-out-cross-validation(loocv) method

was used. For a dataset with N examples, perform N experiments. For each

experiment N-1 samples were used for training and the remaining example for

testing.

This was evaluated by computing the Sensitivity (SE), Specificity (SP) and Accu-

racy (AC). These terms are defines as [5]:,

Sensitivity the proportion of cases with disease who are correctly predicted

Specificity proportion of cases without disease who are correctly predicted

Sensitivity, specificity and accuracy of the particular method was calculated as

follows:

SENSITIV ITY =
TP × 100

TP + FN

SPECIFICITY =
TN × 100

TN + FP

ACCURACY =
TP + TN × 100

TP + FN + FP + TN

Where
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• TP Number of predicted positive cases that are actually positive

• TNNumber of predicted positive cases that are actually negative

• FP Number of predicted cases that are actually negative

• FNNumber of predicted negatives cases that are negative
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RESULTS

A total of 78 people were involved in the study. The average age of the participants

was 56.35 ± 17.5. The female were 36 and the male were 42. The number of

samples from the patients who had Oral Squamous Cell carcinoma was 62 as

compared to 16 which were collected from patients with no OSCC. A total of

29377 markers were sequenced per sample. There was a no significant difference

in the age for cancer patients (M= 58.19 ±17.44) and normal (M= 49.19 ± 16.32);

t= -1.94, p = 0.064. There was also no gender difference in the prevalence of cancer

amongst the participants;X2, df=1, p=0.95.

Principal components were calculated which represented the aggregated trends in

the gene expression profiles. The first PC was the linear combination of the gene

expression profiles that explained the most variation in the data. The second PC

was the linear combination of the gene expression profiles that explained the most

variation in the data once the first PC had been removed, and so on. The top-3

PCs which explained 23.26 %, 6.02 % and 4.06 % of the total variation,respectively.

It was noteworthy that the first 10 PCs explained 51.94 % variation, suggesting

that the gene expression profiles might be affected by only few but significant

factors. Using eigen-R2 the variability contributed by age was estimated at 0.8 %

, the disease condition 26.5% and gender 1.59 %. The fraction of total variance in

the data as explained or represented by each PC was represented in a scree plot.

28
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Figure 4.1: Scree plot

Guided by the scree-plot the first three Pcs were retained. There was a strong

negative correlation between PC1 and PC2 (-0.86) but very weak correlations

between the PC2 and PC3 (0.05)m and between PC1 and PC3 (0.005)

Differences between the two groups were examined. T -tests were done to check the

difference between the PCs amongst the tumour patients and the normal patients.

The results were tabulated below:

Table 4.1: Summary of the t-test(disease PCs)

mean control mean tumour Pvalues

PC1 38083.37 -15788.85 <0.05

PC2 -7090.13 60650.46 <0.05

PC3 58820.40 50106.70 0.11

Further the difference between the two groups was graphically shown.:
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Figure 4.2: Graphs of first 3 PCs

The differences in the other variables was further plotted as shown the the tables

4.4,4.5 and 4.3 below.
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Figure 4.3: The explained variance by disease status



Chapter 4. RESULTS 32

Figure 4.4: The explained variance by gender
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Figure 4.5: The explained variance by disease age

The dataset was trained with the 78 samples and testing was done using two ap-

proaches. Initially the whole dataset was used as the test database. Subsequently

the LOOCV approach was used and the results tabulated below. To illustrate this

the table below shows the confusion matrices for the testing process when three

components were retained.

1

Table 4.2: Confusion matrices when PCs retained=3

Table 4.3: A

Control Tumour
Control 16 0
Tumour 0 62

Table 4.4: B

Control Tumour
Control 9 20
Tumour 7 42

Table A: Actual values and Table B: LOOCV predicted values.

The error rate was subsequently analysed. The range of our analysis was from 2

PCs to 70 PCs. The general trend was that the more we increased the number

of the PCs the less accurate our classification became. The error rate increased
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from 6% to 33 %. There was a strong correlation (0.77) between the the number

of PCs and accuracy. A scatter plot describes this phenomenon:

Figure 4.6: Scatter plot of error rate and number of Components
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DISCUSSIONS

Oral squamous cell carcinoma is a highly prevalence cancer of the oral and circum-

oral tissues. In the current study we have examined three aspects of gene expres-

sion analysis. That is dimension reduction, classification of the expression profiles

and factors that may contribute to variance in the data.

PCA is a classical technique to reduce the dimensionality of the data set by trans-

forming the large dataset to a new set of variables (the principal components) to

summarize the features of the data. Principal components (PCs) are uncorrelated

and ordered depending on the variance. It is very popular in micro-array data

analysis, where the principal components are interpreted as the (few) physiologi-

cal processes driving the variability in the dataset. The k-th PC can be interpreted

as the direction that maximizes the variation of the projections of the data points

such that it is orthogonal to the first k-1 PCs.

The set of principal components is often reduced to a set of size k, where 1 <k < pc.

The objective of dimension reduction is to make analysis and interpretation easier,

while at the same time retaining most of the information (variation) contained in

the data. Clearly, the closer the value of k is to pc the better the PCA model will

fit the data since more information has been retained, while the closer k is to 1,

the simpler the model.

Many methods have been proposed to determine the number k, that is, the num-

ber of components to retain. The complexity of the methods is varied; some

using simple graphs while others are computationally intensive.These methods in-

clude [24, 34] (among others): the broken stick model, the Kaiser-Guttman test,

35
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Log-Eigenvalue (LEV) diagram, Velicer’s Partial Correlation Procedure, Cattell’s

SCREE test, cross-validation, bootstrapping techniques, cumulative percentage of

total of variance, and Bartlett’s test for equality of eigenvalues. .

Thus the various techniques are prone to suffer from subjectivity or have a ten-

dency to under estimate or over estimate the true dimension of the data [35]. Thus

there is no ideal solution to the problem of dimensionality in a PCA as noted by

others among Jolliffe et al that [24] notes ‘ it remains true that attempts to con-

struct rules having more sound statistical foundations seem, at present, to offer

little advantage over simpler rules in most circumstances.’

The traditional approach is to use the first few PCs in data analysis since they

capture most of the variation in the original data set. In contrast, the last few

PCs are often assumed to capture only the residual noise in the data. However,

deciding how many and which components to use in the subsequent analysis is a

major challenge. It has been suggested that[25, 26], one can use components that

correlate with a phenotype of interest or use enough components to include most

of the variation in the data.

It has been suggested that for the purpose of classification the number of compo-

nents to be retained has to be at-least 50 (and sometimes more) [27]. In our study

the first 70 components that cumulatively accounted for 98.39% of the variance

in the dataset for purposes of classification. However the scree plot suggests that

only the first two PCs should be retained. For the classification purpose we chose

to compare the accuracy on retaining the various number of components. However

for the graphical illustrations we chose the first 3 components as guided by the

scree plot . These first three components accounted for a cumulative 33.34 % of the

total variance. This suggested that there were only a few genes that accounted for

the significant amount of the variance. This aligns with the knowledge that only a

few number of genes present relevant attributes and that the gene expressed data

comes with presence of noise which can be termed as technical and biological dis-

tortions of the data. It would be worthwhile note that the the first 3 components

accounted for 23.26 % , 6.02 % and 4.06 % of the variance respectively.

In the analysis of the T-tests we found that the first two components were different

amongst the two categories of the participants. This would be explained by the

fact that these two PCs contributed alot of variance in the initial analysis. Ignor-

ing potential sources of experimental bias, such as assuming the variance in the
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gene expression dataset is due to the disease condition alone, may yield mislead-

ing results. This practice overlooks important variables that may have small, but

reproducible, changes in expression. We cannot ignore the known biological phe-

nomenon of epigenetic that the gene expression level are affected by other factors

that have been established. Biological data is inherently variable, and statistical

inference is required in order to draw conclusions from data and add to the body

of knowledge. Collecting data and acquiring knowledge are not the same thing.

Good design and sound statistical inference will be a crucial factor in determining

whether micro-arrays fulfill their potential.

Jin et al [36] estimated the contributions of sex, genotype and age to transcriptional

variation in Drosophila melanogaster. They found that expression variation is

mostly explained by sex, genotype and their interactions, and less explained by

age. Brem [28] dissected the variation of expression in yeast according to genotype,

based on recombinant lines derived from two distinct isogenic strains. The genome-

wide transcription variation explained by population structure has been estimated

in the teleost fish and humans [11]. In all of these studies, one can think of

each feature as being a response variable, where a key summary statistic is the

proportion of variation among the thousands of response variables explained by the

independent variables of interest.An even more relevant study has been to estimate

the various factors that affect the degree of variation in blood gene expression

profiles.

Thus from these studies there are some factors that affect the gene expression

profiles in specific tissues. Statistically failure to factors these aspects in the study

design or in the data analysis would introduce some bias to the inference made.

For a single response variable, the proportion of variation explained by independent

variables is usually accomplished by calculating R2. This is computed as the ratio

of the variance of the fitted model to the variance of the response variable. Eigen-

R-square is a high-dimensional version of the classic R-square statistic. It can

be applied when one wants to determine the aggregate R-square value for many

related response variables according to a common set of independent variables. In

our study the age explained 0.8 % of the variance, the disease condition 26.5% and

gender 1.59 %. Clearly most of the variance would be attributed to the disease

condition. These figures are relatively less compared to a previous study which

showed that gender and age contributed 8.3 % and 9.2 % respectively in the blood

transcription profile [37]. However it would be biologically wrong to compare these
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figures since difference tissues have difference transcription profiles. Thus it would

be nice to have estimates of the different factors that influence the gene expression

in different tissues. This would form a basis for proper study design to avoid

confounding effect.

We therefore described the variation of the other variables in the study.

One of the main goals of analysing gene expression data is for purposes of classifi-

cation. In this aspect the identification of an ideal classification method is crucial

so that the research may be translated to the clinical use, and thus better patient

care.

Multiple methods have been suggested and subsequently compared. The classi-

fication is almost always preceded by dimension reduction. So in the literature,

a classification method is assumed to be the combination of a dimension reduc-

tion method and the subsequent classification algorithm. In the same approach,

our method could be termed as PCA-LDA method. The success of the method

described as in the methodology section. However,factors other than accuracy

contribute to the merits of a given classifier [23]. These include simplicity and

insight gained into the predictive structure of the data.

In our study it was notable that the accuracy of the classification method reduced

as we increased the number of components. Although previously it has been

noted that the ideal number of components that we should retain for purposes

of classification should be at-least 50 [27], the larger number proved to be less

accurate. Our results however resonate with previous findings where the accuracy

of the number of PCs retained was checked in a classification experiment [38].

In this experiment where the k-nearest neighbor was used as the classification

method, the results of increasing the number of PCs was similar to our findings.

Actually, simply setting k = 1 gave the best result.

Despite the fact the there is no gold standard in this area,linear discriminant

analysis remains a relatively common method of classification. In this study we

came up with an classification function and then attempted to estimate the error

rate of the results. In our study we studied the accuracy of the discriminant

function on altering the number of the principal components. generally the trend

was that as we increased the number of the components to retain our accuracy

reduced.
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CONCLUSION

In the study described here, we intended to asses the accuracy of linear discrim-

inant analysis in gene expression of oral squamous cell carcinoma. However we

also wished to describe the characterize the major sources of variation in the same

dataset.

We used the PCA and Eigen-R2 method to dissect the overall variability of gene

expression data and associate the major sources of variation with the predefined

biological variables.

Only a few PCs explain a large proportion of the variance, with the first three

components accounting for a cumulative 33.34 % of the total variance. This res-

onates well with the fact that there is a lot of noise in the gene expression data.

It has been suggested that only a few attributes are relevant to the disease. Thus

analysis of gene expression data should only incorporate these few PCs for accurate

results. This is also confirmed in the classification, where the more the number

of PCs retained the less accurate the classification. This confirms that an accu-

rate classification model should only incorporate the PCs explaining maximum

variance.

The results indicated that the variation in the gene expression dataset could also be

attributed to these other factors. The physiological factors (age and gender) were

found to be associated with some proportion of variation in the gene expression

profiles. In our study the age explained 0.8 % of the variance, the disease condition

26.5% and gender only 1.59 %. Remarkably the disease status represents the most

significant portion of the overall variation explained. Recently, molecular biology

39
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techniques, especially epigenetic and genetic techniques, have been developed that

have enabled us to gain a greater insight into the molecular pathways underlying

the cancers. In translating the research into a format that will facilitate effective

molecular classification, support personalized treatment and determine prognosis

remains a challenge. In this thesis, the possibility of gene expression dependency

on physiological factors is highlighted. Thus the same idea maybe extended to a

clinical setting for patients with epigenetics and potential confounder. Thus the

need to factor them in when doing the classification of the datasets cannot be

ignored. In the study design, physiological factors need to be well controlled and

have them equally distributed between the comparison groups.

Based on the results of the study, it was identified that carrying out the classifi-

cation process requires consideration of the other factors that would affect gene

expression. Biologically these processes called epigenetics may not have found

very a lot of use in the statistics. Thus the various physiological states that have

been attributed to gene expression but may not be well related to the disease must

be controlled. Although the dataset considered a few covariates, we were able to

demonstrate the role they play. Notably some pioneer work [37] has been done

in the to identify the factors that may alter the variation in of gene expression

profiles.

Thus identifying it is important to identify the sources of variation in gene expres-

sion profiles in various tissues. This will help in proper study designs to limit the

confounding effect to the minimum., such variability thus improving the accuracy

and reproducibility of the gene expression studies.
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The R Code (EDA and PCA)

# Analysis scheme:

# 1. Import the data into R - 2 datasets have been imported - One contains the actual micro -array data , the second contains the sample ID, and other variables - Age , Gender and disease

#status

#2. Exploratory of the dataset - all the variables

#3. Associations between the various variables with keen interest on the variable of interest - Disease

#4. Principal component analysis

library(stats)

library(MASS)

setwd("C:/Users/EDWIN/Desktop/gene express t")

data <-read.table(" data2.csv", sep=",", h=F)

data2 <-t(data)

label <-read.table (" labels.csv", sep=",", h=FALSE)

sample.lables <-t(label)

desc <-read.table("desc.csv", sep=",", h=TRUE)

ngenes <-nrow(data)

nsample <-nrow(desc)

meanage <-mean(desc$age)

sdage <-sd(desc$age)

male <- desc[ which(desc$gender ==’Man ’),]

female <- desc[ which(desc$gender ==’Woman ’),]

nmale <-nrow(male)

nfemale <-nrow(female)

tumour <- desc[ which(desc$disease ==’Tumour ’),]

control <- desc[ which(desc$disease ==’Control ’),]

ntumour <-nrow(tumour)

ncontrol <-nrow(control)

tbl <-table(desc$gender ,desc$disease)

test1 <-chisq.test(tbl)

41
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tdisease <-t.test(desc$age~desc$disease)

tsex <-t.test(desc$age~desc$gender)

pt2 <-tsex$p.value

pt2 <-round(pt2 ,3)

tstatdis <-tdisease$statistic

tstatsex <-tsex$statistic

pt<-tdisease$p.value

pt<-round(pt ,3)

pchi <-round(test1$p.value ,2)

chistatistic <-round(test1$statistic ,2)

tstatistic <-round(t$statistic ,2)

control <- desc[ which(desc [1]==’ Control ’), ]

disease <- desc[ which(desc$disease ==’Tumour ’), ]

meancancer <-mean(disease$age)

sdcancer <-sd(disease$age)

meannormal <-mean(normal$age)

sdnormal <-sd(normal$age)

pca.m <- prcomp(data2 , scale=TRUE)

chosen.components <- 1:70

feature.vector <- pca.m$rotation[,chosen.components]

compact.data <- t(feature.vector) %*% t(data2) ## This thing has given me a whole week of headaches ..... now I can sleep !!!!

# Thus our new dataset is a 70*78 matrix - 70 loadings and 78 samples - If we chose 70 PCs

compact.data2 <-t(compact.data)

# Then the plots

par(mfrow=c(3,2))

plot(summary(pca.m)$importance [3,], type="l", ylab ="% variance", xlab="nth component (decreasing order )")

abline(h=0.99, col="red")

abline(v=50,col="red",lty =10)#

mtext("A")

plot(summary(pca.m)$importance [3,], type="l", ylab ="% variance ", xlab="nth component ")

abline(h=0.99, col="red")

abline(v=20,col="red",lty =10)#

mtext("B")

plot(summary(pca.m)$importance [3,], type="l", ylab ="% variance ", xlab="nth component ")

abline(h=0.99, col="red")

abline(v=10,col="red",lty =10)#

mtext("C")

plot(summary(pca.m)$importance [3,], type="l", ylab ="% variance", xlab="nth component ")

abline(h=0.99, col="red")

abline(v=70,col="red",lty =10)# NB - by changing the data here we are able to visualize the effect of the number of principal compnents

mtext("D")

# Chosen .......... QUite a nice thing to know .....by KAgereki at 1:07 AM on 29/10/2013

title(" Comparisons of variance contribution", outer=TRUE)

#Variance contributed by the PCs cumulatives

var1 <-pca.m$sdev [1]^2/ sum(pca.m$sdev ^2) #First PC

var2 <-pca.m$sdev [1:2]^2/ sum(pca.m$sdev ^2) # First and second PC

var3 <-pca.m$sdev [1:3]^2/ sum(pca.m$sdev ^2) # Third PC

var10 <-sum(pca.m$sdev [1:10]^2/ sum(pca.m$sdev ^2)) # First 10 PCS
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var20 <-sum(pca.m$sdev [1:20]^2/ sum(pca.m$sdev ^2)) # etc

var30 <-sum(pca.m$sdev [1:30]^2/ sum(pca.m$sdev ^2))

var40 <-sum(pca.m$sdev [1:40]^2/ sum(pca.m$sdev ^2))

var50 <-sum(pca.m$sdev [1:50]^2/ sum(pca.m$sdev ^2))

var60 <-sum(pca.m$sdev [1:60]^2/ sum(pca.m$sdev ^2))

var70 <-sum(pca.m$sdev [1:70]^2/ sum(pca.m$sdev ^2))

# Subsequenly to get the percentage variance contributed we multiply by 100, given below is an example of the first three

percvar1 <-round((var1 *100) ,2) # Percentage of variance by 1st component

percvar2 <-round((var2 *100) ,2) # Percentage of variance by the first and second PCs

percvar3 <-round((var3 *100) ,2) # Percentage of variance by the first three PCs

# To get the variance distribution in the other covariates:

classage <-desc$age

scores2 <-pca.m$x

melted <- cbind(classage , melt(scores2 [ ,1:3]))

barplot <- ggplot(data=melted) +

geom_bar(aes(x=Var1 , y=value ,fill=classage),stat=" identity ") +

facet_wrap (~Var2)

#title(" Comparisons of variance contribution", outer=TRUE)

classgender <-desc$gender

scores2 <-pca.m$x

melted <- cbind(classgender , melt(scores2 [ ,1:3]))

barplot <- ggplot(data=melted) +

geom_bar(aes(x=Var1 , y=value ,fill=classgender),stat=" identity ") +

facet_wrap (~Var2)

#title(" Comparisons of variance contribution", outer=TRUE)

classdisease <-desc$disease

scores2 <-pca.m$x

melted <- cbind(classdisease , melt(scores2 [ ,1:3]))

barplot <- ggplot(data=melted) +

geom_bar(aes(x=Var1 , y=value ,fill=classdisease),stat=" identity ") +

facet_wrap (~Var2)

#title(" Comparisons of variance contribution", outer=TRUE)

# Scree plot

screeplot(pca.m, type="lines",col=3,main="Scree plot")

# To calculate the EigenR -squared

#Here we used an earlier version of R (R version 2.6.2 - Released on 2008 -02 -08) because the package eigenR2 was only compatible with this version

#

library(eigenR2)

mod1 <- model.matrix(pca.m$x~1+ desc$age)
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eigenR2.age <- eigenR2(dat = compact.data , model = mod1)

eigenR2.age$eigenR2 *100

mod2 <- model.matrix(pca.m$x~1+ desc$disease)

eigenR2.disease <- eigenR2(dat = compact.data , model = mod2)

eigenR2.disease$eigenR2 *100

mod3 <- model.matrix(pca.m$x~1+ desc$gender)

eigenR2.gender <- eigenR2(dat = compact.data , model = mod3)

eigenR2.gender$eigenR2 *100
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R Code ( LDA and cross

validation)

library(MASS)

dathelp=data.frame(compact.data2)

lda1=lda(desc$disease~ . , data=dathelp ,CV=FALSE , method =" moment ")

#Confusion matrix - Training data used as testing data

summary(lda1)

pred = predict(lda1 ,dathelp)

names(pred)

table1 <-table(desc$disease ,pred$class)

table1

# Error rate for the the confusion table above

error1 = sum(table1[row(table1) != col(table1 )]) / sum(table1)

error1

# A function to run the LOOCV for the dataset

vlda = function(v,formula ,data ,cl){

require(MASS)

grps = cut(1: nrow(data),v,labels=FALSE )[ sample (1: nrow(data ))]

pred = lapply (1:v,function(i,formula ,data){

omit = which(grps == i)

z = lda(formula ,data=data[-omit ,])

predict(z,data[omit ,])

},formula ,data)

wh = unlist(lapply(pred ,function(pp)pp$class ))

table(wh,cl[order(grps )])

}

# The sample below shows the generic code to cross -validate the dataset , with the choice of n #PCs. For example to calculate the errir rate for the first three PCs , the n is changed to 3. This was

#iterated for the 70 PCs

45
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chosen.components3 <- 1:3

feature.vector <- pca.m$rotation[,chosen.components]

compact.data <- t(feature.vector3) %*% t(data2)

compact.data <-t(compact.data)

dathelp=data.frame(compact.data)

lda=lda(desc$disease~ . , data=dathelp ,CV=FALSE , method =" moment ")

pred= predict(lda ,dathelp)

names(pred)

table <-table(desc$disease ,pred$class)

disease <-desc$disease

data <-cbind(disease ,dathelp)

data <-data.frame(data)

tt = vlda(3,disease~.,data ,data$disease)

error = sum(tt[row(tt) != col(tt)]) / sum(tt)

# The errors were tabulated and the hex correlation plot done with the code below:

library(hexbin)

bin <-hexbin(Pc, data , xbins =5) # Where PCs is the Principal components and data is the errors

plot(bin , main=" Scatter plot error and components ",xlab=" Components",ylab ="% Error ")
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