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Abstract 

A time series approach using autoregressive integrated moving average (ARIMA) modeling has 

been used in this study to model the co-dynamic relationship between HIV and Tuberculosis. 

The study has showed that ARIMA(0,1,2) model provides the best fit for HIV prevalence rate 

and that the ARIMA(1,2,0) model provides  the best fit for the TB case notification rate. 

TB case notification rate and HIV prevalence rate time series demonstrated that there is a long 

run equilibrium relationship between HIV prevalence and TB notification rates. The current 

declining trends of TB cases may indicate that the efforts in HIV control could be driving down 

the TB epidemic. The Kenyan twin epidemic has time lag of 6 years between the trends of HIV 

prevalence and TB case notification rate. 

The study also showed that there is Granger causal relationship between HIV and TB trends and 

that HIV Granger causes TB. 
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Chapter 1: Introduction 

1.1 Background information 

Tuberculosis remains infectious disease of great public health importance in the world. In its 

2010 Global TB control report, WHO estimates of the global burden of disease caused by TB in 

2009 are as follows: 9.4 million incident cases (range, 8.9 million–9.9 million), 14 million 

prevalent cases (range, 12 million–16 million), 1.3 million deaths among HIV-negative people 

(range, 1.2 million–1.5 million) and 0.38 million deaths among HIV-positive people (range, 0.32 

million–0.45 million). There were 5.8 million notified cases of TB in 2009, equivalent to a case 

detection rate (CDR, defined as the proportion of incident cases that were notified) of 63% 

(range, 60–67%), up from 61% in 2008  

The burden of TB remains great with Kenya being ranked 15th among the 22 highest TB burden 

countries worldwide and 5th in Africa (1). In its annual report of 2010 and 2011, Kenya notified 

total of 102,083 TB cases (all forms of tuberculosis) to national programme in 2011. This is a 

reduction from total of 106,083 TB cases (all forms of tuberculosis) were reported in 2010.  

The global response to threat of TB is encapsulated in the Stop TB Partnership’s Global Plan to 

Stop TB, 2006–2015, launched in January 2006. It set out the scale at which the interventions 

included in the Stop TB Strategy need to be implemented to achieve the 2015 Millennium 

development Goals. 

Directly Observed Treatment Short-course chemotherapy (DOTS) strategy remains at the heart 

of the Stop TB Strategy. The DOTS approach has five basic components: 
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1) Political commitment with increased and sustained financing for TB control by way 

enabling legislation, planning, human resources, management and training 

2) TB Case detection through quality-assured bacteriology which involves strengthening TB 

laboratories, drug resistance surveillance 

3) Standardized treatment with supervision and patient support 

4) An effective drug supply and management system that ensures no interruption of 

treatment 

5) Monitoring and evaluation system and impact measurement which involves  national TB 

recording and reporting systems 

In line with the global plan and National Health Sector Strategic Plan II, the Division of Leprosy, 

Tuberculosis and Lung Disease developed and is currently implementing its strategic plan 2011-

2015.  

Donald A Enarson and Nils E Billo, in their critical evaluation of the Global DOTS Expansion In 

Southern sub-Saharan Africa, TB and HIV are closely linked; for example, in the highest-burden 

settings, 75% of TB patients are also living with HIV/AIDS.  Due to the link between TB and HIV, 

sub-Saharan Africa is projected to supersede all other regions in the burden of TB over the 

coming decades. The trend of rising TB case rates can only be reduced if HIV infection rates are 

also reduced.  

The natural history of TB as described by Hans Reider; starts from the exposure of 

mycobacterium, TB causing bacilli from a symptomatic Pulmonary TB patient. Exposure may 

lead to infection, where TB bacilli establish itself in body tissues. Often times, the infection 
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occurs in the lung tissues. This infection may proceed to symptomatic phase in which the 

patient has signs and symptoms of TB disease. However in most times, the bacilli goes into 

latency in which bacteria becomes dormant until it is reactivated by lowered body immunity. It 

is estimated that globally that 1/3 of the world population is infected with TB and the estimate 

in sub-Saharan Africa, 2/3 of the population is estimated to be infected. In general population, 

the annual risk of TB disease (reactivation of latent) is estimated at 1% and 10% life time risk. 

HIV/AIDS increases the risk of TB disease to 10% annual risk and 50% life time risk. At an 

individual level, HIV infection lowers immunity and thereby increasing the risk of reactivation of 

latent TB.  Likewise HIV/AIDS increases the risk of progression of TB infection into primary TB 

disease. 

1.2 Statement of problem 

The co-dynamic relationship between HIV and TB is majorly associated with rising burden of TB 

and this is attributed with the rise of TB epidemic in Kenya and other Sub-Saharan countries. 

The question arises whether the trends of TB can be forecasted from HIV/AIDS trends.  Further 

to this, question arises as to what extent can the temporal information on time series data 

assist in the modeling and understanding of the causal relationship between TB and HIV? 

Demonstrating requires cross-correlations between HIV and TB temporal time series data. 

Furthermore, there is need to demonstrate if there is presence of “disease causality”.  

1.3 Objectives 

The overall objective is to demonstrate presence or absence of granger causality between TB 

and HIV 
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The specific objectives that will be considered are 

1. To identify the appropriate ARIMA model for TB and HIV trends 

2. To investigate Granger causality between TB and HIV 

1.4  Significance of the study 

The goal of TB control programme is to decrease morbidity due to TB and cut transmission of 

TB in the community. Understanding the co-dynamic relationship between TB and HIV is key to 

the control of the twin epidemic.The study will give insight into co-dynamics of TB and HIV 

which is crucial in the control and management of these diseases. Further, it will guide policy 

makers on the control and prevention and be able to prescribe proper interventions.  
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Chapter 2: Literature Review 

Mathematical models are tools that can be used to explore epidemic interactions and disease 

co-infections at population.  Lih-Ing W. Roeger, et al (2009) noted that the study of the joint 

dynamics of HIV and TB present formidable mathematical challenges due to the fact that the 

models of transmission are quite distinct. Furthermore, although there is overlap in the 

populations at risk of HIV and TB infections, the magnitude of the proportion of individuals at 

risk for both diseases is not known.  

Elisa F. Long, et al (2008) recognizes role of mathematical models in guiding policymakers to 

allocate resources for the prevention and control of infectious disease epidemics. In their study, 

mathematical analyses of the HIV-TB co-epidemics suggest that exclusive treatment of only one 

disease may substantially reduce that epidemic, but may exacerbate the other epidemic; that 

prevention programs can have a greater effect on reducing latent disease than treatment 

alone; and that comprehensive treatment for HIV, latent TB, and active TB must be combined 

with increased prevention efforts can diminish both epidemics. Finally, when modeling two or 

more synergistic infectious disease epidemics, it is important to include the effects of each 

disease on the transmission and progression of the other disease.  

Joe Suyama, et al (2003), notes that epidemiologists have utilized applied mathematics to 

perform analysis of data in the public health and disease surveillance areas. Using time-series 

analysis, many seemingly unrelated spectra, series, or systems can be compared to determine 

whether important relationships exist. For example, researchers were able to correlate the 

incidence of Ross River virus (RRv) infections in Cairns, Australia, with the presence or absence 

of certain weather patterns in the preceding months of an outbreak. Certain climate changes 

were predictive of RRv epidemics. Similar time-series analysis and cross-correlations have 
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assisted in the analysis of complex and voluminous data collected for public health reasons. 

Smallpox epidemics in England between 1600 and 1800 were studied to determine whether 

any exogenous factors correlated with the development of smallpox epidemics in various 

populations. Using CCFs, five year cycles of smallpox outbreaks were determined.  

 Stephen D. Lawna et al (2005) in their study of long term incidence and risk of Tuberculosis 

among HIV-infected patients receiving HAART in a South African cohort, they found out that 

long-term HAART confers a greater reduction in TB risk than previously reported and HAART 

may, therefore, contribute more to TB control in low-income countries than previously 

estimated. Further, they found out that incidence of TB continued to decrease during the first 5 

years of HAART.  Patients with advanced pretreatment immunodeficiency had persistently 

increased risk of TB during HAART; this may reflect limited capacity for immune restoration 

among such patients.  

Saeed Akhtar et al (2008), while studying nonlinear pattern of PTB among immigrants at entry 

in Kuwait, employed standard time series methods to assess and model long term trends in the 

data. The time series model describe temporal trend in the proportions of tuberculosis cases 

among migrants at entry in Kuwait. The trend estimation was done by first de-seasonalizing the 

series using the moving average smoothing method. The goodness-of-fit of the final model was 

evaluated via residual analysis by plotting residuals against fitted values and also versus the 

time variable.  

Sánchez S., et al (2009), in their mathematical modeling of Kenya’s TB and HIV trends, reported 

incongruence in trends TB–HIV co-dynamics, a deviation from international finding of high 

congruence. They postulated two explanations namely that there is an unaccounted 

improvement in TB case detection that has occurred, or that HIV is not declining as reported in 
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sentinel surveillance. The study recommended the need to reevaluate trends of both diseases 

in Kenya, and identify the most critical epidemiological factors at play.  

José Leopoldo Ferreira Antune, et al (1999), applied a time-series analysis using ARIMA model 

to develop epidemiological profile of tuberculosis in the city of São Paulo. The study looked at 

mortality rates of Tuberculosis. Time series proved to be efficient in many ways: improving the 

use of statistical methodology in the health sciences; bypassing the difficulties inherent to the 

characteristics of data values (autocorrelation, heteroskedasticity, collinearity, and non-

normality of forecast error distribution); integrating quantitative analysis with the historical 

interpretation of the study phenomena; projecting estimates of future trends in the behavior of 

variables; and systematizing methodology for application in future social research.  

Hong-Jen Chang, et al (2004), in their review of impact of the SARS epidemic on the utilization 

of medical services, applied time-series autoregressive-moving average (ARIMA) analysis to 

determine whether the SARS epidemic was significantly associated with changes in medical 

service utilization rates. Over the study period, they observed significant utilization reductions 

at the peak of the SARS epidemic. The model demonstrated that the fears of SARS significantly 

influenced people’s care-seeking behavior and that this fear seriously compromised their 

accessibility to quality care.  

Andrew Arnold, et al (2007) in their study on temporal causal modeling with graphical Granger 

methods, assert that the need for mining causality, beyond mere statistical correlations, for real 

world problems is recognized widely. The applications involve temporal data, which raises the 

challenge of how best to leverage the temporal information for causal modeling. The concept 

of “Granger causality”, based on the intuition that a cause helps predict its effects in the future, 

has gained attention in many domains involving time series data analysis.  
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Chapter 3:  Methodology 

3.1   Data  

The study uses data the annual TB case notification rate data as reported to the national TB 

control program (DLTLD) and HIV prevalence rates data obtained from the national HIV sentinel 

surveillance system from the National STI and AIDS control program (NSACOP). The data covers 

the years 1990 to 2010.  

3.2   ARMA model 

A general ARMA (p,q) model with mean μ is given by; 

               

where  is a sequence with mean μ and variance   ,that is ,   ∼  

3.3   ARIMA model 

In practice, trends exist in many data sets and hence there is need to remove these effects. 

Trends in time series can be removed by differencing. This differencing is integrated into the 

ARMA models creating the ARIMA models. The differencing is done typically once, twice or 

three times, until the series is at least approximately stationary exhibiting no obvious trends.  

ARIMA (p,d,q) defines a model with an Autoregressive part of order p, a Moving average part of 

order q and having applied d order differencing and is given by 

 

where,  is a backshift operator.    shifts time series by   time units, that is, 

) 
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3.4   The autocorrelation function (ACF) and partial autocorrelation 

function (PACF) 

The principle way to determine which AR or MA model is appropriate is to look at the ACF and 

PACF of the time series. Table 3.1 below gives the behaviour of these functions for different 

ARMA models. 

Table 3.1: Theoretical framework for AR, MA and ARMA  

MODEL ACF PACF 

AR(p) Exponential decay or damped sine wave. 

The exact pattern depends on the signs and 

sizes of   

Spikes at lags 1 to , then zero. 

MA(q) Spikes at lags 1 to , then zero. Exponential decay or damped sine 

wave. The exact pattern depends on 

the sign and sizes of   

ARMA(p,q) Both decay exponentially and may contain damped oscillations 

Having determined p, d, and q, the coefficients of the autoregressive and moving average terms 

are estimated using nonlinear least square method or maximum likelihood. This is followed by 

diagnostic checking of the fitted model, and, if necessary, the model may be modified in terms 

of the values of p and q to achieve the desired level of model adequacy. The general points to 

be considered while fitting the model are: 

(1) The model should have a relatively small residual variance 

(2) The model should be parsimonious that is the number of parameters should be kept small 

without compromising the model adequacy 
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(3) The residuals should be normally distributed and independent with a mean value of 0. 

There are some things to bear in mind in choosing appropriate ARIMA model. First, values of p, 

q or d of more than 3 are very rarely needed. Second, it is often the case that many different 

ARIMA models give more or less the same predictions, so there is some flexibility in the choice 

of p, d and q.   

3.5   Which ARIMA (p,d,q) model to use? 

Tentative model of the ARIMA class is identified through the analysis of historical data. This 

involves examining whether the time series is stationary or non-stationary. If non-stationary, it 

is first transformed into a stationary time series by applying a suitable degree of differencing. 

Where differencing is called for, then difference the data once, d = 1, and inspect the time plot 

of first order difference     where  ∆=1-B.  If additional differencing is necessary, then one 

can try differencing again and inspect a time plot of second order difference    . Care must 

be taken not to over difference because this may introduce dependence where none exists. 

Tentative values of p and q are found by examining the autocorrelation function (ACF) and the 

partial autocorrelation function (PACF) of the stationary time series. 

 Box-Jenkins procedure provides a 4 step process namely 

1. If necessary, data should be transformed, such that covariance stationarity is achieved. 

2.  Inspect, ACF and PACF for initial guesses of p and q. 

3.  Estimate proposed model. 

4. Check residuals (diagnostic tests) and stationarity of process. 
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If step 4 fails, go to step 2 and repeat. If in doubt, choose the more parsimonious model 

specification. 

3.6   Cointegration 

A variable  is said to be integrated of order d that is  if it has stationary, invertible, 

non-deterministic ARMA representation after differencing d times. Variables, all of which 

achieve stationarity after differencing, may have linear combinations which are stationary 

without differencing and this equilibrium relationship is term as cointegration between time 

series. Cointegration can be interpreted economically as the presence of a long-run equilibrium, 

the relationship between the variables being stable.  

Given two time series      which are both I(d) (they have compatible long-run 

properties), any linear combination of       will be also l(d). In particular, variables   

  describe TB case notification rate and HIV prevalence rate respectively. 

 

where  is a sequence with mean μ and variance   that is    ∼  

But this collapses to nothing in the long run, that is,  ence all 

the difference terms will be zero that is      

One way to get around this problem is to use both first difference and level terms, that is, 
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 where   is known as the error correction term. 

Provided that      are cointegrated with cointegrating coefficient   , then 

  will be  I(0) even though the variables are each  I(1). This is Granger 

representation theorem which states that any cointegrating relationship can be expressed as an 

equilibrium correction model. 

3.7    Cointegration: Engle-Granger Test 

This is a three step process, namely; 

1. Pre-test the variables for the presence of unit roots and check if they are integrated of 

the same order  

2.  Regress the long run equilibrium model 

3. Test whether the residuals are  I(0).  

3.7.1   Phillips and Perron unit root test 

Phillips and Perron (PP) Test is non-parametric correction based on estimated long-run variance 

of  Phillips-Perron tests assess the existence of a unit root in a univariate time series .  

Consider model   

 

Where  is serially correlated and c is a constant. 
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The constant c is included to capture the nonzero mean under the alternative hypothesis. 

Phillips-Perron test equation is given by 

  

Where     

 

versus 

  

In order to remove the dependence of asymptotic distributions on nuisance parameter   and  

 , Philips-Perron test uses modified statistics denoted given by 

 

and 

 

where      and     are consistent estimates of     and of  respectively. 
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Computed Z-statistics in absolute value is compared to critical value. If the computed Z-statistic 

is less than the critical value, we fail to reject  , which implies that there exists a unit root and 

conclude that time series is integrated of order one 

3.7.2 Testing for cointegration 

This is based on Augmented Dickey-Fuller (ADF) test. The critical values to be used here are 

approximated critical values. The residuals are not the actual error terms, but estimated values 

from the long run equilibrium equation. 

Equation 3.5 can be expressed as 

 

where     

  should be I(0)   if the variables      are cointegrated. 

We can test the residuals of equation (3.10) to see if they are non-stationary or stationary.  So 

we have the regression equation 

 

This simply checks if a series is stationarity. The error correction process is a constructed series 

from estimated parameters with different distributions.  ADF test is given by 
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Sets of critical values tabulated by Engle and Granger (1987) are used to test for cointegration. 

ADF test examines the hypothesis that two time series are cointegrated. The null hypothesis is 

non-cointegration against the alternative of cointegration 

Hypothesis 

 

 

 

A large test statistic rejects the null of non-cointegration that is, a large test statistic ‘accepts’ 

cointegration 

3.8 The Granger Causality 

"Granger causality" tests are statistical tests of "causality" in the sense of determining whether 

lagged observations of another variable have incremental forecasting power when added to a 

univariate autoregressive representation of a variable. A series  may be said to cause a 

series   if and only if the expectation of  given the history of is different from the 

unconditional expectation of . 

Consider two random variables  

Forecast for   ,  period ahead is given by 
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and 

 

This is the mean squared error of   

    

3.8.1   To test for Granger-causality  

Assume a lag of p 

 

Estimate the parameter by ordinary least square (OLS) and test the hypothesis 

 

 

  

3.9 Analysis software 

Statistical analysis of time-series is performed using the R-Gui software.  
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Chapter 4:  Data Analysis and Results 

In this chapter data analysis and results of the time series data of TB CNR and HIV prevalence

 are presented.

4.1   Fitting an ARIMA model to HIV prevalence time series data 

4.1.1   Model Identification 

The time plot of HIV prevalence rates showed an increasing a trend that  peaked in 1999 and 

begun to decline in the past decade as shown in figure 1.   
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Figure 1: Time plot of HIV prevalence rate.  

 To identify AR and MA terms autocorrelation and partial autocorrelation functions were 

plotted for HIV prevalence rates at various lags as shown in figure 2. 
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Figure 2: ACF and PACFplot HIV prevalence rate 

The differenced HIV fits an  MA(2)  as shown in figure 2 with lower AIC=45.95 compared to 

MA(1) which has AIC=52.64. 

4.1.2  Model diagnostics  

Residual diagnostic tests and AIC are used here to determine the goodness-of-fit of the 

selectted ARIMA model to the original time series 

HIV prevalence rates fitted ARIMA(0, 1, 2 )  

Coefficients: 

         ma1     ma2 

      0.7148  0.6531 

s.e.  0.2579  0.1943 

sigma^2 estimated as 0.4041:  log likelihood = -19.98,  aic = 45.95 

The ACF of the residuals is also used as a diagnostic tool. Here we see that the ACF values 

except one which can be treated as outlier are all within the 95% zero-bound as shown in figure 

3 below. This indicate that there is no correlation amongst the residuals hence an indicator of 

the independence of the residual terms. 
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Figure 3: Residual diagnostics plots of ARIMA (0,1,2) model for HIV prevalence rate 

QQ-plot is used to test for Normality. Here we can see that the QQ-plot approximately follows 

the QQ-line visible on the plot as shown in figure 4. This is  good indicator of near normal 

residuals. 
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Figure 4: QQ-plot of ARIMA (0,1,2) model for HIV prevalence rate 

4.1.3   Fitted Model 

We therefore conclude that the ARIMA(0,1,2) the best- fit  model for HIV prevalence rate. The 

fitted model is of the following form: 

 

 

4.2   Fitting an ARIMA model to TB case notification rate time series data 

4.2.1   Model Identification 

The time plot of TB case notification rates showed increasing trend that peaked in 2005 and 

begun to decline as shown in figure 5.  The TB trends peak was observed 6 years later than that 

of HIV. The TB seems to be stable prior to the year 1990 and the year 1993 herald the rise in the 
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TB case notification. Comparison to HIV prevalence rates cannot be made prior to 1990 since 

the levels of HIV prevalence were unknown due lack of national HIV surveillance system. 

 

Figure 5: Time plot of TB case notification rate. 

To identify AR and MA terms, autocorrelation and partial autocorrelation functions were 

plotted for TB case notification rates at various lags. The second order differenced fits an AR (1) 

model (figure 6) with low AIC=157.74 as compared with first order difference with AIC=168.32. 
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Figure 6: TB case notification rate ACF and PACF plots for first and second difference 

4.2.2  Model diagnostics  

Residual diagnostic tests are used here to determine the goodness-of-fit of the selectted ARIMA 

model to theTB notification rate data. TB case notification rate fitted an ARIMA (1, 2, 0)  

Coefficients: 

          ar1 

      -0.5633 

s.e.   0.1780 

sigma^2 estimated as 185.5:  log likelihood = -76.77,  aic = 157.54 
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The ACF of the residuals is also used as a diagnostic tool. Here we see that the ACF values are  

within the 95% zero-bound as shown in figure 7 below. This indicate that there is no correlation 

amongst the residuals hence an indicator of the independence of the residual terms. 

 

Figure 7: Residual diagnostics plots of ARIMA (1,2,0) model for TB case notification rate 

The test for normality is carried out using Q-Q plot as shown in figure 8 below 
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Figure 7: Q-Q plot of ARIMA (1,2,0) fit of TB case notification rate  

Here we can see that the QQ-plot approximately follows the QQ-line visible on the plot. This is a 

good indicator of near normal residuals. 

4.2.3   Fitted Model 

We therefore conclude that the ARIMA(1,2,0) model is the best- fit ARIMA model for the 

original TB case notification. The final model is of the following form: 

     

4.3   Test for autoregressive unit root test 

To test for autoregressive unit roots Phillips-Perron Unit Root Test is applied to regression 

model of TB case notification rate to its lags.   
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Table 4.1: Phillips-Perron Unit Root Test result for TB case notification rate 

   Critical values for Z statistics 1% 5% 10% 

Z-tau-mu              -0.2454 -4.50005 -3.659125 -3.26775 

Z-tau-beta           -0.4538 -4.50005 -3.659125 -3.26775 

Table 4.1 shows that computed test-statistics for the Phillips-Perron Unit Root Test is less in 

absolute value than the critical value at 5% level of significance and conclude that the TB case 

notification have unit root, that is, difference stationary. This can be observed in the residual 

plot of Phillips-Perron regression for TB case notification rate trends as shown in figure 8 (Faint 

plot line representing fitted residuals and bolder plot line the actual data). 

 

Figure 8: The residual plot of Phillips-Perron for TB case notification rate 
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The Phillips-Perron Unit Root Test of HIV prevalence rate regression with intercept and trend 

are shown in Table 4.2. The computed Z-statistics for the Phillips-Perron Unit Root Test is less in 

absolute value than the critical value at 5% level of significance and showing existence of the 

unit root (integrated of order one).  

Table 4.2: Phillips-Perron Unit Root Test result for HIV prevalence rate 

   Critical values for Z statistics 1% 5% 10% 

Z-tau-mu              1.1643 -4.50005 -3.659125 -3.26775 

Z-tau-beta           -2.9706 -4.50005 -3.659125 -3.26775 

 

This can be observed in the residual plot of Phillips-Perron regression for HIV prevalence rate as shown 

in figure 9 with faint plot line representing the fitted residuals and bold plot line representing the actual 

HIV prevalence rate data 



30 

 

        

Figure 9: The residual plot of Phillips-Perron regression for HIV prevalence rate trends 

4.4   Test for Cointegration 

To conduct a cointegration test, the study utilized the ADF test. The test was performed to 

answer the question whether there is cointegrating relationship between the HIV prevalence 

and TB case notification rate.  

This test whether the residuals are I(0).  If they are  such that    then it is 

cointegrated. If this combination is  ,  then  the variables are said to be not-cointegrated.  

Regression model of TB case notification on HIV prevalence rate was fitted and Augmented 

Dickey-Fuller Test Unit Root Test conducted and the results are shown in table 4.3.  
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Table 4.3: Table ADF unit root test for cointegration 

ADF Estimate              Std. Error t value  Pr(>|t|)   

z.lag.1     -0.06211     0.04066   -1.528    0.1450   

z.diff.lag   0.53652     0.18677    2.873    0.0106 * 

Residual standard error: 14.66 on 17 degrees of freedom; Multiple R-squared: 0.425,      

Adjusted R-squared: 0.3574. F-statistic: 6.283 on 2 and 17 DF,  p-value: 0.009059  

Table 4.4: ADF test z-statistics 

Critical values for test statistics:  

ADF Test statistic              1% 5%  10%   Remark 

z. tau1     -1.5275 -2.66 -1.95   -1.6  

The computed test statistics for the ADF test is less in absolute value than the critical value at 

5% level of significance as shown in table 4.4 and hence conclude that TB and HIV are 

cointegrated. 

The ADF cointegration residuals are plotted in figure 10 and the plot of residuals appear to vary 

about a fixed level thereby confirming the existence cointegration.  
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Figure 10: Plot of ADF cointegration residual 

 

 

 

 

 

4.5 Granger causality 

The test for Granger causality was conducted using Granger causality test.  

The first test was whether HIV does not Granger cause TB for a model. Table 4.5 below shows 

the Granger causality test that HIV does not Granger cause TB 
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Table4.5: Granger causality test that HIV does not Granger cause TB 

Model 1: TBCNR ~ Lags(TBCNR, 1:2) + Lags(HIV, 1:2) 

Model 2: TBCNR ~ Lags(TBCNR, 1:2) 

 Diff Df       F Pr(>F) 

Complete model 14    

Reduced model 16 -2 9.817 0.00214 ** 

 

The p-value of 0.00214 means the null hypothesis is rejected hence conclude that HIV Granger 

cause TB 

The second test is whether TB does not Granger cause HIV for model. The test results is shown 

in table 4.6 below 

Table4.6: Granger causality test that TB does not Granger cause HIV 

Model 1: HIV ~ Lags(HIV, 1:2) + Lags(TBCNR, 1:2) 

Model 2: HIV ~ Lags(HIV, 1:2) 

 Diff Df       F Pr(>F) 

Complete model 14    

Reduced model 16 -2 1.2575 0.3146 

The p-value of 0.3146 means the null hypothesis that TB does not cause HIV is not rejected 

hence conclude that TB do not Granger cause HIV 
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Chapter 5: Conclusions and Recommendations 

The aim of this study was to determine the appropriate ARIMA model for TB case notification 

rates and HIV prevalence and to investigate presence or absence of granger causality 

relationship between TB and HIV.  

5.1 Conclusions 

The TB case notification rates showed increasing trend that peaked in 2005 and is presently 

declining. In comparison, the HIV prevalence rates showed an increasing a trend that peaked in 

1999 and begun to decline in the past decade.  The Kenyan twin epidemic show has time lag of 

6 years between the trends of HIV prevalence and TB case notification rate. 

The study has showed that ARIMA(0,1,2) model provides the best fit for HIV prevalence rate 

and that the ARIMA(1,2,0) model provides  the best fit for the TB case notification rate. 

The study demonstrated that there is a long run equilibrium relationship between HIV 

prevalence and TB notification rates. The current declining trends of TB cases may indicate that 

the efforts in HIV control could be driving down the TB epidemic 

 The study has demonstrated that there exist Granger causality relationship between TB and 

HIV. HIV Granger causes TB. 
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5.2 Recommendations 

Kenya through NASCOP is moving towards universal ARV coverage for person living with 

HIV/AIDS (PLHIV) and the expect impact is the stagnation and possible rise of HIV prevalence as 

PLHIV live longer. TB case notification rate is expected to continue declining since ARVs is 

protective from TB disease. A further investigation on this co-dynamic relationship is 

recommended in view of the expected changed in pattern of trends. 
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