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ABSTRACT: Regression analysis and Kkriging are popular spatial
estimation methods often used in soil science to provide soil infor-
mation at different spatial resolutions and extent. Attempts have
been made to combine them into a method known as regression
kriging (RK). With the increasing acceptance of digital soil mapping
paradigm, utilization of spatial estimation method such as RK is
bound to rise. Although RK is versatile and popular, its current
format has deficiencies which can hinder the quality of estimated
soil properties. One of the deficiencies of RK is the failure of its
regression model to recognize that natural soil occurs in groups
with unique response characteristics to soil forming factors. Ide-
ally, these groups should be represented as a family of curves when
modelling the landscape. However, the current applications tend to
use average models which either block/control the grouping effects
or do not statistically recognize them. In this paper, mixed-effects
modelling technique is shown for ingenious recognition of soil group-
ings and consequent improvement of RK accuracy. Mixed-effects
modelling allows for simultaneous regression estimation for indi-
vidual models in a group and for different groups in the landscape.
Its implementation in RK has been illustrated using executable
scripts in R. It gives better mapping accuracy and reliable maps than
the current application in RK. The new RK and its easy implementa-
tion in R software are anticipated to provide potential for wide
application and eventual contribution to improved soil mapping
and application of DSM.
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1. INTRODUCTION

Digital soil mapping (DSM) is increasingly gaining world-
wide acceptance as a means for fulfilling the demand for
accurate soil information at different spatial resolutions and
extent. Although DSM has many components, spatial esti-
mation of soil properties is perhaps the most actively researched
and applied (Lagacherie et al., 2007; Hattermink et al., 2008).
The spatial estimation endeavours to produce soil maps in
which variability within soil mapping units is sufficiently
accounted for. In the traditional soil maps, this variability
was depicted as homogeneous or was generally described but
not spatially represented. Recent studies show that oppor-
tunities still exist for improving the spatial estimation of soil
properties by accounting for more variability within- and
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between-soil mapping units (Brus et al., 2008). This paper
identified this opportunity in a popularly used DSM map-
ping method and attempted to improve it.

Many methods exist in the literature for soil spatial esti-
mation such as fuzzy membership, multivariate statistical
methods, geostatistics, decision tree analysis, among others
(Scull et al., 2005; Hengl et al., 2007). The geostatistics method
seems to be popular with many researchers perhaps because
it is often easily implemented in numerous available GIS
software (Hengl et al., 2007). Examples of geostatistical
applications include regression kriging, simple kriging, Bayes-
ian kriging, etc. (Cui et al., 1995). In regression kriging (RK),
spatial estimation involves statistical modelling of the deter-
ministic and stochastic components of the soil variables in
the landscape. The deterministic component represents the
large-scale trends while the stochastic component represents
the small-scale autocorrelation. The large-scale trends are
usually modelled using regression analysis while the auto-
correlation trends are modelled with kriging analysis (Odeh
et al., 1995). The co-occurrence of regression and kriging
analyses gives the name of regression kriging.

Although there are some arguments against RK approach
(Lark et al., 20006), it still remains versatile, easily imple-
mentable and compatible with many modelling software
(Carré and Girard, 2002; Herbst et al., 2006; Hengl et al.,
2007). This aspect of RK is especially important for imple-
menting the DSM paradigm. This paper sought to improve
the accuracy of RK by targeting its regression part using mixed-
effects modelling. Mixed-effects modelling is a form of
regression analysis that can simultaneously model nested
relationships. It is especially suitable in situations where unique
relationships exist for certain individuals within a group and
for different groups in a population. It has a potential in soil
mapping because soil properties have unique relationships
with soil forming factors in different catena in the landscape.
Although these unique relationships have been recognized
by soil scientists, they have not been adequately represented
in the modelling process for producing soil maps (Zhu et
al., 2001; McBratney et al., 2003). Mixed-effects modelling
approach presents the opportunity for recognizing such relation-
ships and eventually contributing to accurate soil mapping.
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The approach has been used in other studies with nested
relationships, which is a promise for successful application
in soil mapping. Some researchers have used it to improve
the modelling accuracy and efficiency (Pinheiro and Bates,
2000; Faraway, 2006) while others have used it as a tool for
incorporating environmental covariates in modelling soil
properties (Omuto et al., 2006; Omuto and Gumbe, 2009).
These applications encourage the need to test it in regres-
sion kriging of soil properties. The objective of this study
was to show how it can improve the performance of regres-
sion kriging in digital soil mapping.

2. IMPROVING REGRESSION PART OF RK
2.1. Use of Mixed-Effects Modelling

Regression kriging comprises of regression and kriging
analyses. In regression analysis, a regression model is used
to model the relationship between the target soil property
and its predictors. This relationship is believed to take care
of the large-scale trends present in soil properties at the land-
scape scale. A parametric generic form of this relationship
is given in Equation (1).

y =f(x,p)+e (D
where y is a vector of the target soil property, x is a vector
of its predictors, fis a function linking y and x, B is a vec-
tor of the regression model parameters, and e is a vector of
the regression residuals.

Equation (1) assumes an average response of all individuals
in a population. In a graphic illustration of the relationship
between y and x such as shown in Figure 1a, it’s represented
as a single line around which the individuals coalesce. The
parameters (or coefficients) of this regression model are
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obtained using the parameter estimation methods such as
least-squares and optimization (Kottegoda and Russo, 1998).
In this study, Equation (1) was referred to as the single model.

This study proposes to use mixed-effects modelling to
replace Equation (1) which is the current application in RK.
Mixed-effects modelling is a unique regression analysis that
can simultaneously model nested hierarchical relationships.
Its parameters for the high hierarchy (e.g., at the landscape-scale)
relationship are known as fixed-effects while the parameters
associated with individual groups within the landscape are
known as random-effects (Pinheiro and Bates, 2000). Fixed-
and random-effects together form the mixed-effects mod-
elling whose statistical formulation for Equation (1) is as
follows,

yi = fil(X, 0) e
b, =D*B+B*b, i=12,.,m

b:~N(0,y), e~N(0,5°) (@)
where m is the number of groups/classes in the population,
¢ is the vector of regression model parameters consisting
of fixed-effects B and random-effects b;, D and B are design
matrices for solving Equation (2), and v is the variance-
covariance matrix for the random-effects (Laird and Ware,
1982). The random-effects (b;) in Equation (2) are associ-
ated with i groups/classes because they represent random
variations of the groups/classes around the population average
estimates (or the fixed-effects) (Fig. 1b). The fixed-effects
are the population average estimates and do not have the
grouping effects. They, therefore, behave like the estimates
in the single model in Equation (1).

The random-effects in Equation (2) provide the opportu-
nity for separating groups of individuals with similar response
characteristics. This separation consequently accounts for
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Fig. 1. Conceptual differences between single and mixed-effects models.
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the variability between-groups in the landscape, which sub-
stantially shrinks the resultant final residual variance and
eventually improves the estimation accuracy.

2.2. Regression Analysis in R

2.2.1. Modelling large-scale trends

Equations (1) and (2) for modelling the large-scale trends
during soil spatial estimation can be efficiently implemented
in R using downloadable packages obtained from http://cran.
r-project.org/web/packages/available packages by name.html.
An important step in implementing these regression models
is to supply the vector of training points x and y. These
training points contain the soil property to be spatially esti-
mated (or y vector) and its predictors (or x vector). The fol-
lowing example illustrates how executable R scripts can be
used to implement the regression models in R. In this exam-
ple, soil clay content (CLAY) is used as the y variable and
the following GIS layers as the x predictors: elevation (DEM),
topography (landform), remote sensing index of vegetation
greenness (NDVI), rainfall, latitude, and longitude. It’s import-
ant to note that the x and y variables must be in the same
working directory in R and are georeferenced to a similar
spatial projection.

>#Load the necessary libraries for regression analysis

>

> library(foreign)

> library(nlme)

> library(sp)

> library(rgdal)

>

>#import the vector of predictors and georeferenced soil
property

>

>samplingpoints=read.table("clay.txt”, header=T)# vec-
tor of clay content

> predictors=readGDAL("xdist.asc") # for longitude

> predictorsSydist=readGDAL("ydlist.asc")$band1# for latitude

> predictors$dem=readGDAL("dem.asc")$bandl # for DEM

> predictors$landform=readGDAL("landform.asc")$ban
dl # for Landform

> predictors$ndvi=readGDAL("ndvi.asc")$bandl # for NDVI

> predictors$rain=readGDAL("rain.asc")$bandl # for rainfall

> predictors$xdist=predictors$bandl #for renaming the
first band

> predictors$band1=NULL #for removing the unneces-
sary space of renamed band]

>

># Include the geographic projection of the input data

>

> coordinates(samplingpoints)=~X+Y

> proj4string(samplingpoints)=CRS("+proj=utm +ellps=
WGS84") # using UTM for this example

> proj4string(predictors)=CRS("+proj=utm-+ellps=WGS84")

>

># Align the soil properties (vector y) with the predictors
(vector x) in one training file

>

> predictors.ov=overlay(predictors, samplingpoints)

> samplingpoints$xdist=predictors.ovéxdist

> samplingpoints Sydist=predictors.ov$ydist

> samplingpoints $dem=predictors.ov$dem

> samplingpoints $ndvi=predictors.ov$ndvi

> samplingpoints $rain=predictors.ov$rain

> samplingpoints $landform=predictors.ov$landform

>

># Now the regression analysis can be carried out for the
data in the training file

>

> por.Im=Im(sqrt(CLAY)~(xdist+ydist+dem+landform+n
dvi+rain), samplingpoints)# Equation (1)

> por.Ime=Ime(sqrt(CLAY)~(xdist+ydist+dem~+ndvi+train),
random=~1|landform, samplingpoints)# Equation (2)

>

># Compare the coefficient of determination for the two
regression models

>

> cor(fitted(por.Im),samplingpointsSCLAY)"2 # for Equa-
tion (1)

[1] 0.4980632

> corf(fitted(por:ime),samplingpointsSCLAY)"2 # for Equa-
tion (2)

[1] 0.6412688

The potential of mixed-effects modelling in improving
regression analysis is seen in better indicators of goodness
of fit than in the single model. For example, the coefficient
of determination (%), as an indicator of goodness of fit, was
higher in mixed-effects model (e.g., in the above example,
r* =0.64) than in the single model (0.50). Similarly, the
residual standard error of the mixed-effects model (in the
above example, = 0.033) was lower than the single model
(0.038). When comparing models, high coefficient of deter-
mination (r?) and low residual standard error are agreed as
statistical indicators of better predictive performance (Kotte-
goda and Russo, 1998; Pinheiro and Bates, 2000). Further
assessment of the mixed-effects model showed that its ran-
dom variations were split into two: the random-effects com-
ponent with a standard deviation of 0.02 and the residuals
component with a residual standard error of 0.033. The sin-
gle model had the residuals as the only random variation
with a residual standard error of 0.038. Its residual standard
error was inflated because it incorporated the random vari-
ations due to the soil group characteristics. This is because
the model does not recognize the natural soil grouping. This
deficiency costs the model its accuracy in soil spatial esti-
mation.
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2.2.2. Modelling small-scale autocorrelation using kriging

Small-scale autocorrelation are modelled using the resid-
uals from the regression stage of RK as the input variable.
It is important to note that these residuals not only contain
the small-scale autocorrelation but also the measurement and
modelling errors. The modelling errors are due to regression
deficiencies of the regression part of RK while the mea-
surement errors come from sampling/measurement of input
variables.

In kriging, the guiding mathematical hypothesis is the
intrinsic stationarity that requires the mean and semivariance
to depend strictly on the separation distance between sam-
ples and not on the coordinate position of the data (Journel
and Huigbregts, 1978). Two conditions must be satisfied in
this hypothesis:

1. The mean residual exists and doesn’t depend on the
geographic locations

e(s)=m 3)

2. The variance of the residual increment [e,(s + /&) — e/(s)]
exists and doesn’t depend on the geographic locations but on
the difference vector £

varle; (s +h) —e; ()] = Ele; (s + i) —es)" = 2y(h) ~ (4)
where e(s) is the residual from Equation (2), s is the geo-
graphic coordinates with latitude and longitude components,
y(%) is the semivariance, and £ is mathematical notation for
expectation. The semi-variance is usually estimated by Equa-
tion (5).

1 2

y(h) = A0 ’; [eis +h)—es)] )
where W(h) is the number of pairs of e which are located
h distance apart. A graph of semivariance with 4 is called
experimental semivariogram (Nielsen and Wendroth, 2003).
The experimental semivariogram often depict scatter just
like many experimental data. There are mathematical mod-
els which can model the experimental semivariogram so
that they can be used to extend to all distances (Gotway, 1991).
The modelled semivariogram is then used to characterize
the small-scale autocorrelation and for kriging estimation.
It contains at least three parameters: nugget, sill, and range
which explain the spatial structure (Isaaks and Srivastava,
1989). These parameters, the experimental data, and mod-
elled semivariogram are shown in Figure 2. The description of
these parameters has been given in various publications
(see for example Nielsen and Wendroth, 2003).

Kriging estimation is a linear function of neighbouring
sampling points and is given by
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Fig. 2. Example of semivariogram.

on condition that the sum of weights YA, =1 and the
variance is minimum between the true and estimated val-
ues. The minimum variance is obtained when

Sy * A=)+ p—y(h—hg) = 0

j=1

™)

where y(h) is the semivariance obtained from the semivar-
iogram model, e,(s,) is the krigged residual at location s,,
and p is a Lagrangian multiplier.

2.3. Kriging Analysis in R

Many kriging methods exist in the literature such as ordi-
nary kriging, simple kriging, Bayesian kriging, etc. The R
packages for implementing these methods are also available
and include Gstat, geoR, automap, etc. The following exam-
ple shows how kriging can be implemented in R to model
small-scale autocorrelation. The input for kriging is the vec-
tor of residuals from the regression part of RK.

>#Continue from the regression part

>#Load the packages for kriging

>

> library(spacetime)

> library(gstat)

> library(automap)

>

>#Recall the residuals from the regression model and use
them to fit the variogram

> variogram = autofitVariogram(residuals(por.Ime)~1, sam-
plingpoints)

> plot(variogram)

>

>#Implement ordinary kriging and show the results
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> krig = autoKrige(residuals(por.lme)~1, samplingpoints,
predictors)
> plot(krig)

If the above kriging example is repeated for the residuals
from the single model, it will be seen that the nugget vari-
ance is higher than that obtained from the mixed-effects
model. Nugget is the local variance describing the non-spa-
tial variability, such as the measurement error, the temporal
variability, errors carried from the regression part, and the
spatial variability at the scale too small to be captured by the
applied sampling scheme. If all other factors are assumed
constant for the two regression models (that is, measurement
errors, temporal variability, and spatial variability), then the
difference in nugget between the single and mixed-effects
models could be attributable to differences in modelling
errors from the regression part of the RK method. Hence,
the high nugget variance in the single model could imply
that the model had more modelling errors than the mixed-
effects model. This further confirms that the single model
has inaccuracies which can negatively influence the spatial
predictive performance of RK.

The final output of spatially estimated soil property is
obtained by combining the outputs of the two stages: regression
and kriging parts. The following example shows how this
can be implemented in R.

>#Predict and back-transform the regression part for the
whole study area

> predictors$PredCLAY=(predict(por.lme, predictors))"2

> predictors$Predclay=predictors$PredCLAY +krig$krig
e_output$varl.pred

>

>#Display the outputs

>

> Pred plt=spplot(predictors["Predclay"], col.regions=bpy.col-
ors(), scales=list{draw=TRUE,cex=1), sp.layout=list("sp.points”,
pch="+"col="black" fill=T, samplingpoints))

> varplt=spplot(krig$krige output{"varl.var"], col.regions=
bpy.colors(),scales=list(draw=TRUE,cex=1),  sp.layout=list
("sp.points",pch="+",col="black", fill=T, samplingpoints))

> print(Pred.plt, split=c(1,1,2,1), more=TRUE)# Estimated
map

> print(varplt, split=c(2,1,2,1), more=FALSE)# Kriging
variance map>

>#The outputs can also be exported to other software

> write.asciigrid(predictors["Predclay"], "predclay.asc”)

3. APPLICATION IN SPATTIAL ESTIMATION OF
PERCENT CLAY CONTENT IN KENYA

3.1. Input Data

This example is shown for spatial estimation of clay con-

tent in Kenya. The training data used consisted of 374 geo-
referenced samples of clay content (Fig. 3). 350 of these
samples were obtained from www.isric.org on 4™ October
2010, 19 from Tana River Development Authority (TARDA)
on 19™ September 2010 (Tana River Development Author-
ity, 1987) and the remaining five samples from the Ministry
of Livestock Development (MOLD) on 11" October 2010
(Touber, 1991). The clay content data was for topsoil (i.e., from 0
cm to 20 cm from the soil surface) (Table 1). Description of
the laboratory methods for its estimation has been given in
Batjes (2008), Touber (1991) and Tana River Development
Authority (1987).

The predictors of clay content tested were annual average
rainfall amounts, Digital Elevation Model (DEM), land use,
Normalized Difference Vegetation Index (NDVI), landform,
and geology. These predictors represented the soil forming
factors (i.e., climate, organism, relief, parent material, and
time) that are known to influence the spatial distribution of
soil properties (McBratney et al., 2003). DEM and landform
represented relief, NDVI and land use represented organism,
rainfall represented climate, and geology represented parent
material. DEM was downloaded from http://srtm.usgs.gov
on 15" September 2009. It was a map of surface elevation
in metres above sea level at a spatial resolution of 90 m.
Land use was extracted from land use map developed by
AFRICOVER (www.africover.org accessed on 16™ Sep-
tember 2009). The map contained 73 land use/cover types
mapped at the scale of 1:200,000. NDVI data was the remote
sensing image of average vegetation index of 16-day com-
posite MODIS images between January 2000 and December
2009. It had a spatial resolution of 250 m and was obtained
from http://pekko.geog.umd.edu/usda/apps on 14™ August
2010. The landform was obtained from the landform map
of Kenya using the technique developed by Iwahashi and
Pike (2007). It had 18 landform types mapped at 1,000 m
spatial resolution. The geology data was originated from the
geology map. The map was obtained from www.rcmrd.org
on 10™ October 2010 and had 42 classes of lithology mapped at
the scale of 1: 1,000,000. The rainfall data was the mean annual
rainfall amount (between January 1982 and December 2009)
for 152 weather stations in Kenya. It was obtained from the
Kenya Meteorology Department (www.kmd.go.ke) on 22™
August 2010.

All vector input data were converted into spatial raster
data format to aid pixel-based analysis. They included rain-
fall, land use, and geology maps. The rainfall data was con-
verted to rainfall image by use of the simple kriging method
(Nielsen and Wendroth, 2003). The land use and geology
maps were converted to images using vector-to-raster algo-
rithms in ERDAS Imagine® (ERDAS, 2003; Teng et al., 2008).
After the conversion, the input raster datasets were re-sam-
pled to 1 km spatial resolution to ensure consistency with all
input data. This resolution was chosen for convenience to
harmonize data ahead of RK.
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Fig. 3. Location of training points for predicting clay content in Kenya.
Table 1. Statistics summary of clay content and its predictors
Statistic Clay (%) DEM (m) Rainfall (mm) NDVI (-) Y-coord (m) X-coord (m)
Minimum 10 0 2.7 0.100 —4.68 33.90
Maximum 89 4695 1096 0.982 5.41 41.90
Average 40.5 471 341 0.251 0.36 37.90
Skewness 0.32 0.48 1.22 0.44 1.72 1.11

3.2. Spatial Estimation of Clay Content

The predictors to use in the regression analysis were cho-
sen depending on the strength of the correlation analysis
between them and clay content, and between themselves
(Table 2). Since clay content and these predictors were pos-
itively skewed, they were normalized with Box-Cox trans-
formation (Eagleson and Muller, 1997) before the correlation
analysis. DEM, NDVI, and X-coordinates were chosen as
the best predictors of clay content because of their favour-
able correlation indices (Table 2).

The general mixed-effects model in Equation (2) was used
for the regression modelling. The random-effects were fitted
for each land use, landform, and geology classes. A sequen-
tial analysis as given in Faraway (2006) was done to select the
best grouping variable from land use, landform, and geology
classes. Landform and geology were identified as the best

Table 2. Summary of correlation (r) between clay content and its
predictors

DEM  Rainfall NDVI  Y-coord X-coord
DEM 1
Rainfall 0.34 1
NDVI 0.53 0.5 1
Y-coord 0.37 -0.25 -0.04 1
X-coord  —0.61 -0.35 -0.27 -0.25 1
Clay 0.54 0.44 0.61 033 0.70

grouping variables for modelling clay content in Kenya. It’s
possible the selection was adequate since topography (land-
form) and parent material (geology) have been shown in many
publications to influence clay formation (see for example,
Barshad (1957), Hay (1960), and Price et al. (2005)).
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In order to check the estimation accuracy of the model,
the model was calibrated on randomly selected three-quar-
ters of the samples and validated on the remaining one-
quarter. After the accuracy assessment, all the samples were
included in the spatial estimation to produce the final map
of clay content in the study area.

3.3. Performance Comparison for Spatial Estimation
Models

In order to compare output map by the mixed-effects and
single models, the models were first used in RK to produce
clay content map of Kenya. Figure 4 shows the final maps
of estimated soil clay content using the mixed-effects and
single models.

Both maps had fuzzy boundaries between different levels
of clay content. They also showed that the eastern and south-
eastern parts of the country had low clay content while the
western and central parts had high clay content (Fig. 4).
This pattern was similar to the pattern of clay content map
of Kenya produced by Batjes (2008) using the traditional
method of mapping with polygons.

Compared to the measured clay content in Table 1, the map
produced by the mixed-effects model had nearly similar range
(i.e., the difference between the maximum and minimum
values) while that produced by the single model had a narrow
range (Fig. 4). In terms of holdout validation, the mixed-

Clay content (%)

effects model had 58% estimation success while the single
model had 14% estimation success. Further comparison was
made from a 2D plot of the measured clay content (on x-axis)
verses estimated values (on y-axis) in order to establish which
model produced uniform scatter around the 1:1 line. The
comparison showed skewed distribution for the single model.
It had several plotted points below the 1:1 line for values of
clay content above 50%. It also had more plotted points
above the 1:1 line than those below the line for values of clay
content below 25%. These distribution characteristics showed
that the model did not have a balanced estimation through-
out the range of measured values. The mixed-effects model
showed a fairly balanced estimation throughout the range of
measured values. It had nearly similar scatter of points for
the low and high values of measured clay content. However,
the plotted points were not quite close to the 1:1 line, which
implied that the model was also not very accurate. No con-
crete explanation was available for this observation. How-
ever, it was believed that the low accuracy was attributable
to inaccuracies in the input data used instead of the models
used. The data used were secondary data from different
sources.

Although the above validation statistics were not very high,
they seemed to favour the mixed-effects model more than
the single model using the same dataset. They suggested
that the map produced by the mixed-effects model seemed
closer to the actual values than that produced by the current

1:500,000

Cross-validated r2 = 13.5%

Clay content (%
P High : 74.95

b Low : 18.41
[JLakes

Clay content (%)
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(a) Regression kriging using single model

Fig. 4. Estimated topsoil clay content in Kenya.

(b) Regression kriging using mixed-effects model
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application in RK. Hence, the spatial pattern depicted in
Figure 4b should be more realistic than Figure 4a.

4. CONCLUSIONS

This paper used mixed-effects modelling approach to improve
the performance of regression kriging (RK). RK, which is a
spatial estimation method, contains the regression and kriging
parts. Any deficiency in these parts can negatively affect the
overall performance of RK. In this paper, it was shown that
the current regression application has a deficiency that can
limit better predictive performance of RK. The deficiency is
the inability of the current regression models to recognize
the natural soil groupings in the landscape. Natural soil occurs
in groups (catena) with unique response characteristics to
soil forming factors. During soil spatial estimation, these groups
ought to be recognized and incorporated in the modelling
process. The current regression application in RK do not
incorporate these groups; hence, resulting into inflated regression
residuals during modelling. These inflated residuals are
passed as unexplained variations in the regression analysis. In
this study, mixed-effects approach is introduced with capa-
bilities of further explaining the regression residuals and
improving the regression accuracy. Mixed-effects approach
contains random-effects which can be associated with groups in
a population. These random-effects were used in this paper
to model the natural soil groupings in the landscape. Con-
sequently, they helped to further explain soil group varia-
tion which was otherwise lumped into unexplained residual
variation in the current RK application. Since the endeavour
of soil spatial prediction is to explain modelling variations
as far as possible, the opportunity introduced by random-
effects in the mixed-effects modelling should be welcome.
In this paper, it was shown how this opportunity contributed
to improved accuracy. Evidence of the improvement was
shown with high coefficient of determination for the regres-
sion part of RK, regression residuals with low errors passed
to the kriging part of RK, and high validation statistics for
the final output map.

In addition to improved performance of mixed-effects in
RK, this study also showed how mixed-effects in RK can
be easily implemented using freely downloadable and versa-
tile R software. Executable scripts were shown using avail-
able R packages to produce spatially estimated soil property
map. All together, the new RK and its easy implementation
in R software are anticipated to provide the potential for
wide application and eventual contribution to improved soil
mapping and application of DSM.
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