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Dedication

. . . I was not able to write anything about it for several months and I wish I would have
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would have written anything at all since there is a tendency when you really begin to learn
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I do not say that now; every year I know there is more to learn . . .

-[Ernest Hemingway, from, Death in the Afternoon]
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Abstract

In this project, we study the combinatorics, algebraic and algebraic geometry of an Abelian

Sandpile Model (ASM). We aim to explore the Algebraic properties of the Abelian Sandpile

Model (ASM). We also aim to study the algebraic geometry of the Abelian Sandpile Model

(ASM).

In this model, we consider a directed multi graph with a sink vertex which is accessible

from every other vertex and associates with it a commutative monoid M , a commutative

semigroup S and a commutative Group G which finally turns out to be the sandpile monoid,

sandpile semigroup and sandpile group respectively. We observe that the sandpile group is

the unique minimal ideal of the sandpile monoid [21]. We study the combinatorial structure

of our model and the connections between the algebraic structure of the sandpile monoid,

the sandpile semigroup and the sandpile group.
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Outline

The first chapter sets the stage: it surveys some of the origins of the Sandpile Model and

the facts that led to the Model being given the name Sandpile.

Chapter 2 is on the literature review and also highlights the various mathematical aspects

for which we study the Abelian Sandpile Model.

The third chapter covers the introduction and basics about the combinatorics, algebra

(basically the commutative algebra) [where I have presupposed the basic knowledge of groups,

rings, fields and abstract vector spaces] and some introduction to algebraic geometry. The

chapter includes intertwine of these concepts with those of the Sandpile Model.

Chapter 4 is on the Abelian Sandpile Model. Here we define the concepts related to the

Abelian Sandpile Model and we also discuss some of the properties of the model.

In chapter five, we look at some of the applications of the model with respect to Algebra

and algebraic geometry.
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Chapter 1
INTRODUCTION

Definition 1.0.1. Abelian Sandpile Model is a system defined on a set of some given

number of sites on a graph that are labeled by integers. Each site i is assigned some integer

value hi called the height of the sandpile at site i where the order of firing does not affect the

final outcome and two processes namely, addition operation and relaxation are applied [14].

Such sites are supposed to hold a given number of sand grains at a given time. The

process of the Abelian Sandpile Model involves addition of grains of sand to a particular

site, which if the number of sand grains is equal to or exceed the number of sand grains that

particular site is supposed to hold then firing occurs stabilizing the system. In this case, the

order of firing the unstable vertices does not affect the final outcome.

1.1 Origin of the model

The inspiration behind the name given to this model originated from the following example,

consider a scenario of a teenager at the beach letting grains of sand drop one onto another

randomly to form a pile which we call sandpile. At the beginning, the pile is tiny and the

motion of the sand grains is evident in the physical properties of the individual sand grains.

As the sandpile increases there is a trickling down effect which we call toppling, at this point,

the system is far out of balance and so its behaviour can only be understood from a holistic
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description of the properties of the entire pile. These avalanches form a dynamic of their

own and thus the sandpile is a complex system.

Therefore generally the Abelian Sandpile Model is purely a game in

which grains of sand are placed on the vertices of a finite graph and their behaviour

observed.

1.2 Background

The Abelian Sandpile Model is a diffusion process on a finite directed multi-graph that has

been used to describe the phenomenon of a self organized criticality. The model was defined

on square grids with cells that randomly, with breaks in between, received sand grains. These

had a maximum capacity of 3 sand grains; once this capacity was exceeded, the sand would

topple into adjacent cells or fall off the edge of the grid. These square grids are a type of

graph, with the cells as the vertices and edges connecting adjacent cells and allowing sand

grains to pass from one cell to a neighbouring cell [12].

Since its appearance, this model has been studied intensely, in the theoretical physics,

theoretical Computer Science and in the mathematics literature, for example in the algebraic

graph theory. This model brings to our attention the fact that a simple dynamics can lead

to the emergence of very complex structures and drive the system towards a stationary state

which shares several properties of equilibrium systems at the critical point. For example,

the power law decay of cluster sizes and of correlations of the height-variables.

In this project, we study the Abelian Sandpile Model purely as a game in which one adds

grains of sand on the vertices of a graph Γ which are supposed to hold only a specified number

of sand grains. Thus if a vertex receives so much sand, it fires to each of its neighbouring

vertex which may not or may become unstable making the process of firing to continue. We

specify one vertex which is accessible to absorb all the sand grains fired into it, meaning that

the firing process always stops.
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The main objectives of this project are (1) Study the Abelian Sandpile Model for a

directed multi graph. (2) A motivation for studying algebraic geometry for Abelian Sandpile

Model for further study.
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Chapter 2
LITERATURE REVIEW

The Abelian Sandpile Model is a diffusion process on graphs which has been studied by

many authors. In 1987, Bak et. al, [2] discovered a lattice model of what they called self-

organized criticality, using the example of a Sandpile. They argued that in many natural

phenomena, the dissipative dynamics of the system is such that it drives the system to a

critical state, thereby leading to ubiquitous power law behaviours. They considered the

process of successive random placement of sand grains onto the pile to which each of the

placements may have no effect or may cause a cascading reaction what we call avalanches.

The self-organized criticality has no real or precise meaning but it can be taken to describe a

system that naturally evolves to a stable state whose instabilities are defined by power law.

In 1991, Manna [22] discovered that for an Abelian Sandpile Model, the final stable height

configuration of the system is so much independent of the sequence in which the sand grains

are added to reach this stable configuration as compared to other Sandpile Models where

the stability of a height configuration depends on the local slope.

In the year 1995, Middleton and Tang [23] discovered that the self-organized criticality

state of an Abelian Sandpile Model is built from the long range correlations that establish a

delicate balance between internal avalanches and the avalanches that touch the boundaries

of the system i.e. the system is open to the outside. For example consider a case where

there are incoming grains of sand until at that particular vertex the number of sand grains
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is either equal to or exceeds the number of sand grains, that particular vertex is supposed

to hold then there exists outgoing grains of sand which normally occurs at the boundaries

of the system for the system to be stable. Suppose we increase the size of the vertex, the

effect at the boundaries must be felt for the system to realize self organized criticality. So

basically increasing the size of the vertex only increases the time over which the self organized

criticality establishes itself.

Some years later, Deepak Dhar (1999) [13] generalized the model and discovered the

Abelian Group Structure of addition operators, in it and called it âthe Abelian Sandpile

Modelâ (ASM) which is the simplest and most popular. The principal geometric object

governing the dynamics of the recurrent set of configurations is in the stationary state.

In 2004, Didier Sornette [11], discovered that the four different quantities of an abelian

sandpile model are interdependent and are related to each other by scaling laws. For example,

the size i.e number of toppling grains of an avalanche is proportional to its surface, the average

duration (t) of an avalanche grows faster with its typical radius (r) than linearly e.t.c. Where

these quantities are:

• size (s): the total number of toppling in the avalanche,

• area (a): the number of distinct sites that toppled,

• lifetime (t): the duration of the avalanche, and

• radius (r): the maximum distance of a toppled site from the origin.

And an avalanche is a cascade of toppling of a number of sites created by the addition

of a sand grain.

In 2010, Lionel Levine and James Propp [21], considered finite connected graph Γ for

which they associated an abelian group S(G) of which they discovered is an isomorphism

invariant of the graph and reflects certain combinatorial information about the graph. To

define the group, they singled out one vertex of Γ as the sink and ignored the sand that fell

in there. The operation of addition followed by stabilization gave the set M of all stable

sandpile on Γ the structure of a commutative monoid. An ideal of M is a subset J ⊂ M
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satisfying σJ ⊂ J for all σ ∈ M . The sandpile group S(G) is the minimal ideal of M (i.e.

the intersection of all ideals). The minimal ideal of a finite commutative monoid is always a

group. S(G) is independent of the choice of sink up to isomorphism. Hence the problem of

finding the identity element of this group is very interesting.

In 2011, D. Perkinson, J. Perlman and J. Wilmes [9] generalized the duality theorem

between elements of the sandpile group of directed multi graphs and the graphs’ super

stable configurations.

In 2014, R. Cori, D. Rossin, and B. Salvy [27] in their paper Polynomial Ideals for Sand

piles and their Gröbner Bases, associated a toppling ideal to a directed multi graph, encoding

configurations with monomials and toppling with binomials.

2.1 Mathematical aspects of the Abelian Sandpile Model

2.1.1 Algebraic aspects of the Abelian Sandpile Model

We study some of the algebraic structures of an Abelian Sandpile Model by associating sand

grains to the vertices of the graph. We think of a sandpile as a nonnegative integer weighting

on the n vertices of a graph, inform of a vector h ∈ Zn.

We study some features of the abelian group S(G) associated to the Abelian Sandpile

Model (ASM). In particular we define scalar function, invariant under toppling.

2.1.2 Geometric Aspects of the Abelian Sandpile Model

In this project, we consider problems in sandpile model from a geometric viewpoint, either

by viewing groups as geometric objects, or by finding suitable geometric objects a group acts

on [8]. The first idea is made precise by means of the Cayley graph, i.e. check Example 4.2.20

whose vertices correspond to group elements and edges correspond to right multiplication in

the group where multiplication in this case represents point wise addition.
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2.1.3 Algebraic Geometry of the Abelian Sandpile Model

We also study some of the affine properties of the Abelian Sandpile Model where we consider

sand piles as points in affine space, and toppling and sand addition as affine transformations.
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Chapter 3
GENERAL PRELIMINARIES

We establish some terminology that will be used in the project.

3.1 Combinatorics

Definition 3.1.1 ([6]). Combinatorics is a branch of mathematics that studies, usually finite

or countable collections of objects that satisfy specified criteria.

For example, objects like graphs, hyper-graphs, partitions or partially ordered sets.

Other than the objects of study, combinatorics is also characterized by methods such as

counting arguments, induction, inclusion-exclusion, the probabilistic method e.t.c. Hence

Combinatorics is a branch of mathematics that deals with combinations and permutations.

One of the oldest and most accessible parts of combinatorics is graph theory among others,

thus graph theory is an area of combinatorics.

In this project we do not consider graph to mean a visual representation of a function or a

data set, but a structure consisting of vertices which are connected by edges.

In combinatorics, Graph theory is but the study of graphs which are mathematical struc-

tures that are used to model pairwise relations between objects. In this case, graph is but sets

of vertices that are connected by edges. For instance, weighted graph represent structures

in which pairwise connections have some values which are numerical.

8



Definition 3.1.2. A graph Γ is a diagram consisting of small circles called vertices V and

curves called the edges E where each curve connects two of the circles together.

So a graph Γ is a set with two types of elements, namely vertices and edges abbreviated

Γ(V,E) that connect pairs of vertices. The set of edges is usually defined as a set of two-

element subsets of the set of vertices denoted by E(u, v).

3.1.1 Types of Graphs

Definition 3.1.3. Directed graph or a digraph is a graph where each of its edges have a

specific orientation.

So when the edges of a graph are endowed with direction, then they are called directed

edges. This leads to the notion of a directed graph, normally referred to as a digraph.

Therefore a digraph is a graph whose edges have directions as shown in the following example.

V3

V1 V2

V4

Figure 3.1: A directed graph

Definition 3.1.4. A multi graph is a graph whose edges have repeated elements.

In such a case, an edge is a multi edge if there is another edge sharing the same end

vertices and so a multi graph is a graph with multiple edges and multiplicity of an edge of a

graph, is the number of multiple edges sharing the same end vertices; like most of the time

we would talk about the multiplicity of a graph, the maximum multiplicity of its edges etc.

The diagram below shows a multi graph.

9



V2

V1 V3

Figure 3.2: A multi-graph

Definition 3.1.5. To say a graph has loops, we mean that the graph has edges which connect

a vertex to itself.

V2

V1

Figure 3.3: A Graph with loops

Definition 3.1.6. The order of a graph is the number of its vertices, i.e. denoted as |V |.

For instance the order of the digraph above is 4. That is to say |V | = 4.

Definition 3.1.7. The size of a graph is the number of its edges, i.e. denoted as |E|.

Thus the graph with loops drawn above is of size 3. Hence |E| = 4

Definition 3.1.8. A graph is a simple graph if it has no multiple edges or loops.

When stated without any qualification, a graph is almost always assumed to be simple.

An example of a graph drawn below is a simple graph with vertex set V = (1, 2, 3, 4, 5, 6)

and edge set E = {(1, 2)(1, 4)(2, 3)(2, 4)(3, 5)(4, 5)(5, 6)}.

10



4

1 2 3

5 6

Figure 3.4: Simple Graph

A label may be used on either an edge or a vertex to either uniquely identify it or otherwise

indicate meaning. Graphs with labelled edges or vertices are known as labelled graphs. Those

without labels are referred to as unlabelled graphs. More specifically, graphs with labelled

vertices only are vertex-labelled; those with labelled edges only are edge-labelled.

Definition 3.1.9. A graph is finite if it has a finite number of vertices or edges or both.

When stated without any qualification, a graph is usually assumed to be finite otherwise

a graph is infinite, meaning that the graph in question has infinitely many vertices or edges

or both.

Definition 3.1.10. The degree of a vertex of a graph is the number of edges incident to the

vertex, normally denoted as deg(v).

The diagram below illustrates a graph whose vertices are labelled by degree.

1

1 2 3

2

Figure 3.5: A graph whose vertices are labelled by degree
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In graph theory, the degree matrix is a diagonal matrix which contains information about

the degree of each vertex. i.e. the number of edges attached to each vertex.

Two vertices say u and v are called adjacent vertices if there is an edge existing between

them. Hence the adjacency matrix is a way or a means of representing which vertices of a

graph are adjacent to which other vertices.

Definition 3.1.11 ([6]). Let Γ be a multi graph, with vertex set V and edge set E. Consider

a graph H such that V (H) ⊆ V (Γ) and E(H) ⊆ E(Γ). Furthermore, if e ∈ E(H) and

i(e) = {u, v}, then u, v ∈ V (H). Under these conditions, H is called a subgraph of Γ.

Sandpile Graphs

Definition 3.1.12. A sandpile graph is a finite, directed multi graph with a global sink.

Suppose that Γ = (V,E) is a sandpile graph with a sink vertex say s, then sandpile is a

map

σ : V → N

such that σ(v) equals the number of sand grains at vertex v

Definition 3.1.13. Out degree of a sandpile graph is the total number of sand grains that a

vertex gives to its neighbouring vertices.

Definition 3.1.14. Weight of a sandpile graph is the integer value assigned on the edges of

the graph.

Definition 3.1.15. Let Γ denote a graph of any given order, Laplacian matrix is a matrix

representation of Γ which is given by L = D − A.

The D above denotes the degree matrix which is the diagonal matrix of out degrees of the

vertices and A denotes the adjacency matrix which is the weight of the edges from one vertex

to another. If there is no edge, the Adjacency matrix is taken to be 0 [7]. The Reduced

Laplacian denoted by L̃ is the sub matrix of the Laplacian matrix generated by deleting the

row and column corresponding to the sink vertex.

12



3.2 Algebra

Algebra is a branch of mathematics in which symbols, usually letters of the alphabet represent

numbers or members of a specified set, where these symbols are used to represent quantities

and to express general relationship that hold for all the members of the set hence a precise

definition in line with this project is as given below.

Definition 3.2.1. Algebra is a set together with a pair of binary operations defined on a set.

So one can simply say that Algebra is a branch of mathematics that deals with or studies

abstract formal structures like sets, groups, rings, fields e.t.c.

Definition 3.2.2. A binary operation ∗ on a set S is a function which sends elements of

the cartesian product S × S to S

∗ :S × S → S

(s1s2) 7→ s1 + s2

In other words, a binary operation ∗ on a set S is a calculation that combines for example,

two elements of the set S to produce another element that belongs to the same set S. Since

the result of performing the operation on a pair of elements of S is again an element of S,

we say that the binary operation ∗ is closed. The binary operation ∗ is well defined on all

of S × S since for instance, we do not consider division of real numbers because one can not

divide a real number say k by a zero. i.e. k/0 is not defined for any real number k

Definition 3.2.3. Magma is a set M matched with an operation · which sends any two

elements a, b ∈M to another element a · b ∈M . i.e. a · b ∈M for all a, b ∈M

3.2.1 Semi Groups

Definition 3.2.4. A semi-group is a magma where the operation is associative.
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So a semi-group is just a set equipped with an associative binary operation which may

or may not have an identity element.

3.2.2 Monoids

Definition 3.2.5. Monoids are semi-groups with identity elements.

Note that, a monoid satisfies all the axioms of a group with the exception of having

inverses. A monoid with inverses is the same thing as a group. A monoid whose operation

is commutative is called a commutative monoid (or, less commonly, an Abelian monoid).

3.2.3 Groups

Definition 3.2.6. Groups are Monoid with inverse elements.

In particular, a group (G, ∗) is a set G, closed under a binary operation ∗, such that the

following axioms are satisfied:

• Closure

For all a, b in G, the result of the operation a ∗ b ∈ G .

• Associativity

For all a, b and c in G, the equation (a ∗ b) ∗ c = a ∗ (b ∗ c) holds.

• Identity element

There exists an element e in G, such that for all elements a ∈ G , the equation

e ∗ a = a ∗ e = a holds.

• Inverse element

For each a ∈ G, there exists an element b ∈ G such that a ∗ b = b ∗ a = e where e is

the identity element.
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Definition 3.2.7. Abelian groups are groups whose binary operation is commutative.

A group G with binary operation ∗ is Abelian if for any a, b ∈ G, we have that a∗b = b∗a.

In other words, the binary operation ∗ is commutative.

3.2.4 Rings

Definition 3.2.8. A ring R = (R,+, ·) is an abelian group with respect to closure, associative

∗ and distributive law satisfied.

For a ring with unity R, there exist 1 i.e. 1 6= 0 in R such that for all a in R, a1 = 1a = a

and a commutative ring R with unity is called an integral domain if the ring R satisfies the

cancellation law:

for all a, b, c ∈ R, with c 6= 0, ca = cb ⇒ a = b or we can refer to this property as no

divisors of zero: this implies that, for all a, b in R, ab = 0⇒ a = 0 or b = 0

A commutative ring R with unity is called a field if there is the existence of inverses:

For all a 6= 0 in R, there exists a−1 in R such that aa−1 = 1 or perhaps write a · 1÷a = 1

Definition 3.2.9. Free Abelian Group is an abelian group with a basis.

A free abelian group is thus a set with associative, commutative and invertible binary

operation and its basis is a subset of its element such that every element of the group can be

written in only one way, and that is, as a linear combination of basis elements with integer

coefficients, finitely many of which are nonzero.

Let X be any finite set and NX = {Σaxx : ax ∈ N} for all x ∈ X be the free Abelian

group on X restricted to nonnegative coefficients. We define deg(a) = Σax and a ≥ b if

ax ≥ bx for all x ∈ X and a, b ∈ NX. Then we have the following definition.

Definition 3.2.10. The support of a is given by supp(a) = {x ∈ X : ax 6= 0}.

Definition 3.2.11. A lattice in R is an n dimensional additive free group over Z which

generates Rn over R.
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Example 3.2.12. The following is an example of a lattice L ⊂ R2 which is generated by

k1 = (1, 2), k2 = (4, 1). Hence L = {αk1 + βk2 : α, β ∈ Z}

Definition 3.2.13 ([1]). An ideal I of a ring A is a subset of A which is an additive subgroup

and is such that

AI ⊂ I

and we write x ∈ A and y ∈ I ⇒ xy ∈ I .

In other words, A nonempty subset I of a ring A is called an ideal, which we denote

by I C A, if for all x, y ∈ I, x + y ∈ I and −x ∈ I which is equivalent to writing for all

x, y ∈ I, x− y ∈ I and finally if x ∈ A and y ∈ I ⇒ xy ∈ I

3.3 Algebra and Geometry

The link between Algebra and Geometry is established by Gauss’ Fundamental Theorem

of Algebra which states that a polynomial in one variable over C, an algebraic object, is

determined up to a scalar factor by the set of its roots (with multiplicities), a geometric

object. This link between Algebra and Geometry is further extended to certain ideals of

polynomials in many variables as a consequence of the Fundamental Theorem of Algebra

since it holds for any algebraically closed field. Algebraic geometers basically study loci of

polynomials and more precisely they study geometric objects called algebraic varieties. An

algebraic variety is a geometric object that locally resembles the zero locus of a collection of

polynomials [19].

Let Γ be a finite directed multi graph with a vertex v which is accessible i.e each vertex

vi ∈ V apart from the vertex v has a directed path to v. This graph has an associated

commutative sandpile group. The sandpile group can be obtained from the sandpile semi-

group by the use of graphs. For example if we consider a graph with three vertices with

one of them being a sink then we can obtain the sandpile group associated with this graph
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on a cartesian plane with either of the vertices being each of the axis of the cartesian plane

respectively.

Also the study of these groups is made precise by the use of Cayley tables, as you will

realize, the vertices of this table correspond to the elements of that group and the edges

correspond to the operation of the group. For sure Geometry makes things simpler, from

drawing of graphs to obtaining the sandpile groups associated with such graphs to studying

their structures and properties through Cayley tables.

A polynomial f ∈ k[x1, . . . , xn] actually defines a function f : kn → k ; the value of f at

a point (a1, . . . , an) ∈ kn is obtained by substituting the ai for the xi in f . The function

which is defined by f is called a polynomial function on the n− dimensional vector space kn

over k with values in k . In this case, these polynomials are continuous functions from kn to

k so their zero sets are closed. kn is usually called the affine n− space over k.
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Chapter 4
ABELIAN SANDPILE MODEL

4.1 Abelian Sandpile

Definition 4.1.1. This is the process in which the order of firing vertices that exceed their

capacity do not matter, the resulting final stable configuration is always the same.

Let Γ be a finite directed multi graph, for each pair of vertices say v1, v2 ∈ V and a non

negative integer E(v1, v2), which is the number of arrows from v1 to v2, we give the following

definitions with respect to the Abelian Sandpile Model (ASM). We assume our graph Γ, is

loop less and is strongly connected i.e there is a directed path from any vertex v1 to any

other vertex v2.

4.1.1 Configurations

Definition 4.1.2. A Configuration/state on Γ is a sequence of non negative integers say

h = (h1, . . . , hn) mapping from V to N = {1, 2, . . .} by assigning to each site a natural number

hi ≥ 1, the number of sand grains at site i.

We denote the set of all configurations by χG = {0, 1, . . .}, therefore a configuration is

an element of NṼ .

A divisor on Γ is an element in the free Abelian group on all of the vertices i.e. It is an

18



element of the ZV but in this case we think of the divisors as assigning negative integers to

the vertices signifying debt.

Definition 4.1.3. Suppose h is a sandpile configuration on a given graph Γ then the support

of h denoted as supp(h) is the set of all v ∈ V which hold at least one grain of sand.

Definition 4.1.4. A configuration is a stable configuration if for all the ordinary vertices

i, 0 ≤ hi < deg i , where deg denotes the out-degree.

We denote the set of stable configurations by ΩG = {0, 1, . . . , degG−1} while a configu-

ration is said to be unstable if hi ≥ deg i for an ordinary vertex i which topples sending one

or more grains through each edge leaving i.

Definition 4.1.5. Recurrent configurations are configurations which appears infinitely often

as the process of addition of sand followed by stabilization is repeated indefinitely.

Consider an experiment where grains of sand are dropped one at a time onto a graph,

pausing to allow the configuration to stabilize between drops. Some configurations appear

only once in this process, we call them transient configurations. That is, for most graphs,

once sand is dropped on the graph, no addition of sand then followed by stabilization will

result in a graph empty of sand.

Consider the simple set R . First of all we know that |R| = N + 1 where

N + 1 = det(∆)

We define the matrix ∆ as , ∆ii = 2,∆ij = −1 for |i− j| = 1 where i, j ∈ {1, . . . , N}.

R is the set of recurrent configurations and from above the number of the recurrent

configurations gives the order of G , where G is the abelian Sandpile group. This is due to

the facts that if there are any two recurrent configurations, say h1 and h2 then an element

g ∈ G is such that h2 = gh1, so we conclude that | R |=| G |= det(∆)
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A configuration h is recurrent if it is stable and if given any configuration h1 , there

exists a configuration h2 such that h = stab(h1 + h2). Hence we conclude with the following

proposition:

Proposition 4.1.6. A configuration h is recurrent if and only if there exist a nonnegative

configuration h1 such that h = (h1 + hmax) [9].

In fact, these recurrent configurations form a submonoid of a monoid. To be precise, they

form a group called the Sandpile group, denoted by S(G).

Remark 4.1.7.

1. A configuration h is recurrent if there is a nonempty sequence of operations Bi leading

from h to itself.

2. The recurrent configurations can all be reached one from the other.

3. The number of recurrent configurations is: (n+ 1)n−1 [6].

Definition 4.1.8. Maximal configuration is the maximal element of ΩG denoted by hmax.

The maximal configuration is obtained by hmax(i) = degi − 1 for all i ∈ V . Suppose

a configuration is maximal then it is stable and so no legal firing are required. Otherwise

if we fire either of the vertices then we obtain a negative configuration on the fired vertex.

But if we fire the vertices simultaneously, we obtain a non-negative configuration: the zero

configuration. Clearly hmax is recurrent. We show the fact that hmax is always recurrent.

Assume that hmax is any configuration h . Then a stable configuration h is recurrent implies

there exists some stable configuration h1 such that h = (h1 + hmax)◦. Therefore h1 must be

e so that h = (e + hmax)◦ which implies that h = (hmax)◦ i.e. h = hmax hence we conclude

that hmax is always recurrent.

Definition 4.1.9. Burning configuration is a nonnegative integer-linear combination of the

rows of the reduced Laplacian matrix with nonnegative entries such that every vertex has a

path from some vertex in its support.
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The corresponding burning script gives the integer-linear combination needed to obtain

the burning configuration and so for example, if b is the burning configuration, σ is its script,

and L̃ is the reduced Laplacian, then σL̃ = b.

The following are equivalent for a configuration c with burning configuration b having

script σ:

1. c is recurrent;

2. c+ b stabilizes to c;

3. the firing vector for the stabilization of c+ b is σ.

The minimal burning configuration is one with the minimal script (its components are

smaller than the components of any other script for a burning configuration). In order for us

to obtain the minimal burning configuration, we settle for b equal to the sum of the columns

of ∆̃ where b ≥ 0. But we compute b + ∆̃(v) if bv < 0 for some v ∈ Ṽ , then we repeat

the process until b ≥ 0. Hence obtained the minimal burning configuration and the burning

script σb records the columns of ∆̃ that are used to obtain b.

Theorem 4.1.10. The collection of recurrent configurations of Γ form a group under a

stable addition [9].

First of all, we note that the collection of all stable configurations forms a commutative

monoid with addition which we define as point wise addition followed by stabilization. The

identity element of this monoid is the all zero configuration and this monoid becomes a

group when the associated graph is a directed acyclic graph. By Proposition 4.1.6, the

Sandpile group is formed by systematically adding sand to hmax then toppling and stabilizing.

Therefore considering a connected multi graph with a common sink as shown below, every

Abelian group is actually the Sandpile group for some graph. For example:
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The out-degree matrix is, D =


3 0 0

0 3 0

0 0 3



adjacency matrix, A =


0 1 1

1 0 1

1 1 0



and so the Laplacian matrix is L =


3 −1 −1

−1 3 −1

−1 −1 3

 detL = 16

is the order of the sandpile group which is associated with the following graph.

S

A B

C

1

1

1

1

1

1
1 1

1

Figure 4.1: Sandpile group of order 16.

4.1.2 Toppling

Toppling is the cascading reaction of the sand particles when the slope of the pile exceeds

a specific threshold value thereby collapsing transferring sand into the adjacent sites. A

sequence or series of toppling as a result of adding a single particle of sand to the pile is
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what we call an Avalanche. If h ∈ χG and hi ≥ degi then i topples sending one grain along

each edge incident with which can be written as hj → hj −∆ij and j ∈ V where ∆ij is the

toppling matrix. The toppling matrix is the graph Laplacian:

(∆G)ij =


deg(G) i− aii, if i = j

−aij, if i 6= j i, j ∈ V

0 otherwise.

(4.1.1)

Therefore the toppling rule corresponding to the toppling matrix ∆ij in other words is

the mapping Tx given by Tx : N→ N defined by

Tx(hj) =


hj −∆ij, if hi ≥ degG i

hi = hi otherwise.
(4.1.2)

The toppling rule commutes on unstable configurations which means that for x, z ∈ V

and h such that h(x) ≥ ∆x,x and hz ≥ ∆z,z, we have that

Tx ◦ Tz(h) = Tz ◦ Tx(h) (4.1.3)

The toppling rule is a single variable, labeled by the site index i such that hi < h̄i.

But when the inequality fails causing an instability in the height configuration at i, this

instability is relaxed with a constant shift hj → hj −∆ij.

If we choose some enumeration {x1, x2, . . . , xn} of the set V , the toppling transformation

is the mapping T∆ : N→ ΩG defined by

T∆(h) =
N∏
i=1

Txi(h) (4.1.4)

Remark 4.1.11. It is not clear whether T∆(h) ∈ ΩG together with (4.1.4) defines the top-

pling transformation uniquely. Could it be that N in (4.1.4) is not finite. But this cannot
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happen due to the presence of dissipative sites i.e. for any unstable configuration h there

are (x1, . . . , xN) such that
∏N

i=1 Txi(h) is stable. Is the N − tuple, (x1, . . . , xN) ∈ V unique

up to permutations? This brings us to the idea of the abelian property which actually shows

that equation (3.4) defines a transformation properly from unstable configurations to stable

configurations.

Theorem 4.1.12 ([30]). The operator T∆ is well defined.

Proof. We want to show that the order of performing the topplings does not matter at all,

because the same sites are normally toppled the same number of times yielding the same

final configuration.

Let h be an unstable configuration and also let

TxN ◦ . . . ◦ Txk ◦ Tx1

and

Tyw ◦ . . . ◦ Ty2 ◦ Ty1

be toppling sequences that are both stable. If both the toppling sequences are minimal such

that

Txi ◦ . . . ◦ Tx2 ◦ Tx1

and

Tyj ◦ . . . ◦ Ty2 ◦ Ty1

are not stable, for all i < N and j < w . We show that N = w and the sequences

x1, . . . , xN

and

y1, . . . , yw
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are permutations of each other. Assume that N is minimal with the property that there

exists a sequence

x1, . . . , xN

such that the toppling sequence

TxN ◦ . . . ◦ Tx2 ◦ Tx1

is stable; we can always use induction with respect to N . Let

y1, . . . , yw

be a sequence so that

Tyw ◦ . . . ◦ Ty2 ◦ Ty1

is stable. Since h(x1) ≥ degx1 then x1 must appear at least once in the sequence

y1, y2, . . . , yw.

Suppose we choose p to be minimal so that yp = x1 then

Tyw ◦ . . . ◦ Typ+1 ◦ Tx1 ◦ Typ−1 ◦ . . . ◦ Ty2 ◦ Ty1

and

Tyw ◦ . . . ◦ Typ+1 ◦ Typ−1 ◦ Tx1 ◦ . . . ◦ Ty2 ◦ Ty1

are the same. In order for this argument to be clear, define

h
′
= Typ−2 ◦ . . . ◦ Ty2 ◦ Ty1 .
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Then x1 has not been toppled at this point, therefore, we also have that

h
′
(x1) ≥ ∆x1 ,x1

and so we have that

h
′
(yp−1) ≥ ∆yp−1 ,yp−1

and so we can interchange Tx1 and Typ−1 . Arguing in this manner repeatedly we conclude

that

Tyw ◦ . . . ◦ Typ+1 ◦ Typ ◦ Typ−1 ◦ . . . ◦ Ty2 ◦ Tyi

and

Tyw ◦ . . . ◦ Typ+1 ◦ Typ−1 ◦ . . . ◦ Ty1 ◦ Tx1

are the same stable configuration hence the proof.

Definition 4.1.13. Toppling invariants are scalar functions over the space of all the semi-

group configurations of the sandpile whose values are equal to the configurations equivalent

under toppling.

Given a toppling matrix we can obtain a minimal set of the toppling invariants. See [4].

4.1.3 Addition Operators

Definition 4.1.14. Let h be a stable configuration, sand addition operator, bi, is an addition

operator such that the stable configuration bi(h) is the configuration realized after adding a

sand grain to vertex i and then stabilizing. That is,

bi(h) = (h+ δi)
◦.

Let hi denote the configuration obtained from h by adding one grain to site i for i ∈ V
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then the addition operator

bi : Ω→ Ω

defined by

bi(h) = S(h+ δi)

for i ∈ {1, . . . , N} represents the effect of adding a grain to the stable site and letting the

system to topple until a new stable configurations is obtained i.e. bi(h) is the stable result

of an addition of grain at site i.

By the abelian property discussed above, the composition of addition operators is com-

mutative, i.e. for all i, j ∈ {1, . . . N} we have that

bibj = bjbi.

Denote by R(h) the stable configuration obtained from the relaxation of the configuration

h, so R(h) ∈ S and

h ∈ S ⇔ z = R(h).

Suppose we take two configurations h and h′ we can introduce the configuration h + h′

which has at each vertex i the height hi + h′i. Let ei be the configuration which has non

vanishing height only at the site i where it has height 1, that is

e
(i)
j = δi,j,

[19] then each configuration h can be obtained by deposing hi particles at the vertex i.

Hence

hie
i = {ei + ei + . . .+ ei}, hi
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times, so that summing on every vertex i, we obtain our h as

h =
∑
i∈V

hie
i

4.1.4 Markov Chain

Definition 4.1.15 ([25]). Markov Chain is defined as the process of adding a grain of sand

followed by toppling on the space of stable configurations with a given equilibrium measure.

Markov Chain gives the impression that even after a large amount of sand has been

added, the system eventually reaches a stationary state.

Consider the operation Ki: assume h is a stable configuration then add a grain of sand

to hi after which perform topplings until a stable configuration is reached.

Example 4.1.16. Consider Figure 4.1, if we take vertex C to be vertex K, then

K3(1, 2, 2) = (0, 2, 1)→ (1, 3, 2)→ (2, 0, 3)→ (3, 1, 0)→ (0, 2, 1),

is the Markov chain, while if we choose i at random, and then perform Ki defines the be-

haviour of the Markov chain.

In the theory of discrete-time Markov Chains, a state h is called recurrent if starting

from the state h the process will almost surely (with probability 1) return to h in a positive

number of steps.

Proposition 4.1.17. A stable sandpile configuration h is recurrent in the sense that it is

accessible from every configuration if and only if h is a recurrent state of the Sandpile Markov

Chain.

This is immediate from the following more general observation.

Let M be a finite Markov Chain with a set M of states. Let X be the transition digraph

of M (edges indicate positive transition probability). Suppose there is a state h0 that is
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accessible from all states. Then a state h ∈M is recurrent in the sense of almost sure return

if and only if h is accessible from all states.

Proof. Assume first that h is not accessible from all states and therefore not accessible from

h0. Then with positive probability, the process, started from h, will reach h0 without passing

through h; and then it can never return to h. Conversely, if h is accessible from all states

then for some t > 0 and p > 0, the process, started from any state, will visit h within t

steps with probability p. So the probability that no visit occurs within kt steps is ≤ (1− p)k

which goes to 0 as k →∞. See [20]

Having seen that in whatever way one organizes the activity of stabilization, one always

end up with the same stable configuration. Thus the configuration at time n of this process

is given by

hn = S(h0 +
n∑
i=1

δXi),

where Xi are the places we add a grain of sand and S is the stabilization. This defines the

Markov chain on the space Ω where it is reducible because of the presence of the transient

configurations. After stabilization, restricting to the recurrent configurations the Markov

chain is irreducible. i.e every element of R can be reached from every other element of R.

4.1.5 Parking Functions

Definition 4.1.18 ([26]). A parking function is a sequence of nonnegative integers, u =

u1, u2, . . . , un such that there exists a permutation a = a1, a2, . . . , an satisfying: for all i we

have that ui < ai .

Example 4.1.19. Let u = {1, 5, 2, 3, 5, 7, 0} is a parking function if we use the permutation

a = {5, 7, 3, 4, 6, 8, 1} but if we use the permutation b = {2, 3, 1, 4, 1, 6, 5}, u ceases to be a

parking function.
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Bijection between parking functions and recurrent configurations

Proposition 4.1.20. The configuration (u1, . . . , ui, . . . , un) is recurrent if and only if (n−

1− u1, . . . , n− 1− ui, . . . , n− 1− un) is a parking function.

Proof : See Dhar’s criteria, [2].

Consequence: The number of parking functions of length n is:(n+ 1)n−1. c.f. [26].

4.1.6 The Abelian Structure

Recall: Suppose we denote an operator which adds a grain of sand at vertex i by ai, then if

h is some given configuration,

aih = h+ ei.

If h is not stable at the vertex say j then

tjaih = aitjh.

Definition 4.1.21. Let ai be the addition of a grain of sand at vertex i which is stabilized,

then aih = (ei + h)◦ = stab(ei + h) = R(ei + h) does not depend on the order of the unstable

vertices chosen for each toppling. Since our toppling commute, the stable configuration aih

is independent from the sequence of toppling. Hence the term Abelian Sandpile.

Let α and β be two unstable sites of an unstable configuration h, toppling site α still leaves

site β unstable and after the toppling of site β we get the same final stable configuration

irrespective of which site is toppled first. Reasoning in a similar manner as above, if we

topple site α followed by addition of a grain of sand at site β we obtain the same result for

site β of the reversed ordered operation. Therefore for two operations ai and aj we obtain

the configurations

aiajh = ajaih = R(ei + ej + h).
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Thus the idea of abelianness is as a result of the property that the rule whether to topple

a site only depends on the height at that site, and not on its neighbours.

Given two configurations h and h′ we can always define an abelian composition h
⊕

h′

of the height variables followed by stabilization. Thus for a configuration h, multiplication

by a positive integer m ∈ N is defined as

mh = h
⊕

. . .
⊕

h

m times

4.2 Abelian Sandpile Model

For us to describe the abelian sandpile model, we begin with a sandpile graph which we denote

by Γ . A sandpile graph (Γ) is a directed multi-graph with a vertex s that is accessible from

every vertex apart from itself where s is the sink vertex and for example s is accessible from

some vertex v means there is a sequence of directed edges that start from v and end at s

. In this case, by saying our graph is multi-graph we mean that for every edge our graph

possess, we assign a nonnegative integer weight.

The Sink

The Sink is one of the vertices of the Sandpile graph that collects the grains falling off the

ordinary vertices and never topples. The presence of a sink vertex on a sandpile graph assures

us that the period or the process of the above activity normally stops signifying stability of

the sandpile graph. The sink is accessible from every non sink vertex under study and since

it never fires, then every configuration will stabilize after a given finite number of vertex-

firings. The resulting stabilization is independent of the order in which unstable vertices are

fired. Thus, each configuration stabilizes to a unique stable configuration.

If a sink s has a directed path going into it from every other vertex, then s is called
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a global sink. In our examples of graph, s is global because both v1 and v2 have an edge

directed into it. Note that if a global sink exists it must be unique [21]. Suppose both s and

s′ are global sinks, then s must have a directed edge to s′, but this contradicts the definition

of a sink.

The number of sand grains in the sink is not taken into account, i.e we assume them in

our operations of the system, thus two configurations h and h′ which differ only in position

n are considered as equal; we write u = v if

ui = vi

for all i < n. This translates the fact that the sink collects all grains of sand getting out of

the system.

We define the Abelian Sandpile Model on a finite, connected multi-graph G = (V,E)

that has a distinguished vertex s, called the sink. We write Ṽ = V�{s}. We assume G has

no loop-edges and write axy = ayx for the number of edges between x and y in G, where

x, y ∈ V . Also our graph is directed meaning ~G = (V, ~E) is obtained from G by replacing

each edge by an arrow or by directed edges in each direction. A directed edge e ∈ ~E is

written as e = [e−, e+] to specify an oriented edge by its tail and head.

4.2.1 The Sandpile Monoid

Definition 4.2.1. The Sandpile monoid is defined as the set of stable states under the

operation of point wise addition and stabilization where this operation is denoted by ⊕ and

the all zero state is the identity element of the Sandpile monoid.

Let Γ = (V,E) be a graph with an accessible sink vertex s then Γ̃ = (Ṽ , Ẽ) denotes

the sub graph of Γ obtained from the ordinary vertices only. Thus the sandpile monoid is

the commutative monoid generated by {ax : x ∈ Ṽ } subjected to the set R = {deg(x)ax =∑
y∈V bx,yax : x ∈ Ṽ }.
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Thus M is a sandpile monoid because if h1, h2, h3 are sandpile configurations then

((h1 + h2)◦ + h3)◦ = (h1 + h2 + h3)◦ = (h1 + (h2 + h3)◦)◦

the asociative binary operation holds and

(h1 + 0)◦ = h1

the identity element exists.

Notice that if the set of all configurations is denoted by H, then σ : H → M is a

homomorphism. That is for any h, h′ ∈ H, σ(h+h′) = σ(h)⊕σ(h′). In particular, σ : H →M

is surjective since for h ∈ M we have that σ(h) = h. As mentioned earlier, the order of the

sandpile monoid is given by |M |=
∏

i∈V deg(i).

4.2.2 The Sandpile Semi Group

Definition 4.2.2. The sub-semigroup generated by the non-zero states of the Sandpile monoid

is the Sandpile semigroup.

We say that the set S is an ideal of M because S = M\{0}, but we know that H\{0} is

an ideal in the free commutative monoid H. See [20].

Definition 4.2.3. A configuration h of the sandpile semigroup is said to be idempotent if

h2 = h.

Every finite sandpile semigroup has at least an idempotent configuration.

4.2.3 The Sandpile Group

Definition 4.2.4. A stable configuration is recurrent or critical if it is accessible from every

state.
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We say that a configuration w is recurrent if it is stable and given any configuration

k there is a configuration p so that w = stab(k + p), where stab(k + p) simply means the

stabilization of k + p. A stable state which is not recurrent is called transient state. The

set of all the recurrent configurations forms the Sandpile group which actually satisfies the

axioms of a group as we demonstrate in a while.

We capture the structure of our graph in a matrix form by the use of a graph Laplacian

which is an n × n matrix. Refer to the graph in Figure 4.5 the out degree of both vertices

is 2 while our sink vertex has out degree 0, these out degrees sits in the diagonal of D then

we compute the Adjacency matrix by considering the weight of the edges from one vertex to

another as defined earlier and subtract. This gives us

∆ = D − A =


2 0 0

0 2 0

0 0 0

−


0 1 1

1 0 1

0 0 0

 =


2 −1 −1

−1 2 −1

0 0 0

 .

We notice that the rows of the Laplacian matrix sums to zero. This tells us that the

amount of sand that topples off an unstable vertex is the same amount gained by its adja-

cencies [24].

We obtain the reduced Laplacian of Γ by deleting row and column corresponding to the

sink.

E.g. ∆̃ =

 2 −1

−1 2

 .

Notice again that we can always recover our original Laplacian matrix from the reduce

Laplacian matrix by just adding a row of zeros to the bottom of ∆̃ and adding a new column

with values that ensure all rows sums to zero. Thus we state the following theorem

Theorem 4.2.5 ([13]). The determinant of the reduced Laplacian matrix gives the order of

the sandpile group.
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Proof. Suppose two grains of sand are added to a vertex i so that it exceeds its capacity

by the two grains of sand added, then it will topple and give a grain of sand each to his

neighbours hence

a2
i = ai−1ai+1

Note that, the toppling of sand on a vertex v is equivalent to subtracting the corresponding

row of the reduced Laplacian from the configuration h. Therefore using the toppling matrix

discussed in §4.1.2 where in this case the toppling matrix satisfies ∆ii > 0 and ∆ij > 0 for

i 6= j, we summarize it as

a∆ii
i =

∏
j∈V,j 6=i

a
−∆ij

j (4.2.1)

for all i ∈ V , where toppling at site j for instance, implies that

hj ≥ outdeg(j)

then

hi → hi −∆ij

for all i.

If the toppling matrix is brought to act on the set of the recurrent configurations, we can

always take the right hand side of (4.2.1) which is a site, to the left to obtain

∏
j∈V

a
∆ij

j = e

for all i ∈ V . By commutativity and for all n : V → Z,

∏
i∈V

∏
j∈V

a
ni∆ij

j = e

Using ∆ij = ∆ji and the definition (∆n)i =
∑

j∈V ∆i,jnj, to make work easier and things

look simpler, we obtain
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∏
i∈V

a
(∆n)i
i = e

Conversely, if
∏

i∈V a
mi
i then there exists n : V → Z such that mi = (∆n)i. This relation

means that the only obvious additions on the recurrent set are the multiples of the matrix

∆. Suppose that ∏
x∈V

ami
x = e

is acted upon a recurrent configuration h to give

∏
x∈V

am
+
x

x h =
∏
x∈V

am
−
x

x h,

where

m = m+ −m− ∈ ZV.

This means that the addition of m+ or m− leads to the same final stable configuration,

say β. But there exists k+, k− non negative integer valued functions on V such that

h+m+ −∆k+ = β = h+m− −∆k−

Collecting like terms to obtain

m = m+ −m− = ∆(k+ − k−)

Let W , G be groups and a homeomorphism Θ be such that Θ : W → G. Define W = {n :

V → Z} = ZV where our group operation is point wise addition, hence

n 7→
∏
i∈V

ani
i
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So as we have seen, the

ker(Θ) = ∆ZV = {∆n : n ∈ ZV }

Hence

G ∼= ZV�∆ZV

Therefore we have that

| R |=| G |=| ZV�∆ZV |= det(∆)

As mentioned earlier, this is a consequence of the fact that if C and C are any two

recurrent configurations, then there is an element g ∈ G such that C = gC. See details in

[14].

Result/ Observation: The product of the out degree gives the order of the sandpile

monoid. The product of the maximal configuration gives the order of the transient elements.

Therefore to get the order of the sandpile group associated with the graph under study, we

subtract the order of transient elements from the order of the sandpile monoid.

Theorem 4.2.6. Let Γ be a directed multi graph of the form

S

V1 V2

c

a

b

d

Figure 4.2: Sandpile graph 1

where v1, v2 are vertices and s is the sink vertex, then the order of the sandpile group

associated with the above graph is given as cb+ ad+ cd.
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Proof. We show that given any graph of the above type then we can always get the sandpile

group associated with such a graph simply as the sum of the products of the configurations

that goes to the sink vertex from the two non sink vertices, the cycle generated by V1 through

V2 and the cycle generated by V2 through V1. The out degree for V1 is a + c, we can call it

h1 and the out degree for V2 is b+ d, we also call it h2. Suppose a grain of sand is added to

vertex V1 then the total configuration at V1 becomes h1 + 1 > h1 hence it will topple to give

a grain of sand each to its neighbours who in this case are the vertex V2 and the sink vertex.

We forget about all the grains of sand that fall into the sink vertex. Now h1 + 1 represents

the configuration obtained from h1 after adding one grain of sand to site V1 ∈ V and so the

addition operator b1 : Ω→ Ω is defined by b1(h) = S(h1 + 1) thus toppling at site V1 means

that h1 + 1 > outdeg(V1) hence

h2 → h2 −∆1,2

for all V1. Therefore our toppling matrix

∆1,2 =

 a+ c −a

−b b+ d


gives the toppling rule

TV (h2) = h2 −∆1,2

which transforms vertex V1 whose previous height configuration was unstable to

T∆(h1) =
n∏
i=1

TV1(h)

So V1 is now stable because T∆ : N → Ω. The order of all the stable configurations Ω as a

result of the operation b1 becomes

ab+ cd+ ad+ cb
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and since | R |= det ∆ as seen earlier, the order of the sandpile group associated with the

above graph is

cb+ ad+ cd

while the number of the transient elements are ab.

Corollary 4.2.7. Let Γ be a directed multi graph of the form where v1, v2 are vertices and

S

V1 V2

1

a

b

1

Figure 4.3: Sandpile graph 2

s is the sink vertex, then the order of the sandpile group associated with the above graph is

given as a+ b+ 1.

Proof. The total out degrees for V1 and V2 are a and b respectively. Suppose V1 is unstable,

i.e. configuration at V1 is say h1 then since V1 is unstable then it implies that h1 ≥ a. Firing

at vertex V1 occurs sending grains of sand to the neighbouring vertices, that is, vertex V2

and the sink vertex thus the toppling matrix satisfies ∆ii > 0 and also ∆ij for i 6= j. By this,

we mean that toppling at V1, h1 must decrease while the other site V2 must increase height

thus there is no creation of new sand piles in the toppling process. We obtain the order of

the sandpile group associated with the above graph by obtaining the

det(∆) = a+ b+ 1.

Example 4.2.8. Suppose in the above graph, a = 1, b = 1 then the order of the sandpile

group associated with this graph would be 1 + 1 + 1 = 3. If a = 2, b = 1 then the order of the
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sandpile group associated with this graph is 2 + 1 + 1. Thus for

a = x, b = y ⇒| S(G) |= x+ y + 1.

Notice that the revolution of the non sink vertices gives the order of the semi group

associated with such a graph. Therefore we can obtain the order of the sandpile monoid

associated with the same graph as the sum of the order of the sandpile group to the order

of the sandpile semigroup. We can always choose a site at random in the above graph and

increase its height configuration by 1 while the height configuration at the other site left

unperturbed, then for all a, b ∈ V where a = b, the number of sand grains that go to the

sink vertex until the configuration is stable will always be the constant number 4 while for

all a, b ∈ V where a 6= b, the number of sand grains that go to the sink vertex until the

configuration is stable will always be the constant number 5. This defines the following

Lemma.

Lemma 4.2.9 ([21]). The size of an avalanche is the sum of the number of times each vertex

fires.

From the above Lemma, we give the following definition

Definition 4.2.10. Odometer of a sandpile β is a function on vertices defined by say u(v)

is equal to the number of times v topples during the stabilization of β.

Definition 4.2.11. A nonempty subset I of a monoid M is called a sandpile ideal, which

we denote by I CM , if for all x, y ∈ I, x + y ∈ Iand− x ∈ I which is equivalent to writing

for all x, y ∈ I, x− y ∈ I and finally if x ∈M and y ∈ I ⇒ xy ∈ I

Let S(G) be a Sandpile group and S be the Sandpile Semigroup. Then S(G) is a Sandpile

Ideal of S since S(G) is a subset of S and has the property that for all a ∈ S(G) and

s ∈ S ⇒ sa ∈ S(G).
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S

V1 V2

1

3

2

1

Figure 4.4: Illustrate an ideal of a sandpile group.

Example 4.2.12. In Figure 4.4, the Sandpile Monoid M is the set

M = {(0, 0), (0, 1), (1, 0), (0, 2), (1, 2), (1, 1), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2)}.

The Sandpile Semigroup S is the set

S = {(0, 1), (1, 0), (0, 2), (1, 2), (1, 1), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2)}

The Sandpile Group S(G) is the set of the recurrent configurations

{(2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2)}.

Then S(G) is an ideal of S since for all a ∈ S(G),

s ∈ S ⇒ sa ∈ S(G).

The following example illustrates a sample of how we obtain the sandpile ideal set.
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(2,0) + (1,1)=(3,1) (2,0) + (0,1)=(2,1) (2,0) + (0,2)=(2,2) (2,0) + (1,0)=(3,0)

(2,1) + (1,1)=(3,2) (2,1) + (0,1)=(2,2) (2,1) + (0,2)=(2,0) (2,1) + (1,0)=(3,1)

(2,2) + (1,1)=(3,0) (2,2) + (0,1)=(2,0) (2,2) + (0,2)=(2,1) (2,2) + (1,0)=(3,2)

(3,0) + (1,1)=(2,1) (3,0) + (0,1)=(3,1) (3,0) + (0,2)=(3,2) (3,0) + (1,0)=(2,0)

(3,1) + (1,1)=(2,2) (3,1) + (0,1)=(3,2) (3,1) + (0,2)=(3,0) (3,1) + (1,0)=(2,1)

(3,2) + (1,1)=(2,0) (3,2) + (0,1)=(3,0) (3,2) + (0,2)=(3,1) (3,2) + (1,0)=(2,2)

Each of the sandpile ideal set turns out to be the sandpile group associated to this graph.

I is an additive subgroup of A and therefore we can form the quotient group

S�G = {G+ a : a ∈ S},

which is actually the group of cosets of I in which we can also define addition by, suppose

a, b ∈ G then

(G+ a) + (G+ b) = G+ (a+ b).

The Laplacian lattice, L ⊂ ZV , is the image of ∆. While the reduced Laplacian lattice,

L̃ ⊂ Z̃V , is the image of ∆̃. The critical group [5] for G is given by

C(G) = Z̃V�L̃.

And the sandpile group for the graph Γ is given by

G = ZṼ /Row(∆̃),

that is, the quotient group obtained after modding out by the integer row span, or image, of

the reduced Laplacian of Γ[21]. Hence there is an isomorphism between the elements of the
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sandpile group and the critical group C(G). Therefore we conclude by giving the following

theorem:

Theorem 4.2.13. There is an isomorphism of Abelian groups S(G)→ C(G), c 7→ c+ L̃.

Thus, each element of Z̃V is equivalent to a unique recurrent element modulo the reduced

Laplacian lattice. The identity of the sandpile group is the recurrent configuration in L̃. It

can be calculated as

ε = ((hmax − (2hmax)◦) + hmax)◦.

Since hmax − (2hmax)◦ ≥ 0,then ε is always recurrent.[5] This is because a configuration

h is recurrent if and only if a configuration a ≥ 0 exists such that

h = (a+ hmax)◦.

Theorem 4.2.14. Let S(G) be a Sandpile group and a ∈ G, then

H = {an : n ∈ N}

is a Sandpile subgroup of G and is the smallest Sandpile subgroup of G that contains a i.e.

every subgroup containing a contains H.

A subset H of a Sandpile group G is a sandpile subgroup of G if and only if

1. H is closed under the binary operation of G

2. The identity element e of G is in H

3. For all a ∈ H it is true that a−1 ∈ H. See [17].

So because arak = ar+k for r and k ∈ N then the operation in G of two elements of

H is in H . Therefore H is closed under the operation of G. a0 = e, then e ∈ H and for

ar ∈ H, a−1 ∈ H and therefore all the three conditions above are satisfied and H is a sandpile
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subgroup of G . Since any sandpile subgroup of G containing a must contain H, so H is the

smallest subgroup of G containing a.

Example 4.2.15. Consider the graph in Example 4.2.12 above.

This graph has an associated Sandpile group G of order six which consists of the follow-

ing elements {(2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2)} , let H be a subgroup of G with three

elements namely H = {(2, 0), (2, 1), (2, 2)}, then H is actually the Sandpile subgroup of G

since it satisfies the above three axioms and it is an easy exercise.

4.2.4 Generators of a sandpile group

Let G be a sandpile group, and an element a ∈ G, if order of the sandpile group G is equal to

n, then G is a cyclic sandpile group if for some a ∈ G,G = {e, a, . . . , an−1} . For a practical

example consider Example 4.2.15, the order of G denoted ◦(G) is equal to 6 hence G is cyclic

because there exists an element (3, 1) ∈ G such that

G = {a6, a4, a2, a3, a1, a5}

in ascending order.

Theorem 4.2.16. Order of an element am is equal to the number of elements n of the

sandpile group G divided by the greatest common divisor of m,n i.e ◦(am) = n÷ gcd(m,n).

Therefore we say that am is a generator of G if and only if

◦(am) = n⇔ gcd(m,n) = 1.

Thus from the above example, |G| = n = 6 , hence m = 1, 5 and so our sandpile group in

example (2.2) has two generators namely {(3, 1), (3, 2)}.

This leads us to a corollary [2]: If a is a generator of a finite cyclic sandpile group G of

order n, then the other generators of G are the elements of the form ar , where r is relatively
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prime to n . The following illustration gives an explicit explanation. Suppose a = (3, 1) is

the generator of the cyclic sandpile group G then

{a1 = (3, 1), a2 = (2, 2), a3 = (3, 0), a4 = (2, 1), a5 = (3, 2), a6 = (2, 0)}

are elements in G. In this case |G| = 6 and numbers relatively prime to 6 are 1 and 5,

i.e. numbers relatively prime to 6 are two, in other words, the number of the total items

that are relatively prime to the order of the Sandpile Group gives the number of generators

such a Sandpile group has, hence the sandpile group G has two generators a1 = (3, 1) and

a5 = (3, 2). Alternatively if we first choose a = (3, 2) to be the generator of the sandpile

group G then the following are elements in G,

{a1 = (3, 2), a2 = (2, 1), a3 = (3, 0), a4 = (2, 2), a5 = (3, 1), a6 = (2, 0)}

Thus a1 = (3, 2) and a5 = (3, 1) are the generators of the cyclic sandpile group G . Another

thing about the numbers relatively prime to the Sandpile group is that they are actually the

exponents to which we obtain our generators.

We study the canonical decomposition of S(G) as a product of cyclic groups S(G) ∼=

Zd1 × Zd2 × . . . × Zdg [28], where g is the least number of generators of S(G) and di is a

multiple of di+1 and di = wi−1

wi
where wi is the greatest common divisor of the determinant

of (N − i)× (N − i) sub matrices of the toppling matrix ∆. Ideally we reduce the Laplacian

matrix by some operations on the rows and columns to its Smith normal form, which is a

diagonal matrix with integers (d1, . . . , dn−1, 0) on the diagonal; then the group is
⊕n−1

i=1 Zdi.

Recall that any finite abelian group G can be expressed as a product of cyclic groups as

stated below:

Theorem 4.2.17 (The Fundamental Theorem of Finite Abelian Groups (FTFAG), [17]).

Let G be any finite abelian group of order greater than or equal to 2, G is isomorphic to

a direct product of 1 or more cyclic groups whose orders are powers of primes: i.e. G ∼=
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Zp1 × Zp2 × . . .× Zpn.

The structure of S(G) is determined in terms of the toppling matrix ∆ as seen earlier.

Let hj be some fixed configuration in the set of sandpile semigroup and define an operator

wi =
N∏
j=1

a
Aji

j

for 1 ≤ i ≤ g to act on the configuration hj, then wiwill produce a new configuration which

is equivalent under toppling, to the configuration (hj + Aji). This is because if we topple

some site say k then if site h is a neighbouring site to site k it becomes affected as say h ≡ hi

is transformed into h
′ ≡ (hi − ∆ik). If the g−uple corresponding to hj is (I1, I2, . . . , Ig)

where (Ii) is the minimal set of these toppling invariants,see[28] then wi(hi) has toppling

invariants i.e Ik = I ′k + δik. If this process is repeated sufficiently many times on hj, then

all the toppling invariants corresponding to hj are obtained. Hence there is a one to one

correspondence between the number of the g−uples (I1, I2, . . . , Ig) and the total number

of the recurrent configurations. Therefore we conclude that the total number of recurrent

configurations is equal to the number of the g−uples (I1, I2, . . . , Ig).

Mark you, the operators aj can be expressed in terms of the operators wi as

aj =

g∏
i=1

w
(A−1)ij
i

for 1 ≤ j ≤ N . Therefore the operators w generate the whole set S(G) and hence S(G) has

a canonical decomposition as a product of cyclic groups.

We define a binary operation of addition on the set of the recurrent configurations by point

wise addition followed by stabilization and since the invariants Ii provides an additive rep-

resentation of the sandpile group S(G),
⊕

is a group law on R with the identity an easy

exercise to obtain. Therefore

S(G) ∼= Zd1 × Zd2 × . . .× Zdg .
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We ask ourselves that suppose ΓG is the sand pile graph associated to Z2 × Z3, are the

graphs of Z2 and Z3 sub graphs of ΓG?

Yes, the graphs of Z2 and Z3 are sub graphs of ΓG. How about the Laplacian matrices?

The leading diagonal of the reduced Laplacian matrix of ΓG is equal to the leading diag-

onal of the reduced laplacian matrix associated with Z2 multiplied by the leading diagonal

of the reduced laplacian matrix associated with Z3. The other diagonal tells us the number

of transient configurations in a sandpile graph. The determinant of the reduced laplacian

matrix associated with Z2 multiplied by the determinant of the reduced laplacian matrix

associated with Z3 gives the product of the other diagonal of the reduced laplacian matrix

of ΓG. In other words, the determinant of each of the reduced laplacian matrices associated

with Z3 and Z2 sits in the other diagonal of the reduced laplacian matrix of ΓG respectively.

4.2.5 Automorphisms

Definition 4.2.18. An automorphism of a group is actually an isomorphism of a group with

itself. Let G be a sandpile group, then the mapping φ : G→ G which is one to one and onto

is an automorphism.

Theorem 4.2.19 ([17]). Let S(G) be a cyclic sandpile group with generator a, if the order

of S(G) is infinite, then S(G) is isomorphic to < Z,+ >, If S(G) has finite order say n,

then S(G) is isomorphic to < Zn,+n >.

The Abelian Sandpile Group S(G), is defined uniquely up to isomorphism as seen earlier

where we defined it through the Laplacian Matrix L of Γ. Recall that, if V = {v1, . . . , vn}

then the Laplacian matrix L = (lij) of size n× n is defined by its entries as

lii = out deg(vi), lij = e(vi, vj),

if i 6= j. Delete the row corresponding to the sink vertex and also the column corresponding

to the sink vertex from matrix L and call the resulting (n− 1)× (n− 1) matrix L̃. L̃ is the
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sublattice of Zn−1 spanned by the rows of L̃ hence the sandpile group is given by

S(G) = Zn−1/L̃

Suppose that Ĺ ⊂ Zn is the lattice spanned by the rows of L, then Ĺ is a sublattice of

Zn0 = (a1, . . . , an) : a1 + . . .+ an = 0. Therefore we say that

S(G) = Zn0/Ĺ

Thus

S(G) = Zn−1/L̃ ∼= Zn0/Ĺ

Let Γ = (V,E, s), we can label the vertices with {1, 2, . . . , n+ 1} where n+ 1 is the sink

vertex, we thus obtain the exact sequence for S(G) associated with the sandpile graph Γ as

shown [8]

0 −−−→ Zn ∆̃−−−−→ Zn −−−→ S(G) −−−→ 0

For if we consider the graph in Example 4.2.20, then we can form an exact sequence as

follows:

0
k−−−−→ Z4 ∆̃−−−−→ Z4 g−−−−→ S(G)

w−−−−→ 0

We can check that ker(k) = ker(∆̃) = img(k) = img(w) = 0 and ker(g) = ker(w) =

img(∆̃) = img(g) Similarly, for the graph in Example ??, the exact sequence is given by

0
k−−−−→ Z12 ∆̃−−−−→ Z12 g−−−−→ S(G)

w−−−−→ 0

We study the structure of the Sandpile Group by considering the set R of recurrent

configurations. We can define the inverse operator say a−1
i for all i because each configuration

in a cycle has exactly one incoming arrow corresponding to the operator ai, [25].
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We look at some of the fascinating group structure of the recurrent set R. Let us consider

N = 2 for the sake of simplicity, where N is the number of non sink vertices. Define the

operation ⊕ on R by (h1⊕h2) = S(h1 +h2) where the ordinary + means pointwise addition.

One can always pick at random the weights on the edges of the graph. So we consider an

example where we pick weight 1 on the edges of our graph as shown below.

Example 4.2.20. Consider the graph drawn below

S

V1 V2

1

1

1

1

Figure 4.5: The abelian structure of the sandpile group

We obtain the reduced Laplacian matrix associated with the above graph as discussed in

definition 3.4. Notice that the out degrees for both v1 and v2 equals 2 hence our hmax = (1, 1)

and as proved earlier, the determinant of the reduced Laplacian matrix is equal to the order

of the sandpile group associated with the above graph. Thus (2 × 2) − (−1 × −1) = 3 gives

the order of the sandpile group.

This gives rise to the following table with three elements which completely satisfies the

axioms of a group. We therefore seek to find an abelian group isomorphic to this sandpile

group which turns out to be Z3.

⊕ (0,1) (1,0) (1,1)

(0,1) (1,0) (1,1) (0,1)

(1,0) (1,1) (0,1) (1,0)

(1,1) (0,1) (1,0) (1,1)

Thus a Cayley table as shown above is of an Abelian group for example (R,⊕) is an
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Abelian group with the identity element (1, 1) . Notice that we can always define ⊕ on the

whole of the monoid set Ω , while (Ω,⊕) is not a group but a monoid.

A general case for a directed multi graph Γ = (V,E, s),see the figure above, the order of

the sandpile group associated with this graph is given by either c(b+ d) + ad or cb+ d(a+ c)

for all a, b, c, d ∈ N as proved in Theorem 4.2.6.

Sandpile linear algebra

We briefly explain the linear algebra which is associated with the Abelian Sandpile Model.

• A configuration on a graph Γ = (V,E) is a vector.

• A toppling consists of subtracting the vector 4i such that 4i,i = di · 4i,j is equal to

the number of edges joining xi and xj.

• The stable addition is a vector addition in NṼ which is followed by stabilization.

• Two configurations are equivalent if one can be obtained from the other by adding a

linear combination of 4i, for example, two stable configurations can be confirmed to

be equivalent under toppling. We define an equivalence relation on the commutative

semigroup by declaring that two configurations say, hi and h′i are equivalent if there

exists some integers dj such that h′i = hi−
∑

j4i,jdj for all i.This equivalence is called

equivalence under toppling.

• This defines an equivalence relation and we have:

Theorem 4.2.21. Any class contains exactly one recurrent configuration.

The set of all configurations is a super lattice whose fundamental cell is the set R, the

rows of ∆ are the principal vectors of the super lattice and det ∆ is the volume of the

fundamental cell, that is the number of stable recurrent configurations |R|.
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4.3 Algebraic Geometry of the Abelian Sandpile Model

Algebra is but written Geometry; Geometry is but drawn Algebra. By Sophie Germain

(1776− 1831)

Fix k an algebraically closed field, this means that, every nonconstant polynomial f ∈

k[x], has a root x ∈ k i.e. f(x) = 0 . Since any f ∈ k[x1, . . . , xn] determines a function

kn → k, we think of it as a set with a weaker structure and not as a vector space, hence

elements of k[x1, . . . , xn] can be understood as k valued functions on it. Therefore we denote

this set differently as An or as Ank that moment we feel that we should not forget about our

field k and thus we refer to An as the affine n space over k.

4.3.1 Affine Spaces

Definition 4.3.1. An Affine n− space over k is simply the set Ank = {(a1, . . . , an) : ai ∈ k}.

Let f ∈ k[x1, . . . , xn], then the zeroes of f is the set

Z(f) = {p ∈ An : f(p) = 0}

For example, consider a function

f = (x2y) ∈ C[x, y]

then the set

Z(f) = {x, 0}
⋃
{0, y}.

Suppose T is a subset of k[x1, . . . , xn], T = {f1, . . . , fm} where fi ∈ k[x̄],

Z(T ) = {p ∈ An : fi(p) = 0, i = 1, 2, . . . ,m}

which is the set of common zeroes in T . Let T = {f1, . . . , fm} and I be an ideal generated
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by T , then

I = {a1f1 + . . .+ amfm : ai ∈ k[x̄]}.

Thus we can easily say that Z(T ) = Z(I), so we show that Z(T ) ⊆ Z(I) and Z(I) ⊆ Z(T ).

Let’s assume that T = {f1, f2}, let x ∈ Z(T ) then f1(x) = f2(x) = 0, g ∈ I =< f1, f2 >⇒

g = a1f1 + a2f2 : a1, a2 ∈ k[x̄], so g(x) = a1xf1(x) + a2xf2x = 0 by definition of Z(T) hence

Z(T ) ⊆ Z(I). Conversely, let y ∈ Z(I), since f1 ∈ I and f2 ∈ I then the two functions

vanish at y, thus f1(y) = 0 and f2(y) = 0 therefore y ∈ Z(T ) hence Z(I) ⊆ Z(T ).

Definition 4.3.2. A subset Y of Ank is an algebraic set if there exists a subset T of a ring

of polynomials k[x1, . . . , xn] such that Y = Z(T ).

Let A1, . . . , An be algebraic sets, then

1. A1

⋃
A2 is also an algebraic set.

2.
⋂
i∈I Ai is an algebraic set.

3. φ and the whole space, An are algebraic sets.

The irreducible algebraic sets are called algebraic varieties i.e. irreducible in the sense

that they can not be decomposed into union of two proper algebraic subsets. The affine

varieties can be given the natural topology called the Zariski Topology by declaring that

the algebraic sets are closed sets. This is possible since the set of all complements of affine

algebraic sets satisfies the four axioms defining topology.

Consider any set Y ⊂ kn; we therefore define the set

I(Y ) = {f ∈ k[x1, . . . , xn] : f(a1, . . . , an) = 0}

for all (a1, . . . , an) ∈ Y as an ideal.

Pick a graph with n vertices, we consider sand piles as some points in the affine n−space,

An. Affine Transformation is the addition of sand particles to a particular vertex.

Definition 4.3.3 ([24]). An affine transformation is a map between affine spaces and consists

of a linear transformation, followed by a translation: x 7→ Ax+ b.
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The process of adding a grain of sand to a vertex on a graph is what we call a translation

so we write A = I. In this project, we have defined sandpiles only over positive integers

hence h = Ix + b becomes our affine transformation. So we translate the sandpile via the

rows of the reduced Laplacian until it is in the stable region. Considering this process, we are

concerned about the order in which toppling the sand grains on the vertices might change the

long-term behavior of the system. However, the toppling order turns out to be completely

inconsequential.

If we consider graphs with only two vertices and a sink vertex and concentration on the

non sink vertices. We visualize this group as lattice points in the affine plane. Choosing

an arbitrary lattice point, we proceed to translate the sandpile by subtracting rows of the

reduced Laplacian until we reach a sandpile in the stable region. Note that: If we begin

at a sandpile with a particular shape and stabilize, we find that the shape associated to the

stable sandpile matches the shape with which we started. The shapes denote the equivalence

classes of the group.

So definitely we are considering a graph with three vertices where one of the vertices is

an accessible sink. We want to visualize if the size of the sandpile group is equal to the

determinant of its associated reduced Laplacian matrix in the affine space, off course we

shall talk of the affine plane. So given Figure 4.4 and as defined earlier, a configuration is

stable if for each vertex v we have any amount of sand say h such that 0 ≤ h < outdeg(v).

Therefore the possible stable configurations will be 4 × 3 which is basically the product of

the out degrees of the vertices. So we plot all the possible stable configurations in the affine

plane as shown below.

But some of these stable configurations are not recurrent. So we experiment by choosing

several sand piles plotted and stabilizing following the rules of stabilization. We realize

that the ones in dots we never reach them hence they are not recurrent. Notice that the

off-diagonals of the reduced Laplacian gives the exact dimension of the square of transient

configurations where the minus sign just signifies that this the the total number of sand
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Figure 4.6: Affine plane

grains given to the other vertex and thus the order of the recurrent configurations can be

counted directly from the plane by working out the determinant of the reduced Laplacian.

i.e (4× 3)− (2× 3).

Sandpile stabilization is unique as the solution to a system of linear inequalities.

Recall Figure 4.5 where L̃ =

 2 −1

−1 2


and let c = [c1, c2] be a column vector which contains the coefficients of the columns of

the reduced Laplacian that stabilize a sandpile h. Also, let d denote the vector of out-degrees

of the vertices, i.e. the vector containing the diagonal entries of the reduced Laplacian. Then

h− L̃T c ≤ hmax and h− L̃T c ≥ 0 respectively to mean that we must subtract off some linear

combination of the rows of the reduced Laplacian until amount of sand falls below the out

degree of the vertex, d. This is so because the number of sand grains left on vertex, vi must

be less than the out-degree of the vertex, so that the final result must not be negative. In

this example, these inequalities explicitly become the two systems of inequalities:
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l1 = h1 − 2c1 + c2 ≤ 1

l2 = h1 + c1 − 2c2 ≤ 1

l3 = h2 − 2c1 + c2 ≥ 0

l4 = h2 + c1 − 2c2 ≥ 0

Let n = hmax, Γ be a graph with an accessible sink vertex denoted by s, then the full

Laplacian of Γ is the mapping of groups η : ZV → ZV given on the vertices V defined by

η(V ) = outdeg(v) −
∑

u∈v wt(v, u)u. The reduced Laplacian of Γ is the mapping of groups

η̃ : Z̃V → Z̃V which is defined on non-sink vertices V by ˜η(v) = outdeg(v)−
∑

u∈v wt(v, u)u

summing over ṽ only. So by fixing an ordering say, v1, . . . , vn+1 on the non-sink vertices of Γ,

we identify Zv with Zn+1. Let L̃ ⊂ Zn symbolize the column-span of L̃t which is the transpose

of the reduced Laplacian, label vertex i with the indeterminate xi, let C[Γs] = C[x1, . . . , xn]

then the Sandpile ideal or the toppling ideal is the lattice ideal for L̃ defined by

I = I(Γs) = {xu − xv : u− v ∈ L̃} ⊂ C(Γs).

4.3.2 Toppling Ideals

Let G be a sand pile graph, associate to a configuration h = (h1, h2, . . . , hn) ∈ Nn, then

we can form a monomial xh = xh11 x
h2
2 . . . xhnn ∈ Q[x1, . . . , xn]. Also associate to a toppling

matrix ∆i the binomial i.e a polynomial with utmost two terms (say, axα + bxβ), T (xi) =

xdii −
∏

j x
ei,j
j . So basically the addition of two configurations translates into the multiplication

of the corresponding monomials while toppling vertex i in h translates into the division of

xh by xdii followed by multiplication by
∏n

j x
ei,j
j [25].

Recall: Given a vector β ∈ Zn, then β = β+−β− where we only consider the non negative

integers β+ and β− thus for each i, we have that βi = β+
i or βi = −β−i .

Lemma 4.3.4 ([26]). Let α, β, . . . be in Zn and ∼ be the transitive closure of the relations:

u+α− = v+α+, u+β− = v+β+, . . . ∈ Nn. Then u ∼ v if and only if the binomial
∏
x
uj
j −
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∏
x
vj
j belongs to the ideal generated by the polynomials:

∏
x
α+
j

j −
∏
x
α−j
j ,

∏
x
β+
j

j −
∏
x
β−j
j in

Q[x1, . . . , xn].

Definition 4.3.5. The toppling ideal IG is generated by xb− 1 and the toppling polynomials

T (xi) for i ∈ {1, . . . , n} where b is any burning configuration.[9]

The toppling ideal is a binomial ideal since it is generated by binomials. Suppose J =

T (xi), i ∈ {1, . . . , n}+ (xb − 1) then J ⊆ IG hence IG is the saturation of J with respect to

the ideal (x1, . . . , xn). It is sufficient to show that J is saturated with respect to that ideal

IG. See[9]

Proposition 4.3.6. Two configurations u and v are equivalent if and only if xu − xv ∈ IG

or equivalently u− v ∈ ∆.

This is a consequence of Lemma 4.26 since introducing ∆n the required transitive closure

is obtain.

A non homogenous polynomial p = (x1, . . . , xn) can be homogenized by introducing an

additional variable say x0 and defining the homogenous polynomial ph = (x0, . . . , xn) =

xd0p(
x1
x0
, . . . , xn

x0
) where d is the degree of the polynomial p. Thus given any polynomial

p = x3
3 + x1x2 + 7, the homogenized polynomial becomes ph = x3

3 + x0x1x2 + 7x3
0.

Definition 4.3.7. Suppose f ∈ C[x1, . . . , xn], chose xn+1 to be an additional variable, then

define the homogenization of f as fh = xdegfn+1 f( x1
xn+1

, . . . , xn
xn+1

). If I ⊆ C[x1, . . . , xn] is an

ideal, the homogenization of Iwith respect to xn+1 is the ideal Ih = (fh : f ∈ I).

So studying the graph given in example 4.33, the toppling ideal is f = [x2
1 − x3

2 − 1] and

fh = x0x
2
1 − x3

2 − x0x1x2
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Chapter 5
APPLICATIONS

In this section, we study how the Abelian Sandpile Model can be used to understand certain

abelian networks. The Abelian Sandpile Model exhibits self organized criticality. Grains

of sand are added on a vertex, one at a time until the amount of sand exceeds a specific

threshold value at which that site collapses transferring sand particles into the adjacent sites.

If this causes the amount of sand particles the neighbouring sites to exceed their threshold,

an avalanche of sand starts. The sand particles gets out of the system through the sink

vertex, on a network without boundaries, so one can add boundary nodes during avalanche

or at the end of avalanche and let sand dissipate gradually over time.

Definition 5.0.8. Network is a system with complex structures where self organization oc-

curs.

Examples of Network includes internet, Neural network, world wide web, social networks

etc.

Definition 5.0.9 ([3]). An abelian network on a directed multi graph Γ(V,E, s) is a collection

of sand grains W = (Pv : v ∈ V ) indexed by the vertices of Γ, such that each Pv is abelian.

An Abelian network is the collection of communicating processors as a single entity.

These systems are categorized by the abelian property which states that, changing the order

of certain interactions has no effect on the final state of the system. So our aim is to identify
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explicitly what these various systems have in common and exhibit them as special cases of

the abelian network.

5.1 Sandpile Networks

The sandpile network is driven by adding sand grains drop by drop to a randomly chosen

nodes where in each node is stored in an integer value, the height of the sandpile columns.

After a specified density, the nodes will have some threshold value for which if it exceeds

the critical height, it is rendered unstable, it then topples and the sand grains flow from the

toppled node to its adjacent nodes by links.

5.2 Toppling Networks

When the configuration of a particular site, equals or exceeds the specified threshold, toppling

occurs sending the sand grains to the adjacent nodes. Since there is no rigid boundary for a

network, the grains of sand are then distributed among the surrounding sites of the network.

Dissipation of sand particles to those sites is made with an appropriate dissipation factor.

If the toppling of one site causes the adjacent sites to become unstable then the process

continues until there is no unstable node present in the system.

5.3 Sink Networks

Consider a sandpile network with a vertex which never sends any messages. Every vertex of

Γ has a directed path to the sink. This implies that any finite input of sand grains into the

system will produce a finite number of toppling.

So each processor in an abelian network performs the minimum amount of work possible to

remove all the messages from the network.
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