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ABSTRACT

Unitarily equivalence is the natural concept of equivalence between Hilbert space op-

erators. Thus, this concept is the building block of other equivalence relations such as

similarity, quasisimilarity, or even metric equivalence.

In this project, firstly, it is shown that unitary equivalence, similarity, quasisimilarity

and almost similarity are equivalence relations. Then, through the Putnam-Fuglede

theorem, similarity and hence unitarily equivalence of normal operators were discussed.

In addition, it is shown that, reducing subspaces are preserved under unitarily equiva-

lence and that, similarity preserves nontrivial invariant subspaces, while quasisimilarity

preserves nontrivial hyperinvariant subspaces. Moreover, several known results, (but

which are scattered in different accounts), such as those touching on; equality of spectra

of quasisimilar hyponormal operators, direct summands in relation to almost similarity,

and metric equivalence of operators preserves Fredholmness were presented.

As a consequence, more independent results were struck. For instance, a new equiva-

lence relation, that is, unitary quasi-equivalence relation is introduced, and an obser-

vation which shows that, for an A-self-adjoint operator T , such that, T is metrically

equivalent to S, then T 2 is similar to S2, after demanding self-adjointedness of S, is

deduced and proved.
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LIST OF ABBREVIATIONS

B(H) : Banach algebra of bounded linear operators on H

H : Hilbert space over the complex numbers C

T ∗ : the adjoint of T

∥Tx∥ : the operator norm of T

∥x∥ :the norm of a vector x

< x, y > :the inner product of x and y on a Hilbert space H

ρ(T ) :the resolvent set of an operator T

σ(T ) : the spectrum of an operator T

Ran(T ) : the range of an operator T

Ker(T ) : the kernel of an operator T

c.n.n :completely non-normal

c.n.u :completely non-unitary

M
⊕

M⊥ :the direct sum of the subspaces M and M⊥

{T}′ :the commutator of T

n.h.s :nontrivial hyperinvariant subspace

a.s :almost similar
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Chapter 1

PRELIMINARIES

1.1 Introduction

Invariant subspaces play an important role in studying the spectral properties and

canonical forms of operators. The motivations for studying invariant subspaces re-

sult from the interest in the structure of operators.The fact that every matrix on a

finite dimensional complex vector spaces unitarily equivalent to an upper triangular

matrix follows from the existence of nontrivial invariant subspaces for operators. The

knowledge of hyperinvariant subspaces of T can give information on the structure of

the commutant of T , which is useful as it contains all the quasiaffine transforms of an

operator and its very nature reveals information about operators quasisimilar, similar

or unitarily equivalent to T .

One way for constructing an invariant subspace for an operator on a Hilbert space

is to find a second known operator, which is similar in some weak sense to the given

operator and then use this second operator and the weak similarity to construct the

desired subspace. For instance, one such weak similarity is the notion of quasisimilarity

introduced by Sz- Nagy and Foias [29].

T.B Hoover [11] studied hyperinvariant subspaces and proved the result that if S and

T are quasisimilar operators acting on the Hilbert spaces H and K, respectively, and
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if S has a hyperinvariant subspace, then so does T . If in addition, S is normal, then

the lattice of hyperinvariant subspaces for T contains a sub-lattice which is lattice iso-

morphic to the lattice of spectral projections for S.

Similar results for hyper-invariance have been studied by C.S. Kubrusly [17] and has

shown that similarity preserves nontrivial subspaces while quasisimilarity preserves hy-

perinvariant subspaces.

Hoover [11] has shown some properties of operators that are preserved by quasisimilar-

ity and those that are not. He gave a result to show that quasisimilar normal operators

are unitarily equivalent. In addition, he showed that quasisimilar isometries are uni-

tarily equivalent. He gave an example to show that quasisimilarity preserves neither

spectra nor compactness.

Stampafli and Wadhwa [28] while working on hyponormal operators proved that hy-

ponormal operator which is similar to a normal operator must be normal.

Wu [33] proved that if T is a contraction with finite defect indices, then T is quasisim-

ilar to an isometry if and only if the completely non-unitary part of T is quasisimilar

to an isometry. While working on the problem of writing an operator as a product of

simpler operators, Wu[34] showed that a unitary operator on an infinite dimensional

space is a product of (sixteen) positive operators, which is an unexpected result in finite

dimensional Hilbert space. Balatine [1] showed that if an operator is identified with a

finite square matrix, then it is the product of positive operators when its determinant

is non-negative.

Wu[34] result was improved by Phillips [25] by showing that every unitary operator on

an infinite dimensional Hilbert space is a product of six positive operators.

Some operator theorist have studied the open question of the existence of nontrivial

invariant subspaces. Kubrusly [17] has showed that if a contraction has nontrivial

invariant subspace, then it is either a C00, C01 or a C10 contraction. Kubrusly and

Levan [18] proved a similar result for the class of hyponormal contractions that if a

hyponormal contraction T has a nontrivial invariant subspace, then it is either a C00

or a C10 contraction.
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Duggal and Kubrusly [16] characterized the completely non-unitary part of a contrac-

tion using the Putnam-Fuglede (PF) theorem. Hoover [11] proved that quasisimilarity

preserves nontrivial hyperinvariant subspace and Herrero showed that quasisimilarity

does not preserve the full hyper-lattice.

Equality of spectra of quasisimilar normal operators was proved in [Douglus R.G [6],

Lemma 4.1 p.683] but the result did not generalize to pairs of quasisimilar hyponor-

mal operators as seen in [Halmos P.R [9], solution 156, p.309] and [Hoover T.B [11],

Theorem 2.5 p.681]. Clary [4,Theorem 2, p.89] went ahead and showed that Quasisim-

ilar hyponormal operators had equal spectra. In 1981, J.G. Stampfli [28] extended

Clary’s results on quasisimilar hyponormal operators where an inclusion relation for

the spectra of quasisimilar operators satisfying Dunford’s condition was obtained. It is

in this paper that quasisimilarity and the unilateral shift were discussed. These results

were extensively analyzed by A.J. Lambert in his thesis where he showed that any two

unilateral weighted shifts which are quasisimilar are actually similar, but if unilateral

shifts is replaced by bilateral as pointed out by L.A. Fialkow , the result fails.

A question on whether quasisimilar hyponormal operators had equal spectra as asked

by S.Clary [4] was studied and answered by L.R.Williams [31],i.e, they in deed had

equal spectra. He went further to give some results that relate quasisimilarity and

hyponormal operators; for instance, if one of the quasi-affinities of the two hyponor-

mals is compact, then they have equal essential spectra [32, Theorem A, p.126]. He

extended the same results to dominant operators satisfying the Dunford’s condition

[32, Theorem 2.4, p.132](since every hypernormal operator is dominant by Theorem 1

of R.G.Douglas in his paper.

We also note from the proper inclusion relation for classes that

Normal ⊂ Hyponormal ⊂ Quasihyponormal.

This was a moltivation to Moo Sang Lee [20] to extend William’s result[31] of equality

of essential spectra of certain quasisimilar seminormal operators to quasisimilar quasi-

hyponormal operators. He showed that quasisimilarity preserves Fredholm property

[20,Theorem 2.6, p.94].
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Conway’s [5] and William’s[32] results on the normal and pure parts were extended to

the p-hyponormal operators by Jeon I.H and Duggal B.P [13] , where it has been shown

that normal parts of quasisimilar p-hyponormal operators are unitarily equivalent.

A.Jibril [15], in 1996, introduced the class of almost similarity. He proved various re-

sults that relate almost similarity and other classes of operators, including isometries,

normal operator, unitary operators, compact operators and characterization of θ- op-

erators. θ-operators were extensively studied by Campbell[3]. Unitary equivalence of

almost similarity of operators was also shown. In 2008, Nzimbi et al [23] results are also

in handy in enriching almost similarity where he attempted to show that almost sim-

ilarity implies similarity. Some properties of corresponding parts of operators which

enjoy these equivalence relation are investigated. Unitary equivalence of completely

non-unitary operators and quasi-triangular operators in relation to almost similarity is

investigated.

Metric equivalence was introduced by Nzimbi et al [24] in 2013. He went further and

showed that metric equivalence was in fact an equivalence relation. The spectral pic-

ture of metrically equivalent operators is discussed. He has also given some conditions

when metric equivalence of operators implies unitary equivalence of operators we are

given.

Unitary quasi-equivalence was introduced by Mahmoud [22] in 1998, and were also

investigated by Othman, [25], in 1996 under the near equivalence relation.
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1.2 Notations and Terminologies

In what follows, capital letters H,H1,H2,K,K1,K2, etc denote Hilbert spaces or sub-

spaces of Hilbert spaces and T, T1, T2, S, S1, A,B,etc denote bounded linear linear op-

erators where by an operator we mean a bounded linear transformation from H into

H. By B(H) denote the Banach algebra of bounded linear operator on H. B(H1,H2)

denotes the set of bounded linear operators from H1 to H2. For an operator T ∈ B(H),

T ∗ denotes the adjoint of T , while Ker(T ), Ran(T ), M, M⊥ stand for kernel of T ,

range of T , closure of M and orthogonal compliment of a closed subspace M of H,

respectively. σ(T ) denotes spectrum of T , ∥T∥, denotes the norm of T , r(T ), denotes

the spectral radius of T while W (T ), denotes the numerical range of T .

Similarly, 0 and I will denote the zero and identity operator on H, respectively.

An operator T ∈ B(H) is said to be:

normal if T ∗T = TT ∗,

self-adjoint ( or Hermitian) if T = T ∗,

skew- adjoint if T ∗ = −T ,

an involution if T 2 = I,

a projection if T ∗ = T and T 2 = I,

unitary if T ∗T = TT ∗ = I,

a symmetry if T = T ∗ = T−1, that is, T is self-adjoint unitary,

isometric if T ∗T = I,

a partial isometry if T = TT ∗T , (equivalently, if T ∗T is a projection),

quasi-normal if T (T ∗T ) = (T ∗T )T or equivalently, if T commutes with T ∗T , that is,

[T, T ∗T ] = 0,

binormal if T ∗T )(TT ∗) = (TT ∗)(T ∗T ),

A-self-adjoint if T ∗ = A−1TA, where A is a self-adjoint invertible operator,

normaloid if r(T ) = ∥T∥, (equivalently, ∥T n∥ = ∥T∥n).

In complex Hilbert space H, every normal operator is normaloid and so is every posi-

tive operator.
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An operator T ∈ B(H) is said to be:

a scalar if it is a scalar multiple of the identity operator, that is, if T = αI where

α ∈ R,

subnormal if there exists a Hilbert space K containing H , that is, K ⊇ H and a

normal operator N acting on K such that H is N - invariant and T is the restriction

of N onto H, that is, T = N |H. Thus, T ∈ B(H) is subnormal if H is a subspace of a

Hilbert space K (H can be embedded into K), and with respect to the decomposition

K = H + H⊥, N =

 T X

0 Y

 in B(X) for some X : H⊥ → H and Y : H⊥ → H⊥.

That is, T is a part of a normal operator.

Note that a part of an operator T is a restriction of it to an invariant subspace.

An operator T ∈ B(H) is said to be:

hyponormal if T ∗T ≥ TT ∗, equivalently, if T ∗T − TT ∗ ≥ 0 ( is a positive operator),

cohyponormal if its adjoint is hyponormal, that is, T is cohyponormal if TT ∗ ≥ T ∗T .

Clearly, if an operator T ∈ B(H) is both hyponormal and cohyponormal, then T must

be normal,

p-hyponormal if (T ∗T )p ≥ (TT ∗)P , where 0 < p ≤ 1,

M-hyponormal if ∥(zI − T )∗x∥ ≤ M∥(zI − T )∥, for all complex numbers z and for

all x ∈ M ⊂ H and M a positive number,

quasihyponormal if T ∗2T 2 − (T ∗T )2 ≥ 0, equivalently if T ∗(T ∗T − TT ∗)T ≥ 0,

paranormal if ∥Tx∥2 ≤ ∥T 2x∥, for all unit vectors x ∈ H, equivalently if ∥Tx∥ ≤

∥Tx∥∥x∥, for every x ∈ H,

k-quasihyponormal if T ∗k(T ∗T − TT ∗)T k ≥ 0, for k ≥ 1 is some integer, and every

x ∈ H,

p-quasihyponormal if T ∗((T ∗T )p − (TT ∗)p)T ≥ 0,

(p,k)- quasihyponormal if T ∗k((T ∗T )p − (TT ∗)p)T k ≥ 0, where 0 < p ≤ 1 and k is

a positive integer,

dominant if for any λ ∈ C there corresponds a number Mλ ≥ 1 such that ∥(T −
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λI)∗x∥ ≤ Mλ∥(T − λI)x∥, for all x ∈ H,

seminormal if it is either hyponormal or cohyponormal, equivalently it either T or

T ∗ is hyponormal.

Clearly, every hyponormal operator is seminormal but the converse is not true in gen-

eral.

From the above definitions we have the following inclusions;

Unitary operators ⊆ Isometric operators ⊆ Partial isometries.

Normal ̸⊆ Quasinormal ̸⊆ Subnormal ̸⊆ Hyponormal ̸⊆ Seminormal.

An operator T ∈ B(H) is spectraloid if r(T ) = w(T ). Thus every normaloid operator

is spectraloid.

An operator T ∈ B(H) is a contraction if ∥Tx∥ ≤ ∥x∥ for every x ∈ H.

An operator T ∈ B(H) is a left shift on ℓ2 if Tx = y for all x = (x1, x2, ...) and

y = (x2, x3, ...) while it is a right shift operator if Tx = y where x = (x1, x2, ...) and

y = (0, x1, x2, ...)

A subspace M of H is invariant under T if T (M) ⊆ M, that is for x ∈ M implies

Tx ∈ M for every x ∈ M or TM ⊂ M.

A subspace M of H is said to reduce T if both M and M⊥ are invariant under T . We

say that an operator T is completely non-unitary if the restriction of it to any nonzero

reducing subspace is not unitary. If M is an invariant subspace for T , then relative to

the decomposition H = M
⊕

M⊥, T can be written as

T =

 T |H X

0 Y


for operators X : M⊥ → M and Y : M⊥ → M⊥, where T |M denotes the restriction

of T to M. Conversely, if an operator T can be written as the triangulation

T =

 T |M X

0 Y


in terms of the decomposition H = M

⊕
M⊥ , then Z = T |M : M → M is a part of

T . X = 0 if and only if M reduces T . In such a case, the operator T is decomposed

into the orthogonal direct sum of the operators Z = T |M and Y = T |⊥M:
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T = Z
⊕

Y

By a subspace of a Hilbert space H we mean a closed linear manifold of H, which is

also a Hilbert space. If M and N are orthogonal subspaces of a Hilbert space H, then

their (orthogonal) direst sum M
⊕

N is a subspace of H. For any subspace M ⊆ H,

M⊥ will denote the orthogonal compliment of M in H.

For M a closed subspace of H , we have H = M
⊕

M⊥ is called the direct sum

decomposition of H.

The following inclusions are proper:

Reducing subspaces ⊆ Invariant subspaces,

Hyperinvariant subspaces ⊆ Invariant subspaces.

A direct summand of an operator T is the restriction of it to a reducing subspace.

An operator is reducible if it has nontrivial reducing subspace (equivalently, if it has a

proper nonzero direct summand), otherwise it is irreducible.

A lattice ℘ is a partially ordered set such that every pair of elements of ℘ has a supre-

mum (least upper bound) and an infimum(greatest lower bound) in ℘ (i.e. if there

exists unique a, b ∈ ℘ such that a = x
∨

y and b = x
∧
y for every pair x, y ∈ ℘). Note

that, the set of all invariant subspaces for T ∈ B(H) is a lattice. Lat(T ) will denote

the lattice of all invariant subspaces of T , that is, Lat(T ) = {M ⊆ H : T (M) ⊆ M}.

If Λ is any subset of B(H), we denote by Λ′ the commutant of Λ, i.e. Λ′ = {T ∈ B(H) :

ST = TS for every S ∈ Λ}. Specifically, {T}′ = {S ∈ B(H) : ST = TS}. The

bicommutamt or double commutant of T ∈ B(H) is defined and denoted by {T}′′ =

{A ∈ B(H) : AS = SA, for all S ∈ {T}′} = {p(T ) : T ∈ B(H), p a polynomial}.

A subspace M ⊂ H is said to be a nontrivial hyperinvariant subspace (n.h.s) for a fixed

operator in T ∈ B(H) if 0 ̸= M ̸= H and SM ⊂ M for each S in {T}′. The lattice of

all hyperinvariant subspaces of T will be denoted by HyperLat(T ). A subspace lattice

℘ is called commutative if for every pair of subspaces of M,N ∈ ℘, the corresponding

projections PM and PN commute. A lattice ℘ is said to be totally ordered if for every

M,N ∈ ℘, either M ⊆ N or N ⊆ M.

Let H be a Hilbert space and T ∈ B(H). The set ρ(T ) of all complex numbers λ for
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which (λI − T ) is invertible is called the resolvent set of T , that is, ρ(T ) = {λ ∈ C :

Ker(λI − T ) = {0} and Ran(λI − T ) = H}.

The compliment of the resolvent set ρ(T ) denoted by σ(T ), is called the spectrum of T .

In other words, σ(T ) = C/ρ(T ) = {λ ∈ C : Ker(λI − T ) ̸= {0} and Ran(λI − T ) ̸=

H}, which is the set of all λ such that (λI − T ) fails to be invertible, that is, fails to

have a bounded inverse on Ran(λI − T ) = H.

Thus the spectrum of T can be split into many but disjoint part.

The set of all those λ in complex numbers such that (λI−T ) has no inverse, denoted by

σp(T ) is called the point spectrum of T . Equivalently, σp(T ) = λ ∈ C : ker(λI − T ) ̸=

{0} which is the set of all eigenvalues of T .

A scalar λ ∈ C is an eigenvalue of an operator T ∈ B(H) if there exists a non-zero

vector x ∈ H such that Tx = λx. Equivalently, if Ker(λI − T ) ̸= {0}. Note that in

finite dimensional settings, the σ(T ) = σp(T ).

The set of all those λ ∈ C for which (λI − T ) has a densely defined but unbounded

inverse on its image, denoted by σc(T ) is called the continuous spectrum of T . Equiva-

lently, σc(T ) = {λ ∈ C : Ker(λI − T ) = {0} and Ran(λI − T ) = H and Ran(λI −

T ) ̸= H}.

If (λI − T ) has an inverse that is not densely defined then, λ belongs to the resid-

ual spectrum of T denoted by σr(T ). That is,σr(T ) = {λ ∈ C : Ker(λI − T ) =

{0} and Ran(λI − T ) ̸= H.

These parts σp(T ), ,σc(T ), σr(T ) are pairwise disjoint and σ(T ) = σp(T )
∪
σc(T )

∪
σr(T ).

Thus the collection σp(T ), σc(T ), σr(T ) forms a partition of σ(T ).

Let H and K be Hilbert spaces. An operator T ∈ B(H,K) is invertible if it is injective

(one-to-one)and surjective (onto or has a dense range). Equivalently,if Ker(T ) = 0

and Ran(T ) = K.

Two operators A and B are said to commute if AB −BA = 0 ,denoted by [A,B] .

Two operators A and B are said to be similar (denoted by A ∼ B) if there exists an

invertible operator N ∈ B(H,K) such that NA = BN or equivalently A = N−1BN .

Two operators A and B are said to be almost similar(a.s), denoted by A
a.s∼ B if there
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exists an invertible operator N such that the following two conditions hold:

A∗A = N−1(B∗B)N

A∗ + A = N−1(B∗ +B)N .

An operator N ∈ B(H,K) is quasi-invertible or a quasi-affinity if it is an injective op-

erator with dense range (i.e KerN = {0} and RanN = K); equivalently Ker(N) = 0

and Ker(N∗) = 0,thus N ∈ B(H,K) is quasi-invertible if and only if N∗ ∈ B(H,K) is

quasi-invertible.

An operator A ∈ B(H) is a quasi-affine transform of B ∈ B(K) if there exists a quasi-

invertible operator N ∈ B(H,K) such that NA = BN (N intertwines A and B).

Thus, A is a quasi-affine transform of B if there exists a quasi-invertible operator in-

tertwining A and B.

Two operators A ∈ B(H) and B ∈ B(K) are quasi-similar (denoted A ≈ B), if they

are quasi-affine transform of each other , equivalently, if there exists quasi-invertible

operators N ∈ B(H,K) and M ∈ B(K,H) such that AN = NB and MB = AM .

It is easily verified that quasisimilarity is an equivalence relation and also that T ∗ is

quasisimilar to S∗ whenever T is quasisimilar to S and that similar operators are, of

course, quasisimilar but not conversely ([17]).

Quasisimilarity was introduced by Nagy and Foias [30] in their theory on infinite-

dimensional analogue of the Jordan form for certain classes of contractions as a means

of studying their invariant subspace structures. It replaces the familiar notion of sim-

ilarity which is the appropriate equivalence relation to use with finite dimensional

Hilbert spaces. In finite dimensional spaces, quasisimilarity is the same thing as simi-

larity but in infinite dimensional spaces it is a much weaker relation.

Two operators A ∈ B(H) and B ∈ B(K) are unitarily equivalent ,(denoted A ∼= B),

if there exists a unitary operator U ∈ B(H,K) such that UA = BU , equivalently,

A = U∗BU . Two operators are considered the ”same” if they are unitarily equivalent

since they have the same properties of invertibility, normality, spectral picture (norm,

spectrum, spectral radius).

Two operators A ∈ B(H) and B ∈ B(H) are said to be metrically equivalent, denoted
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by A ∼m B, if ∥Ax∥ = ∥Bx∥, equivalently, | < Ax,Ax > |1/2 = | < Bx,Bx > |1/2 for

all x ∈ H, that is, A∗A = B∗B.

Two operator, S, T ∈ B(H) are said to be unitarily quasi-equivalent if there exists a

unitary operator U such that T ∗T = US∗SU∗ and TT ∗ = USS∗U∗ and write S
u:q:e
≈ T .

Clearly, S, T ∈ B(H) are unitarily quasi-equivalent if S∗S and T ∗T are unitarily equiv-

alent and SS∗ and TT ∗ are unitarily equivalent.
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Chapter 2

ON SOME BASIC

EQUIVALENCE RELATIONS

In this chapter, the norm, the numerical radius, the numerical range and the spectral

radius of normal and hyponormal operators are investigated.The relations of similarity

and almost similarity are discussed. Various results on similarity and almost similarity

are presented and their proofs are shown. In addition, an attempt is made to classify

those operators where almost-similarity implies similarity. We investigate some prop-

erties of corresponding parts of operators which enjoy these equivalence relations.

Recall that, two operators A and B are said to be similar if there exists a quasi-

affinity X which intertwines A and B, (if the dimension of the Hilbert space H is finite

or equivalently, if A and B on B(H) are bounded, then quasisimilarity is the same

as similarity), and if X happens to be unitary, then A and B are said to be unitarily

equivalent.

Also recall that, A is almost similar to B if A∗A is similar to B∗B and A∗+A is similar

to B∗ +B.
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2.1 Unitary and similarity of operators

We start off, by discussing the following result which shows that unitary equivalence

is an equivalence relation.

Theorem 2.1.1 Unitary equivalence is an equivalence relation.

ProofWe show that, unitary equivalence is (i)Reflexive, (ii)Symmetric and (iii)Transitive.

(i) Reflexitivity; we show that, T ∼= T .

Let T ∈ B(H), if we let U = I, then we have, T = ITI . Thus T ∼= T .

(ii)Symmetry; we show that, T ∼= S implies S ∼= T .

Suppose that T ∼= S. We show that S ∼= T . Let T ∈ B(H) and S ∈ B(K), then there

exists a unitary operator, say U1 ∈ B(H,K), such that

T = U∗
1SU1.....................................................................(1).

Pre-multiplying and post-multiplying, (1) by U1 and U∗
1 , respectively yields, U1TU

∗
1 1 =

U1U
∗
1SU1U

∗
1 , that is, U1TU

∗
1 = ISI, i.e, U1TU

∗
1 = S. This shows that S ∼= T .

(iii)Transitivity; we show that, if T ∼= S and S ∼= V , then T ∼= V . Suppose T ∼= S

andS ∼= V , then there exists unitary operators U1 ∈ B(H,K) and U2 ∈ B(K,H) such

that;

T = U∗
1SU1.....................................................................(1) and

S = U∗
2V U2.....................................................................(2).

From (1) and (2) we have that T = U∗
1SU1 = U∗

1 (U
∗
2V U2)U1 = (U∗

1U
∗
2 )V (U2U1) =

U∗V U , where U = U2U1 is also unitary since U1 and U2 are unitary. This shows that,

T ∼= V . Hence the result.

Remark 2.1.2 We know that, unitary equivalence preserves reducing subspaces. That

is, if A,B ∈ B(H) such that A is unitarily equivalent to B and there exists a subspace

M of H which reduces A, then M reduces B. Theorem 2.1.1 above says that, if B ∼= C,

for another operator C acting on a Hilbert space, then M also reduces C.

Similarly, it can be shown that similarity is an equivalence relation on B(H). The natu-

ral concept of equivalence between Hilbert-space operators in fact is unitary equivalence.
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However the weaker form of equivalence, viz,, similarity, will also play an important

role throughout this project. The following propositions and auxillary results will be

referred frequently. They deal with parts and direct summands of similar and unitarily

equivalent operators.

Proposition 2.1.3 [17, P roposition1.1]

If an operator T ∈ B(H) is similar (unitarily equivalent) to a part of an operator

L ∈ B(K), then it is a part of an operator similar (unitarily equivalent) to L.

Proof

Let R be a subspace of K, and let L be an operator on K. Suppose R is invariant for

L. Regarding the decomposition K = R
⊕

R⊥, L can be written as

L =

 L|R X

0 Y



for operators X : R⊥ → R and Y : R⊥ → R⊥, where L|R : R → R is the restriction

of L to the invariant subspace R( so that L|R is a part of L). If T ∈ B(H) is similar

to L|R ∈ B(R), then there exists an invertible operator U ∈ G(H,R) such that

T = U−1(L|R)U .

Now consider the invertible operator W = U
⊕

I : H
⊕

R⊥ → R
⊕

R⊥ so that

W−1LW =

 U−1(L|R)U U−1X

0 Y



Therefore, W−1LW : H
⊕

R⊥ → R
⊕

R⊥ is an operator similar to L for which T is

a part, since

T = (W−1LW )|R.

Remark 2.1.4 In [17], it is remarked that W is unitary whenever U is unitary.

Recall that a direct summand of an operator T is a part of it whose adjoint also is a

part of T ∗. This leads to the following corollaries.
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Corollary 2.1.5 [17, Corollary1.2]

If an operator T ∈ B(H) is similar(unitarily equivalent) to a direct summand of an

operator L ∈ B(K), then it is a direct summand of an operator similar (unitarily

equivalent) to L.

Corollary 2.1.6 [17, Corollary1.3]

If an operator T ∈ B(H) is unitarily equivalent to a direct sum L ∈ B(K), then it is

a direct sum itself with direct summand unitarily equivalent to each direct summand of

L (i.e, if T ∼=
⊕

kLk, then T =
⊕

kLk with Tk
∼= Lk for each k).

Remark 2.1.7 Note that Corollary 2.1.6 applies under unitary equivalence only and

it essentially says that direct sums and direct summands are preserved under unitary

equivalence. This is not the case for similarity and almost-similarity, in general.

To see this consider the 3 by 3 matrices(see [17, p. 25]) representing the operators on

C3.

T =


1 −1 1

0 0 0

0 1 0

 L =


1 0 0

0 0 0

0 1 0

 W =


1 0 1

0 1 0

0 0 1


By a simple matrix computation, it is clear that WT = LW , W is invertible. That is

, T is similar to L = 1
⊕ 0 0

1 0

, but T cannot be expressed as a direct sum (that

is, T is irreducible), and hence T (as a block) is not similar (and almost-similar) to any

of the direct summands of L.

Recall that, every reducible operator T acting on a Hilbert space has the direct sum

decomposition T = A
⊕

B, where A is normal and B is pure.

The following result shows that reducibility is invariant under unitary equivalence.

Corollary 2.1.8 Every operator unitarily equivalent to a reducible operator is re-

ducible.
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Proof Let H and K be unitarily equivalent Hilbert spaces. Take T, P ∈ B(H) and

an arbitrary operator U : K → H. Put S = U∗TU and E = U∗PU in B(K). The

operator E is an orthogonal projection if P is. Indeed, E2 = U∗P 2U and E∗ = U∗P ∗U

so that E = E2 if and only if P = P 2 and E = E∗ if and only if P = P ∗. Moreover,

E = U∗PU is nontrivial if and only if P is and E commutes with S if and only if P

commutes with T (since ES−SE = U∗(PT −TP )U). Thus S is reducible if and only

if T is reducible. Hence the result.

Remark 2.1.9 Corollary 2.1.8 does not hold under similarity.

For instance, consider the 3 by 3 matrices representing the operators on C3.

A =


1 −1 1

0 0 0

0 1 0

 B =


1 0 0

0 0 0

0 1 0

 X =


1 0 1

0 1 0

0 0 1


. A simple computation shows that XA = BX, X is invertible (thus A and B are

similar) and B is a direct sum, that is B = 1
⊕ 0 0

1 0

 but A is irreducible since

the only one-dimensional invariant subspace M = span


1

0

0

 for A is not invariant

for A∗.

In most cases, the adjoint of an operator T ∈ B(H), that is, T ∗ behaves like T .

For instance, if T is bounded, then T ∗ is bounded, if T is invertible, then so is T ∗, and

if T is reducible, then T ∗ is reducible. Observe that, if A ∼= B and A is reducible, then

so is B. However, if A and B are reducible, then it does not follow in general that

A ∼= B.

Likewise the reducibility of T implies that of T ∗, but it does not follow always that
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T ∼= T ∗. The following result gives us conditions under when an operator T happens

to be unitarily equivalent to its adjoint T ∗.

Theorem 2.1.10 T is unitarily equivalent to its adjoint if and only if T is the product

of a symmetry and a self-adjoint operator.

Proof If T = JA where J = J∗ = J−1 is a symmetry and A is self-adjoint, then

JAJ = AJ = T ∗, so that T is unitarily equivalent to its adjoint.

Conversely, suppose TU = UT ∗, where U is unitary. Then T commutes with U2.

Let
∫
eiθdEθ be the spectral representation of U2. If V =

∫
eiθ/2dEθ, then V is a

unitary operator,V 2 = U2 and V commutes with every operator that commutes with

U2. It follows that V commutes with U and T . Therefore, J = V −1U is a symmetry

and TJ = JT ∗. Hence T = J(TJ) is the product of a symmetry and a self adjoint

operator.

Theorem 2.1.8 leads to the following assertations:

Corollary 2.1.11 A unitary operator U is similar to its inverse if and only if U is

the product of two symmetries.

Corollary 2.1.12 Let A ∈ B(H) be a contraction. If A is unitarily equivalent to a

unitary operator T , then A is normal.

Remark 2.1.13 Corollary 2.1.11 in other words says that, a unitary operator is sim-

ilar to its inverse if it is the product of two symmetries and Corollary 2.1.12 says

that, an operator which is unitarily equivalent to a unitary operator has no completely

non-unitary direct summand.

The following results help us investigate the relationship between similarity and unitary

equivalence for normal operators.

Theorem 2.1.14 (Fuglede-Putnam theorem).

Assume that A,B, T ∈ B(H), where A and B are normal, and AT = TB. Then

A∗T = TB∗.
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Remark 2.1.15 Note that the hypotheses of Theorem 2.1.14 does not imply that AT ∗ =

T ∗B, even when A and B are self-adjoint and T is normal.

For consider:

A =

 1 0

0 −1

 B =

 0 1

1 0

 T =

 1 1

−1 1



thus a simple computation shows that, AT = TB but AT ∗ ̸= T ∗B.

Theorem 2.1.16 If T ∈ B(H) is invertible, the T has a unique polar decomposition

T = UP , with U an isometry (which is in fact a unitary) and P ≥ 0. If T ∈ B(H)

is normal, the T has a polar decomposition T = UP in which U and P commute with

each other and T .

Combining Theorem 2.1.14 and 2.1.15, leads to the following result concerning simi-

larity of normal operators.

Theorem 2.1.17 Suppose A,B, T ∈ B(H), A and B are normal, T is invertible, and

A = TBT−1. If T = UP is the polar decomposition of T , then A = UBU−1.

Proof From A = TBT−1, we have AT = TB. Hence A∗T = TB∗, by Theorem 2.1.12

Hence, T ∗A = (A∗T )∗ = (TB∗)∗ = BT ∗, so that BP 2 = B(T ∗T ) = T ∗AT = T ∗TB =

P 2N , since P 2 = T ∗T .

Thus this yields A = (UP )B(UP )−1 = UPBP−1U−1 = UBU−1. Hence the result.

Remark 2.1.18 This theorem asserts that similar normal operators are actually uni-

tarily equivalent. The following result shows that unitary equivalence preserves nor-

mality of operators.

Theorem 2.1.19 If T is a normal operator and S ∈ B(H) is unitarily equivalent to

T , then S is normal.

18



Proof Suppose S = U∗TU , where U is unitary and T is normal. Then,

S∗S = (U∗T ∗U)(U∗TU)

= U∗T ∗TU

= U∗TT ∗U

= SU∗T ∗U

= SU∗US∗

= SS∗ , which proves the claim.

The following results are well known.

Theorem 2.1.20 If S ∈ B(H) and T ∈ B(H) are similar, then S∗ and T ∗ are similar.

Corollary 2.1.21 If S ∈ B(H) and T ∈ B(H) are unitarily equivalent, then S and T

are similar.

Proposition 2.1.22 If S and T are normal operators in a Hilbert space H, then S is

unitarily equivalent to T if and only if S is similar to T .

The following theorem proves one direction of Proposition 2.1.22

Theorem 2.1.23 Two similar normal operators S and T are unitarily equivalent.

Proof By hypothesis, there is an invertible operator N such that

S = NTN−1.......(*)

Suppose T = U |T | is the polar decomposition of T . Then U is unitary and |T | is

positive and hence self-adjoint. From (*), we have that SN = NT .

Hence by the Fuglede commutativity theorem (Theorem 2.1.14), we have that

S∗N = NT ∗.

Thus,

N∗S = (S∗N∗)∗ = (NT ∗)∗TN∗

so that TN∗N = N∗SN = N∗NT . Hence T commutes with f(N∗N), for every

bounded Borel function f on X̂ = σ(N∗N). Since N∗N is positive, it has a unique

square root |N | =
√
(N∗N). Thus |N | ≥ 0 and hence σ(|N |)2 ⊆ [0,∞). If f(λ) =
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λ
1
2 ≥ 0 on σ(|N |)2, it follows that T |N | = |N |T . Hence (*) yields

S = (U |N |)TU |N |−1 = U |N |T |N |−1U−1 = U(|N |T |N |−1)U−1 = UTU−1, which shows

that S is unitarily equivalent to T .

The following Lemma is crucial in showing that if two operators acting on a Hilbert

space H are similar, then they have same spectrum.

Lemma 2.1.24 [4] Suppose that A,B ∈ B(H) and B is invertible, then σ(A) =

σ(B−1AB).

The following Lemma shows that, the spectrum of two similar operators are equal.

Lemma 2.1.25 Suppose that A and B are similar operators on a Hilbert space H,

then A and B have the same:

(a) Spectrum,

(b) Point spectrum,

(c) Approximate point spectrum.

Proof

(a) We will show that the resolvent sets are the same. Since A is similar to B, B =

N−1AN , where N is an invertible operator in B(H).

B − λI = N−1AN − λI = N−1(A − λI)N . Hence B − λI is invertible if and only if

A− λI is invertible, that is, λ ∈ ρ(B) = ρ(N−1AN).

Thus ρ(N−1AN) = ρ(A). Taking complement in C, we get σ(N−1AN) = σ(A).

(b)λ ∈ σp(A) implies that, there exists x ∈ H such that x ̸= 0 and Ax− λx ̸= 0̄ Thus

for B = N−1AN , where N is an invertible operator in B(H), we have

N−1(Ax− λx) = 0̄.

i.e N−1A(N(N−1)x)− λ(N−1x) = 0̄.

i.e N−1AN(N−1x)− λN−1x = 0̄............(1).

Since x ̸= 0̄, N−1x ̸= 0̄(because N is invertible). Equation (1) implies that, λ ∈

σp(N
−1)AN . Thus σp(A) ⊆ σp(N

−1AN) = σp(B).

Replacing A by B, that is, N−1AN , we get
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σp(N
−1AN) ⊆ σp(N(N−1AN)N−1) = σp(A).

i.e σp(B) ⊆ σp(A).

Thus σp(B) = σp(A).

(c)Let λ ∈ πp(A). Then there exists a sequence (xn) in H such that ∥xn∥ = 1 for all

n ∈ IN ; and ∥(A− λI)xn∥ → 0 as n → ∞

i.e (A− λI)xn → o as n → ∞. Let B = N−1AN , where N is an invertible operator.

Then N−1(A− λI)xn → 0 as n → ∞

i.e N−1Axn − λN−1xn → 0 as n → ∞

i.e N−1AN(N−1xn)− λ(N−1xn) → as n → ∞...........(2)

Now xn ̸= 0̄ and N−1xn ̸= 0̄, i.e, ∥N−1xn∥ ̸= 0̄, ∥N−1xn∥ is bounded away from 0,i.e

there exists a δ > 0 such that

∥N−1xn∥ ≥ δ. Hence (∥ N−1xn

∥N−1xn∥∥) = 1 for all n ∈ IN .

Dividing (2) by ∥N−1xn∥, we have

N−1AN( N−1xn

∥N−1xn∥)− λ( N−1xn

∥N−1xn∥) → 0 as n → ∞.

i.e λ ∈ πp(N
−1AN). Thus πp(A) ⊆ πp(N

−1AN).

Replacing A by N−1AN , i.e, B, we have

πp(N
−1AN) ⊆ πp((N

−1)−1(N−1AN)N−1 = πp(A).

Remark 2.1.26 Lemma 2.1.25 shows that similarity preserves spectrum.

Example 2.1.27 Let A =

 0 1

−1 0

 and B =

 i 0

0 −i

 be two dimensional

operators on C2.

Define an invertible operator on C2 by N =

 1√
2

1√
2

i√
2

−i√
2

 whose inverse is N−1 = 1√
2

−i√
2

1√
2

i√
2

.
Then AN =

 0 1

−1 0

 1√
2

1√
2

i√
2

−i√
2

 =

 i√
2

−i√
2

−1√
2

−1√
2

 and
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NB =

 1√
2

1√
2

i√
2

−i√
2

 i 0

0 −i

 =

 i√
2

−i√
2

−1√
2

−1√
2

.
We notice that, AN = NB, that is, N−1AN = B and hence A and B are similar.

Next we find the spectrum of A and B.

Note that the spectrum of A and B is the set of their respective eigenvalues since A

and B are finite. A simple computation shows that σ(A) = {−i, i} and σ(B) = {−i, i}.

This shows that similarity preserves spectrum of similar operators.

The following result shows the condition under which a hyponormal operator similar

to another operator is self adjoint, by Sheth in 1966.

Proposition 2.1.28 If T ∈ B(H) is a hyponormal operator and S−1TS = S∗ for an

operator S, where 0 ̸∈ W (S), then T is self-adjoint.

Remark 2.1.29 From Proposition 2.1.18 we conclude that T is normal since self-

adjoint operator is normal. We also deduce that, if a hyponormal operator is similar

to its adjoint, then it must be normal. Proposotion 2.1.18 can be extended to the class

of p-hyponormal operators as follows:

Theorem 2.1.30 If T or T ∗ is p-hyponormal and S is an operator for which 0 ̸∈ W (S)

and ST = T ∗S, then T is self adjoint and hence normal.

Theorem 2.1.31 [28] Let T be hyponormal. If T is similar to a normal operator, then

T is normal.

Theorem 2.1.32 Let T be an operator on a Hilbert space H. If r(T ) < 1, then T is

similar to a part of the canonical backward unilateral shift on ℓ2(H).

Theorem 2.1.33 Similar operators have isomorphic lattices of invariant and hyper-

invariant subspaces.

Proposition 2.1.34 An invertible operator T is a product of two self-adjoint operators

if and only if T is similar to T ∗.
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Proof Suppose T is invertible with T = AB with A = A∗ and B = B∗. Since T is

invertible, then I = TT−1 = (AB)(B−1A−1). This shows that A and B are invertible

also and hence BA is invertible. T ∗ = BA = BIA = BTT−1A = BT (AB)−1A =

BTB−1A−1A = BTB−1. This shows that T ∼ T ∗.

Conversely, suppose T is invertible and T ∼ T ∗. Since T is invertible and by the

polar decomposition theorem, T has a unique polar decomposition T = UP , where

U is unitary(not necessarily self-adjoint) and P = (T ∗T )1/2 is a positive operator(self-

adjoint). We use the similarity of T and T ∗ to show that U must indeed be self-adjoint.

T ∼ T ∗ implies that UP = X−1(UP )∗X = X−1PU∗X. Without loss of generality, let

X = I. In that case U = U∗ which proves that U is self-adjoint.

Remark 2.1.35 Let J0 denote the set of all invertible product os self-adjoint operators

A and B and J be the set of invertible operators that are similar to their adjoints. It is

clear that J0 ⊆ J . Proposition 2.1.34 asserts that J ⊆ J0 is also valid. Using invariance

of the classes J0 and J and similarity transformation T = S−1TS. We notice that J

is strictly larger than the class of operators that are similar to self-adjoints.

An example is the bilateral shift.

Theorem 2.1.36 If H is a finite-dimensional Hilbert space, then the following are

equivalent conditions for an operator T on H:

(i)T is a product of two self-adjoint operators,

(ii)T is a product of two self-adjoint operators, on which is invertible,

(iii)T is similar to T ∗.

Remark 2.1.37 We show that (iii) does not imply (i), consider the operator T = 1 2

0 4

. It is clear that T is similar to T ∗ but T = T1T2 where T1 =

 1 1

1 2

 and

T2 =

 2 2

−1 2

. Clearly, T2 is not self-adjoint.

This shows that the invertibility condition of T cannot be dropped.
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Definition 2.1.38 On Hilbert space H, an operator S+ is said to be a unilateral shift

if there exists an infinite sequence {Hk}∞k=0 of non-zero pairwise orthogonal subspaces

of H such that H =
⊕∞

k=0 Hk (i.e the orthogonal family {Hk}∞k=0 spans H) and S+

maps each Hk symmetrically onto Hk+1.

By the above definition, S+(Hk) = Hk+1 and S+|H|k : Hk → Hk+1 is an isometry, thus

surjective isometry and hence unitary. Therefore, Hk and Hk+1 are unitarily equivalent

so that dim(Hk) = dim(Hk+1) for every k ≥ o. This constant dimension is the multi-

plicity of S+. Moreover, S+ and its adjoint S∗
+ are identified with the infinite matrices

S+ =



0 0 0 · · ·

U1 0 0 · · ·

0 U2 0 · · ·

0 0
. . . . . .

...
...

. . .


and S∗

+ =


0 U∗

1 0 · · ·

0 0 U∗
2 · · ·

0 0 0
. . .

...
...

...
. . .

 of transformations, where

every entry below(above) the main diagonal in the matrix S+(S
∗
+) is unitary and the

remaining entries are all null. From the above matrices, we see that S+(S
∗
+) = I.

Definition 2.1.39 Let Ko be a Hilbert space and Uo : Ko → Ho be unitary so that

dim(Hk) = dim(Ko) for every k ≥ 0.

Consider the operator U =
⊕∞

k=0 Uk...Uo : ℓ+
2(Ko) =

⊕∞
k=0 Ko → H........(*).

Since the composition and direct sum of unitary transformations are again unitary,

it follows that (*) is unitary and U∗S+U =



0 0 0 · · ·

I 0 0 · · ·

0 I 0 · · ·

0 0
. . . . . .

...
...

. . .


such that ℓ+

2(Ko) →

ℓ+
2(Ko).

Thus S+ is unitarily equivalent to U∗S+U which is a unilateral shift of multiplicity α

acting on ℓ+
2(Ko). If dim(Ko)1 ( i.e, if Ko = C in case of complex space), then we get a

canonical unilateral shift of multiplicity 1 acting on ℓ+
2 = ℓ+

2(C) and is the operation
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on ℓ+
2 that shifts the canonical orthonormal basis for ℓ+

2.

We prove the following propositions which show that any operator unitarily equivalent

to a unilateral shift is in fact a unilateral shift. In addition, they have the same

multiplicity.

Proposition 2.1.40 [19, P roblem5.4pp.44] If an operator is unitarily equivalent to a

unilateral shift, then it is a unilateral shift itself of the same multiplicity.

Proof Let S+ be a unilateral shift of multiplicity α acting on a Hilbert space H and

let {Hk} be the underlying countably infinite orthogonal family of unitarily equivalent

subspaces of H =
⊕

k Hk so that dim(Hk) = α. Take an operator T acting on a Hilbert

space K and suppose that there exists a unitary transformation U ∈ G(H) such that

T = U∗S+U . For each k, set Kk so that Hk = U(Kk).

Since U is unitary, it follows that (Kk) is an orthogonal family ({Hk} is orthogonal

and U preserves inner product) of subspaces of K because the range of an isometry

is closed. Moreover, {Kk} spans K. Furthermore, since S+(Hk) = Hk+1, T (Kk) =

U∗S+U(Kk) = U∗S+(Hk) = U∗(Hk+1) = Kk+1 for each k. Finally, note that T ∗T =

(U∗S∗
+U)(U∗S+U) = U∗S∗

+IS+U = U∗S∗
+S+U = U∗IU = U∗U = I. Thus T is

an isometry and so any restriction of it (in particular, T |k is an isometry for every

K ≥ 0). Hence T is a unilateral shift with the same multiplicity of S+ once dim(Kk) =

dim(U∗(Hk)) = dim(Kk) = α for all k.

Proposition 2.1.41 [17, P roposition2.2] Two unilateral shifts are unitarily equivalent

if and only if they have the same multiplicity.

Proof Let S1 and S2 be unilateral shifts which are unitarily equivalent. Then they are

unitarily equivalent to the canonical shift of multiplicity α. Hence S1 and S2 have the

same multiplicity.

Conversely, let S1 and S2 have the same multiplicity α. Then the are unitarily equiva-

lent to the canonical shifts of multiplicity α. Hence S1 and S2 are unitarily equivalent.

Remark 2.1.42 Propositions 2.1.40 and 2.1.41 show that, the unilateral shift of a

given multiplicity is in fact an equivalence class.
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The following problem shows when two unitarily equivalent operators areA-self-adjoint.

Question 1 If T and S are unitarily equivalent and T is A-self-adjoint, when is S

A-self-adjoint?

Answer Since T and S are unitarily equivalent, we have T = U∗SU . A-self adjointness

of T implies that T ∗ = ATA−1 = U∗SU , which implies that S = UATA−1U∗ =

UATA−1U−1 = (UA)T (UA)−1 . That is, S is UA-self-adjoint. Letting U = I clearly

shows that S is A-self-adjoint. Hence the result.

2.2 Quasisimilarity of Some Operators

We state and prove the following theorem which shows that, the product of two quasi-

affinities is also a quasi-affinity and so is their adjoints.

Theorem 2.2.1 [29, P roposition3.3] If X is a quasi-affinity from H to K and Y is a

quasi-affinity from K to L, then:

(a)Y X is a quasi-affinity from H to L and XY is a quasi-affinity from L to H.

(b)If X ∈ B(H) is a quasi-affinity, the X∗ is a quasi-affinity.

Proof We need to show that XY and Y X are quasi-affinities. Clearly, XY is one-to-

one since it is the composition of one-to-one operators. It suffices to prove that XY

has a dense range.

Note that Ran(XY ) ⊆ H. It follows that XYH = X(YH) = X(K) = H. Therefore,

Ran(XY ) = H.

This proves that XY has a dense range.

Similarly, Y X is one-to-one since it is the composition of one-to-one operators. To

show that Y X has a dense range, we note that Ran(Y X) ⊆ K. It follows that Y XK =

Y (XK) = Y (H) = K. Therefore, Ran(Y X) = K.

Now S(XY ) = XTY = (XY )S, which shows that XY is a quasi-affinity in {S}′, the

commutant of S.
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Also, (Y X)T = Y (XT ) = Y SX = T (Y X), thus Y X is a quasi-affinity in {T}′, the

commutant of T .

(b) Since X ∈ B(H) is a quasi-affinity, KerX = {0}, Ran(X) = H. Recall that

Ker(X) = Ran(X∗).........(1)

Ker(X∗) = Ran(X).........(2)

Ran(X) = Ker(X∗)..........(3)

Ran(X∗) = Ker(X)..........(4).

Therefore, since Ker(X) = {0}, we have Ker(X) = H = Ran(X∗) by (4) which

implies that X∗ has a dense range. X∗ is one-to-one(Ker(X∗) = {0}). Hence X∗ is a

quasi-affinity.

The proof of Theorem 2.2.2 follows from the above Theorem and it essentially shows

that, quasi-affine tranform is transitive.

Theorem 2.2.2 [29, P roposition3.4] If A is a quasi-affine transform of B and B is a

quasi-affine transform of C, then

(a) A is a quasi-affine transform of C.

(b)B∗ is a quasi-affine transform of A∗.

Theorem 2.2.3 If X is a quasi-affinity from H to K, then |X| =
√
X∗X is a quasi-

affinity on H (from K to H). Moreover, X|X|−1 extends by continuity to a unitary

transform U from H to K.

Lemma 2.2.4 [16, Lemma2.6−11] Let X ∈ B(H) and Y ∈ B(K,L) be quasi-affinities

where H,KandL are finite dimensional Hilbert spaces. The inverse (Y X)−1 ∈ B(L,H)

of the composite Y X exists and (Y X)−1 = X−1Y −1.

Proof The operator Y K ∈ B(L,K) is bijective, so that Y X exists. Thus (Y X)(Y X)−1 =

IL is the identity operator on L. Applying Y −1 and using Y −1Y = IK, we obtain

Y −1Y X(Y X)−1 = X(Y X)−1 = Y −1|L = Y −1. Applying X−1 and using X−1X = IH

we obtain X−1X(Y X−1 = (Y X)−1 = X−1Y −1.
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Proposition 2.2.5 [29, P roposition3.4] If a unitary operator A on a Hilbert space H

is the quasi-affine transform of a unitary operator B on a Hilbert space K, then A and

B are unitarily equivalent.

Proof Let X ∈ B(HKK) be a quasi-affinity. Thus XA = BX......(1) implying that

X = B−1X = XA−1 = XA∗.......(2).

From (1) and (2) we obtain,

|X|2A = X∗XA = X∗BX = AX∗X = A|X|2 and by iteration |X|2nA = A|X|2n

(n = 0, 1, 2, ..); hence p(|X|2)A = Ap(|X|2) for every polynomial p(x). Let {pn(x)} be

a sequence of polynomials tending to |X|1/2 uniformly on the interval 0 ≤ x ≤ ∥X∥1/2.

Then pn(|X|2) converges (in the operator norm) to |X| so that we have a limit relation

|X|A = A|X|.......(3).

From (1) and (3) it follows that BU |X| = BX = AX = U |X|A = UA|X|; because

|X|H is dense in H, it results that BU = UA. By Proposition 2.2.3 U is unitary and

hence A and B are unitarily equivalent.

The following result shows that quasi-similarity is an equivalence relation.

Theorem 2.2.6 Quasi-similarity is an equivalence relation on the class of operators.

Proof Let A ∈ B(H), B ∈ B(K) and C ∈ B(L). We show that A ≈ A. We have

XA = AX and AY = Y A where X and Y are quasi-affinities. Choosing X = Y = I

(without loss of generality) we have A ≈ A.

Now suppose that A ≈ B and B ≈ A. Since A ≈ B there exists quasi-affinities

X ∈ B(H,K) and Y ∈ B(K,H) such that XA = BX and BY = Y A. By symmetry

of composition, it is true that BX = XA and Y A = BY . Hence B ≈ A. This shows

symmetry.

Finally, we show transitivity.

Suppose A ≈ B and B ≈ C. We show that A ≈ C. There exists quasi-affinities

X ∈ B(H,K), Y ∈ B(K,H) and S ∈ B(K,L), T ∈ B(L,K), respectively, such that,

XA = BX and BY = Y A.....(1) and

SB = CS and CT = TB.....(2).
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TSY X is a quasi-affinity which is one-to-one since it is the composition of one-to-one

operators.

TSY XA = TSAY X, since Y X ∈ {A}′

= TSY BX, since AY = Y B

= TBSY Xr, since SY ∈ {B}′

= CTSY X, since TB = CT which is a quasi-affinity and

AYXST = Y XAST ,since Y X ∈ {A}′

= Y BXST , since XA = BX

= Y XSBT , since XZ ∈ {B}′

= Y XSTC, since ZR ∈ {C}′. Therefore A ≈ C, which proves that quasi-similarity is

an equivalence relation.

Theorem 2.2.7 links similarity of operators with quasisimilarity.

Theorem 2.2.7 If T ∈ B(H) and S ∈ B(K) are similar operators, then they are

quasi-similar.

Proof There exists quasi-invertible operator X ∈ B(H,K) such that XT = SX. This

implies that X−1S = TX−1, where X−1 ∈ B(K,H) which implies that S ≈ T .

Theorem 2.2.8 [11, Theorem2.5] Suppose that for each α in some index set A, there

are Hilbert spaces Hα and Kα and operators Tα ∈ B(Hα) and Sα ∈ B(Kα) respectively

which are quasi-similar. Let T be the operator T = Σα∈A
⊕

Tα acting on a Hilbert

space which is the direct sum of spaces Hα and S = Σα∈A
⊕

Sα ∈ B(K) where K =

Σα∈A
⊕

Kα. Then T is quasi-similar to S.

Proof Suppose Xα and Yα are the quasi-invertible operators such that XαTα = SαXα

and TαYα = YαSα. If X = Σα∈A
⊕

Xα/∥X∥ and Y = Σα∈A
⊕

Yα/∥Y ∥, then X and Y

are the quasi-invertible operators and satisfy the desired equations.

Example 2.2.9 Let An and Bn be unilateral shift operators with weights 1 and 1
n

respectively on an n-dimensional Hilbert space H.Then An is the Jordan canonical
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form for Bn and so An and Bn are similar. If A = Σ∞
n=oAn and B = Σ∞

n=oBn, then

Theorem 2.2.8, A is quasi-similar to B.

We investigate the properties of hyponormal operators under quasisimilarity. Firstly,

we state and prove the following results.

Lemma 2.2.10 [4, LemmaA] Let T ∈ B(H) be hyponormal and let {Xn = Σ∞
n=o} be a

sequence of H such that Txn+1 = xn for all n ≥ 0. Then either ∥xo∥ ≥ ∥x1∥ ≥ ∥x2∥ ≥

.... or ∥xn∥ → ∞ as n → ∞.

Proof For any x ∈ H,

∥Tx∥ = < Tx, Tx >1/2 = < T ∗Tx, x >1/2 ≤ (∥T ∗Tx∥∥x∥)1/2 ≤ (∥T 2x∥∥x∥)1/2 ≤

1/2(∥T 2x∥ + ∥x∥). Letting x = xn+2 we see that ∥xn+1∥ = 1/2(∥xn∥ + ∥xn+2∥),

so the sequence {xn} is convex and so either ∥xo∥ ≥ ∥x1∥ ≥ ∥x2∥ ≥ .... or ∥xn∥ → ∞

as n → ∞.

Lemma 2.2.11 [4, LemmaB] Suppose S ∈ B(H) is invertible and T ∈ B(K) is hy-

ponormal and X ∈ B(H,K) satisfies XS = TX. Then ∥XS−1y∥ ≤ ∥S−1∥ ∥Xy∥ for

all y ∈ H.

Proof Assume without loss of generality, that dimH ≥ 1 and let c = ∥S−1∥ > 0.

Fix y ∈ H and define xn = c−1XS−ny for n ≥ 0. Then cTxn+1 = xn and ∥xn∥ ≤

∥c−n∥ ∥X∥ ∥S−n∥ ∥y∥ = ∥S−1∥−n ∥X∥ ∥S−n∥ ∥y∥ = ∥X∥ ∥y∥ i.e ∥xn∥ ≤ ∥X∥ ∥y∥ for

all n ≥ 0. Since cT is hyponormal, ∥xo∥ ≥ ∥x1∥ ≥ ∥x2∥ ≥ .... By Lemma 2.2. 10 and

the first inequality in this chain ∥x1∥ ≤ ∥xo∥ shows that ∥XS−1y∥ ≤ ∥S−1∥ ∥Xy∥.

The following result shows the condition under which a hyponormal operator is invert-

ible.

Proposition 2.2.12 [20, P roposition2.4] If S ∈ B(H) is invertible, T ∈ BK) is hy-

ponormal and X ∈ B(H,K) has a dense range and satisfies XS = TX, then T is

invertible.
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Proof Suppose that dimH ≥ 1. Since X(H) = X(S(H)) = TX(H) ⊆ T (K), the

range of T contains the dense range of X, and so T has a dense range. It remains to

show that T is bounded below, and by continuity it suffices to show that T is bounded

below on the range of T . By Lemma 2.2.11

∥XS−1y∥ ≤ ∥S−1∥ ∥Xy∥ = ∥S−1∥ ∥XSS−1y∥ = ∥TXS−1y∥ i.e

∥XS−1y∥ ≤ ∥S−1∥ ∥TXS−1y∥ i.e

∥S−1∥−1 ∥XS−1y∥ ≤ ∥TXS−1y∥ for all y ∈ H.

Put y1 = ∥S−1y∥. Then ∥S−1∥−1 ∥Xy1∥ ≤ ∥TXy1∥, thus T is bounded below on the

range of X.

We are ready to show the equality of the spectrum of quasisimilar hyponormal op-

ereators.

Theorem 2.2.13 [4, Theorem2] Quasi-similar hyponormal operators have equal spec-

tra.

Proof If S and T are quasi-similar hyponormal operators, then for any complex number

λ, S − λI and T − λI are also quasi-similar and hyponormal, by Proposition 2.2.12,

they are both invertible or both non-invertible. Thus σ(S) = σ(T ).

Remark 2.2.14 From the proper inclusion relation, Normal ⊂ Hyponormal ⊂ Quasi−

hyponormal and using Theorem 2.1.13, if hyponormal operators are replaced by quasi-

hyponormal operators, we obtain a similar result, that is, σ(S) = σ(T ).

Lemma 2.2.15 [28, Lemma1] Let A,B,X ∈ B(H) where AX = BX. Assume X

is quasi-invertible and A has a single valued extension property.Then B has a singled

valued extension property and σA(Xw) ⊂ σB(w) for all w ∈ H.

Definition 2.2.16 An operator T ∈ B(H) satisfies Dunford’s condition C if for every

set F ⊂ C the linear manifold {x ∈ H|σT (x) ⊂ F} is closed.

When we say T satisfies condition C, we are also asserting that it has the single valued

extension property.
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Theorem 2.2.17 (28, Theorem 2) Let A,B,X ∈ B(H) where X is quasi-invertible

and AX = BX. If A satisfies the condition C, then σ(A) ⊂ σ(B).

Proof It follows from Lemma 2.2.15 that σA(Xw) ⊂ σB(w) for all w ∈ H. But the set

σB(w) is a compact and non-empty on the complex plane and so σB(w) ⊂ σ(B). Also,

{Xw|w ∈ H} is dense in H and hence by condition C, σA(y) ⊂ σ(B) for all y ∈ H.

Thus σ(A) ⊂ σ(B).

The following result shows that, quasisimilar operators satisfying Dunford’s condition

have the same spectrum.

Corollary 2.2.18 : Let A,B,X ∈ B(H) be quasi-similar and satisfy condition C.

Then σ(A) = σ(B).

Proof see [28, Corollary 3].

Remark 2.2.19 A similar result as in Corollary 2.2 18 holds for quasi-similar hy-

ponormal operators.

Proposition 2.2.20 [20, P roposition2.5] If S and T are quasi-similar quasi-hyponormal

operators in B(H) and Ker(S) = Ker(T ), then S1 = S|ker(S) and T1 = T |Ker(T ) are

quasi-similar quasi-hyponormal operators.

The following result shows that, Fredholmness is preserved under quasisimilarity.

Theorem 2.2.21 [20, Theorem2.6] Let H and K be Hilbert spaces. Suppose S and

T are quasi-similar quasi-hyponormal operators on Hilbert spaces in B(H). Then S

is a Fredholm operator satisfying Ind(S) = 0 if and only if T is a Fredholm operator

satisfying Ind(T ) = 0.

Proof Since S and T are quasi-similar, there exists quasi-affinities X and Y such

that XS = TX and SY = Y T . Now suppose that S is a Fredholm operator satis-

fying Ind(S) = 0. Since S and T are quasi-similar, it follows that dim(Ker(S)) =

dim(Ker(T )) and dim(Ker(S∗)) = dim(Ker(T ∗)).
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Without loss of generality, we may assume that Ker(S) = Ker(T ). Since S is

a quasi-hyponormal Fredholm operator with Ind(S) = 0, we have that Ker(S) =

Ker(S∗).Note that Ker(S) is an invariant subpace for the operator X. The matrices

S, T,X with respect to the decomposition

H = Ker(S)
⊕

Ker(T ) are

S =

 S1 0

0 0

 T =

 T1 0

0 0

 X =

 X1 0

X2 X3



where S1 is invertible,T1 is quasi-hyponormal and X1 has a dense range in Ker(S).

The equation XS = TX implies that X1S1 = T1X1. Hence by Proposition 2.2.12 T1 is

invertible. Thus T is a Fredholm operator satisfying Ind(S) = 0. Hence by symmetry,

the result follows.

Remark 2.2.22 We obtain a similar result if quasi-hyponormal operators are replaced

by hyponormal operators in the above theorem. This is because Hyponormal ⊂ Quasi-

hyponormal .

We also note that quasi-similarity preserves Fredholm property.

Proposition 2.2.23 [30, Sec3.2.1TheoremL−H]

If B ≥ A ≥ 0, then Bα ≥ Aα for 0 < α ≤ 1.

Lemma 2.2.24 [13, Lemma3] Let T1 ∈ B(H1) be a p-hyponormal operator and let

T2 ∈ B(H2) be a normal operator. If there exists an operator X ∈ B(H1,H2) with

dense range such that T1X = XT2, then T1 is normal.

Proof see [12].

Lemma 2.2.25 [32, Lemma1.1] Let Ni ∈ B(Hi) be normal for each i = 1, 2. If X ∈

B(H1,H2) and Y ∈ B(H2,H1) are injective such that N1X = XN2 and Y N1 = N2Y ,

then N1 and N2 are unitarily equivalent.
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Theorem 2.2.26 [13, Theorem1] For each i = 1, 2, let Ti ∈ B(Hi) be p-hyponormal

operators and Ti = Ni

⊕
Vi on Hi = Hi1

⊕
Hi2 where Ni and Vi are the normal and

pure parts of Ti, respectively. If T1 and T2 are quasi-similar, then N1 and N2 are

unitarily equivalent and there exists Y ∈ B(H12,H22) and X ∈ B(H22,H12) having

dense ranges such that V1X = XV2 and Y V1 = V2Y .

Proof By hypothesis, there exists quasi-affinities X ∈ B(H1,H2) and Y ∈ B(H2,H1)

such that T1X = XT2 and Y T1 = T2Y .

Let

X :=

 X1 X2

X3 X4

 , Y :=

 Y1 Y2

Y3 Y4


with respect to H2 = H21

⊕
H22 and H1 = H11

⊕
H12, respectively. A simple matrix

computation shows that V1X3 = X3N2 and V2Y3 = Y3N1. We claim that X3 = Y3 = 0.

To prove this , let M = RanX3. Then M is a nontrivial invariant subspace of V1.

The V ′
1 = V1|H, then V1 is p-hyponormal. If we define an operator X ′

3 : H21 → M

by X ′
3x = X3x for each x ∈ H21, then we see that X ′

3 has a dense range and satisfies

V ′
1X

′
3 = X ′

3T2. By Lemma (3.2.24), V1 is normal. This contradicts the hypothesis V1

is pure. This forces X3 = 0. Similarly, Y3 = 0. Thus it follows that X1 and Y1 are

injective. Since N1X1 = X1N2 and Y1N1 = N2Y1, by Lemma 3.2.25 we have that N1

and N2 are unitarily equivalent. We also notice that X4 and Y4 have dense ranges and

V1X4 = X4V2 and Y4V1 = V2Y4.

Corollary 2.2.27 Let T1 and T2 be quasi-similar p-hyponormal operators. If T1 is

pure, then T2 is also pure.

Corollary 2.2.28 Let T1 ∈ B(H1) be p-hyponormal and let T2 ∈ B(H2) be normal. If

T1 and T2 are quasi-similar, then T1 and T2 are unitarily equivalent.

Theorem 2.2.29 If T ∈ B(H) is a (p, k)-quasihyponormal operator and S∗ ∈ B(H) is

a p-hyponormal operator, and if TX = XS where X : K → H is a one-to-one bounded
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linear operator with dense range(a quasiaffinity), then T is a normal operator unitarily

equivalent to S.

Remark 2.2.30 Theorem 2.2.29 says that (p, k)-quasihyponormal operator which is a

quasi-affine transform of a co-p-hyponormal operator is always normal.

Corollary 2.2.31 Let T be a hyponormal operator whose c.n.n. part has finite multi-

plicity. Then T is quasisimilar to an isometry if and only if its normal part is unitary

and its c.n.n. part is quasisimilar to a unilateral shift.

Proof Let T be hyponormal with decomposition T = T1

⊕
T2 and suppose that T is

quasisimilar to an isometry V = U
⊕

S, where T1 is normal and T2 is c.n.n., U is unitary

and S is a unilateral shift. By [10, Proposition 3.5], T1 is unitarily equivalent to U and

hence unitary. Since by assumption T is quasisimilar to V , and by Clary[4], quasisimilar

hyponormal operators have the same spectra, and by [9], ∥T∥ = r(T ) = r(V ) = 1,

where r(T ) and r(V ) denote the spectral radii of T and S , respectively. This proves

that T2 is quasisimilar to S.

Remark 2.2.32 Theorem 2.2.29 gives a condition under which hyponormal operator

is similar to an isometry.

Corollary 2.2.33 Let A and B be hyponormal operators. Assume that c.n.n. part

of A has a finite multiplicity. If A is quasisimilar to B, then their normal parts are

unitarily equivalent.

Proof The result follows from Corollary 2.2.31 and by the application of the fact that

quasisimilar normal operators are unitarily equivalent (see Hastings [10]).

Remark 2.2.34 Note that from Corollary 2.2.32 , we cannot conclude that quasisimi-

lar hyponormal operators have quasisimilar parts. By [10], if A and B are quasisimilar

hyponormal operators and A is pure, then B also is pure.
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Corollary 2.2.35 Let T ∈ B(H). Let TW = WN where N is normal and W is any

non-zero operator in B(H). Then T has a nontrivial invariant subspace.

Remark 2.2.36 Corollary 2.2.35 applies to quasiaffine transforms of all reducible op-

erators with a finite direct summand (remember normal operators are reducible).

Lemma 2.2.37 [34, Corolarry3.9] Let T = T1

⊕
T2 and S = S1

⊕
S2 be contractions,

where T1 and S1 are of class C11, T2 and S2 are of class C.0 and T2 has a finite

multiplicity. Then T is quasisimilar to S if and only if T1 is quasisimilar to S1 and T2

is quasisimilar to S2.

Remark 2.2.38 We use Lemma 2.2.37 to prove the following result for hyponormal

contraction. We use the fact that quasisimilar normal(unitary) operators are unitarily

equivalent.

Corollary 2.2.39 Let T and S be hyponormal contractions. Assume that thee c.n.u

part of T has finite multiplicity. Then T is quasisimilar to S if and only if their unitary

parts are unitarily equivalent and c.n.u parts are quasisimilar to each other.

Lemma 2.2.40 If T ∈ B(H) doubly intertwines A and B and Lat(A)
∩

Lat (B) is

trivial, then T is either 0 or a quasiaffinity. The same is true if T commutes with A

and B and Lat(A)
∩

Lat (B) is trivial.

Proof T doubly intertwines the pair (A,B) implies that TA = BT and TB = AT .

Since TA = BT , then Ran(T ) ∈ Lat(B) and Ker(T ) ∈ Lat(A). Since TB = AT ,

we deduce that Ran(T ) ∈ Lat(A)
∩

Lat(B) and Ker(T ) ∈ Lat(A)
∩

Lat(B). The

following two cases result:

(i)Case 1, If Ran(T ) = {0}, then T = 0. If Ran(T ) = H, then Ker(T ) = {0} and

hence T is one-to-one and has a dense range, thus a quasiaffinity.

(ii)Case 2, If T commutes with A and B, that is, TA = AT and TB = BT , then by the

argument above, Ran(T ) ∈ Lat(A)
∩

Lat(B) and Ker(T ) ∈ Lat(A)
∩

Lat(B). Thus

by argument above, either T = 0 or T is a quasiaffinity.
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Remark 2.2.41 The triviality of Lat(A)
∩

Lat(B) follows from the orthogonality of

Ker(T ) and Ran(T ).

Strenthening Lemma 2.2.40 to similarity shows that Lat(A) is isomorphic to Lat(B).

Theorem 2.2.42 If A and B are nilpotent operators of nil-potency index two having

no nontrivial common invariant subspaces, then A and B are quasisimilar.

Proof If Lat(A)
∩

Lat(B) is trivial. then T = A + B is non-zero because if T = 0,

then Lat(A) = Lat(B) and nilpotent operators have nontrivial invariant subspaces.

Consequently, A and B are quasisimilar since T is a quasiaffinity doubly intertwining

A and B by Theorem 2.2.43.

Theorem 2.2.43 If A,B ∈ B(H) and A has nontrivial subspaces, then B has non-

trivial invariant subspaces.

Proposition 2.2.44 If T1, T2 ∈ B(H) are quasisimilar ( with quasi-affinities X, Y ∈

B(H)), then XY ∈ {T1}′ and Y X ∈ {T2}′.

Proof Suppose T1 ≈ T2 with quasi-affinities X and Y . Then T1X = XT2 and T2Y =

Y T1. Post multiplication of the first equation by Y and using the second equation we

have T1XY = XT2Y = XY T1 which implies XY ∈ {T1}′. Post-multiplication of the

second equation by X and using the first equation, we have T2Y X = Y T1X = Y XT2

which implies that Y X ∈ {T2}′.

Definition 2.2.45 A quasiaffinity X is said to have the hereditary property with re-

spect to an operator T ∈ B(H) if X ∈ {T}′ and X(M) = M for every M ∈

HyperLat(T ).

Definition 2.2.46 If T1 and T2 are quasisimilar and there exists an implementing

pair (X,Y ) of quasi-affinities such that XY has the hereditary property with respect

to T1 and Y X has the hereditary property with respect to T2, then we say that T1 is

hyper-quasisimilar to T2 denoted by T1
h
≈ T2.
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Remark 2.2.47 Hyper-quasisimilarity is an equivalence relation which is strictly stronger

than quasisimilarity. From definition 2.2.46, two operators T1 and T2 are hyper-

quasisimilar if there exists quasi-affinities X and Y satisfying XT1 = T2X and Y T2 =

T1Y and the additional condition that Y XM1 = M1 and XYM2 = M2, for every

M1 ∈ HyperLat(T1) and M2 ∈ HyperLat(T2).

Theorem 2.2.48 If T1 and T2 are hyper-quasisimilar, then HyperLatT1≈ HyperLat

T2.

Proof Since T1
h
≈ T2, we have quasi-affinities X and Y satisfying Y XM1 = M1

and XYM2 = M2, for every M1 ∈ HyperLat(T1) and M2 ∈ HyperLat(T2). Us-

ing Proposition 2.2.44 XY ∈ {T1}′ and Y X ∈ {T2}′, M1 ∈ HyperLat(T2) for every

M1 ∈ HyperLat(T1) and M2 ∈ HyperLat(T1) for every M2 ∈ HyperLat(T2). This

means that every hyperinvariant subspace of T1 is a hyperinvariant subspace of T2 and

vice versa. Hence the prove.

Note that Theorem 2.2.48 holds when ≈ is replaced with =.

Corollary 2.2.49 Let T1 and T2 be c.n.u. C11 contractions with finite defect indices.

If T1 is quasisimilar to T2, then HyperLat (T1) (lattice) is isomorphic to HyperLat(T2).

Corollary 2.2.50 Let T1 be c.n.u. C11 contractions with finite defect indices. If

K1, K2 ∈ HyperLat(T ) and T |K1 is quasisimilar to T |K2, then K1 = K2.

Lemma 2.2.51 Suppose A ∈ B(H) and B ∈ B(K) are quasisimilar operators on H.

If B has a nontrivial hyperinvariant subspace, then A has a nontrivial hyperinvariant

subspace.

Proof Let V : H → K and W : K → H be quasi-affinities of A and B. That is,

BV = V A and AW = WB. Let N be a nontrivial invariant subspace for B. Define

M =
∨
{XWH : X ∈ {A}′}. Clearly M is B-hyperinvariant and M ̸= {0} because

M ⊃ WN . Moreover, M ̸= H because VM = V {
∨
{XWN : X ∈ {A}′} ⊂ V {YN :

Y ∈ {B}′ ⊂ N ̸= K = ¯(NH). Thus M is nontrivial.
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2.3 Almost Similarity of Some Operators

We investigate on some results of operators which are almost similar.

Theorem 2.3.1 An operator T ∈ B(H) is hermitian if and only if (T + T ∗)2 ≥ 4T ∗T .

Theorem 2.3.1 helps us to prove the following result, where we assume the equality

sign of this Theorem.

Proposition 2.3.2 [2, P roposition1.5]

If A,B ∈ B(H) such that A
a.s∼ B and B is hermitian, then A is hermitian.

Proof

Since A
a.s∼ B there exists an invertible operator N such that A∗A = N−1(B∗B)N , on

multiplying both sides by 4, we have,

4A∗A = N−1(4B∗B)N .................................(1)

Also A
a.s∼ B, implies A∗ + A = N−1(B∗ +B)N , on squaring both sides, we obtain,

N−1(B∗ +B)NN−1(B∗ +B)N = (A∗ + A)2. Thus

N−1(B∗B)2N = (A+ A∗)2..........(2)

Since B is hermitian, we have that (B + B∗)2 = (2B)2 = 4B2 = 4B∗B. Substituting

this in (2) we get

N−1(4B∗B)N = (A+ A∗)2........(3)

From (1) and (3) we have 4A∗A = (A + A∗)2 which shows that A is hermitian, by

Theorem 2.3.1.

Proposition 2.3.3 [2, P roposition2.1] If A,B ∈ B(H) such that A and B are unitar-

ily equivalent, then A
a.s∼ B.

Proof (see [2]).

Proposition 2.3.4 If A,B ∈ B(H) such that A
a.s∼ B and if A is hermitian, then A

and B are unitarily equivalent.
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Proof By assumption there exists an invertible operator N such that A∗ + A =

N−1(B∗ + B)N . Since A is hermitian and A
a.s∼ B, by Proposition 2.3.2, B is her-

mitian, which implies that A = N−1BN . This implies that A and B are similar (

i.e A ≍ B) and since both operators are normal ( both A and B are hermitian from

Proposition 2.3.2), they are unitarily equivalent.

Remark 2.3.5 The above proposition 2.3.4 gives a condition under which almost-

similarity of operator implies similarity.

Proposition 2.3.6 [15, P roposition1.7] If A,B ∈ B(H) such that A
a.s∼ B and A is a

projection, then so is B.

Proof A
a.s∼ B implies that there exists an invertible operator N such that

A∗A = N−1(B∗B)N .....(1) and

A∗ + A = N−1(B∗ +B)N ....(2).

Since A is a projection, it is hermitian, i.e A∗ = A and this implies (by proposition

2.3.2) that B is hermitian. From (1) we have A2 = A = N−1B2N and from (2) we

have, 2A = N−12BN . Thus A = N−1BN . This implies that N−1B2N = N−1BN

which proves that B is a projection.

We investigate partially isometric operators under almost similarity.

Definition 2.3.7 An operator T ∈ B(H) is said to be partially isometric in case T ∗T

is a projection. Equivalently, TT ∗T = T ,i.e (T ∗T )2 = T ∗T and (T ∗T )∗ = T ∗T .

Proposition 2.3.8 [15, P roposition1.6] If A,B ∈ B(H) such that A
a.s∼ B and A is

partially isometric then so is B.

Proof A
a.s∼ B implies that there exists an invertible operator N such that B∗B =

N−1(A∗A)N . Since A is partially isometric,A∗A is a projection ((A∗A)2 = A∗A), which

implies that [N−1(B∗B)N ][N−1(B∗B)N ] = N−1(B∗B)N . Thus we haveN−1(B∗BB∗B)N =

N−1(B∗B)N which implies that (B∗B)2 = B∗B. This shows that B∗B is a projection,

which implies that B is partially isometric.

The following result shows that almost similarity is an equivalence relation.
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Theorem 2.3.9 Let A,B,C ∈ B(H). Then;

(i)A
a.s∼ A.

(ii)If A
a.s∼ B, then B

a.s∼ B.

(iii)If A
a.s∼ B and B

a.s∼ A, then A
a.s∼ C.

Proof (i) Let A ∈ B(H). Then A∗A = N−1(B∗B)N , where N is an invertible operator.

It is also clear that, A∗ + A = N−1(B∗ + B)N . Hence A
a.s∼ A. In this case we may

choose without loss of generality that, N = I.

(ii) Now, suppose that A
a.s∼ B. We show that B

a.s∼ A.

Since A
a.s∼ B, there exists an invertible operator N such that

A∗A = N−1(B∗B)N ..............................1)

and A∗ + A = N−1(B∗ +B)N .......................(2)

Since N is invertible, upon pre- and post-multiplication of (1) and (2) by N and

N−1, respectively and applying the adjoint operation, we have B∗B = M−1A∗AM and

B∗+B = M−1(A∗+A)M , where M = N−1, which is an invertible operator, since N−1

is invertible. Hence B
a.s∼ A.

(iii)Let A,B and C be in B(H). Suppose A
a.s∼ B and B

a.s∼ C. Then we have;

A∗A = N−1(B∗B)N , A∗ + A = N−1(B∗ +B)N , (3)

and B∗B = M−1(C∗C)M , B∗ +B = M−1(C∗ + C)M , (4)

where N and M are invertible operators.

Using (3) and (4) we have that;

A∗A = N−1[M−1(C∗C)M ]N = (MN)−1(C∗C)(MN) = S−1(C∗C)S

and

A∗ +A = N−1[M−1(C∗ + C)M ]N = (MN)−1(C∗ + C)(MN) = S−1(C∗ + C)S, where

S = MN , is invertible ( since M and N are invertible). Hence A
a.s∼ C.

Remark 2.3.10 Theorem 2.3.9 shows that almost-similar relation is an equivalence

relation on B(H).

Proposition 2.3.11 [15, P roposition1.1] Let A,B ∈ B(H). Then:

(i) If A
a.s∼ 0, then A = 0.
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(ii)If A
a.s∼ B and B is isometric, then A is isometric.

Proof (i) A
a.s∼ 0 means that A∗A = N−1(0)N and A∗ + A = N−1(0)N , which implies

that A = 0.

(ii)A
a.s∼ B means that A∗A = N−1(B∗B)N and A∗ + A = N−1(B∗ + B)N . Since B

is isometric, B∗B = I. So B∗B = I implies that A∗A = N−1(I)N = I. Thus, A is

isometric.

Remark 2.3.12 An operator T ∈ B(H) is called quasidiagonal (quasitriangular), de-

noted by (QT) if there exists an increasing sequence {Pn}∞n=1 of finite rank (orthog-

onal) projections such that Pn → 0 (strongly, n → ∞) and ∥TPn − PnT∥ → o

(∥TPn − PnTPn∥ → o, respectively ), as n → ∞ [6,11]. The class of biquasitrian-

gular operators, denoted by (BQT) is defined as (BQT ) = {T ∈ B(H) : T and its

adjoint T ∗ are quasitriangular. Quasidiagonality was defined and studied by Halmos

in [9] and extensively analyzed by Smucker in his doctorial thesis . Quasi-triangularity

can be illustrated further as follows.

An operator matrix Q = (qij) is quasi-triangular (Hessenberg) matrix if hij = 0 when-

ever i > j = 1. That is, Q is a Hessenberg matrix if all the entries below the sub-

diagonal of Q are zero.

Corollary 2.3.13 Let A ∈ B(H) and suppose that A
a.s∼ S+, where S+ denotes the

unilateral shift of finite multiplicity. Then A is a completely non-unitary contraction

such that Re(A) ∼ Q, where Q is a quasi-diagonal operator and Re(A) denotes the real

part of A.

Proof Since A
a.s∼ S+, A

∗A = N−1(S∗
+S+)N , A∗+A = N−1(S∗

++S+)N , where N is an

invertible operator. Since S∗
+S+ = I. By Proposition 2.3.11, A is an isometry (indeed

a c.n.u isometry). It is clear by operator computation that S∗
++S+ is a quasi-diagonal

operator Q (see [4]). Hence Re(A) ∼ Q.
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Remark 2.3.14 Corollary 2.3.13 says, indirectly, that quasidiagonality is not pre-

served under similarity . Some authors have investigated the classes (QT ) and (BQT )

and have shown that these classes are invariant under similarities.

Corollary 2.3.13 can be strengthened to cover unitary equivalence to the unilateral

shift(see [17, Prop. 2.3, p.38]).

Proposition 2.3.15 If A ∈ B(H) and A
a.s∼ I, then A = I.

proof Since A
a.s∼ I, there exists an invertible operator N such that

I∗I = N−1(A∗A)N (5)

and

I∗ + I = N−1(A∗ + A)N . (6)

From (5) and (6), we conclude that A∗A = I and A∗ + A = 2I. Since A∗A = I, we

get A2 − 2A + I = 0....(*). We now show that the solution of (*) is I. Let x ∈ B(H),

then (A2 − 2A + I)x = (A − I)(A − I)x = 0. Substitute (A − I)x by y. We obtain

(A − I)y = 0 and hence Ay = y and Ax = x + y. By iteration we obtain x = x + ny

for any natural number n. Hence,

n∥y∥ = ∥ny∥ = ∥An − x∥ ≤ ∥Anx∥ + ∥x∥ = ∥x∥ + ∥x∥ = 2∥x∥ so that n∥y∥ ≤ 2∥x∥

for all natural number n.

Thus, ∥y∥ ≤ 2/n∥x∥ → 0 as n → ∞ and hence y = 0. consequently y(A− I)x = 0 for

all x ∈ H. This implies that Ax = x for all x and hence A = I.

Proposition 2.3.16 Let A be a unitary operator and B ∈ B(H) such that A
a.s∼ B.

Then either B is an isometry or a unitary operator.

If B is assumed to be hermitian in Proposition 2.3.16, then B is unitary.

This leads us to the following conjecture.

Claim: Two operators A and B in B(H) are similar (A ∼ B) if and only if both A and

B are hermitian and A
a.s∼ B.

Theorem 2.3.17 [16] Let H be a Hilbert space, A ∈ B(H) be a bounded linear operator
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and A∗ the Hilbert space adjoint operator A. Then A is compact if and only if A∗A is

compact.

Proposition 2.3.18 [15, P roposition1.3] If A,B ∈ B(H) such that A
a.s∼ B, and if A

is compact, then so is B.

Proof By assumption there exists an invertible operatorN such thatB∗B = N−1(A∗A)N .

Since A is compact, N−1(A∗A)N is compact which implies that B∗B is compact. By

the above theorem the result follows.

Proposition 2.3.19 [15, P roposition2.7] If A,B ∈ B(H) such that A
a.s

B , then (A +

λI)
a.s∼ (B + λI) for all real λ.

Proof By assumption, there exists an invertible operator N such that

A∗A = N−1(B∗B)N ......(i)

A∗ + A = N−1(B∗ +B)N ....(ii).

From (ii) we have A∗ + A = N−1B∗N + N−1BN which implies that A∗ + A + 2λ =

N−1B∗N + N−1BN + 2λ. Thus we have (A∗ + λI) + (A + λI) = N−1(B∗ + λI)N +

N−1(B + λI)N = N−1(B∗ + λI) + (B + λI)N .....(iii). From (iii) we have λA∗ +

Aλ + λ2 = N−1λB∗N + N−1λBN + N−1λ2N .....(iv). Adding (i) and (iv) we obtain

A∗A+λA∗+Aλ+λ2 = N−1λB∗N +N−1λBN +N−1λ2N +N−1B∗BN which implies

that (A∗+λI)(A+λI) = N−1(B∗+λI)(B+λI)N .Thus (A+λI)∗(A+λI) = N−1(B+

λI)∗(B + λI)N ......(v). From (iii) and (v) we conclude that (A+ λI)
a.s∼ (B + λI).

Corollary 2.3.20 If A,B ∈ B(H) are projection operators such that A
a.s∼ B and

(A+ λI)
a.s∼ (B + λI) for all real λ, then σp(A) = σp(B).

Proof Since A
a.s∼ B, there exists an invertible operator N such that

A∗A = N−1(B∗B)N ......(i)

A∗ + A = N−1(B∗ +B)N ....(ii).

Since A = A∗ and B = B∗, (ii) results to 2A = N−12BN implying thatA = N−1BN ,

i.e NA = BN i.e σp(A) = σp(B). Similarly, since A∗ = A = A2 and B∗ = B = B2, (ii)
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becomes A2 = N−1B2N implying thatA = N−1BN , i.e NA = BN and so σp(A) =

σp(B).

Remark 2.3.21 Corollary 2.3.20 shows that, for hermitian or projection operators, if

A
a.s∼ B, then they have equal spectrum.

We shows some results on the class of θ-operators in relation to almost similarity.

Definition 2.3.22 An operator A ∈ B(H) is called θ-operator if A∗ + A commutes

with A∗A. The class of θ-operators in B(H) is denoted by θ i.e. θ = {A ∈ B(H) :

[A∗A,A∗ + A] = 0}.

Proposition 2.3.23 [15, P roposition1.4] If A,B ∈ B(H) such that B ∈ θ and A
a.s∼

B, then A ∈ θ.

Proof By assumption there exists an invertible operatorN such thatA∗A = N−1(B∗B)N

and A∗ + A = N−1(B∗ +B)N . Thus, we have,

N−1(B∗B)N ][N−1(B∗ +B)N ] = A∗A(A∗ + A)......(i) and

N−1(B∗ +B)N ][N−1(B∗B)N ] = (A∗ + A)A∗A......(ii).

From (i) we have N−1B∗B(B∗ + B)N = A∗A(A∗ + A).....(iii) and from (ii) we have

N−1(B∗ +B)B∗BN = (A∗ +A)A∗A....(iv). Since B ∈ θ, the left hand side of (iii) and

(iv) are equal, which implies that the right hand side of (iii) and (iv) are equal. Thus

A ∈ θ.

Definition 2.3.24 [3] If A ∈ θ, the 4A∗A − (A∗ + A)2 ≥ 0. Define B = A + A∗ +

i(4A∗A− (A∗+A)2)1/2/2).Then B is normal,σ(A) is contained in the upper half plane,

B∗B = A∗A and B∗+B = A∗+A. In particular, (λI−A∗)(λI−A) = (λI−B∗)(λI−B)

for all λ.

Proposition 2.3.25 [15, P roposition2.44] If A ∈ B(H) then A ∈ θ if and only if

A
a.s∼ B for some normal operator B.
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Proof Let A ∈ θ, then 4A∗A− (A∗+A)2 ≥ 0 and the operator B = A+A∗+ i(4A∗A−

(A∗ + A)2)1/2/2) is normal with A∗A = B∗B and A∗ + A = B∗ + B by the above

definition. Thus A∗A = I−1(B∗B)I and A∗ + A = I−1(B∗ +B)I. Hence A
a.s∼ B.

Conversely, let A
a.s∼ B for some normal operator B. Then there exists an invertible

operator N such that A∗A = N−1(B∗B)N and A∗ + A = N−1(B∗ +B)N

A∗A(A∗ + A) = N−1B∗B(B∗ +B)N ........(i)

(A∗ + A)A∗A = N−1(B∗ +B)B∗BN ........(ii)

Since B is normal, B ∈ θ. Thus the right hand side of (i) and (ii) are equal which

implies that (A∗ + A)A∗A = A∗A(A∗ + A). Hence A ∈ θ.

Proposition 2.3.26 [15, P roposition2.5] If T ∈ B(H) is invertible and T
a.s∼ U for

some unitary operator U ∈ B(H), then T is unitary.

Proof Since T
a.s∼ U , there exists an invertible operatorN such that T ∗T = N−1(U∗U)N =

I. This implies that T ∗−1T ∗TT−1 = T ∗−1T−1. Since T ∗−1T ∗TT−1 = I, T ∗−1T−1 =

(TT ∗)−1 = I which implies that TT ∗ = I. Thus T ∗T = TT ∗ = I. Hence T is unitary.

Proposition 2.3.27 [15, P roposition2.6] An operator A ∈ B(H) is isometric if and

only if A
a.s∼ U for some unitary operator U.

Proof Let A be isometric, then A ∈ θ. Thus by Proposition 2.3.25 there is a normal

operator N where A
a.s∼ N . Since A

a.s∼ N , N is isometric by Proposition 2.3.11 (ii).

Thus N is unitary.

Conversely, if A
a.s∼ U for some unitary operator U then there exists an invertible

operator with N−1(A∗A)N = U∗U = I. This implies that A∗A = N−1N = I. Thus A

is isometric.

Proposition 2.3.28 Let A ∈ B(H) such that A is almost similar to an isometry T .

Then the direct summand of A are isometric.

Proof Since T is an isometry, by von Neumann-Wold decomposition [17], T = S+

⊕
U ,

where U is unitary and S+ is the unilateral shift. Since A
a.s∼ T , there exists an operator
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N such that

A∗A = N−1[(S+

⊕
U)∗(S+

⊕
U)]N

= N−1(S∗
+S+

⊕
U∗U)N

= N−1(I
⊕

I)N

Now, letA = A1

⊕
A2. ThenA∗A = (A∗

1A1

⊕
A∗

2A2). This shows that (A
∗
1A1

⊕
A∗

2A2) ∼

I
⊕

I. From this equation, it follows that A∗
iAi ∼ I, i = 1, 2. This means that there

exists an operator N such that A∗
iAi = N−1IN = I. Thus A∗

iAi = I. This proves that

direct summand of A are isometric.

Remark 2.3.29 Proposition 2.3.28 does not mean that A1 ∼ U and A2 ∼ S+. If the

relation of almost similarity is replaced with unitary equivalence in Proposition 2.3.38,

then the direct summands and sums are preserved by Corollary 2.1.4.

Corollary 2.3.30 Let A ∈ B(H) such that A = A1

⊕
A2, where A1 is unitary and A2

is c.n.u. If A is unitarily equivalent to a unitary T , the A1 is unitary.

bf Proof Since A is unitarily equivalent to a unitary T , there exists a unitary operator

U such that A = U−1TU . By the von Neumann-Wold decomposition , any isometry T

has the decomposition T = U
⊕

S+, where U is unitary and S+ is the unilateral shift.

Since in the hypotheses, T is unitary, then c.n.u. direct summand of T is missing. By

Corollary 2.1.4 , A1

⊕
A2

∼= T = U
⊕

S+. Thus A1
∼= U and A2 is missing. Hence the

result.

Proposition 2.3.31 If A,B ∈ B(H) are contractions such that A
a.s∼ B and B is

c.n.u, then A is c.n.u.

Proof By the Nagy-Foias-Lager decomposition for contraction [10] B = U
⊕

C, on

H = H1

⊕
H2, where U = B|H1 is the unitary part of B and C = B|H2 is the c.n.u

part of B. Since B is c,n,u., the unitary part U is missing or H1 = {0}. Without loss

of generality we suppose that B = C. Then

A∗A = N−1(B∗B)N = N−1(C∗C)N .
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This shows that A∗A ∼ C∗C. Now suppose A = A1

⊕
A2, where A1 is unitary and A2

is c.n.u. Then (A∗
1A1

⊕
A∗

2A2) ∼ C∗C. That is, (I
⊕

A∗
2A2) ∼ C∗C. This holds if and

only if the direct summand A1 is missing. That is, A = A2. Hence A is c.n.u.

Theorem 2.3.32 [15, Theorem2.3] If A ∈ B(H) is normal, then A
a.s∼ A∗.

Remark 2.3.33 The converse of this theorem is not true in general,

for consider A =

 0 0

1 0

 and N =

 0 1

1 0

 . By matrix computation,

A∗A = N−1(AA∗)N and A∗ + A = I−1(A∗ + A)I. That is, A
a.s∼ A∗ although A is not

normal.

Theorem 2.3.34 Let A,B ∈ B(H). Suppose A
a.s∼ B. Then A is quasi-similar to B

if and only if A and B are orthogonal projections.

Proof SinceA
a.s∼ B, there exists an invertible operatorN such thatA∗A = N−1(B∗B)N ......(*)

and A+ A∗ = N−1(B +B∗)N ............(**).

From (*) we have NA = BN , since A∗A = A and B∗B = B. A and B are projections

imply that A∗ = A and B∗ = B. Therefore (**) yields, 2A = N−12BN , that is,

A = N−1BN , which implies that, NA = BN , hence the result.

Corollary 2.3.35 If A,B ∈ B(H) are normal where H is a finite dimensional Hilbert

space such that A and B are quasi-similar, then A
a.s∼ B.

Proof Since A,B ∈ B(H) are quasi-similar, there exists quasi-affinities X ∈ B(H,K)

and Y ∈ B(K,H) such that XA = BX and BY = Y A...........................(1)

X and Y are both invertible and so XY and Y X are both invertible. Without

loss of generality, let N = XY or Y X Then XY ∈ {A}′ and Y X ∈ {B}′ i.e

AXY = XY A implying that A = XY A(XY )−1 and Y XB = BYX which implies

B = (Y X)−1BYX.......(2). Since XY is invertible, (XY )∗ = Y ∗X∗ and (XY )−1∗ =

((XY )∗)−1 = (Y ∗X∗)−1 = X∗−1Y ∗−1.

Now,A∗A = (X∗−1Y ∗−1A∗Y ∗X∗)XY A(XY )−1 = (X∗−1Y ∗−1Y ∗BX∗)XBY Y −1X−1

48



= (X∗−1BX∗)(XBX−1).

Since A and B are similar normal operators, they are unitarily equivalent, so that,

A∗A = (X∗−1BX∗)XBX−1 = XB∗BX−1..............(3)

Also, A+A∗ = (X∗−1BX∗)+(XBX−1) = XB∗X−1+XBX−1 = X(B∗+B)X−1......(4),that

is,

A∗A = N−1B∗BN and A∗ + A = N−1(B∗ + B)N where N = X−1 is an invertible

operator. This shows that A
a.s∼ B.

Remark 2.3.36 Corollary 2.2.52 gives a condition under which similarity implies

quasi-similarity which in turn implies almost similarity.
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Chapter 3

ON METRIC EQUIVALENCE OF

SOME OPERATORS

Recall that two operators A ∈ B(H) andB ∈ B(H) are said to be metrically equivalent,

denoted by A ∼m B, if ∥Ax∥ = ∥Bx∥, equivalently, | < Ax,Ax > |1/2 = | < Bx,Bx >

|1/2 for all x ∈ H, that is, A∗A = B∗B .

The numerical range W (T ) of an operator T ∈ B(H) is defined as W (T ) = {λ ∈ C :

λ =< Tx, x >, ∥x∥ = 1} and the numerical radius w(T ) of T is defined as w(T ) =

sup{|λ| : λ ∈ W (T )}.

An operator T is said to be normaloid if r(T ) = ∥T∥, (equivalently, ∥T n∥ = ∥T∥n). In

complex Hilbert space H, every normal operator is normaloid and so is every positive

operator.

Theorem 3.0.37 A necessary and sufficient condition that an operator T ∈ B(H) be

normal is that ∥Tx∥ = ∥T ∗x∥ for every x ∈ H.

Corollary 3.0.38 An operator T ∈ B(H) is normal if and only if T and T ∗ are

metrically equivalent.

Theorem 3.0.39 If T is a normal operator, then there exists a unitary operator U

such that T ∗ = UT .

50



Theorem 3.0.40 Let S and T be bounded linear operators on a Hilbert space H. If

T ∗T = S∗S, then there exists a partial isometry U such that the initial space M =

Ran(T ) and the final space N = Ran(S), and S = UT .

Thus, we have the following result.

Corollary 3.0.41 If S and T are metrically equivalent normal operators, then there

exists a unitary operator U such that S = UT .

Proof By hypotheses S∗S = T ∗T yields ∥Sx∥ = ∥Tx∥ for all x ∈ H. This means

that Tx1 = Tx2 implies that Sx1 = Sx2, for all x1, X2 ∈ H. Define an operator

V : Ran(T ) → Ran(S) by V Tx = Sx. Thus ∥Sx∥ = ∥Tx∥ = ∥V Tx∥. V can be

extended to V : Ran(T ) → Ran(S). Define Ux = V PHx for all x ∈ H, where PM

is the orthogonal projection onto M = RanT . Clearly U is a partial isometry with

initial space M and UTx = V PMTx = V Tx = V Tx = Sx for any x ∈ H. Since S and

T are normal, U is invertible and hence unitary, which proves the claim.

We note that the converse of corollary 3.0.41 is also true.

An operator T is said to be bounded below in case there exists a constant N > 0 such

that ∥Tx∥ ≥ N∥x∥ for all x ∈ H (or equivalently, if there exists a constant α > 0 such

that T ∗T ≥ αI)

Lemma 3.0.42 Let S and T be linear operators on a Hilbert space H. If S ∼m T ,

then:

(i)If T is isometric, then S is also isometric.

(ii)If T is a contraction , S is also a contraction.

(iii)If T is a partial isometry, then S is also a partial isometry.

(iv)If S and T are positive, then S = T .

(v)If S is bounded below, then T is also bounded below. Moreover, S is injective and

so is T . If in addition, S has a dense range, then both S and Tare invertible.

(i) The proof follows from S∗S = T ∗T = I.

(ii)This follows from ∥Sx∥ = ∥Tx∥ ≤ ∥x∥ for all x ∈ H.
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(iii)If T is a partial isometry, thenT ∗T is a projection. Since S ∼m T , we have that

S∗S = T ∗T . This shows that S∗S is a projection and hence S is a partial isometry.

(iv)Positivity of S and T implies that S and T are self-adjoint. Thus S2 = S∗S and

T 2 = T ∗T . By hypothesis, we have that S2 = T 2. Thus S = T .

(v) By hypothesis T ∗T = S∗S ≥ αI. This proves that T is bounded below. To prove

injectivity os S, let x ∈ Ker(S). Then

0 =< Sx, Sx >

=< x, S∗Sx >

≤< x, αIx >

= α < x, x >

= α∥x∥2 .

Since α > 0, we conclude that ∥x∥2 = 0 which consequently implies that ∥x∥ = 0

and hence x = 0. This shows that Ker(S) = 0. Thus, S is injective. By the same

argument T is injective. Injectivity of S and hence that of T implies that Ran(S) and

Ran(T ) are both closed linear subspaces of H. Thus, Ran(S) = ¯Ran(S) = H, which

proves that S is surjective. Thus, S is bijective and hence invertible. Invertibility of T

follows immediately from the hypothesis.

From Lemma 3.0.42, it is clear that if S is invertible and S is metrically equivalent

to T , then T is invertible. This follows from S∗ = T ∗TS−1. Invertibility of S implies

the invertibility of S∗ and hence the right hand side is also invertible., which implies

the invertibility of T ∗T and hence that of T . It is evident that if S ∼m T and S is a

symmetry(self-adjoint and unitary operator), then T is isometric.

Proposition 3.0.43 Let T ∈ B(H). If T ∗T ≥ I and TT ∗ ≥ I , then T is invertible.

Proof From the hypothesis T and T ∗ are both bounded below and hence injective and

invertible by Lemma 3.0.42.

The condition for T ∗T ≥ I in Propositon 3.0.43 cannot be dropped. In other words,

if T ∗T ≥ I and TT ∗ ̸≥ I, then T need not be invertible. To see this, let T be the

unilateral shift T : l2 → l2. Then T ∗T = I, but T is not invertible.
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Proposition 3.0.44 If T ∈ B(H) is normal and T ∗T ≥ I, then T is invertible.

Proof By hypothesis T ∗T = TT ∗ and T ∗T ≥ I. This implies that TT ∗ ≥ I. The

result follows from Proposition 3.0.43.

Proposition 3.0.45 If T ∈ B(H) is normal and bounded below, then T is invertible.

Proof From the hypothesis, both T and T ∗ are injective. That isKer(T ) = Ker(T ∗) =

{0}. Thus Ran(T )⊥ = Ker(T ∗) = {0}. This proves that Ran(T ) = H. Thus, T is

surjective. Combining the two results, we have that T is invertible.

Theorem 3.0.46 If T and S are metrically equivalent operators on H, then ∥S∥ =

∥T∥.

Proof The proof follows immediately from ∥T∥2 = ∥T ∗T∥ = ∥TT ∗∥ = ∥S∗S∥ =

∥SS∗∥ = ∥S∥2.

Remark 3.0.47 Note that the converse of theorem 3.0.44 is not always true. There

exists operators with the same norm which are not metrically equivalent.

Theorem 3.0.48 If T and S are metrically equivalent then w(|T |) = w(|S|).

Proof By theorem 3.0.44, we have that ∥T∥ = ∥S∥. Since T ∗T is self-adjoint, it is

normal and thus w(T ∗T ) = ∥T∥2 . Thus w(T ∗T ) = w(S∗S). Hence w(|T |) = w(|S|).

Remark 3.0.49 We note that unlike unitarily equivalent operators, metrically equiva-

lent operators S and T need not have equal numerical range. Note also that the spectrum

of S may be equal to the spectrum of T yet S and T are not metrically equivalent.

For instance, the operators represented by the matrices

S =

 0 1

0 0


and

T =

 0 0

1 0
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in C2 have the property that σ(S∗S) = σ(T ∗T ) and σ(S) = σ(T ) but S and T are not

metrically equivalent operators. Similarly, two operators may be metrically equivalent

yet have unequal spectra. For example, the unilateral shift and identity operators

on H = l2 are metrically equivalent but have unequal spectra. Clary [4] proved that

quasi-similar hyponormal operators have equal spectra. This claim was supported by

Douglas ([6, Lemma 4.1, p.23]) who proved using the Putnam- Fuglede commutativity

theorem that quasi-similar normal operators are unitarily equivalent and hence have

equal spectra.

Proposition 3.0.50 Metrically equivalent operators S and T need not have equal spec-

tra.

Remark 3.0.51 It is also true that metrically equivalent normal operators S and T

need not have equal spectra.

Consider,,for instance, the operators represented by the matrices

S =

 0 1

1 0


and

T =

 1 0

0 1


in C2. A simple computation shows that σ(S) = {−1, 1} and σ(T ) = {1}. It is clear

that W (S) ̸= W (T ). Thus, metric equivalence does not preserve numerical range.

Theorem 3.0.52 If S and T are metrically equivalent normaloid operators, then r(S) =

r(T ).

Proof From hypothesis, we have that r(S) = ∥S∥ = ∥T∥ = r(T ).

The converse of Theorem 3.0.50 is not generally true. The operators represented by

the matrices

S =

 0 1

0 0
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and

T =

 0 0

1 0


in C2 have the property that r(S) = r(T ) = 0, but a simple computation shows that

S and T are not metrically equivalent. This is because S and T are not normal and

hence not normaloid. However, we note that S and T have the same numerical range,

which in this case is a closed disk centered at 0 and of radius 1/2.

Theorem 3.0.53 If S and T are metrically equivalent normal operators on H, with

respect to polar decomposition S = U |S| and T = V |T |, then |S| = |T |.

Proof By hypothesis S∗S = T ∗T which implies that |S|U∗U |S| = |T |V ∗V |T |. Since S

and T are normal. U and V are unitaries and hence we have that |S|2 = |T |2. Since

|S|2 and |T |2 are positive, they have unique square roots |S| and |T |, respectively.

Therefore |S| = |T |.

Theorem 3.0.54 Direct summands of metrically equivalent operators are metrically

equivalent.

Proof Suppose that S ∼m T and that S = S1

⊕
S2 and T = T1

⊕
T2, where S1 and T1

have property ”P” and S2 and T2 are devoid of property ”P”. A simple computation

shows that S∗
i Si = T ∗

i Ti, i = 1, 2. This proves the claim.

Theorem 3.0.55 . Let T ∈ B(H). If N ∈ B(H) is normal and NT = TN , then

N∗T = TN∗.

Theorem 3.0.56 Let S and T be metrically equivalent operators on a Hilbert space H

and ST = TS. If T is normal, then S is quasi-normal.

Proof Suppose that S and T are metrically equivalent operators, T is normal and

ST = TS. Post-multiplying by T ∗ and using the definition of metric equivalence and

Theorem 3.0.35 (Fuglede commutativity theorem), we have that S∗SS = T ∗TS =

T ∗ST = ST ∗T = SS∗S. Thus S is quasi-normal.
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Corollary 3.0.57 If S ∈ B(H) is a Fredholm operator and S is metrically equivalent

to T ∈ B(H), then T is Fredholm.

Proof Suppose S is Fredholm and S∗S = T ∗T . The Ran(T ) must be closed since

Ran(S) is closed. Since Ker(S) = Ker(S∗S), and Ker(S∗) = Ker(SS∗), we see that

Ker(S) is isomorphic to Ker(T ) and Ker(S∗) is isomorphic to Ker(T ∗), which proves

the claim.

Remark 3.0.58 Corollary 3.0.55 shows that metric equivalence of operators preserves

Fredholmness. We note that if S is metrically equivalent to S, the ind(S) need not be

equal to ind(T ), unless S is Fredholm.

Theorem 3.0.59 Let A ∈ B(H) and M be a subspace of H. If P is the projection of

H onto M, then the restriction of A on M is metrically equivalent to PA.

Proof Let x ∈ M. Then < PAx, x >=< Ax, Px >=< Ax, x >, and hence the claim

follows.

Theorem 3.0.60 If T is a normal operator and S is metrically equivalent to T , then

S is normal.

Proof Since S is metrically equivalent to T and T is normal, we have:

S∗S = T ∗T = TT ∗ = SS∗, hence the proof.

A part of an operator is a restriction of it to an invariant subspace. An extension of

an operator A ∈ B(H) is an operator of the form

T =

 A B

0 C



acting on H0 = H
⊕

K, where B ∈ B(K,H) and C ∈ B(K). Equivalently, A =

P |HT |H, where P is the projection of H0 onto H. Alternatively, an operator T is an
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extension of A if A is a part of T . If this is the case, A is called the compression of T

to H. If M = H is T -reducing, then T has a block matrix representation

T =

 A 0

0 C


with respect to the decomposition H0 = M

⊕
M⊥ and write T = A

⊕
C. In this

case, we say that T is a direct sum of the operator A and C (see [17,311 section 0.5

pg. 18]).

Theorem 3.0.61 If S and T are metrically equivalent operators on H and S has an

extension Ŝ, then T has an extension T̂ where Ŝ and T̂ are metrically equivalent.

Proof Suppose S has an extension Ŝ ∈ B(Ĥ) with H ⊆ Ĥ. Then S = P |HŜ|H, where

P is the projection of Ĥ onto H. By hypothesis, ∥Sx∥ = ∥Tx∥, for any x ∈ H. The

existence of T̂ is thus quaranteed. We now prove that the extensions are metrically

equivalent.

Now suppose that T has an extension T̂ . Then T = Q|HT̂ |H, where Q is the projection

of Ĥ. Thus ∥Tx∥ = ∥Q|HŜ|H x∥ = ∥Tx∥ = ∥Sx∥ = ∥P |HŜ|H x∥ = ∥Ŝx∥ . Hence the

prove.

3.1 Relationship between metric equivalence of op-

erators and other equivalence relations

Theorem 3.1.1 Let S and T be in B(H). If S and T are unitarily equivalent, then

they are metrically equivalent.

Remark 3.1.2 The converse of Theorem 3.1.1 is not generally true.

Consider the operators in C2 represented by the matrices

S =

 1 1

1 1
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and

T =

 −1 −1

−1 −1



A simple computation shows that S∗S = T ∗T =

 2 2

2 2

 which means that S and T

are metrically equivalent. However, σ(S) = {0, 2} ≠ {0,−2} = σ(T ). This shows that

S and T are not similar, and hence cannot be metrically equivalent.

Question 2 When does metric equivalence imply unitary equivalence?

Theorem 3.1.3 If S and T are metrically equivalent projections, then they are uni-

tarily equivalent.

Proof Since S is metrically equivalent to T , from Corollary 3.0.39 , there is a unitary

operator such that S = UT . This together with the fact that both S and T are

projections, we have that

S = S2 = S∗S = T ∗T = UTT ∗U∗ = UT 2U∗ = UTU∗, which shows that S and T are

unitarily equivalent.

Example 3.1.4 Let S, T ∈ B(l2(N)) be defined as follows:

S(x1, x2, x3, ...) = (x1, x1, x2, x3, ...)

and

T (x1, x2, x3, ... = (0, x1, x2, x3, ...))

.

A simple computation shows that S and T are not metrically equivalent and hence are

not unitarily equivalent.
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Remark 3.1.5 Note that unitary and metric equivalence are norm-preserving while

similarity is not norm-preserving.

Definition 3.1.6 Linear operators S and T acting on a Hilbert space H are said to

be nearly equivalent if there exists a unitary operator U such that S∗S = U∗T ∗TU or

equivalently, if S∗S and T ∗T are unitarily equivalent.

This concept was introduced by Othman[26]. It is claimed in [26 ] that unitary equiv-

alence implies near equivalence and an example is provided to prove that the converse

is not generally true. That is, near equivalence of operators need not imply unitary

equivalence of operators and need not imply similarity of operators. For example, the

unilateral shift and the identity operator. Clearly these operators are nearly equivalent

but not unitarily equivalent. It is also clear that these operators are not similar.

Let T ∈ B(H). We denote by Re(T ) and IRe(T ) the class of operators nearly equiva-

lent to T and metrically equivalent to T , respectively.

That is,

Re(T ) = {S ∈ B(H) : S∗S = U∗T ∗TU}

and

IRe(T ) = {S ∈ B(H) : S∗S = T ∗T}

.

Clearly

IRe(T ) ̸⊆ ReT

.

Theorem 3.1.7 S ∈ Re(T ) if and only if for some unitary operator U , Sx = TUx

for all x ∈ H.

Corollary 3.1.8 If S ∈ Re(T ), the ∥S∥ = ∥T∥.
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Theorem 3.1.9 Let S and T be metrically equivalent operators in B(H). Then S and

T are nearly equivalent if and only if ∥S∥ = ∥T∥.

Theorem 3.1.10 Two injective weighted shifts Sen = αnen+1 and Ten = βnen+1 in a

complex Hilbert space H with orthonormal basis {en} are metrically equivalent if and

only if |αn| = |βn|, for n = 1, 2, 3, ....

Proof S∗S = T ∗T implies that α∗
nαn = β∗

nβn, which implies that |αn|2 = |βn|2 and

hence |αn| = |βn|. The converse is trivial.

Theorem 3.1.11 Let S and T be metrically equivalent operators in B(H). The S and

T are unitarily equivalent if and only if they are projection operators.

Corollary 3.1.12 If S and T are idempotent and positive operators acting on H, then

metric equivalence of S and T is equivalent to unitary equivalence of S and T .

Corollary 3.1.13 If P and Q are metrically equivalent projections in B(H) and R ∈

B(H) is a projection, then PR and QR are metrically equivalent.

bf Proof By hypothesis, P ∗P = Q∗Q. Thus (PR)∗(PR) = R∗P ∗PR = R∗Q∗QR =

(QR)∗(QR).

Remark 3.1.14 We note that the conclusion of Corollary 3.1.13 is false if R is not a

projection.

Proposition 3.1.15 Let A,B ∈ B(H). Then;

(i) If A
n:e≈ 0, then A = 0.

(ii)If A
n:e
≈ B and B is isometric, then A is isometric.

Proof (i) A
n:e
≈ 0 implies that A∗A = U0U∗, which implies that A = 0.

(ii) A
n:e
≈ B implies that A∗A = UB∗BU∗. Since B is isometric, we have B∗B = I.

Thus, A∗A = UIU∗ = I. Hence A is isometric.

Question 3 . When does near equivalence imply unitary equivalence?
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Theorem 3.1.16 If A and B are nearly equivalent projections, then they are unitarily

equivalent.

Proof Since A is nearly equivalent to B, we have A∗A = UB∗BU∗ ......(*). Using the

fact that A and B are projections we get, A = UBU∗, which shows that A and B are

unitarily equivalent.

Remark 3.1.17 Note that near equivalence implies metric equivalence if the unitary

operator U is the identity operator.

Proposition 3.1.18 Let A,B ∈ B(H);

(i)If A
n.e∼ 0, then A = 0.

(ii)If A
n.e∼ B and B is isometric, then A is isometric.

Proof

(i) A
n.e∼ 0 implies that A∗A = U0U∗ = 0. Thus A = 0.

(ii)A
n.e∼ B implies that A∗A = UB∗BU∗ =. Since B is isometric, B∗B = I. Thus we

have A∗A = UIU∗ = I. Hence A is isometric.

Proposition 3.1.19 Let T ∼m S. If T is A-self-adjoint operator, then T 2 ∼ S2 if S

is self adjoint.

Proof Since T and S are metrically equivalent and T is A-self-adjoint, we have T ∗T =

ATA−1T = AT 2A−1 = S∗S . Thus T 2 = A−1S∗SA = A−1S2A. Hence the prove.

Remark 3.1.20 We note from Proposition 3.1.19 that if T and S are metrically equiv-

alent and T is A-self-adjoint, then S is A-self-adjoint if both T and S are projections.

Theorem 3.1.21 If A and B are nearly equivalent projections, where A and B are

self adjoint, then A2 ∼= B2.

Proof Since A and B are self adjoint, we have A2 = A∗A = UB∗BU∗ = UB2U∗.

Hence the prove.
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Proposition 3.1.22 If A,B ∈ B(H) such that A
n.e∼ B and A is partially isometric

then so is B.

Proof A
n.e∼ B implies that there exists a unitary operator U such that B∗B =

U(A∗A)U∗. Since A is partially isometric,A∗A is a projection ((A∗A)2 = A∗A), which

implies that [U(B∗B)U∗][U(B∗B)U∗] = U(B∗B)U∗. Thus we have U(B∗BB∗B)U∗ =

U(B∗B)U∗ which implies that (B∗B)2 = B∗B. This shows that B∗B is a projection,

which implies that B is partially isometric.
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Chapter 4

ON UNITARY QUASI-

EQUIVALENCE OF OPERATORS

Two operators, S, T ∈ B(H)are said to be unitarily quasi-equivalent if there exists a

unitary operator U such that T ∗T = US∗SU and TT ∗ = USS∗U and write S
u:q:e
≈

T . ClearlyS, T ∈ B(H) are unitarily quasi-equivalent if S∗S and T ∗T are unitarily

equivalent andSS∗ and TT ∗ are unitarily equivalent. Two operators S, T ∈ B(H) are

said to be absolutely equivalent if both the absolute value of the operators are unitarily

equivalent. That is, if |S| = U |T |U∗.

Remark 4.0.23 ; (i) Note that absolute equivalence implies near-equivalence(see[26]).

(ii)Note also that any two unitary operators are absolutely equivalent.

The following result shows the link between unitary equivalence and unitarity quasi-

equivalence.

Theorem 4.0.24 If S, T be unitarily equivalent operators in B(H), then they are uni-

tarily quasi-equivalent.

Remark 4.0.25 Note that the converse is not true in general unless S, T are similar

normal operators. Thus we have the following theorem which that normality is invariant

under unitarily quasi-equivalent operators.
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Theorem 4.0.26 Let S, T be unitarily quasi-equivalent. Then T is normal if and only

if S is normal.

Proof: Suppose S
u:q:e
≈ T and suppose S is normal. Then T ∗T = US∗SU∗ and

TT ∗ = USS∗U∗. Thus T ∗T = US∗SU∗ = USS∗U∗ = TT ∗. Similarly, suppose

T
u:q:e
≈ S and T is normal. Then S∗S = UT ∗TU∗ and SS∗ = UTT ∗U∗. Thus S∗S =

UT ∗TU∗ = UTT ∗U∗ = SS∗. Hence the prove.

Remark 4.0.27 Clearly S, T are unitarily quasi-equivalent if and only if T ∗TTT ∗ =

U(S∗SSS∗)U∗; that is if T ∗T − TT ∗ is unitarily equivalent to S∗S − SS∗.

From this inequality, we have the following theorem which shows that unitary quasi-

equivalence preserves hyponormality.

Theorem 4.0.28 Suppose S, T are unitarily quasi-equivalent. Then S, T are hyponor-

mal if and only if T ∗T − TT ∗ is unitarily equivalent to S∗S − SS∗.

We now show that unitary quasi-equivalence is an equivalence relation.

Theorem 4.0.29 Unitary quasi-equivalence is an equivalence relation.

Proof

(i) Clearly T
u:q:e
≈ T since T ∗T = IT ∗TI∗ and TT ∗ = ITT ∗I∗, by taking U = I.

(ii) If S
u:q:e
≈ T , then S∗S = UT ∗TU∗ and SS∗ = UTT ∗U∗. Pre-multiplying and

post-multiplying each of these equations by U∗ and U , respectively, we have that

T ∗T = US∗SU∗ and TT ∗ = USS∗U∗. This proves that T
u:q:e
≈ S.

(iii) We prove that if T
u:q:e
≈ S and S

u:q:e
≈ A then T

u:q:e
≈ A. T ∗T = US∗SU∗

and TT ∗ = USS∗U∗ and S∗S = WA∗AW ∗ and SS∗ = WAA∗W ∗, where U,W

are unitary operators. Then T ∗T = US∗SU∗ = UWA∗AW ∗U∗ = ZA∗AZ∗, where

Z = UW is unitary since product of unitary operators is a unitary operator. Also

TT ∗ = USS∗U∗ = UWAA∗W ∗U∗ = ZAA∗Z∗. This proves that T
u:q:e
≈ A. Thus uni-

tary quasi-equivalence is an equivalence relation on B(H).

Unitary quasi-equivalence was introduced by [22] and were also investigated by [26]

under the near equivalence relation.
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Remark 4.0.30 It is stated in [26] that T
u:q:e
≈ S if and only if T ∗T

u:e
≈ S∗S and

TT ∗ u:e
≈ SS∗. Thus, we have the following result.

Corollary 4.0.31 Let T ∈ B(H) be unitarily quasi-equivalent to T ∗. Then T is nor-

mal.

Theorem 4.0.32 Let T
u:q:e
≈ S. If T ∗T is invertible, then S∗S is also invertible.

Proof Invertibility of T implies invertibility of T ∗T . The result follows from the unitary

equivalence of T ∗T and S∗S. There are operators S such that S∗S is invertible but S

is not invertible. An example is the unilateral shift operator on ℓ2(N). Invertibility of

S∗S implies invertibility of S if and only if S and S∗ are injective. That is if and only

if Ker(S) = Ker(S∗) = {0}.

Corollary 4.0.33 Let T
u:q:e
≈ S. If T is invertible, then S∗S and S∗S are also invert-

ible.

Remark 4.0.34 (i) Note that the converse of this corollary need not be true as example

above shows.

(ii) Note also that, if T
u:q:e
≈ S, then invertibility of T is sufficient for the invertibility

of S.

(iii) Note also that Corollary 4.0.32 says that invertibility is invariant under quasi-

unitary equivalence of operators.

Corollary 4.0.35 If T
u:q:e
≈ S and T is invertible, then S is invertible.

Proposition 4.0.36 Let A ∈ B(H). Then;

(i). Ker(A∗A) = Ker(A)

(ii). Ran(AA∗) = Ran(A).

Proof

(i). Ker(A∗A) = {x ∈ H : A∗Ax = 0} = {x ∈ H : Ax = 0} = Ker(A).
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(ii). Ran(AA∗) = {y ∈ H : y = AA∗x, x ∈ H} = {y ∈ H : y = A(A∗x)} = Ran(A).

It was observed in [24] that the class of unitarily quasi-equivalent operators contains

the class of metrically equivalent operators. From ([24], Lemma 2.7(v)), it is proved

that metric equivalence preserves invertibility.

Theorem 4.0.37 Suppose T, S are unitarily quasi-equivalent self adjoint operators,

then T, S are nearly equivalent.

Proof Since T, S are unitarily quasi-equivalent,T ∗T = US∗SU∗ and TT ∗ = USS∗U∗.

But, T, S are self adjoint operators, thus we have, T ∗T = TT ∗ = USS∗U∗ = US∗SU∗.

Hence the result.

Remark 4.0.38 (i) In Theorem 4.0.37, if the operators happen to be projections, then

we regain the case of unitary equivalence.

(ii) Note also that, using the same theorem, if we let the unitary operatorU to be the

identity operator, the we obtain metric equivalence.

Thus, we have the following inclusion;

{metric equivalence}⊂ {near equivalence} ⊂ {quasi unitary equivalence}

Note that S, T unitarily quasi-equivalent implies that T ∗T − TT ∗ = U(S∗S − SS∗)U∗.

Theorem 4.0.39 T is unitarily quasi-equivalent to a unitary operator V if and only

if T is a unitary operator.

Proof LetV be a unitary operator. T
u:q:e
≈ V if and only if T ∗T = U∗V ∗V U = V ∗V = I

and TT ∗ = UV V ∗U∗ = I. This proves the claim.

Note that, the identity operator and the unilateral shift operator in ℓ2 cannot be almost

similar.

Definition 4.0.40 Two operators are almost unitarily equivalent (a.u.e) if A∗A =

U∗B∗BU and A∗ + A = U∗(B∗ +B)U , where U is a unitary operator.

Note that almost unitary equivalence implies almost similarity of operators.

Note that, if T
u:q:e
≈ S implies W (T ∗T ) = W (S∗S) but W (T ) need not coincide with

W (S).
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Theorem 4.0.41 [24, Corollary2.3] An operator T ∈ B(H) is normal if and only if

T and T ∗ are metrically equivalent.

Theorem 4.0.42 ([24], Corollary 2.14) If T and S are metrically equivalent operators

on H, then ∥S∥ = ∥T∥.

Remark 4.0.43 Theorem 4.0.42 can also be extended to the case when S and T are

unitarily quasi-equivalent.

Theorem 4.0.44 If T and S are unitarily quasi-equivalent operators on H, then ∥S∥ =

∥T∥.

Proof By definition, ∥T∥2 = ∥T ∗T∥ = ∥US∗SU∗∥ = ∥S∗S∥ = ∥S∥2. Similarly,

∥T ∗∥2 = ∥TT ∗∥ = ∥USS∗U∗∥ = ∥SS∗∥ = ∥S∗∥2.

The following result shows that unitarily quasi- eqivalence relation does not preserve

spectrum.

Proposition 4.0.45 Unitarily quasi-equivalent operators need not have equal spectra.

Consider, for instance, the operators represented by the matrices

S =

 0 1

1 0


and

T =

 1 0

1 0


in C2. A simple computation shows S and T are unitarily quasi-equivalent with this

equivalence implemented by the unitary operator U = I, the identity operator on H

but σ(S) = {1, 1} and σ(T ) = {1}.

Note also that W (S) ̸= W (T ).
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4.1 Relationship between unitary quasi-equivalence

and other equivalence relations

Theorem 4.1.1 If Sand T are unitarily equivalent then they are unitarily quasi-

equivalent.

The converse of Theorem 4.1.1 is not generally true. Consider the operators represented

by the matrices

S =

 1 1

1 1


and

T =

 −1 −1

−1 −1


. A simple computation shows that S and T are unitarily quasi-equivalent with the

equivalence implemented by the unitary operator U = I. However,, σ(S) = {0, 2} ̸=

{0, 2} = σ(T ). This shows that S and T are not similar, and hence cannot be unitarily

equivalent.

Question 4 When does does unitary quasi-equivalence imply unitary equivalence?

Theorem 4.1.2 If S and T both self-adjoint and unitarily quasi-equivalent operators,

then T 2 and S2 are unitarily equivalent.

Proof By definition T ∗T = US∗SU∗ and TT ∗ = USS∗U∗. Using the self-adjointness

of S and T we haveT 2 = US2U∗, which proves the claim.

Corollary 4.1.3 If S and T are unitarily quasi-equivalent projections, then T and S

are unitarily equivalent.

Proof The proof follows from Theorem 4.1.2 and the fact that T and S are idempotent.

Theorem 4.1.4 If S and T are unitarily quasi-equivalent and T is skew-adjoint, then

S is normal.
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4.2 Unitary quasi-equivalence and higher classes

of operators

Theorem 4.2.1 If S, T are unitarily quasi-equivalent and T is binormal, then S is

binormal.

Proof A simple computation shows that US∗S2S∗U∗ = USS∗2SU∗, which can be

written nicely as (S∗S)(SS∗) = (SS∗)(S∗S). This proves the claim.

Corollary 4.2.2 If S, T are unitarily quasi-equivalent and T is quasi-normal, then S

is quasi-normal.

Proof The proof follows immediately from the fact every quasi-normal operator is

binormal.

Theorem 4.2.3 If S, T are unitarily quasi-equivalent and T is hyponormal, then S is

hyponormal.

This result says that unitary quasi-equivalence preserves hyponormality of operators

in Hilbert spaces.

4.3 Unitary quasi-equivalence and some useful sub-

spaces of a Hilbert space

Theorem 4.3.1 If S, T are unitarily quasi-equivalent then Ker(T ) = Ker(S) = 0 and

Ran(T ) = H.

ProofUsing Proposition 4.0.33, we have thatKer(T ∗T ) = Ker(T ) = Ker(US∗SU∗) =

Ker(U∗) = 0,Ker(T ∗TU) = Ker(U) = Ker(US∗S) = Ker(S) = {0} andRan(TT ∗) =

Ran(T ) = Ran(USS∗U) = Ran(U) = H.

Theorem 4.3.2 If S, T are unitarily quasi-equivalent then σ(|T |2) = σ(|S|2) and

σ(|T ∗|2) = σ(|S∗|2) and all these spectra are real.
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Proof This follows easily from the definition and invariance of spectrum under unitary

equivalence.

Remark 4.3.3 Note that σ(|T |2) real does not imply that σ(T ) is real.

Consider

T =

 i 0

0 i


. Clearly σ(|T |2) = {1} ⊂ R but σ(T ) = {i} ̸∈ R.

Recall that, for a contraction T , we have thatT ∈ C00 if and only if lim{T ∗nT n} =

lim{T nT ∗n} = 0 as n → ∞.

Theorem 4.3.4 If S, T are unitarily quasi-equivalent contractions and T ∈ C00, then

S ∈ C00.

Remark 4.3.5 Note that unitary quasi-equivalence does not preserve the trace of an

operator matrix.

Consider

A =

 1 1

1 1


and

A =

 −1 −1

−1 −1


. A simple computation shows that

T ∗T = S∗S =

 2 2

2 2


, meaning that S and T are metrically equivalent and hence, unitarily quasi-equivalent.

However, 2 = tr(S) ̸= tr(T ) = 2.

Recall that, an operator T is said to be skew-normal if T 2 = T ∗2. Skew-normal

operators were introduced by [3] and were also studied by [2]. Note that if T skew-

normal, then T 2 is normal. Note also that if T is normal, then T 2 is normal.
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Theorem 4.3.6 Let S, T be unitarily quasi-equivalent. If T is self-adjoint and skew-

normal, then S is normal.

Proof Computation yields T 2 = US∗SU∗ = USS∗U∗, which proves that S∗S = SS∗.

This establishes the claim.

Theorem 4.3.7 Let T be such that T 2 is unitarily quasi-equivalent to T ∗. If T 2 is

normal, then T is normal.

Proof We have T 2∗T 2 = UTT ∗U∗ and T 2T 2∗ = UT ∗TU∗. Since T 2 is normal we have

that UTT ∗U∗ = UT ∗TU∗ and hence T ∗T = TT ∗.

An operator T is said to be a sub-projection if T 2 = T ∗.

Theorem 4.3.8 Let S, T be unitarily quasi-equivalent. If T is a sub-projection then

S is normal.

Proof A simple computation gives S∗S = UT ∗TU∗ = UT 3U∗ = UTT ∗U∗ = SS∗.

This establishes the claim.
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Chapter 5

CONCLUSION AND

RECOMMENDATION

5.1 Conclusion

Diagonal operators have simple structures. This property makes them easier to study.

Linear operators which are not diagonalizable can at least be expressed as direct sum

decomposition of diagonalizable operators. This is not the case for linear operators

acting on a Hilbert space since these operators generally are neither diagonalizable nor

reducible. However, we have seen that every normal operator is either diagonalizable

or similar to a known diagonalizable operator. Also, every reducible operator can be

expressed as a direct sum decomposition of normal and completely non-normal opera-

tor.

For any operator T , the spectrum of T contains all the eigenvalues of T . Moreover, if

T is bounded, then both the continuous and residual spectra of T are empty sets. In

this case, the spectrum of T coincides with the point spectrum of T .

In this project, we have seen that unitary equivalence and similarity are equivalence

relation. Furthermore, the natural concept of equivalence between Hilbert space op-

erators is unitary equivalence which is stronger that similarity. A result showing that
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two similar operators have equal spectra has been discussed.

More so, unitary equivalence results for invariant subspaces and normal operators

are proved. For similar normal operators, we have discussed the Fuglede-Putnam-

Rosenblum theorem that has made the study of similarity in normal operators easier.

We see that if T is a normal operator and and S is unitarily equivalent to T , then S is

normal.

It has also been noted that direct sums and summands are preserved under unitary

equivalence.

By introducing the notion of quasisimilarity of operators, ( which is sharpened to simi-

larity in finite dimensional spaces, but in infinite dimensional spaces it is a much weaker

relation), we have managed to show than quasisimilarity is an equivalence relation.

Concerning the question of existence of invariant subspaces, we have linked invariant

subspaces and hyperinvariant subspaces with quasisimilarity, where it has been ob-

served that similarity preserves non trivial invariant subspaces while quasisimilarity

preserves non-trivial hyperinvariant subspaces.

It has further been shown that almost similarity is an equivalence relation.

A result showing that if A,B ∈ B(H) such that A
a.s∼ B, and if A is compact, then so

is B has been discussed.

It has also been noted that, if A ∈ B(H) such that, A
a.s∼ S+, where S+ denotes the

unilateral shift of finite multiplicity, then, A is a completely non-unitary contraction

such that Re(A) ∼ Q, where Q is a quasi-diagonal operator and Re(A) denotes the

real part of A. This shows that quasidiagonality is not preserved under similarity .

An operator A ∈ B(H) is called θ-operator if A∗ + A commutes with A∗A. The class

of θ-operators in B(H) is denoted by θ, that is, θ = {A ∈ B(H) : [A∗A,A∗ + A] = 0}.

It has also been shown that if A,B ∈ B(H) such that B ∈ θ and A
a.s∼ B, then A ∈ θ.

In chapter three, it has for instance been observed that, if T and S are metrically

equivalent operators on H, then ∥S∥ = ∥T∥ but the converse is not always true. There

exists operators with the same norm which are not metrically equivalent.

For T and S are metrically equivalent then w(|T |) = w(|S|). We note that unlike
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unitarily equivalent operators, metrically equivalent operators S and T need not have

equal numerical range. Note also that the spectrum of S may be equal to the spectrum

of T yet S and T are not metrically equivalent. Thus metrically equivalent operators S

and T need not have equal spectra. The same applies for metrically equivalent normal

operators.

If S ∈ B(H) is a Fredholm operator and S is metrically equivalent to T ∈ B(H), then

T is Fredholm has been investigated hence the conclusion that metric equivalence of

operators preserves Fredholmness has been reached.

In addition, we have also succeeded in showing that, if T ∼m S and T is A-self-adjoint

operator, then T 2 ∼ S2 if S is self adjoint.

We have noted from Proposition 3.1.19 that if T and S are metrically equivalent and

T is A-self-adjoint, then S is A-self-adjoint if both T and S are projections.

In chapter five, we have come up with a new class of equivalence relation known as

unitarily quasi-equivalent relation. We have gone further and showed that unitarily

quasi-equivalent relation is in fact an equivalence relation.

A result showing that unitarily equivalent operators are unitarily quasi-equivalent has

been proved. Unfortunately, it has been asserted that the converse is not true in gen-

eral, unless in cases when S, T are similar normal operators.

Furthermore, it has been shown that if T, S are unitarily quasi equivalent self adjoint

operators, where the unitary operator U is symmetric, then T, S are nearly equivalent.

Thus, the following series of inclusions has been confirmed to be true; {metric equiv-

alence} ⊂ {near equivalence} ⊂ {quasi unitary equivalence}

Concerning the trace of two operators which are unitarily quasi-equivalent, we noticed

that unitary quasi-equivalence does not preserve the trace of an operator matrix and

an example has been given to support this statement.
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5.2 Recommendation

In conclusion, we have seen that, every pair of unitarily equivalent operators are similar

and any pair of similar operators are quasisimilar. That is, unitarily equivalence implies

similarity which implies quasisimilarity.

However, we have failed to failed to conclude whether metric equivalence implies almost

similarity or the other way round. Therefore,coming up with sufficient conditions under

which metric equivalence implies almost similarity or under which almost similarity

implies metric equivalence can be recommended as a another field for future research.
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