

UNIVERSITY OF NAIROBI

SCHOOL OF COMPUTING AND INFORMATICS

JOB SCHEDULING IN GRID COMPUTING USING SIMULATED ANNEALING

BY

SOLOMON THUO MAINA

A RESEARCH REPORT SUBMITTED IN PARTIAL FULFILMENT FOR THE REQUIREMENTS FOR THE

AWARD OF THE MASTER OF SCIENCE IN COMPUTER SCIENCE

AUGUST 2012

i

DECLARATION
I certify that the research work presented in this report is my original work and has not been

submitted for any other academic award at any other university. All work in this research

project is my own with exception of acknowledgement of mentioned research work carried by

other researchers.

Signature………………………………… Date………………………………….

Solomon Thuo Maina

P58/8961/2006

This report has been submitted in partial fulfillment of the requirements for the Masters of

Science Degree in Computer Science of the University of Nairobi with my approval as the

University Supervisor.

Signature………………………………… Date………………………………….

Dr. Elisha Opiyo

Project Supervisor

School of Computing and Informatics

University of Nairobi

ii

ACKNOWLEDGEMENTS
I would like to specially thank Dr. Elisha Opiyo for his dedicated supervision and immense

patience with me as I undertook this study.

I would also like to thank my family, in particular my dear wife, and friends for their support

and understanding during this period of study.

iii

ABSTRACT
Grid computing has emerged as a platform to aggregate heterogeneous resources into a virtual

computing resource that can provide non trivial quality of service to end users. A Key problem

in grid computing platforms is the mapping of tasks to resources in order to achieve higher

performance and economic use of resources. Grid scheduling is a complex problem and has

been proved to be an NP Hard problem. Research has been conducted to study intensely the

challenges of scheduling in Grid computing environments. In this research we present a model

that continuously improves the Makespan, the time spent from the start of the first task in a

job to the end of the last task of the job. We use the Alchemi Grid computing platform to

implement and evaluate the model. The underlying scheduling algorithm in the model is the

simulated annealing algorithm. We have developed a prototype of the model and embedded it

in the Alchemi Grid platform as an alternative scheduling module to the default scheduling

module that utilizes the First-In-First-Out scheduling algorithm. We have evaluated the model

against the default scheduling model in Alchemi and found it to produce better scheduling

performance (lower makespans).

iv

TABLE OF CONTENTS

DECLARATION .. i

ACKNOWLEDGEMENTS ... ii

ABSTRACT ... iii

Table of Contents ... iv

1 INTRODUCTION ... 1

1.1 BACKGROUND ... 1

1.2 THE PROBLEM STATEMENT .. 2

1.3 THE SIGNIFICANCE OF THE STUDY .. 2

1.4 RESEARCH OBJECTIVES ... 3

1.5 SUMMARY ... 3

2 LITERATURE REVIEW ... 4

2.1 THE GRID ... 4

2.2 TYPES OF GRIDS... 5

2.3 Computational Grids ... 5

2.4 Data Grids ... 5

2.5 Network Grids ... 5

2.6 ARCHITECTURE OF A GRID .. 5

2.6.1 Fabric Layer ... 6

2.6.2 Connectivity Layer ... 6

2.6.3 Resource Layer .. 7

2.6.4 Collective Layer ... 7

2.6.5 Application Layer .. 7

2.7 GRID SCHEDULING .. 7

2.7.1 Components of a Grid Scheduler .. 8

2.7.2 Stages of Grid Scheduling.. 10

2.7.3 The Grid Scheduling Problem .. 13

2.8 GRID SCHEDULING ALGORITHMS ... 15

2.8.1 Objective Functions... 15

2.8.2 Taxonomy of Grid Scheduling Algorithms ... 17

v

2.8.3 Task Dependencies ... 21

2.8.4 Non Traditional Approaches to Grid Scheduling ... 24

2.8.5 Scheduling Under Quality of Service Constraints ... 29

2.8.6 Strategies for Managing Dynamic Resource Performance ... 30

2.9 MIDDLEWARE FOR GRID COMPUTING ... 30

2.9.1 Advanced Resource Connector ... 31

2.9.2 gLite ... 31

2.9.3 Globus Toolkit ... 31

2.9.4 GridWay .. 31

2.9.5 The OMII-UK Distribution .. 32

2.9.6 Oracle Grid Engine .. 32

2.9.7 Alchemi ... 32

2.9.8 Aneka .. 32

2.10 THE CONCEPTUAL MODEL .. 32

3 METHODOLOGY .. 35

3.1 SURVEY OF RELEVANT LITERATURE .. 35

3.2 SOFTWARE METHODOLOGY AND PARADIGM .. 35

3.3 ANALYSIS AND DESIGN OF THE SYSTEM ... 36

3.3.1 Design and Setup of the Virtual Grid Environment .. 36

3.3.2 Design of Performance Manager .. 36

3.4 REVERSE ENGINEERING OF THE GRID BINARIES ... 36

3.5 IMPLEMENTATION OF THE SYSTEM .. 36

3.6 EXPERIMENTATION ... 37

3.7 DATA COLLECTION AND ANALYSIS .. 37

4 ANALYSIS AND DESIGN .. 38

4.1 ALCHEMI GRID ARCHITECTURE ... 38

4.1.1 Alchemi Grid Class Diagram .. 40

4.2 OPTIMIZATION AND PERFORMANCE MANAGER MODULE DESIGN ... 41

4.2.1 Conceptual Model ... 42

4.2.2 Design of the Optimization and Performance Manager Module 42

4.3 EXPERIMENT DESIGN .. 50

4.4 ALCHEMI GRID CONFIGURATION .. 51

vi

5 IMPLEMENTATION .. 52

5.1 SETUP .. 52

5.1.1 Virtual Environment Setup .. 52

5.1.2 Host Machine Setup .. 54

5.1.3 Experiment Setup .. 54

5.1.4 Grid Application Settings... 58

5.1.5 Scheduling Algorithm Parameters .. 58

5.1.6 Collecting Results .. 58

5.2 DEVELOPMENT .. 58

6 RESULTS... 59

6.1 INTRODUCTION ... 59

6.2 EXPERIMENT OBJECTIVES ... 59

6.3 EXPERIMENT LAYOUT ... 59

6.4 PERFORMANCE RESULTS .. 60

7 DISCUSSION ... 62

7.1 DIsCUSSION ... 62

8 CONCLUSION AND FUTURE WORK ... 63

8.1 THE CONCLUSION ... 63

8.2 RECOMMENDATIONS AND FUTURE WORK .. 63

REFERENCES AND BIBLIOGRAPHY ... 65

1

1 INTRODUCTION

1.1 BACKGROUND
Carl and Ian (2002) defined the Grid as “A computational grid is a hardware and software

infrastructure that provides depend-able, consistent, pervasive, and inexpensive access to high-

end computational capabilities."

Computation grids have in recent years become practical to implement with increase in

bandwidth, communication, lower costs of hardware and increase in the number of problems

they can solve.

A computational Grid connects geographically distributed computers allowing their

computational power and storage capabilities to be shared. With the rapid explosion of data

and computational needs, distributed systems and Grids are gaining more attention to solve

the problem of large-scale computing.

Grids have been used in many areas to solve complex problems some of the notable areas are:-

 World Wide Telescope. Advances in digital astronomy enable the systematic survey and

the collection of vast amounts of data from telescopes gathered all over the world.

 Biomedical Informatics Research Network. A project that brings together biomedical

imaging data to be used for research and, hence, to improve clinical cases.

 Virtual Screening on Desktop Computers. A drug discovery application in which, an intra-

Grid composed of desktop PCs is used for virtual screening of drug candidates.

 Infrastructure for Multiplayer Games. Buttery.net is a service provider for the

multiplayer video gaming industry. It uses Grid technologies to deliver scalable services

to game developers.

Task scheduling is an integrated part of parallel and distributed computing. Intensive research

has been done in this area and many results have been widely accepted. With the emergence

of the computational grid, new scheduling algorithms are needed to address the challenges

that have emerged in Grid Computing.

2

1.2 THE PROBLEM STATEMENT
In Grid computing, job or task scheduling is the assignment or mapping of jobs or tasks to grid

resources, one of the main objectives in job scheduling is the minimize or optimize some cost-

function specified by the user. Resource provide useful functions such as computing power,

memory storage and network bandwidth. Scheduling in Grid computing is an NP-Hard problem

Hesham and Ali (1994). There is no single best way to schedule jobs on the available resources.

As such, there are numerous techniques used in grid scheduling.

This research focuses on scheduling using an evolutionary algorithm, the simulated annealing

algorithm, on an open source grid environment known as Alchemi Grid, developed and

maintained by the University of Melbourne. The Alchemi Grid provides scheduling using a

greedy algorithm MCT (Minimum Completion Time) with a First-In-First-out queue. This native

scheduling algorithm in the Alchemi Grid does not put into consideration the resource

characteristics when factoring choice of resource to schedule.

We use the simulated annealing algorithm to develop a scheduling framework capable of

improving job scheduling on applications that are submitted to the grid often with time. When

better schedules are found, they are stored and retrieved for use when such applications

present similar jobs or tasks for scheduling. Existing schedules are replace by new ones with

improved scheduling characteristics.

We provide a better scheduling framework to improve scheduling based on historical

scheduling information stored by Alchemi grid.

1.3 THE SIGNIFICANCE OF THE STUDY
This research will intensely involve the studying Grid Scheduling Algorithms, development and

the implementation of a scheduling framework to optimize a Grid System. The research will

contribute in providing:-

 An improved computation grid that can optimize application performance and reduce

total time taken to complete tasks with time in particular for applications with high

submission rates.

3

 A grid that can be used for further research areas in grid computing in the University of

Nairobi and other academic institutions.

1.4 RESEARCH OBJECTIVES
The research to be conducted has the following objectives:-

 Study and analyze Grid Scheduling algorithms.

 Provide a scheduling framework with the goal of reducing the Makespan (time taken to

execute) of the jobs submitted. The scheduling framework continuously optimizes

makespans of applications or jobs that are scheduled often with time.

 Implement the scheduling framework in the Alchemi Grid platform.

 Use simulated annealing algorithm as the core optimization algorithm of the scheduling

grid.

 Experiment, study and analyze the performance model developed for the scheduling

framework in the context of the Alchemi Grid platform.

1.5 SUMMARY
In this research an in depth study will be conducted on scheduling techniques in Computational

Grids.

A prototype will be developed and a model for optimization and performance management in

the Alchemi Grid.

4

2 LITERATURE REVIEW
In this chapter, we provide a literature review of the grid computing field, define the problem

of scheduling in computing grids, provide taxonomy of scheduling techniques and contextualize

our scheduling policy within that taxonomy.

2.1 THE GRID
The term “GRID”, in the computing field, was borrowed from the electricity and water grid

systems to denote a type of a distributed computing system that would aggregate and provide

computing power on demand just as end users consume power and water from the electricity

and water grids on demand respectively (Ferreira et al., 2005).

Foster (2002) provides a three point check list for a Grid Computing System:-

 A Grid System coordinates resources that are not subject to centralized control. These

resources are distributed across different administrative domains.

 A Grid System is built using standard, open, general-purpose protocols and interfaces.

Since Grids coordinates heterogeneous resources across difference administrative

domains. Resource discovery, access, authentication, authorization based on standard

interfaces reduces complexity in the Grid.

 A Grid System delivers or strives to deliver nontrivial quality of service. A Grid System

coordinates resource consumers and providers to optimally provide the required quality

of service.

Distributed systems can be classified as grids if they exhibit characteristics (Buyya & Murshed,

2002):-

 Multiple Administrative Domains and Autonomy. Resources in a Grid tend to be

geographically distributed and across multiple administrative domains i.e. organizations.

The key challenge introduced is the autonomy of resources and control by different

administrative domains.

 Heterogeneity. A Grid is generally composed of different resources composed of

different technologies from laptops to personal computers to super computers.

5

 Scalability. A Grid can grow and shrink in size dynamically as resources enter and leave

the Grid System. This further compounds the problem of bandwidth and latency

common found in distributed systems.

 Dynamicity and Adaptability. A Grid consists of a high number of resource providers and

consumers. Managing this highly dynamic environment is a key problem. Grids must

cope with resource failures and unavailability efficiently and effectively.

2.2 TYPES OF GRIDS
Implementation of real world grid systems is along certain functions or specializations and the

types of resources aggregated. Consequently, this has given rise to categories of Grid Systems.

The common classification of Grid Systems is by type as follows (Ferreira et al., 2005):-

 Computational Grids

 Data Grids

 Network Grids

2.3 COMPUTATIONAL GRIDS
Computational Grids combine the computing power of individual resource to provide a virtual

singular computing resource with the objective of processing jobs faster.

2.4 DATA GRIDS
In Data Grids, the key resource being abstracted is storage. The data storage resources of the

Grid are aggregated and provided as the main shared resource. A Data Grid can allow large

datasets to be accessed transparently and can be view a massive data storage system

composed of numerous storage resource.

2.5 NETWORK GRIDS
The Network Grid is also known as the Delivery Grid. This type of Grid provides redundancy and

high performance communication services. It serves to provide fault tolerant communication

and additional services such as caching between communication points.

2.6 ARCHITECTURE OF A GRID
Grid Systems have a general architecture consisting of the layers below (Foster et al., 2001):-

6

 Application Layer

 Collective Layer

 Resource Layer

 Connectivity Layer

 Fabric Layer

The figure below illustrates the interconnection and relationships between the layers.

Figure 1: The layered Grid Architecture

2.6.1 Fabric Layer

The Grid Fabric layer provides the physical resources to be shared e.g. computational resources,

storage systems, catalogs, network resources and sensors. The fabric provides access control

polices to the resources.

2.6.2 Connectivity Layer

The connectivity layer provides the authentication, access control and communication

protocols required by the grid. Communications protocols facilitate data transfer between

Fabric layer resources. Equally authentication protocols provide secure channels of

communication; in particular, they provide tools to identify users and resources.

7

2.6.3 Resource Layer

The resource layer builds on the connectivity layer protocols and defines protocols for

individual resource management. Key functions include secure negotiation, initiation,

monitoring, control, accounting, and billing of shared operations on individual resources.

2.6.4 Collective Layer

The Collective layer provides protocols and services across collections of resources. It cuts

across collections of resources as opposed to the resources layer that deals with individual

resources. The collective layer manages interactions across collections of resources. Typical

resources, services and software utilities in this layer include:-

 Directory services

 Co-allocation, scheduling, and brokering services

 Monitoring and diagnostics services

 Data replication services

 Grid-enabled programming systems

 Workload management systems and collaboration frameworks

 Software discovery services

 Community authorization servers

 Community accounting and payment services

 Collaboration services

2.6.5 Application Layer

The uppermost layer the Application Layer consists of end user applications that run on the

Grid System environment. Applications have access, through Application Programming

Interfaces and Software Development Kits (SDKs), to the layers below to access the Grid System

capabilities and functions to provide the desired outcomes.

2.7 GRID SCHEDULING
For a Grid System to fulfill the objective of providing non trivial quality of service, A Grid must

manage its resources effectively.

8

Scheduling in Computational Grids involves the efficient and effective mapping of tasks or jobs

to resources, which may be distributed in multiple administrative domains, for execution.

2.7.1 Components of a Grid Scheduler

Grid Scheduling occurs in three stages, that will be elaborated in the sections that follow,

namely: - resource discover and filtering, resource selection and scheduling and job submission

(Schopf, 2004). From a functionality view point, Figure 2 below provides the logical

architecture of a typical Grid Scheduling Sub-System.

Figure 2: A Logical Grid Scheduling Architecture

9

A Grid Scheduler is the subsystem in a Grid platform that receives applications from Grid users,

selects resources for these applications on the Grid and generates application to resource

mappings based on specified objective functions and predicted resource performance. The

Scheduler relies on the Grid Information Service to obtain information about the state of Grid

resources and applications.

A unique feature of Grid Schedulers is that, they usually do not control Grid resources directly

but rather act as intermediaries. This is due to the reason that Grids tend to span multiple

administrative domains and resources are under control of a local resource manager and policy.

Grid Information Service Module

The Grid Information Service (GIS) module fulfills the role of providing information about the

status of available resources to the grid scheduler. The GIS is responsible for collecting and

predicting resource state information such as CPU processing capacity, memory size, network

bandwidth, storage requirements, subtask dependencies in jobs, software available and load of

a site or sites at a given time.

Properties about applications to be scheduled are important when making feasible schedules.

Properties such as approximate instruction quantity, memory, storage and dependencies are

often required. The GIS mainly uses application profiling and analogical benchmarking

techniques to build suitable performance models. Application profiling (AP) is used to obtain

properties of applications where as analogical benchmarking (AB) provides a measure of how

well a given resource can perform a given type of a job.

Cost Estimate

The Cost Estimate module uses the information obtained using the AP and AB techniques and

the preferred performance model to produce the cost estimate of candidate schedules. The

scheduler chooses a schedule among the proposed schedules to best optimize the defined

objective functions.

10

Launch and Monitoring Module

The Launch and Monitoring module (LRM), also known as the binder, provides executes a

selected schedule by submitting applications to mapped resources, staging input data and

executable programs where required and monitoring their execution.

Local Resource Manager Module

The Local Resource Manager (LRM) is responsible for local scheduling inside a resource domain

and reporting resource information the GIS. Local resource scheduling entails local scheduling

of Grid application jobs and also jobs from the local domain.

2.7.2 Stages of Grid Scheduling

.As put forward by Schopf (2004), Grid Scheduling involves three main phases: - Resource

discovery, System selection and Job execution. These phases, and the steps that make them up,

are shown in Figure 3.

Figure 3: Three Phases of Grid Scheduling

Phase One

Resource

Discovery

Phase Two

System Selection

Phase Three

Job Execution

1. Authorization Filtering

2. Application Definition

3. Minimum Requirements Filtering

4. Information Gathering

5. System Selection

6. Advance Reservation

7. Job Submission

8. Preparation Task

9. Monitoring Progress

10. Job Completion

11. Cleanup Tasks

11

 Resource Discovery 2.7.2.1

The resource discovery phase provides a set of potential resources that have passed the

minimum requirements. This list serves as an input to the second phase, System Selection.

Resource discovery is performed in three main steps:-

 Authorization filtering

 Application requirements definition

 Minimum requirements filtering

Authorization Filtering

This step provides secure access to resources on the Grid. Users have access only to resources

they have permission to on the Grid. The available list of resource is filtered based on the user

credentials.

Application Requirements Definition

In this step the user specifies the minimum requirements needed for the job(s) to be executed.

These details can be categories into:-

 Static requirements such as hardware specifications, architecture and Operating

System(s).

 Dynamic requirements such RAM, CPU and disk space that vary with time.

Minimum Requirements Definition

The application requirements information is used to match the resources available and further

filter the potential resource list.

In this step resources that do not meet the minimum requirements are filtered out.

 System Selection 2.7.2.2

The System Selection phase involves strategies that select a single resource to schedule the job

from the list of candidate resources. The selection is generally performed in two steps:-

 Dynamic information gathering

 System selection

12

Dynamic Information Gathering
This step entails collecting dynamic information about the resources and passing it to the user.

This information is necessary to make the best job to resource mapping.

System Selection

Dynamic information gathered about resources is used to select the qualifying resource or set

of resources to use. Various approaches are used including heuristics.

 Job Execution 2.7.2.3

This phase involves the execution of jobs which includes file staging and cleanup. This phase

occurs in six steps:-

 Advance reservation

 Job submission

 Preparation tasks

 Monitoring progress

 Job completion

Advance Reservation

Advance reservation entails reserving resources for use at a future time. This is sometimes

necessary in-order to get the best or guaranteed performance from the Grid System.

Job Submission

Once resources are ready, the next step is job submission. This step entails submitting the

application to the resources. Job submission varies in complexity depending on the type of

application or job and the requirement. Job submission may involve the use of scripts, staging

and setup.

Preparation Tasks

The preparation step includes acquiring a reservation, setup and staging of the application or

job. In complex preparation steps, FTP or file transfers may be necessary to ensure the data is in

place for use.

13

Monitoring Progress

Monitoring of progress is necessary so as to inform users on the status of their jobs or

applications and any issues arising during execution.

Job Completion

When jobs terminate normally, end users need to be notified of the job or task completion

status.

2.7.3 The Grid Scheduling Problem

Scheduling in Computational Grids presents key challenges when it comes to coordinating

resource sharing in dynamic and multi-organizational environments. Resources that constitute

a Grid are varied; these include computers, storage, software applications and data, connected

through high speed networks and middleware software. The middleware software in overall

provides security, monitoring, resource management and other services.

 Challenges of Scheduling In Grid Computing 2.7.3.1

The problem of scheduling has been thoroughly researched in traditional parallel and

distributed systems. A lot of work in the Grid computing scheduling space has been borrowed

from traditional parallel and distributed computing. Many of the early algorithms were carried

over and have over time been optimized and new ones developed to cope with grid scheduling

challenges.

Traditional parallel and distributed systems have the following characteristics (Berman, 1998):-

 All resources exist in a single administrative domain.

 The system scheduler has control and manages all of the resources.

 The resource pool tends to be homogenous in composition.

 Resource contention is managed in a predictable way according to set local policies.

Thus, impact of contention on application performance is sufficiently predictable.

 Movement of data for staging and subsequent computations is handled in a highly

predictable process such that it can be viewed as a constant overhead.

14

 The problem of scheduling in computational grids differs from the traditional distributed and

parallel systems in that (Zhu, 2003):-

 Heterogeneity and Autonomy

 Performance Dynamism

 Resource Selection and Computation-Data Separation

Heterogeneity and Autonomy

A Grid system typically spans across multiple administrative domains that are geographically

distributed. As a result, resources that constitute the Grid are varied in architecture, capabilities

and capacity. These resources are not under direct control of the Grid. They managed

autonomously in their respective domains.

These two factors pose a great challenge to Grid schedulers in ensuring non trivial quality of

service is delivered to end users. Heterogeneity creates the challenge in that there are

differences job processing and data access capabilities amongst the resources. Autonomy

makes it difficult for Grid Schedulers to estimate the cost of executing a task on given resources

since they cannot violate local policies. Under such circumstances, the scheduler attempts to

make the best job to resource mapping.

Performance Dynamism

A Grid system is a highly dynamic environment. The status of the resources changes over time.

A resource can be engaged by the local resource manager to perform a high priority task thus

impacting negatively of the grid tasks. Additionally, new resources can become available and

existing ones can become unavailable thus changing the overall computing capabilities of the

grid as time progresses. Thus Grid schedulers have to contend with performance fluctuations.

Resource Selection and Computation-Data Separation

In a Grid System, resources and data tend not to be in the same site but are rather

geographically distributed. The cost of moving application executable code and data to the

resources selected to perform the job cannot be ignored. Bandwidth becomes an important

factor when choosing resources to perform tasks.

15

2.8 GRID SCHEDULING ALGORITHMS
Scheduling in Grid computing is an NP-Hard problem; there is no single best way to schedule

jobs on the available resources. Pairing of tasks or jobs to resources is an NP-Hard problem

(Rewini, Lewis & Ali, 1994). As such, there is no such a single algorithm that gives the best

performance depending based on selected objective functions of scheduling.

The common approach is to select the most suitable algorithm, for scheduling purposes, given

the characteristics of the jobs, resources and network connectivity in some cases.

Previous research on scheduling algorithms in traditional distributed and parallel systems has

yielded poor results because grid systems and traditional distributed and parallel systems do

not compare directly.

2.8.1 Objective Functions

In a Grid Computing environment, there are two major parties; resource consumers and

resource producers. These two parties are driven by often different and conflicting objectives

or goals. Resource consumers are mainly Grid users who submit various applications and a

mostly concerned with the performance of their applications e.g. the total time taken to run

the application. Resource producers on the other hand provide resources for sharing in the Grid

environment. Resource producers are mainly concerned with the performance of their

resources e.g. the resource utilization in a given period and sometimes the economic benefits

associated with the utilization.

Object functions in Grid Scheduling provide a means to classify the conflicting objective of

consumers and producers. They can be classified into two main categories: - application centric

and resource centric (Zhu, 2003). Figure 4 shows the objective functions.

16

Figure 4: Objective Functions

 Application Centric 2.8.1.1

Application centric scheduling algorithms aim to optimize the performance of each application.

The most common application centric objectives are Makespan and Economic Cost.

Makespan

Makespan is the time spent from the start of the first task in a job to the end of the last task of

the job. This is the commonest application centric objective function. The key goal in such

scheduling algorithms is to minimize the Makespan.

Economic Cost

In today’s distributed computing environments, it is not uncommon to find resources that

charge for their use. In such a case the objective is to minimize the consumption of resources

and subsequently lower the economic costs.

 Resource Centric 2.8.1.2

Scheduling algorithms with resource centric scheduling objectives are concerned with the

optimal performance of the resources, in particular resource utilization and the economic profit

derived from their use.

Ojective
Functions

Application
Centric

Makespan

Economic
Cost

Resource
Centric

Resource

Utilization

Economic
Profit

17

Resource Utilization

Under resource utilization objectives two key objectives are to maximize:-

 Throughput – the ability of resources to process a certain number of jobs in a given

period of time.

 Utilization – the percentage of time a resource is engaged. Low utilization signals idle

resources and wastage.

Economic Profit

In Grid models where economic models are used, resource providers are concerned with

maximizing the total economic benefits derived from the usage of their resources.

2.8.2 Taxonomy of Grid Scheduling Algorithms

Casavant & Kuhl (1988) provided taxonomy of scheduling algorithms in general purpose parallel

and distributed computing systems. The taxonomy applies to Grid Scheduling algorithms by

virtue of a Grid system being a special type of a distributed system. Scheduling algorithms fall

within a subset of this taxonomy. The figure below shows the graphically illustrates the

taxonomy (Casavant & Kuhl 1988).

18

Figure 5: A hierarchical taxonomy of scheduling algorithms

 Local Scheduling versus Global Scheduling 2.8.2.1

At the highest level, scheduling algorithms can be classified under local and global categories. A

Local scheduling policy is concerned with allocating resources to processes on a single CPU.

Global scheduling policy on the other hand uses the information about the system to allocate

processes to multiple processes to optimize global performance objectives. Grid Scheduling

algorithms are classified under the global branch.

 Static versus Dynamic 2.8.2.2

At this level, the selection takes into account of the time when the scheduling decisions are

made. Dynamic scheduling policies make task to resource mappings on the fly as the

application executes. Dynamic scheduling applies when it is difficult for the scheduler to make

estimates about the running time of applications. In static scheduling, a task comprising a job is

Scheduling
algorithms in

Distributed Systems

Global

Static

Sub-Optimal

Approximate

Heuristic

Optimal

Dynamic

Physically

Distributed

Cooperative

Optimal

Sub-Optimal

Non-Cooperative

Optimal

Sub-Optimal

Physically Non
Distributed

Optimal

Sub-Optimal

Approximate

Heuristic

Local

19

assigned once to a resource. The cost estimate of running the application can be determined

before the application is executed on the Grid. The static model has the advantage of providing

an overall view of tasks and costs of computing those tasks.

The key advantage of static scheduling is its simplicity, being able to determine easily the cost

of the tasks. The problem it introduces is that of poor coping with eventualities such as:-

 Performance dynamism of the resources.

 Unavailability of the resources.

 Changes in communication bandwidth.

Dynamic schedules have the advantage of not requiring a run-time profile of an application

before execution. Dynamic scheduling is achieved through the techniques below:-

 Unconstrained First-In-First-Out (FIFO)

 Balanced constraints technique.

 Cost constrained techniques.

 Hybrid of static and dynamic techniques.

Unconstrained FIFO

This is an opportunistic load balancing technique with a greedy perspective. The resource with

the shortest waiting queue of shortest waiting queue time is selected for task allocation. The

key advantage is its simplicity but it is far from optimal.

 Balanced Constraints Techniques

This approach rebalances loads on all resources periodically by shifting tasks from one waiting

queue to another. This approach has the advantage of distributing tasks to resources evenly.

The approach suffers from communication delays in environments with dynamic

communication resources.

Cost Constrained Techniques

This approach is an improvement of the balanced constraints techniques. The key difference is

that this level includes the cost of communication.

20

Hybrid of Static and Dynamic Techniques

This category of scheduling algorithms takes advantage of the strengths of static and dynamic

policies. Static scheduling is applied on the parts of the application that always execute and

dynamic on the other parts that are uncertain.

 Optimal versus Sub-Optimal 2.8.2.3

In scheduling scenarios where it is possible to obtain the information about the state of

resources and jobs, it optimal task to resource mappings could be made based on some

objective function such as Makespan and maximum resource utilization. But since the problem

of scheduling is NP-Complete and further complicated by performance dynamism of resources,

it is a challenge to prove the optimality of scheduling algorithms. Current research, attempts to

find sub-optimal solutions.

 Approximate versus Heuristic 2.8.2.4

Suboptimal solutions are further categorized into approximate and heuristic classes. For

computationally infeasible problems, approximate algorithms avoid searching the entire

solution space for the most optimal solution, but are rather satisfied when they arrive at a

sufficiently good solution.

The factors which determine whether this approach is worthy of pursuit include (Casavant &

Kuhl, 1988):

 Availability of a function to evaluate a solution.

 The time required to evaluate a solution.

 The ability to judge the value of an optimal solution according to some metric.

 Availability of a mechanism for intelligently pruning the solution space.

Heuristic category of algorithms under the sub-optimal branch represents the algorithms which

make the most realistic assumptions about a priori knowledge concerning process and system

loading characteristics. It also represents the solutions to the scheduling problem which cannot

give optimal answers but only require the most reasonable amount of cost and other system

resources to perform their function. The evaluation of this kind of solution is usually based on

experiments in the real world or on simulation.

21

 Physically Distributed versus Non Physically Distributed 2.8.2.5

In Physically distributed scheduling scenarios involve decentralized scheduling, where the job of

scheduling in the dynamic grid environment is shared by physically distributed schedulers. Non-

physically distributed refers to scheduling scenarios where the scheduling functions are

centralized. The centralized strategy is easy to implement but difficult to scale. On the other

hand decentralization of scheduling provides scalability but is difficult to implement.

 Cooperative versus Non-Cooperative 2.8.2.6

The degree of autonomy of the nodes when scheduling tasks determines whether the

algorithms can be further classified under cooperative and non-cooperative categories. Under

the non-cooperative category, individual schedulers act autonomously with regard to how their

resources should be used and optimization independent of the effects of the decision on the

rest of system. Good examples of non-cooperative schedulers are the application level

schedulers.

In the cooperative case, each Grid scheduler executes its share of the scheduling task in concert

with other Grid schedulers to satisfy a common system-wide goal. The local policy of the

scheduler makes scheduling decisions such that they try to achieve a global goal.

2.8.3 Task Dependencies

A task in a grid application is termed as a dependent task if it cannot start until all its parents

are done. An independent task has parent task and can be scheduled to execute independently

of other tasks.

The common dichotomy used is dependency versus independency. Figure 6 illustrates this

dichotomy.

22

Figure 6: Task dependency taxonomy of Grid scheduling algorithms

 Independent Task Scheduling 2.8.3.1

From the Grid system perspective, the strategy is to assign independent tasks to resources

available to maximize certain objective functions.

Static independent algorithms work with a priori execution cost estimate of tasks. Static

algorithms with performance estimates include:-

 MET (Minimum Execution Time): MET performs a task to resource mapping to the

resource with the best execution time for that task irrespective of whether the resource

is available or not at that time.

 MCT (Minimum Completion Time): MCT performs a task to resource mapping arbitrarily

to any resource with the minimum expected completion time for that task.

 Min-Min: The Min-min heuristic begins with the set U of all unmapped tasks. Then, the

set of minimum completion time M for each task in U is found. Next, the task with the

overall minimum completion time from M is selected and assigned to the corresponding

machine (hence the name Min-min). Last, the newly mapped task is removed from U,

and the process repeats until all tasks are mapped.

 Max-Min: The Max-min heuristic is very similar to Min-min. It also begins with the set U

of all unmapped tasks. Then, the set of minimum completion time M is found. Next, the

task with the overall maximum from M is selected and assigned to the corresponding

Task

Dependency

Independent

Static

Dynamic

Dependent

Static

List
Algorithms

Cluster
Algorithms

Duplication
based

Algorithms
Dynamic

23

machine (hence the name Max-min). Last, the newly mapped task is removed from U,

and the process repeats until all tasks are mapped.

 XSuffrage: The rationale behind Suffrage is that a task should be assigned to a certain

host and if it does not go to that host, it will suffer the most. For each task, its suffrage

value is defined as the difference between its best MCT and its second-best MCT.

 Task Grouping: Under Task Grouping, tasks are grouping according to their

computational requirements. Tasks in the same group are sent to the same resource

which completes the in a given time.

Static algorithms are affected by the heterogeneity of tasks and resources and thus cannot be

used in all scheduling scenarios.

Dynamic algorithms for independent task scheduling work without performance estimates of

the tasks.

 Dependent Task Scheduling 2.8.3.2

The most common model for dependent task scheduling is the directed acyclic graph (DAG). In

DAG the node s of the graph represent the task and the edges the precedence order. A DAG can

carry additional information on its nodes and edges in the form of weights. Weights can carry

metrics such as computational and communication costs.

Just as in independent task scheduling, static algorithms work with a priori execution cost

estimate of tasks. Dynamic algorithms on the other hand are able to work without such

information.

List Heuristics

Under list heuristics, tasks are assigned priorities and placed in a list ordered in decreasing

magnitude of priority. When resource contention occurs, the selection of tasks is based on the

priority, with the task with the higher priority having a higher precedence.

Clustering Heuristics

Under clustering heuristics, tasks with common characteristics are clustered together. During

scheduling tasks in the same cluster are assigned to the same resource.

24

Duplication Based Algorithms

Duplication based scheduling is utilizing resource idle time to duplicate predecessor tasks. This

may avoid the transfer of results from a predecessor to a successor, thus reducing the

communication cost. So duplication can solve the max-min problem.

2.8.4 Non Traditional Approaches to Grid Scheduling

Natural and human society can be compared to grid systems. They share common

characteristics such as consumers, producers, diversity, geography, resource contention and so

on. Natural systems seem to cope with resource management problems and have done so for

centuries. The relative success has drawn researchers in Grid computing and resulted in active

research. Figure 7 below provides taxonomy of non-traditional scheduling approaches.

Figure 7: Taxonomy of non-traditional scheduling approaches

Non Traditional Models for Grid
Scheduling

Grid Economy

Ecnonomic Cost/Profit

Non Economic Cost/Profit

Nature's Heuristics

Genetic Algorithms

Simulated Annealing

Tabu Search

25

 Grid Economic Model 2.8.4.1

A Grid system has consumers and producers each with their own objectives often conflicting.

The Grid environments tend to be very dynamic, decentralized and competitive with

applications vouching for resources that are limited. This can be likened to a market with

producers and consumers. Based on the notion of a market, economic models for resource

management and scheduling have been developed to optimize certain objective functions

(Buyya et al., 2002).

A typical market is composed of producers, consumers and commodities. These can be mapped

directly to resource owners, resource users including applications and computing resources

respectively. Economic theories are established based on the study of market behaviors. Price

and quality of commodities are parameters to the decision making procedures of consumers

and providers e.g. consumers normally want to get better services (e.g., a smaller Makespan)

with a budget as small as possible (cost), while a providers normally want to get a higher

resource utilization to raise its profits.

Interaction amongst consumers and producers in a Grid system using economic models use

methods such as bargain, bid and auction. Buyya et al., (2002) apply the Commodity Market,

Tender / Contract-Net and Auction models to the Grid computing scheduling space.

 Natures Heuristics 2.8.4.2

Nature provides numerous examples of large complex systems that resemble parallel and

distributed systems. In many ways, these natural systems share common characteristics with

Grid computing systems. Properties such as non-determinism, parallelism and adaptability are

the common to both natural systems and grid computing environments (Abraham, Buyya &

Nath, 2000). The three main algorithms inspired by nature are:-

 Genetic Algorithms (GA)

 Simulated Annealing (SA)

 Tabu Search (TS)

26

Genetic Algorithms

GA is a large space search evolutionary technique that closely mimics the natural processes of

genetics. The goal of a GA search is to find the best chromosome with the optimal fitness value.

Crossover is the process of swapping certain sub-sequences in the selected chromosomes.

Mutation is the process of replacing certain sub-sequences with some task-mapping choices

new to the current population. Both crossover and mutation are done randomly.

A GA algorithm contains the following main steps:-

 Population generation

 Chromosome evaluation

 Crossover and mutation

Population Generation

A population is a set of chromosomes each of which is a potential schedule. The initial seed

population is generated using other heuristic algorithms such as Min-min.

Chromosome Evaluation

Each chromosome is evaluated by fitness function against some fitness value such as the

Makespan.

Crossover and Mutation

Crossover operation selects a random pair of chromosomes and selects a random point in the

first chromosome. The operation selects portions of the chromosomes from that point to the

end and exchanges sections within. This translates to machine and task reassignments. The

mutation operation randomly selects a task within a chromosome and randomly reassigns it to

a new machine.

Chromosomes from this mutated population are reevaluated severally until a stop criterion is

met.

27

The stopping criteria during the reevaluation iterations occur when be:-

 No improvement in recent evaluations

 All chromosomes converge to the same mapping

 A cost bound is met.

Simulated Annealing

SA like the GA is large space search technique based on the physical process of annealing.

Annealing is a metallurgical process of obtaining low-energy crystalline state of a solid. At the

beginning, the temperature is increased to very high levels until the solid melts. The

temperature is subsequently and iteratively lowered. The gradual lowering of the temperature

allows the atoms of the melted solid to arrange locally, in a thermal equilibrium that is an

optimal state.

By analogy, the thermal equilibrium is an optimal task to resource mapping, the temperature is

the total completion time of the mapping and the change of temperature is the process of

change in a task to resource mapping.

At high temperature less optimal mappings exist and as temperature lowers more optimal

mappings are chosen and the likelihood of accepting worse mappings is probabilistically

minimized. An implementation of the simulated annealing algorithm for Grid scheduling is

described as follows (Braun et al., 2000):-

 Generation of the initial solution

 Generation of neighborhood solution and the acceptance strategy of generated solution

 Temperature update

 Termination of the solution

Generation of the Initial Solution

The initial solution (schedule) is generated randomly using a uniform distribution. Alternatively

one can use greedy heuristics to generate it. The initial system temperature is the Makespan of

the initial solution.

28

Generation of Neighborhood Solution and the Acceptance Strategy of the Generated Solution

The next step is to perturb the initial solution just as it is done in GA. The new Makespan is

evaluated with reference to the old one. If the new Makespan is better the solution is accepted

and replaces the old one. If the new Makespan is worse than the old one, a uniform random

number 𝑧 ∈ [0,1] is generated. This number is compared with another number y generated as

follows:-

1

1 + 𝑒
(
𝑜𝑙𝑑𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛−𝑛𝑒𝑤𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑒𝑚𝑝𝑎𝑟𝑎𝑡𝑢𝑟𝑒
)

If z>y the new worse solution is accepted otherwise it is rejected and the old solution kept. As

the temperature is iteratively lowered it becomes increasingly more difficult to accept a worse

of solution.

Temperature Update

After each perturbation the system temperature is lowered to a fraction of its current value

such as 90%. This completes one iteration of the SA.

Termination of the Solution

The algorithm terminates when either there is no change in the solution found so far or the

temperature is approaching zero.

A perturbation scheme under SA entails:-

 Randomly swapping a task from one resource to another.

 Transferring a task from one resource to another.

 Adding a new resource and transferring a task to it.

Tabu Search

Taboo Search is another heuristic that avoid local optima by repeatedly making moves from one

solution to another located in its neighborhood.

TS grid scheduling algorithm begins with a random mapping of tasks to resources. This initial

solution is generated from a uniform distribution. To perturb the current solution, at this point

the initial solution, to explore the solution space a short hop is performed. A short hop finds the

nearest local minimum within the solution space. A short hop is performed by considering each

29

possible pair of tasks, each possible resource assignments and keeping other assignments

unchanged. If the new Makespan is an improvement the new solution is kept. A short hop ends

when:-

 Every pairwise remapping considerations have been explored without improvements.

 Limit of total number of successful hops is reached.

On completion of the short hop the final solution is added to the tabu list.

The tabu list keeps track of explored regions of the solution space. A new random mapping is

generated and must vary from the tabu list entry by at least half of the machine assignments.

This process is known as the long hop. A long hop moves the algorithm to an unexplored region

in the solution space that is yet to be searched. A short hop procedure is repeated after the

long hop.

The stopping criterion for the iterative search is when the total number of successful short hops

and long hops equals the limit set.

2.8.5 Scheduling Under Quality of Service Constraints

In heterogeneous and dynamic environments characterized by autonomous and semi-

autonomous administrative domains, quality of service (QOS) is a major concern for

applications. Two techniques of dealing with resource dynamics and heterogeneity have been

proposed (Diot & Seneviratne, 2003):-

 Guaranteed approach

 Best effort approach

Guaranteed Approach

The Guaranteed approach is based on the notion of negotiating and re-negotiating quality of

service contracts with the resource providers.

Best Effort Approach

In the absence of QOS guarantees above the best effort approach is used under which

applications adapt themselves to the operating environment.

30

2.8.6 Strategies for Managing Dynamic Resource Performance

Resource in a Grid environment may at times have fluctuations in performance and availability.

This is because resources belong to administrative domains that have control over them and

thus behave autonomously or semi autonomously. This presents a major challenge to Grid

schedulers. Current Grid schedulers handle this problem in three main ways:-

 Scheduling based on just-in-time information from Grid Information Services

 Performance prediction

 Dynamic rescheduling at run time

Scheduling Based on Just-In-Time Information from Grid Information Services

The GIS is a central component of a Grid System. It provides a catalog of users, applications,

resources and services participating in the Grid. It serves a vital function to the Grid Scheduler

by providing resource discover and monitoring. This way the scheduler is able to know when

resource join or leave the Grid or become overloaded.

Performance Prediction

In dynamic environments prediction serve an important role of guiding future decisions.

Prediction can be based on:-

 Prediction accuracy. Accurate prediction based on runtime parameters.

 Historical information collected over time.

 Prediction based on Workload modeling.

Dynamic Rescheduling

When resource prediction is unavailable or not feasible, rescheduling provides an alternative

way to deal with resource dynamism. Strategies such as job migration are used in rescheduling.

Previous scheduling decisions are alter to suite the current Grid state.

2.9 MIDDLEWARE FOR GRID COMPUTING
A Grid Middleware is a software stack that provides the functions of a Grid to end users

enabling them to utilize Grid resources. The list below consists of some of the widely used Grid

middleware:-

 ARC

31

 gLite

 Globus toolkit

 GridWay

 The OMII-UK distribution

 Oracle Grid Engine

 Alchemi

 Aneka

2.9.1 Advanced Resource Connector

Advanced Resource Connector (ARC) is a grid computing middleware introduced by NorduGrid.

It provides a common interface for submission of computational tasks to different distributed

computing systems and thus can enable grid infrastructures of varying size and complexity. ARC

includes data staging and caching functionality, developed in order to support data-intensive

grid computing. ARC is open source software distributed under the Apache License.

2.9.2 gLite

gLite is a grid computing middleware used by the CERN LHC for experiments and other scientific

domains. The gLite Grid provides a framework for building applications tapping into distributed

computing and storage resources across the Internet. The gLite services were adopted by more

than 250 computing centers and used by more than 15000 researchers in Europe and around

the world.

2.9.3 Globus Toolkit

The Globus Toolkit is an open source toolkit for building computing grids developed and

provided by the Global Alliance organization.

2.9.4 GridWay

GridWay is an open source meta-scheduling technology that enables large-scale, secure,

reliable and efficient sharing of computing resources managed by different Distributed

Resource Management (DRM) systems, such as Sun Grid Engine, Condor and so on within a

single organization or scattered across several administrative domains.

32

2.9.5 The OMII-UK Distribution

The OMII-UK distribution is GridSAM; a job submission interface for submitting computational

jobs to commonly used distributed resource management systems such as Condo, PBS, SGE,

etc.

2.9.6 Oracle Grid Engine

Oracle Grid Engine previously known as Sun Grid Engine (SGE) is open source grid middleware

developed and maintained by the Oracle Corporation

2.9.7 Alchemi

Alchemi is an open-source .NET grid computing framework that allows you to aggregate the

computing power of intranet and Internet-connected machines into a virtual supercomputer

and to develop applications to run on the grid. The Grid is developed and maintained by the

University of Melbourne.

2.9.8 Aneka

Aneka is a grid and cloud computing platform developed and supported by the University of

Melbourne. It is the commercial successor of the Alchemi Grid. Aneka supports various

programming models such as Task Programming, Thread Programming and MapReduce

Programming. The platform provides tools for rapid creation of distributed applications and

their seamless deployment on private or public Clouds.

2.10 THE CONCEPTUAL MODEL
The above literature has provided a very useful background in conduction this research. Going

by the research objectives above, we introduce a learning function and performance model

that is implanted into the Alchemi Grid. The conceptual diagram below provides an overview of

the areas of interest for this research work.

33

Figure 8: Conceptual Architecture for the Optimization and Performance Module

Grid Manager

The Grid Manager is the head node for the Alchemi Grid. It is responsible for the management

of all Alchemi Grid Resources. It also acts as the scheduler by receiving applications and

mapping them to executors. Grid Manager aggregates the computing power of the executors

connected to it.

Grid Executor

The Grid Executor is a grid resource available to provide processing power for execution of Grid

Applications.

Grid Owner

Grid Owner is a Grid user who submits Grid Applications to the Grid Manager for execution.

34

Grid Broker Node

Grid Broker Node provides external communication to resources and other Grids outside the

current topology of the Grid. It provide cross platform integration with other diverse

technologies.

SQL Server Database

SQL Server is the data repository for the entire Grid. All data regard to the state of resources

and execution of grid applications is stored in this database.

Learning and Performance Management Module

This is the subsystem we introduce in this research. The subsystem will use the repository data

to model application profiles, resource performance and characteristics. The module will use a

learning function to improve the Grid scheduling functions.

35

3 METHODOLOGY
This chapter outlines how the research project was carried out. The research explores the

various scheduling techniques in Grid computing and implements a performance model with a

learning function on a typical computational Grid, the Alchemi Grid. The research work involves

development of a prototype and experimentation. The following steps were carried out in the

research work:-

 Survey of relevant literature

 Software methodology

 Analysis and design of the system

 Development of a performance model

 Implementation of the system

 Experimentation

 Data collection and analysis

3.1 SURVEY OF RELEVANT LITERATURE
Literature that touched on the aspects of Grid computing, scheduling algorithms, machine

learning and artificial intelligence was studied. In particular greater emphasis was laid on the

problem of scheduling in Computational Grids and research work done grid scheduling

algorithms. Algorithms inspired by nature were delved into simulated annealing algorithm was

chosen to implement components of the performance model and learning function.

3.2 SOFTWARE METHODOLOGY AND PARADIGM
The software methodology adopted in this research work is the ICONIX agile software

development method. ICONIX is a simple and easy to use agile software development method

base on UML. It encourages iterative software development. An iterative approach was used;

sections of the prototype were developed in incremental stages.

The software programming paradigm used was object oriented programming. The Alchemi Grid

used in this research is developed using an object oriented programming language C#. It is

highly modularized in its design.

36

3.3 ANALYSIS AND DESIGN OF THE SYSTEM
A proper analysis was done of the existing Grid System and in particular the scheduling

subsystem. A new design was created to incorporate the new scheduling algorithm that utilized

more optimal schedules discovered by the optimization component of the Performance

Manager. An optimization and performance management module was designed and embedded

into the Grid Resource Manager.

3.3.1 Design and Setup of the Virtual Grid Environment

A virtual Grid Environment was designed setup up using VMWARE virtualization software.

Virtual machines were created and given differential speeds to imitate heterogeneity in actual

Grid Systems.

3.3.2 Design of Performance Manager

A Performance Manager component was designed to analyze historical resource information

and produce better schedules for certain applications.

3.4 REVERSE ENGINEERING OF THE GRID BINARIES
Obtaining the Grid source code was a very difficult process. The existing code base was in an

unknown state and full of bugs. The have a guarantee of a running grid system. The existing

Grid binaries were reverse engineered to obtain the original source code. This code was used to

modify the functionality of the Grid to include custom code and algorithms.

3.5 IMPLEMENTATION OF THE SYSTEM

Virtual Grid Environment

A Virtual Grid Environment was setup to mimic an actual Grid System. Virtual machines were

created and given differential speeds to imitate heterogeneity in actual Grid Systems.

Development of the Performance Manager

The Grid Performance Manager, that includes a learning component, was developed using the

.NET platform using the C# language. The module was embedded in the Grid Resource Manager

so that it can effectively interact with the Grid and enhance scheduling.

37

The tools and technologies used in development were:-

 .NET Platform

 Visual Studio 2010

 C# language

 SQL Server 2008R2

3.6 EXPERIMENTATION
The experimentation phase entailed running experimental Grid Applications on the virtual Grid

Environment. A compute intensive experiment was carried out.

Compute Intensive Experiment

The Grid application was designed to perform very large calculations. On execution of the

application the computation was distributed amongst the Grid nodes according to the

scheduling policy.

Parameters

The Virtual machines were configured with different speed ratios to provide the semblance of

heterogeneity of resources and differences in computing capabilities of the Grid Nodes.

The Grid Application parameters were:-

 Numbers of tasks were varied.

3.7 DATA COLLECTION AND ANALYSIS
The Grid System records all its data in the SQL Server database. The performance model and

learning function also recorded their data in the same database in separate tables.

Results of the Grid scheduler under the native algorithm were extracted, tabulated, analyzed

and graphically presented. Additionally, the results of the scheduler with the advice of the

performance manager derived by the learning component extracted, tabulated, analyzed and

graphically presented. Comparison of the results under both schemes subsequently done and

conclusions were made from the findings.

38

4 ANALYSIS AND DESIGN
In this chapter, we provide the design and analysis of the propose performance manager and

scheduling algorithm that incorporates more optimal schedules observed by the optimizer. We

also implement the performance management module in the Grid Resource Manager and the

scheduling algorithm in the Grid Scheduler.

Alchemi Grid was chosen as the target computational Grid to implement the modules. The key

reason of choosing Alchemi is in its simplicity of design and implementation without sacrificing

flexibility, scalability, reliability and extensibility.

4.1 ALCHEMI GRID ARCHITECTURE
The Alchemi Grid follows the master-worker parallel programming paradigm in which a central

component dispatches independent units of parallel execution to workers and manages them.

This smallest unit of parallel execution is a grid thread, which is conceptually and

programmatically similar to a thread object. The Figure 8 below illustrates the architecture of

the Alchemi Grid.

Figure 9: Architecture of the Alchemi Grid

39

Manager Component

The Manager manages the execution of grid applications and provides services associated with

managing thread execution. The Executors register themselves with the Manager which in turn

keeps track of their availability. Threads received from the Owner are placed in a pool and

scheduled to be executed on the various available Executors. A priority for each thread can be

explicitly specified when it is created within the Owner, but is assigned the highest priority by

default if none is specified. Threads are scheduled on a Priority and First Come First Served

(FCFS) basis, in that order. The Executors return completed threads to the Manager which are

subsequently passed on or collected by the respective Owner.

Executor Component

The Executor accepts threads from the Manager and executes them. An Executor can be

configured to be dedicated, meaning the resource is centrally managed by the Manager, or

non-dedicated, meaning that the resource is managed on a volunteer basis via a screen saver or

by the user.

For non-dedicated execution, there is one-way communication between the Executor and the

Manager. In this case, the resource that the Executor resides on is managed on a volunteer

basis since it requests threads to execute from the Manager. Where two-way communication is

possible and dedicated execution is desired the Executor exposes an interface (IExecutor) so

that the Manager may communicate with it directly. In this case, the Manager explicitly

instructs the Executor to execute threads, resulting in centralized management of the resource

where the Executor resides.

Thus, Alchemi’s execution model provides the dual benefit of:

 Flexible resource management i.e. centralized management with dedicated execution

vs. decentralized management with non-dedicated execution.

40

 Flexible deployment under network constraints i.e. the component can be deployment

as non-dedicated where two-way communication is not desired or not.

Owner

Grid applications created using the Alchemi API are executed on the Owner component. The

Owner provides an interface with respect to grid applications between the application

developer and the grid.

The Owner submits threads to the Manager and collects completed threads on behalf of the

application developer via the Alchemi API.

Cross-Platform Manager

The Cross-Platform Manager is a generic web services interface that exposes a portion of the

functionality of the Manager in order to enable Alchemi to manage the execution of platform

independent grid jobs. Jobs submitted to the Cross-Platform Manager are translated into a grid

threads which are then scheduled and executed. Thus, in addition to supporting the grid-

enabling of existing applications, the Cross-Platform Manager enables other grid middleware to

interoperate with and leverage Alchemi on any platform that supports web services.

4.1.1 Alchemi Grid Class Diagram

.NET Remoting allows a .NET object to expose its functionality across application domains.

Remoting is used for communication between the four Alchemi distributed grid components as

it allows low-level interaction transparently between .NET objects with low overhead. The

objects remoted using .NET Remoting within the four distributed components of Alchemi, the

Manager, Executor, Owner and Cross-Platform Manager are instances of GManager,

GExecutor,GApplication and CrossPlatformManager respectively.

 GManager, GExecutor, GApplication derive from the GNode class which implements generic

functionality for remoting the object itself and connecting to a remote Manager through the

IManager interface.

41

The Manager executable initializes an instance of the GManager class, which is always remoted

and exposes a public interface IManager. A key point to note is the fact the IManager interface

derives from IExecutor. This allows a Manager to connect to another Manager and appear to be

an Executor. This is the means by which the architecture supports the building of hierarchical

grids.

Figure 10: Class Diagram of Alchemi Grid

4.2 OPTIMIZATION AND PERFORMANCE MANAGER MODULE DESIGN
The learning and performance manager module is designed to be embedded in the Grid

Manager component.

42

4.2.1 Conceptual Model

The diagram below depicts the conceptual model of the research work to be undertaken.

Figure 11: Conceptual Model of the Modified Alchemi Grid with the Optimizer

The main function of the optimization and performance module is to provide better schedules

with time for application that execute on the Grid.

4.2.2 Design of the Optimization and Performance Manager Module

To implement to optimization and performance module, the ManagerContainer class of the

Alchemi Grid is modified. The Optimizer class is added which starts a single thread that runs in

the background. The class invokes the PerformanceManager class that is responsible for finding

better schedules for each type of application found without an optimization. The class retrieves

historical performance records of each type of application and feeds the

SimulatedAnnealingAlgorithm class. The SimulatedAnnealingAlgorithm class utilizes

application level objective function of minimizing the Makespan of the application. The class

uses the simulated annealing algorithm to find more optimal schedules using schedules derived

from historical records. The current scheduling algorithm is MCT (Minimum Completion Time)

43

type algorithm with a FIFO queue. Figure 11 below shows the class diagram of the system

module.

Figure 12: Class diagram of the primary design of the Optimizer and Performance Manager

Module

The scheduling module requires that any concrete implementation of a Scheduling Algorithm

implements the interface IScheduler. There are two native implementations of IScheduler that

come with the Alchemi Grid: - DefaultScheduler and MappingScheduler. DefaultScheduler

implements the FIFO scheduling algorithm. MappingScheduler implements a form of a

prioritized mapping of tasks to executors. Our Simulated Annealing Scheduling Algorithm is

implemented by the SimulatedAnnealingScheduler that looks up matching schedules

generated by the PerformanceManager using the SimulatedAnnealingAlgorithm for executing

applications.

44

Figure 13: Class diagram of the primary design of the optimization and performance manager
prototype

The Grid, at run-time, creates an instance of the ManagerContainer class invoke a static

method in the InternalShared class. The invocation creates a single instance of the configured

Scheduler from one of the following classes: - DefaultScheduler, SimulatedAnnealingScheduler

or MappingScheduler as per the Grid configuration. The Grid ManagerContainer instance

45

instantiates an object of type Dispatcher that begins the task of scheduling jobs and distributing

to grid executors. Subsequently, an Instance of type Optimizer is started that commences the

task of reviewing historical job completions and optimizing schedules for future use. The

Optimizer creates an Instance of the PerformanceManager that runs the

SimulatedAnnealingAlgorithm on application tasks to obtain optimized schedules for those

applications. The diagram below is a sequence diagram of the interactions amongst the classes

in the prototype to fulfill optimization.

Figure 14: Sequence diagram for Optimization by the Performance Manager

To highlight how the Scheduler is invoked, the diagram below shows the sequence of

interactions between the InternalShared class that is invoked by the ManagerContainer class.

A Singleton instance of InternalShared is created and subsequently a scheduler creation factory

46

instance is created that sets the actual scheduling algorithm to be used from the Grid

configurations.

Figure 15: Sequence diagram for Instantiation of the Configured Scheduler

The SchedulerFactory instance that is created once the InternalShared instance comes to
being, creates a scheduler instance abiding to the IScheduler interface and as per the grid
configurations. The diagram below depicts this interactions in detail.

47

Figure 16: Sequence diagram for Instantiation of the Simulated Annealing Scheduler

 Algorithm for the Optimizer and Performance Manager 4.2.2.1

The model is governed by a process that continuously comes up with new lower Makespan

schedules for applications based on historical task execution data. The simulating annealing

algorithm is used to obtain the lower Makespan schedules. The system follows the steps below

to complete the learning and performance optimization process:-

1. While the grid manager is not is stop mode

a. Select all applications types that have historical performance records.

b. Check if an optimized schedule exists for each application

1. If no optimized schedule exists

i. Retrieve previous schedules for the applications.

ii. Run the simulated annealing algorithm on these schedules.

iii. If a better schedule (with lower Makespan) is found store it in the

database else make no changes

2. If an optimized schedule exists

i. Retrieve previous schedules for the application.

ii. Run the simulated annealing algorithm on these schedules.

48

iii. If a better schedule (with lower Makespan) is found update the

existing stored schedule

c. Check for the stopping condition go to step 1 if no stopping condition.

 Algorithm for the Simulated Annealing 4.2.2.2

The simulated annealing algorithm used is generic simulated annealing scheduling algorithm

Stefka (2006). The algorithm pseudo code is listed below:-

1. The Problem Specific Decisions

Step 1. Formulation the problem parameters;

Step 2. Determination of the initial schedule, generate a feasible solution V;

2. The Problem Generic Decisions

Step 3. Initialization the cooling parameters:

i. Set the initial value of the temperature parameter, T;

ii. Set the temperature length L;

iii. Set the cooling rate F;

iv. Set the number of iterations K;

3. The Generation Mechanism, Selecting and Acceptance Strategy of Generated Neighbors

Step 4.

i. Select a neighbor V’ of V where V’εI(V)

ii. Let C(V’)=the cost of the schedule V’

iii. Compute the move value Δ=C(V’)-C(V)

Step 5.

i. IF Δ ≤0 accept V’ as a new solution and set V=V’

ii. ELSE

iii. IF e-Δ/T>θ set V=V’

iv. Where θ is a uniform random number 0<θ<1

v. OTHERWISE retain the current solution V

4. Updating the Temperature

49

Step 6. Updating the annealing scheduling parameters using the cooling schedule Tk+1=F*Tk

k=1, 2,…

5. Termination of the Solution

Step 7. IF the stopping criteria is met THEN

Step 8.

i. Show the output

ii. Declare the best solution

iii. Otherwise go to step 4.

In our scheduling scenario, the temperature is the Makespan of the schedule; initial solution is

the schedule from historical records and solution is a schedule with mapping of tasks and

machines. The generation of a neighborhood solution is through pairwise exchange and

transfer of tasks from one machine to another randomly.

 Algorithm for the Simulated Annealing Scheduler 4.2.2.3

The simulated annealing scheduler follows the steps below to complete the scheduling

process:-

1. Get the next free machine (resource)

2. Get the next task scheduled for execution.

a. Retrieve application information for the task

b. Lookup the stored schedule for this application

c. Retrieve the task in the schedule that matches to the current task

i. Compare the machine identities for this mapping

ii. If the machine identities match return the mapping else move to the next

available task in the queue and repeat the machine identity check for the

task as above.

d. If no match is found return an empty mapping.

e. End.

50

4.3 EXPERIMENT DESIGN
The experiment setup consists of a Windows Server 2008 R2 Virtual Machine environment

installed on a host computer as the diagram below illustrates. The Virtual Machines consist of

the same operating system Windows.

Figure 17: Virtualized Environment

A Compute intensive experiment was carried out with varying task sizes.

Compute Intensive Experiment

A Grid application is designed to perform very large calculations. On execution of the

application the computation will be distributed amongst the Grid nodes according to the

scheduling policy. The Grid application is named “PI Calculator - Alchemi sample”. This

application computes the digits of PI that are keyed in.

r

Alchemi Grid Manager

Grid

Executor

Virtual

Machine

Grid

Executor

Virtual

Machine

Grid

Executor

Virtual

Machine

Grid

Executor

Virtual

Machine

Grid

Executor

Virtual

Machine

Host Computer

Windows Server HyperV Virtual Environment

51

Experiment Parameters

The Virtual machines are to be configured with different speed ratios to provide the semblance

of heterogeneity of resources and differences in computing capabilities of the Grid Nodes.

The Grid Application parameters to be varied are:-

 The Size of tasks.

 Numbers of tasks.

4.4 ALCHEMI GRID CONFIGURATION
The Grid architecture is design uses the most basic hierarchy as shown in the figure 13 below; a

single Alchemi Grid Manager and several Grid Executor nodes.

Figure 18: Alchemi Grid Hierarchy

Grid

Manager

Grid

Executor

Grid

Executor

Grid

Executor

Grid

Executor

Grid

Executor

WAN/LAN or INTERNET

52

5 IMPLEMENTATION

5.1 SETUP
In this chapter, we provide the implementation specific details of the virtual machine

environment, experiment and the developed prototype. The table below shows the software

components used.

Item Specifications

Virtual Machines Windows Server 2008 R2 Hyper-V Virtual Machine

Environment

Database server SQL Server 2008R2 Enterprise Edition

The table below shows the hardware components needed and used.

Item Specifications

1 Laptop 8GB RAM

1TB hard disk

Pentium Core i3 (Quad Core)

5.1.1 Virtual Environment Setup

Installation of Windows Server 2008 R2 Virtual Machine

The Hyper-V environment comes as a component of Windows Server 2008R2. The component

was activated as by installing the Hyper-V software components. The location configured for

the Virtual Machines was C:\VirtualMachines.

53

Setup of the Virtual Machines

Five virtual machines were setup for the experiments and virtual machine environment with

the following configurations:-

Item VM

Machine 1

VM

Machine 2

VM

Machine 3

VM

Machine 4

VM

Machine 5

Memory 1024MB 512MB 512MB 512MB 512MB

Disk size 20GB 20GB 20GB 20GB 20GB

Number of
Virtual
Processors
Allocated
(Maximum 4)

1 1 1 2 4

Percentage of
Total System
Resources
(Percentage)
Allocated

100 30 80 100 100

Virtual Machine
Resource Usage
Limit
(Percentage for
CPU ulitlization)

25 7 20 50 100

Relative Weight 100 30 60 80 100

Machine Name Machine1 Machine2 Machine3 Machine4 Machine5

IP 192.168.146.

2

192.168.146.

3

192.168.146.

4

192.168.146.

5

192.168.146.

6

Operating

System

Windows 7 Windows 7 Windows 7 Windows 7 Windows 7

On each virtual machine the .NET framework version 4 was installed and a single Grid executor.

54

5.1.2 Host Machine Setup

The host machine no major installations were needed apart from SQL Server 2008R2 with an

instance identity of “HP\SQLSERVER2008R2”. The Host machine was assigned the IP

192.168.146.1.

5.1.3 Experiment Setup

The experiment setup involved installing the grid middleware and configuring its topology.

The Grid Setup

The Alchemi Manager

The Alchemi Grid Manager is installed in the host machine. It is configured with the following

parameters in an xml file located at

“C:\Users\Administrator\AppData\Roaming\Alchemi\Manager”.

?xml version="1.0" encoding="utf-8"?>

<Configuration xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <ConnectVerified>false</ConnectVerified>

 <DbConnectTimeout>50</DbConnectTimeout>

 <DbMaxPoolSize>5</DbMaxPoolSize>

 <DbMinPoolSize>5</DbMinPoolSize>

 <DbName>Alchemi</DbName>

 <DbPassword>Password01</DbPassword>

 <DbServer>HP\SQLSERVER2008R2</DbServer>

 <DbType>SqlServer</DbType>

 <DbUsername>sa</DbUsername>

55

 <Dedicated>true</Dedicated>

 <Id />

 <Intermediate>false</Intermediate>

 <ManagerHost>192.168.146.1</ManagerHost>

 <ManagerPort>9001</ManagerPort>

 <OwnPort>9000</OwnPort>

 <SchedulerAssemblyName>Alchemi.Manager</SchedulerAssemblyName>

<SchedulerTypeName>Alchemi.Manager.SimulatedAnnealingScheduler</SchedulerTypeName>

</Configuration>

The table below describes the parameters.

Parameter Meaning

ConnectVerified Verify whether the connection are up

DbConnectTimeout Number of seconds before a the database connection

DbMaxPoolSize Maximum number of connections to put the connection pools

DbMinPoolSize Minimum number of connections to put the connection pools

DbName Database username

DbPassword Database password

DbServer Database Server to connect

DbType Type of database server e.g. Oracle, Sql Server, etc

DbUsername Database username

Dedicated Connect manage in complete dedication mode

Id Unique Identity of the manager

Intermediate

56

ManagerHost IP of the host

ManagerPort Port to reach the manager when acting like an Executor

OwnPort Port to reach the host

SchedulerAssemblyName Namespace of the class the implements IScheduler

SchedulerTypeName Name of the scheduling class implementing a scheduling

algorithm

The Alchemi Executor

The Alchemi Grid Executor is installed in each the virtual machine. It is configured with the

following parameters in an xml file located at

C:\Users\Administrator\AppData\Roaming\Alchemi\Executor. The configuration differs from

machine to machine in some fields.

 <?xml version="1.0" encoding="utf-8"?>

<Configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <AutoRevertToNDE>false</AutoRevertToNDE>

 <ConnectVerified>true</ConnectVerified>

 <Dedicated>true</Dedicated>

 <HeartBeatInterval>5</HeartBeatInterval>

 <DebugFlag>false</DebugFlag>

 <DebugDelay>-1</DebugDelay>

 <Id>fb1b0481-387f-4e0a-9ec5-0c9c5bd616dc</Id>

 <ManagerHost>192.168.146.1</ManagerHost>

 <ManagerPort>9000</ManagerPort>

57

 <OwnPort>9002</OwnPort>

 <Password>executor</Password>

 <RetryConnect>true</RetryConnect>

 <RetryInterval>30</RetryInterval>

 <RetryMax>-1</RetryMax>

 <SecureSandboxedExecution>false</SecureSandboxedExecution>

 <Username>executor</Username>

</Configuration>

Parameter Meaning

Dedicated Connect to the Manager in dedicated mode.

HeartBeatInterval Number of seconds to wait to send a heartbeat to the

Manager.

DebugFlag The delay flag used to vary the speed on computing of the

executor.

DebugDelay The amount in seconds to delay

Id Id of the executor varies per executor

Password Database password

Username Database Server to connect

RetryConnect flag to retry reconnection to Manager when connection fails

RetryMax Time in seconds to retry

ManagerPort Port to reach the manager

SecureSandboxedExecution Namespace of the class the implements IScheduler

58

5.1.4 Grid Application Settings

The Grid application parameters for the Application “PI Calculator - Alchemi sample” were input

as follows:-

Parameter Name Parameter Value

Number of threads (Task) Increase in steps of 100 starting from 100

5.1.5 Scheduling Algorithm Parameters

The Scheduling Algorithm will be executed with the following parameters:-

Parameter Name Parameter Value

Maximum Iterations 1,000,000

Initial temperature 1,000,000

Temperature cooling rate 0.995

5.1.6 Collecting Results

To collect the results under the Simulated Annealing Scheduler, configure the <

SchedulerTypeName > parameter of the Grid Manager and set it to

“Alchemi.Manager.SimulatedAnnealingScheduler” and Start it up. To configure the Grid

Manager to use the native Scheduler, change the same value to

“Alchemi.Manager.DefaultScheduler”. An example of such a configuration is

<SchedulerTypeName>Alchemi.Manager.SimulatedAnnealingScheduler</SchedulerTypeName>

.

5.2 DEVELOPMENT
The learning and performance management module was successfully developed and deployed

as part of the Alchemi Grid Manager using C#. A new table was created to store the near

optimal schedules discovered during the solution exploration phase.

59

6 RESULTS

6.1 INTRODUCTION
This chapter provides the results of carrying out the design experiments and assessed the

overall performance of the Grid under the learning function and the Performance Management

module.

6.2 EXPERIMENT OBJECTIVES
The objectives of the experiment were to assess the performance of the Alchemi Grid under the

Native Scheduler that uses a Minimum Completion Time (MCT) strategy with a FIFO queue and

compare that to the Simulated Annealing Scheduler. The objective function used for

comparison is application centric namely the Makespan.

6.3 EXPERIMENT LAYOUT
The Grid environment was set up in a virtualization platform with five machines with

differential processing capabilities. The grid hierarchy was one level as shown in the Diagram

below:-

Figure 20: Hierarchical Layout of Grid

A compute intensive application named “PI Calculator - Alchemi Sample” was executed on the

Grid with the Native Scheduler. The application runtime statistics were collected from the

database. The scheduler was then changed to the Simulated Annealing Scheduler and the

Grid

Manager

Grid

Executor

Grid

Executor

Grid

Executor

Grid

Executor

Grid

Executor

WAN/LAN or INTERNET

60

experiment repeated. The number of tasks was increased after each experiment in steps of

100.

6.4 PERFORMANCE RESULTS
The results of the experiments are tabulated below.

No Number
of Tasks

MakeSpan
Duration
(hh:mm:ss)
Native
Scheduler

MakeSpan Duration
(hh:mm:ss)
Simulated Annealing
Scheduler

MakeSpan
Duration
In Seconds
Native
Scheduler

MakeSpan Duration
(hh:mm:ss)
Simulated Annealing
Scheduler

1 100 01:24:00 00:50:00 84 50

2 200 00:01:26 00:01:15 86 75

3 300 00:01:42 00:01:37 102 97

4 400 00:03:01 00:02:09 181 121

5 500 00:02:48 00:02:39 168 159

6 600 00:04:11 00:03:28 251 208

7 700 00:04:15 00:03:44 255 224

8 800 00:04:23 00:04:17 263 257

61

When the information is present graphically the comparison is more visible as below:

Figure 21: Graph Plotting the Makespan of Simulated Annealing Scheduler versus the Native

Scheduler

Graph Plotting the Makespan of Simulated Annealing Scheduler versus the Native Scheduler

62

7 DISCUSSION

7.1 DISCUSSION
We were able to demonstrate that application and resource profiling based on historical

records may benefit a Grid Scheduler. The simulated annealing scheduler was able to

consistently produce lower makespans than the native scheduler. The simulated annealing

scheduler was able to consider resource capabilities prior to scheduling. On the other hand the

native scheduler based on the FIFO principle, allots tasks to resources without any such bias.

The native scheduler would assign tasks to resources even if the assignment may negatively

impact the objective function in this case the Makespan.

Practical implication of the results is in the reservation of resources to perform specific tasks.

The model we developed can be used where a large number of compute intensive tasks are

executed routinely. The developed framework can optimize such applications as they run for a

considerable length of time.

From the results, we obtained an average of 14% reduction in Makespan. The optimization and

performance module has been successful in obtaining better schedules and keeping a memory

of them in the database. A better schedule is kept when found and subsequently optimized.

Given that a computational Grid is a dynamic and heterogeneous computing environment, the

profiles based on historical information may not hold. Also the study took only into

consideration a fixed number of resources that are dedicated to the Grid. Resources in a Grid

leave and join sometimes unpredictably.

The optimization and performance management subsystem may not be suitable in situations

where task number and sizes vary dynamically for the same application.

63

8 CONCLUSION AND FUTURE WORK

8.1 THE CONCLUSION
We presented a model of a scheduling framework that improves the scheduling performance

i.e. shorter makespans of common applications scheduled in the grid. The performance of such

applications improves with time as better schedules are obtained.

Our implemented model consisted of performance optimizer that utilized the simulated

annealing algorithm. The algorithm generated better optimized schedules with shorter

makespans for applications that were previously executed in comparison to the native and

default scheduling algorithm in the Alchemi Grid. Historical data on task execution times on

given resources was used to compute the time taken by individual grid computing resources to

complete individual tasks on the grid. This Scheduling algorithm performed a schedule lookup if

the application exhibited similar scheduling characteristics to existing optimized schedules.

The virtual computing environment was able to mimic a real gird computing environment by

differential allocation of computing resources i.e. CPU, memory and disk-space. CPU was the

key determinant in the variation. The virtual computers were connected to the grid in

dedicated mode. The juggling of resources amongst virtual machines gave the computing

impression of heterogeneity.

We were able to observe that virtual machines with unfavourable allocation of computing

resources exhibited lower task completion rates than machines with higher CPU and memory

allocations.

8.2 RECOMMENDATIONS AND FUTURE WORK
The research has provided some insight into Grid Scheduling algorithms and their practical

implications. The research was limited to a single Grid environment, the Alchemi Grid. Alchemi

Grid has since been succeeded by the Aneka Grid that comes with many scheduling algorithms

and schemes. The Alchemi Grid currently supports the thread model to task decomposition.

Our models such as Map reduce and task model can be considered in future research

endeavors.

64

Our Virtual computing environment gave the computing impression of a grid computing

environment though virtual. It would be interesting to evaluate the model on an actual grid

composed of heterogeneous computing resources. Our virtual grid only considered CPU as the

main computing resource. Research could be conducted to evaluate resource allocation of

memory in addition to CPU for data and compute intensive applications. The applications

considered in this research were compute intensive only.

Our model being a generic model can be implemented in similar advanced Grids such as Grid

Gain, and Aneka and performance evaluation conducted in the context of other scheduling

frameworks and algorithms. Improvements can be made to the model to allow dynamic

selection of scheduling algorithms or schemes based on the scheduled application

characteristics.

Further opportunities have arisen for additional research in Grid scheduling with natural

heuristics. It would be interesting to see the application of machine learning algorithms in the

scheduling. Additionally, the application of scheduling in tasks with dependencies remains a

challenge to many researchers and requires more energy in terms of research effort.

65

REFERENCES AND BIBLIOGRAPHY
Ferreira, L. et al. (2005) Grid Computing in Research and Education. USA: IBM Press.

Foster, I. (2002) What is the Grid? A Three Point Checklist. [online] Available from:
http://dlib.cs.odu.edu/WhatIsTheGrid.pdf . [Accessed: June 2012].

Buyya, R. & Murshed, M. (2002) GridSim: A toolkit for the modeling and simulation of
distributed resource management and scheduling for Grid computing. Concurrency and
computation: practice and experience. 14. p. 1175-1220.

Zhu, Y. (2003) A Survey on Grid Scheduling Systems. A Thesis Submitted in partial fulfilment of
the Requirements of Hong Kong University of Science and Technology for the Degree of Doctor
of Philosophy. Hong Kong: Hong Kong University of Science and Technology.

Foster, I., Kesselman, C. & Tuecke, S. (2001) The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. Journal International Journal of High Performance Computing Applications. 15
(3). p. 200-222.

Schopf, J. (2004) Ten actions when Grid scheduling: the user as a Grid scheduler. In: Nabrzyski,
J., Schopf, J. & Weglarz, J. (eds). Grid Resource Management. Norwell, MA, USA: Kluwer
Academic Publishers.

Fernandez-Baca, D. (1989) Allocating Modules to Processors in a Distributed System, IEEE
Transactions on Software Engineering. 15 (11). p. 1427-1436.

F. Dong & Akl S. G., (2004) Scheduling Algorithms for Grid Computing: State of the Art and
Open problems. Technical Report of the Open Issues in Grid Scheduling Workshop. Ontario:
University Kingston.

Berman, F. (1998) High-Performance Schedulers. In: Foster, I. & Kesselman, C. (eds). The Grid:
Blueprint for a New Computing Infrastructure. Morgan Kaufmann Publishers.

El-Rewini, H., Lewis, T. G. & Ali, H., (1994). Task Scheduling in Parallel and Distributed Systems.
PTR Prentice Hall.

Casavant, T.L. & Kuhl, J.G. (1988) A Taxonomy of Scheduling in General-Purpose Distributed
Computing Systems. [online] Available from:
http://ieeexplore.ieee.org/iel1/32/259/00004634.pdf? arnumber=4634. [Accessed: June 2012].

Buyya, R. et al (2002). Economic Models for Resource Management and Scheduling in Grid
Computing. Concurrency and Computation: Practice and Experience. 14(13-15). p. 1507-1542.

Abraham A., Buyya, R. & Nath, B. (2000) Nature's Heuristics for Scheduling Jobs on
Computational Grids. In Proceeding of 8th IEEE International Conference on Advanced
Computing and Communications (ADCOM 2000). Conchin, India. p. 45-52.

66

Braun, T. D. et al. (2001) A Comparison of Eleven Static Heuristics for Mapping a Class of
Independent Tasks onto Heterogeneous Distributed Computing Systems. Journal of Parallel and
Distributed Computing. 61(6). p. 810-837.

Diot, C. & Seneviratne, A. (2003) Quality of Service in Heterogeneous Distributed Systems. In
Proceedings of the 30th International Conference on System Sciences (HICSS). Maui, Hawaii,
USA. p. 238—253.

	DECLARATION
	ACKNOWLEDGEMENTS
	ABSTRACT
	Table of Contents
	1 INTRODUCTION
	1.1 BACKGROUND
	1.2 THE PROBLEM STATEMENT
	1.3 THE SIGNIFICANCE OF THE STUDY
	1.4 RESEARCH OBJECTIVES
	1.5 SUMMARY

	2 LITERATURE REVIEW
	2.1 THE GRID
	2.2 TYPES OF GRIDS
	2.3 Computational Grids
	2.4 Data Grids
	2.5 Network Grids
	2.6 ARCHITECTURE OF A GRID
	2.6.1 Fabric Layer
	2.6.2 Connectivity Layer
	2.6.3 Resource Layer
	2.6.4 Collective Layer
	2.6.5 Application Layer

	2.7 GRID SCHEDULING
	2.7.1 Components of a Grid Scheduler
	2.7.2 Stages of Grid Scheduling
	2.7.2.1 Resource Discovery
	2.7.2.2 System Selection
	2.7.2.3 Job Execution

	2.7.3 The Grid Scheduling Problem
	2.7.3.1 Challenges of Scheduling In Grid Computing

	2.8 GRID SCHEDULING ALGORITHMS
	2.8.1 Objective Functions
	2.8.1.1 Application Centric
	2.8.1.2 Resource Centric

	2.8.2 Taxonomy of Grid Scheduling Algorithms
	2.8.2.1 Local Scheduling versus Global Scheduling
	2.8.2.2 Static versus Dynamic
	2.8.2.3 Optimal versus Sub-Optimal
	2.8.2.4 Approximate versus Heuristic
	2.8.2.5 Physically Distributed versus Non Physically Distributed
	2.8.2.6 Cooperative versus Non-Cooperative

	2.8.3 Task Dependencies
	2.8.3.1 Independent Task Scheduling
	2.8.3.2 Dependent Task Scheduling

	2.8.4 Non Traditional Approaches to Grid Scheduling
	2.8.4.1 Grid Economic Model
	2.8.4.2 Natures Heuristics

	2.8.5 Scheduling Under Quality of Service Constraints
	2.8.6 Strategies for Managing Dynamic Resource Performance

	2.9 MIDDLEWARE FOR GRID COMPUTING
	2.9.1 Advanced Resource Connector
	2.9.2 gLite
	2.9.3 Globus Toolkit
	2.9.4 GridWay
	2.9.5 The OMII-UK Distribution
	2.9.6 Oracle Grid Engine
	2.9.7 Alchemi
	2.9.8 Aneka

	2.10 THE CONCEPTUAL MODEL

	3 METHODOLOGY
	3.1 SURVEY OF RELEVANT LITERATURE
	3.2 SOFTWARE METHODOLOGY AND PARADIGM
	3.3 ANALYSIS AND DESIGN OF THE SYSTEM
	3.3.1 Design and Setup of the Virtual Grid Environment
	3.3.2 Design of Performance Manager

	3.4 REVERSE ENGINEERING OF THE GRID BINARIES
	3.5 IMPLEMENTATION OF THE SYSTEM
	3.6 EXPERIMENTATION
	3.7 DATA COLLECTION AND ANALYSIS

	4 ANALYSIS AND DESIGN
	4.1 ALCHEMI GRID ARCHITECTURE
	4.1.1 Alchemi Grid Class Diagram

	4.2 OPTIMIZATION AND PERFORMANCE MANAGER MODULE DESIGN
	4.2.1 Conceptual Model
	4.2.2 Design of the Optimization and Performance Manager Module
	4.2.2.1 Algorithm for the Optimizer and Performance Manager
	4.2.2.2 Algorithm for the Simulated Annealing
	4.2.2.3 Algorithm for the Simulated Annealing Scheduler

	4.3 EXPERIMENT DESIGN
	4.4 ALCHEMI GRID CONFIGURATION
	4.4.1

	5 IMPLEMENTATION
	5.1 SETUP
	5.1.1 Virtual Environment Setup
	5.1.2 Host Machine Setup
	5.1.3 Experiment Setup
	5.1.4 Grid Application Settings
	5.1.5 Scheduling Algorithm Parameters
	5.1.6 Collecting Results

	5.2 DEVELOPMENT

	6 RESULTS
	6.1 INTRODUCTION
	6.2 EXPERIMENT OBJECTIVES
	6.3 EXPERIMENT LAYOUT
	6.4 PERFORMANCE RESULTS

	7 DISCUSSION
	7.1 DIsCUSSION

	8 CONCLUSION AND FUTURE WORK
	8.1 THE CONCLUSION
	8.2 RECOMMENDATIONS AND FUTURE WORK

	REFERENCES AND BIBLIOGRAPHY

