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ABSTRACT 

 Job shop scheduling problem is a problem of scheduling n jobs on m machines with each job 

having  a set of equal number of  operation that are to be process in unique machine routes. 

The Job Shop Scheduling (JSSP) is one of the hardest combinatorial optimization problems 

and has been researched over the decade. This study proposes a new approach to solve a 

Job Shop Scheduling problem by structuring the problem as multi-agent system (MAS) and 

using 3 game theoretic algorithms to achieve the scheduling objectives. The objective of this 

study is to minimize the makespan. This approach is meant to achieve feasible schedules 

within reasonable time across different problem instances. This research solves the 

scheduling of operation on different machine and defines the sequence of operation 

processing on the respective machine. Job Scheduling problem is a resource allocation 

problem is mainly apparent in manufacturing environment, in which the jobs are allocated to 

various machines. Jobs are the activities and a machine represents the resources. It is also 

common in transportation, services and grid scheduling. The result and performance of the 

proposed algorithms are compared against other conventional algorithms. The comparison is 

on benchmark data used across multiple studies on JSSP. 
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CHAPTER ONE: INTRODUCTION 

1.1. JOB SCHEDULING 

A Scheduling problem can be defined as the problem of allocation of limited shared resources 

over time to competing activities. Scheduling problems have over the years attracted interest in 

much research and has been the subject of a significant amount of literature in the operations 

research and Artificial intelligence fields.  A huge amount of emphasis has been on investigating 

machine scheduling problems where jobs represent activities and machines represent resource 

and each machine can process at most one job at a time. This has kind of problem is apparent 

in a multitude of diverse real world domains e.g. scheduling of task in an assembly lines, 

scheduling of jobs in multi-processors/ multi-core machine, assignment of tasks to employees, 

job scheduling in distributed computing ,etc.  We can categorize real world scheduling 

application areas as follows, 

 Demand scheduling for customers: problem of assigning customers to a definite 

time for an order or service. 

 Workforce scheduling for employees: problem of determining when employees 

work. 

 Operations scheduling: combines workforce scheduling with job scheduling.  

1. Assigning jobs to workstations. 

2. Assigning people to workstations.  

3. Assigning people to jobs. 

 Distributed computing: assigning jobs to processors time in multi-processor or 

multi-computer environment. 

 

There are diverse variations of scheduling problems that have been formulated in machine 

scheduling, the simplest of which is a single machine scheduling problem. In the single machine 

scheduling problem involves trying to schedule a finite number of jobs onto one machine. 

Other variations depend on of the following factors. 
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 Machines can be related, independent, equal 

 Machines can require a certain gap between jobs(recovery time ) or no idle-time 

 Machines can have sequence-dependent setups, that is, each machine processes a 

single stage of processing cycle. 

 Jobs may have  constraints, for example a job i needs to finish before job j can be 

started 

 Jobs and machines have mutual constraints, for example, certain jobs can be scheduled 

on some machines only 

 Set of jobs can relate to different set of machines 

 Jobs can have different operations and machines can only process a single operation. 

 Deterministic (fixed) processing times or probabilistic processing times. 

 Scheduling can be non-pre-emptive, that is, processing of a job on a machine can be 

interrupted after it has started 

 Jobs can have deadlines in which they need to be processed. 

 Scheduling can be static, that is, all jobs are presented for scheduling at the same time 

or it can be deterministic that is jobs appear at different intervals and are scheduled as 

they appear. In this case processing and scheduling are concurrent. 

 

Reasons for scheduling complexity include (Fox and Sadeh 1990): 

Scheduling is a feasibility problem. The final solution must accomplish all the problem 

constraints. Another objective to be satisfied is the optimization of an evaluation function, 

adjusting to certain criteria as cost, lateness, process time, inventory time, etc. 

 Some scheduling problems have many constraints due to the unavailability of resources, due 

dates, etc. 

 Constraint representation cannot express the importance of the value domains. The number 

and identity of tasks that require a resource over a particular time interval is a key piece of 

information that can suppose the basis for heuristic variable and value orderings. 

http://en.wikipedia.org/wiki/Sequence-dependent_setup
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1.1.1. CLASSIFICATION OF SCHEDULING PROBLEM 

Classification of scheduling problems depends on one or more variation of the above 

parameters. The most common classification of scheduling problems is as follows. 

 

Open-shop scheduling problem (OSSP) is a scheduling problem where, given n jobs 

and m workstations, each job has to be processed on a workstation at least once. Job might 

have operations but there is no ordering precedence on the operation. However, some of these 

processing times may be zero. This problem becomes an NP-Hard when three or more machine 

are involved but can be solved in polynomial time if 

Only two machines are involve, 

All the jobs have the same length. 

 

Flow-shop scheduling problem (FSSP) is a scheduling problem where, there are m machines 

and j jobs where m>1, each job has a set of operations o and the jth operation of the job must 

be processed by jth machine. The number of operations on each job is equal with the number of 

machines; each job must be processed on each of the machine. 

 

Job-shop scheduling problem is a scheduling problem where, there are m machines and j jobs 

where m>1, each job has a set of operations o and has associated a processing order assigned 

for its operations. Unlike in flow-shop scheduling, the precedence sequence for operation in a 

job may differ from job to job. Job-Shop scheduling is a known NP-Hard. 

1.1.2. OBJECTIVE OF SCHEDULING PROBLEMS 

The objective of any job scheduling algorithm can have any of the following objectives; 

Minimize the Makespan- The Makespan is the total length of the schedule, that is, the time it 

takes all jobs finish processing. This is formulated as 

M= max{ C1……….Cn} 

EQUATION 1: Minimize The Makespan  

http://en.wikipedia.org/wiki/Scheduling_(production_processes)
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Where, 

Cj= the earliest time job j finishes processing. 

 

Minimize Tardiness- In situations where the jobs j have deadlines dj, tardiness is the duration 

of time delays past its deadline 

 

Then tardiness tj , 

      {        } 

The tardiness of the schedule T  is, 

  ∑   {        }

 

   

 

Therefore, 

  ∑  

 

   

 

EQUATION 2 Minimize Tardiness  

Minimize lateness- Lateness for a job  is defined as,  

 

           

The Lateness of the schedule L 

  ∑   {     }

 

   

 

 

  ∑  

 

   

 



 
13 

EQUATION 3 Minimize Lateness  

1.2. JOB SHOP SCHEDULING 

Job-shop scheduling is one of the most commonly researched about problems in the domain of 

scheduling problems. In this section we outline the main attributes of this kind of scheduling 

problem. 

1.2.1. THE CLASSICAL JOB-SHOP SCHEDULING PROBLEM 

In assembly lines, staff roasters, manufacturing, or production planning, The production of a 

good involves a number of processing steps that have to be performed in a set order. The 

decision to further process some good can only be taken, if all preceding steps are completed. 

In most cases, however, it is usually a common scenario that not just a single, but a variety of 

products is assembled concurrently. This means that, an appropriate sequencing and 

scheduling of individual processing operations is crucial, if maximal joint productivity is desired. 

This type of problems can be formulated as a classical job-shop scheduling problem.   

The most generalized formulation of job-shop scheduling is a follows, there is an existence of n 

jobs that must be processed on m machines in a pre-determined order. Each job j consists of 

oji operations such that  job j is j(o1…..on)  , each of the operation of  a job must be processed 

by a specific machine, p(oji , mk ) and processing of the job on the machine can take a certain 

duration p(oji , mk ) A processing of a job is completed after completion  of  processing of its 

last operation, the completion of a job is denoted as cj. 

 

equation 1.3: Formalizing a job shop scheduling problem 

A problem instance P=(M,O,J) in job shop scheduling consists of  

 A set M of Machines, 

 A set O of operations  o, each associated with a machine M(o)Є M and having a duration 

d(o) Є N and  
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 A set J of jobs (o1………….on)(each operation has exactly one occurrence.) 

A Schedule S for P assigns to every operation o a  time b(o): 

1. b(o)≥0 for all o Є O 

2. b(o)≥ b(o') + d(o') for operations o' preceding o in the same job. 

A Schedule has cost T if b(o)+d(o)≤ T for all oЄ O. 

(Takeshi Yamada and Ryohei Nakano, 1997) describes a grant chart as a convenient way of 

visually representing a solution of the JSSP. An example of a solution for the 3 X 3 problem 

depicted in table 1 can be represented as shown on Figure 1.0 

 

 

 

FIGURE 1 : A 3 X 3 JSSP 

 

 

FIGURE 2: GRANTT CHART REPRESENTATION OF A JSSP SCHEDULE 
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They further illustrate that JSSP can be formally described by a disjunctive graph 

 G = (V, C U D), where; 

 

V is a set of nodes representing operations of the jobs together with two special 

nodes, a source (0) and a sink *, representing the beginning and end of the schedule, 

respectively. 

C is a set of conjunctive arcs representing technological sequences of the operations. 

D is a set of disjunctive arcs representing pairs of operations that must be performed 

on the same machines. 

The processing time for each operation is the weighted value attached to the corresponding 

nodes. Figure 1.2 shows this in a graph representation for the problem given in Table 1.0 

 

FIGURE 3: DISJUNCTIVE GRAPH REPRESENTATION OF A JSSP 

Disjunctive graph helps in visualizing and understanding the structure of a JSSP problem. 

The JSSP is not only N P-hard, but it is one of the worst members in the class. Even with a 3 X 3 

problem where each job has 3 operations the search space can be as big as  

Search Space= (33)3 
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An indication complex a JSSP is, is the fact that one 10 X 10 problem formulated by (Muth and 

Thompson, 1963) remained unsolved for over 20 years before it was finally settled in 1985. 

 

1.3. PROBLEM STATEMENT 

1.3.1. RESEARCH OBJECTIVE 

This study has the following objectives. 

 Model JSSP as a game theoretic Multi-agent environment in which agents interact to 

achieve global optima. We seek to define games that govern agent strategy/actions in 

these environments. 

  Visualization of the  algorithms the JSSP and the algorithms that will be defined, 

 Evaluating the algorithms using the available benchmark data for JSSP. Example of 

which is the compilation of important provided by the Operations Research Library 

(Beasley, 2005) . 

 

1.3.2. RESEARCH QUESTIONS 

The research problem in this thesis is defined as a job shop problem with precedence 

constraints on job operations denoted by definition one. The scheduling problem to be solved 

involves determining an optimal assignment of the operations of independent n jobs, where 

n>0  that are to be processed on m non identical machines so that the total processing time for 

all the jobs, the makespan, is minimized. The jobs and the machines the following properties; 

 Machine don’t  require idle time between jobs 

 The schedule must be non-preemptive. That is, once a machine begins processing a 

stage of a job, it must complete that stage before doing anything else. 

 Each job j consists of oji operations such that  job j is j(o1…..on)  , and 

 there is a precedent constraint on the operation such that operation oˈ preceding and 

operation o, should be processed before o is processed, 
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 each of the operation of  a job must be processed by a specific machine, p(oji , mk ) and 

 processing of the job on the machine can take a certain duration p(oji , mk )  

 A processing of a job is completed after completion of processing of its last operation, 

the completion of a job is denoted as cj. 

The study aims to address the following questions, 

 How can JSSP be modeled as game theoretic multi-agent environment. Modeling the 

problem multi-agent systems provides a number of advantages compared to centralized 

solution approaches. Among those is the ability to distribute the required computations over 

a number of entities, an increased amount of robustness, flexibility, and scalability due to 

the possibility of exchanging individual agents, or the benefit of allowing for spatial 

distribution of the work.Using the variation of games modeled by (Opiyo et al, 2009) in 

solving the parallel machine scheduling problem, these are, potential games and Random 

choice games. We seek to determine.How can the games be modified in order be able to 

provide feasible solutions to the Job Shop scheduling problems. The aims of algorithms 

defined here would be to reduce/minimize the makespan of a JSSP. The makespan(J|| 

Cmax) is defined as the time the last job finishes processing, that is, 

If Cj  is the time job j finishes processing  then 

 

 

        
        

   

EQUATION 4: FINDING CMAX 

The objective that needs satisfying becomes the search of C* such that, 

           

EQUATION 5: STATISFACTION OBJECTIVE 

1.4. SIGNIFICANCE OF STUDY 

Scheduling and sequencing have always been crucial decision-making tasks to support and 

enhance the productiveness of manufacturing organizations as well as logistics and service 
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providers. Job Shop Scheduling Problem (JSSP) has emerged as one most studied scheduling 

problem because of its common occurrence and complexity. The classical JSSP is well-known as 

an NP-hard problem. Most of the proposed evolutionary and operation research based 

solutions are sequential in their decision making and with current computational capabilities 

are able to provide solutions for small problems cases but as the job get larger it becomes 

computationally infeasible to achieve a feasible solution.  Use of multi-agents to distribute 

decision making thus allowing for the possibility of distributing the computational resource as 

well as including fault tolerance.   

Apart from the offering scalability advantage due to is distributed decision making nature. Multi 

agent systems also offer adaptability. ( Opiyo et al, 2009) also state that The issue with the OR 

approaches is that most solutions are limited to each class of the scheduling problem that is 

solved. This makes it necessary to seek the invention of algorithms or heuristics for different 

problem classes. For example algorithms for 1||Cmax are not guaranteed to solve the 3||Cmax 

or the Q||Cmax problems. The agent-based approaches are different. The schedules are 

generated according to the agent behavior. This associates the qualities of schedules that are 

produced with the behavior of the agents. This shifts the burden of the scheduling problem 

from the invention of algorithms to determining the agent behavior that would lead to good 

schedules. The main advantage of using the agent-based approach is that in the extreme case 

that the problem class is unfamiliar the agents can learn the behavior that leads to good 

schedules on their own. ( Opiyo et al, 2009) defined such  algorithms  for  the parallel machine 

scheduling problem using game theoretic multi-agents.  This study seeks to use the same 

concept in order to achieve adaptable algorithms for JSSP in attempt to solve for most J||Cmax 

instances. 
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CHAPTER TWO:  LITERATURE REVIEW 

Job shop scheduling is among the hardest combinatorial optimization problems and is NP-

complete (Garey and Johnson, 1979). An NP-complete or NP-hard problem is where no 

algorithm exists (unless P=NP) that in polynomial time is able to solve all possible instances of 

the problem. Hence, the solution time risks increasing exponentially with the number of jobs. 

(Karin Thörnblad, 2013).  According to (Karin Thörnblad, 2013) JSSP remains  a NP-complete 

problem despite the objective function selected. As noted in section 1, the following can be the 

objective of a job shop scheduling problem. 

Minimize the Makespan- The Makespan is the total length of the schedule, that is, the time 

it takes all jobs finish processing. This is formulated as 

 

M= max{ C1……….Cn} 

Where, 

  Cj= the earliest time job j finishes processing. 

  EQUATION 6: MINIMIZE MAKESPAN                                 

         

Minimize Tardiness- In situations where the jobs j have deadlines dj, tardiness is the 

duration of time delays past its deadline 

   Then tardiness tj , 

      {        } 

The tardiness of the schedule T  is, 

  ∑   {        }
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Therefore, 

  ∑  

 

   

 

EQUATION 7: MINIMIZE TARDINESS  

Minimize lateness- Lateness for a job  is defined as,  

           

The Lateness of the schedule L 

  ∑   {     }

 

   

 

 

  ∑  

 

   

 

EQUATION 8: MINIMIZE LATENESS 

The objective that is most often utilized for scheduling problems is the minimization of the 

makespan , i.e., the time between the start of the first operation and the completion of the last 

operation of the schedule. 

(Metta Haritha, 2008) noted that the nature of the scheduling environment plays a vital role in 

determining the job Schedules. she differentiated between two environments, A static 

environment, where the number of jobs and the arrival times are known in advance and  a 

dynamic environment, where the arrival times of jobs are unknown at time of scheduling and 

scheduling is usually done as processing continues.(Madureira et al., 2001) observed that a 

dynamic scheduling system encounters the difficulties of randomness such as machine 

breakdowns, unexpected job orders etc. which are experienced in real world problems. 
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2.1. RESEARCH ON JOB SHOP SCHEDULING 

Job Shop scheduling has been the subject of a significant amount of literature in the operations 

research and artificial intelligence. Research in scheduling theory has evolved over the past 

forty years and has been the subject of much significant literature. This is because, this problem 

is not only NP-hard it is also has the well-earned reputation of being one of the most 

computationally stubborn combinatorial problems considered to date. Over the past forty years 

different solution approaches have been proposed to address the JSSP.  These approaches can 

be categorized in two, these are ; 

Optimization Algorithms: These are usually mathematical programming based approaches that 

work toward achieving optimal solutions. According to (Azizizoglu and Kirca 1999a) they involve 

the process like formulating Mathematical models for the problem, and using exact algorithm 

such as branch-and-bound algorithms or mathematical formulation to solve the problem.  

Approximation Algorithms: These are usually heuristic/Meta-heuristic algorithms based 

approaches that aim to give an approximately near optimal solution rather than the optimal 

solution.  We look at the main classification of approximation algorithms , that is,  priority 

dispatch rules, bottleneck based heuristics, artificial intelligence and local search methods. 

In the following sub-sections we review the above approach, illustrating past and recent studies 

on each. 

2.1.1. OPTIMIZATION ALGORITHMS  

These methods simply build an optimum solution from the problem data by following a simple 

set of rules which exactly determine the processing order. Optimization algorithms have been 

known to solve a given problem optimally with a requirement that increases polynomial with 

respect to the size of the input. Optimization approaches usually process like formulating 

Mathematical models for the problem.  These approaches form the earliest of approaches in 

solving scheduling problems, The first example of an efficient method and probably the earliest 

work in scheduling theory is (Johnson ,1954) who develops an efficient algorithm for a simple 

two machine flow shop whose objective function was to minimizes the maximum flow time. 

The two most common methods in these approaches are; 
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 Branch-and-bound algorithms  

 Mathematical formulation.  

 

2.1.1.1. BRANCH AND BOUND 

Branch and Bound (B&B) is by far the most widely used tool for solving large scale NP-hard 

combinatorial optimization problems.  The general definition of branch and bound is  a general 

algorithm for finding optimal solutions of various optimization problems, especially in discrete 

and combinatorial optimization. According to (A S Jain  and S Meeran,1998) ,  A branch-and-

bound algorithm consists of a systematic enumeration of all candidate solutions. The algorithm 

searches the complete space of solutions for a given problem for the best solution. However, 

explicit enumeration is normally impossible due to the exponentially increasing number of 

potential solutions. The use of bounds for the function to be optimized combined with the 

value of the current best solution enables the algorithm to search parts of the solution space 

only implicitly (Jens Clausen,199). (A S Jain  and S Meeran,1998) explains that in a typical branch 

and bound algorithm,  large subsets of fruitless candidates are discarded en masse, by using 

upper and lower estimated bounds of the quantity being optimized. They state that Branch and 

Bound (BB) algorithms use a dynamically constructed tree structure as a means of representing 

the solution space of all feasible sequences. The search begins at the topmost (root) node and a 

complete selection is achieved once the lowest level (leaf) node has been evaluated. At any 

point during the solution process, the status of the solution with respect to the search of the 

solution space is described by a pool of yet unexplored subset of the tree and the best solution 

found so far. Initially only one subset exists, namely the complete solution space, and the best 

solution found so far is 1. The unexplored subspaces are represented as nodes in a dynamically 

generated search tree. Each node at a level p in the search tree represents a partial sequence of 

p operations. As implied by their name a branching as well as a bounding scheme is applied to 

perform the search. From an unselected (active) node the branching operation determines the 

next set of possible nodes from which the search could progress. 

One of the most popular branch and bound is based on work of (Brucker et al, 1994) which was 

later extended by (Brucker and Thiele, 1996) where They  consider is the general shop problem 
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with sequence-dependent setup time. The method is based on the disjunctive graph 

representation. E.g. for an instance of the job-shop scheduling problem the disjunctive graph 

 G = (V, C u D) 

 is defined as follows.  

 V is the set of nodes, representing the operations of the jobs.  

 There are two special nodes, a source 0 and a sink *. Each node i has a weight which is 

equal to the processing time pi of the corresponding operation, whereby p. and p* are 

equal to 0.  

 C is the set of conjunctive arcs which reflect the job-order of the operations. For every 

pair of operations that require the same machine there is an undirected, so-called 

disjunctive arc.  

 The set of all these arcs is denoted by D. 

The basic scheduling decision on this model is to define an ordering between all those 

operations which have to be processed on the same machine, i.e. to fix precedence relations 

between these operations. This branch and bound algorithm solved the famous 10 x 10 

benchmark problem in less than 19 min on a workstation. The algorithm proved unsuitable for 

benchmark problems larger than the 10 X 10 problem. 

More recently,( A. AitZai and M. Boudhar, 2013) proposed  a parallel version of a branch-and-

bound method based on an implicit enumeration, that  further improved the speed of solving 

instances smaller or equal to the 10 X10. Though the algorithm still proved inefficient for  case 

larger than this. 
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2.1.1.2. MATHEMATICAL FORMULATION 

 

These methods usually involve finding the optimal solution by describing the JSSP as some 

mathematical model.  Mathematical modeling as a solution technique was made popular after 

works (Wagner, 1959) and (Manne, 1960) who both introduced an integer linear-programming 

model for machine scheduling.  Integer linear-programming is a mathematical optimization or 

feasibility program in which some or all of the variables are restricted to be integers the aim of 

linear programing is to  achieve the best outcome) in a mathematical model whose 

requirements are represented by linear relationships.  

 

Since them other models have been devised to solve for scheduling problems. Most notably 

Lagrangian relaxation (LR) approaches devised by (Van De Velde, 1991) and (H. Chen and P.B. 

Luh, 2003). Lagrangian relaxation is a relaxation method which approximates a difficult problem 

of constrained optimization by a simpler problem.  It works on the assumption that a solution 

to the relaxed problem is an approximate solution to the original problem.  

  

Mathematical optimization models with currently available resources have proved successful 

when present with simple problem instance but their complexity grows polynomially with the 

increase with the instance size and the algorithms become computationally infeasible. 

2.1.2. APPROXIMATION ALGORITHMS  

These are usually heuristic/Meta-heuristic algorithms based approaches.  A Meta-heuristic is a 

higher-level procedure or heuristic designed to find or generate procedure or heuristic (partial 

search algorithm) that may provide a sufficiently good solution to an optimization problem.   

These methods are usually preferred and are better for larger problem/dynamic problems/ 

problems with multiple constraints as they are more likely to converge to a good enough 

solution much earlier than optimization methods can achieve an optimal solution. In most 

problem instance successful algorithm have shown that the solution derived from 

approximation approaches are usually close to enough to the optimal solution. Since the 

http://en.wikipedia.org/wiki/Mathematical_model


 
25 

solution is close to optimal and generated in much less time, (Blum and C.Roli, A. 2003) argue 

that the benefit of having using far less resources outweighs the disadvantage of not arriving to 

an absolute optimal solution.   We review four main categories of approximation technique are 

considered: priority dispatch rules, bottleneck based heuristics, artificial intelligence and local 

search methods.( Karin Thörnblad, 2013) explained that the major disadvantage of 

metaheuristics  is that there is often no other stopping criteria than a maximum allowed 

number of iterations, or a maximum computation time. She also states that because of this the 

quality of the solution obtained is often unknown.  

In the following sub section we look at early and recent research on the four main common 

classifications of approximation methods, that is, priority dispatch rules, bottleneck based 

heuristics, artificial intelligence and local search methods. 

 

2.1.2.1. PRIORITY DISPATCH RULES 

Priority dispatch rules is a technique of finding a near optimal solution for scheduling problems 

by applying heuristic dispatching rules. Dispatch rule in a simplistic approach would involve 

assigning priorities to jobs/operations based on criteria which could be a task corresponding to 

longest/shortest operation time; most/least successors; or ranked positional weight, i.e., sum 

of operation times of its predecessors, the jobs or operations deadline, etc. The priority is used 

to assign jobs/operations to machine whenever they become available. 

Priority dispatch rules perform reasonably well in a wide range of environments, and are 

relatively easy to understand. They also need only minimal computational time, which allows 

them to be used even in real-time, on-line scheduling environments. (Torsten Hildebrandt et al, 

2010). Hundreds over approaches based on priority dispatch rules have been proposed in 

handling job shop scheduling. A summary of over 100 classical dispatching rules can be found in 

(Panwalkar and Iskander, 1977). The Earliest being work being by (Jackson, 1955). More 

recently (H Ingimundardottir and P Runarsson, 2010) introduced a priority dispatch rules 

approach for job shop scheduling based on Supervised Learning. 
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2.1.2.2. BOTTLENECK BASED HEURISTICS 

The most common of these approaches is the shifting bottleneck heuristics. These algorithms 

work on the assumption that in cases where jobs/machines are competing with each other for 

the same resources (machines), there is always  be one or more resources that act as a 

'bottleneck' in the processing. The algorithm then works to reduce/minimize the bottleneck. 

This algorithm has proven very efficient for solving for instances equal or less to those of 30 

machines and 50 jobs. It was first introduced for the reducing makespan for JSSP problems by 

(Adams et al., 1988) and this was later extended by (Balas et al. 1995).  Because of is relatively 

good performance the approach has been extended to other performance measures in solving 

a JSSP  like total weighted tardiness by  (Pinedo M, Singer M, 1999 ) and maximum lateness by 

(Demirkol et al,1997) and (Uzsoy R and Wang C S., 2000). More recently (Gokhale et al, 2011) 

address a scheduling problem for minimizing total weighted tardiness in JSSP. 

 

2.1.2.3. LOCAL SEARCH METHODS 

Local search algorithms have been around for over forty years and are in evolution through 

many research papers. The algorithms work on the fundamental idea that given an initial or set 

of initial solution, a best fit can be obtained making small improvement on solution, this is done 

over and over until a certain criteria is met. How the initial set selected allows with the 

improvement/search methodology and the evaluation functions have been subject of much 

research. Currently the two most popular approaches in local searches include; 

Tabu search algorithms; Tabu searches where introduced by (Glover, 1986) . (Metta Haritha, 

2008) works defines as follows. “A Tabu search as the Tabu search algorithm stores the previous 

search history (list of obtained solutions) in its memory. When the search process is carried out 

in a new neighborhood the algorithm tries to find the best solution by excluding earlier solutions 

stored in the memory. Therefore this procedure forbids/ tabus moves in new neighborhoods, by 

guiding the search process away from solutions that resemble previous ones”. 
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Simulated Annealing is based on the works of (Kirkpatrick, et al. ,1983) and ( Metropolis, et al, 

1953) the technique coined the methodology from the analogy  between  annealing process 

and the search for the minimum in a general process. (Metta Haritha, 2008) describes the 

algorithm as follows. The algorithm starts with a randomly generated set of initial solutions and 

at a high starting temperature ‘T’. The algorithm replaces the present solution with a solution 

from its neighborhood if that solution is better than the current one. A better solution in this 

algorithm could be the one whose objective function value is less than latter solutions. The 

value of temperature gradually decreases during the search process, thereby the solutions are 

replaced more number of times at the beginning and then toward the end. The above steps are 

repeated until a termination criterion is reached. In most case once the termination criteria is 

achieved, the best out of the current set of solution is selected as the near optimal solution. 

 

The most notable recent studies on local search algorithms is Zhang et al.’s hybrid tabu search / 

simulated annealing algorithm (Zhang et al., 2008) . Local Search methods are known to be 

simplistic, easy to implement and very efficient in regards to use of computing resources. The 

major disadvantage is that local search emphasis fails to consider effects at a global scale, a fact 

that sometimes lead to poor solutions in larger test instances. 

 

2.1.2.4. ARTIFICIAL INTELLIGENCE 

Artificial intelligence (AI) is the subfield of computer science concerned with building software 

that can think and act rationally and independently as if to exhibit human intelligence. Artificial 

intelligence has been used as problem solving mechanism in different fields. In JSSP, hundreds 

of artificial intelligence approaches have been developed over the last 40 years. Common 

artificial intelligence employed for JSSP includes use of; 

 Genetic Algorithms; (Davis, 1985) 

 Artificial Immune System; (Coello et al 2003) 

 Artificial Nueral Networks; (Yu and liang 2001) 

 Reinforcement Learning ; ( G Weiss, 2013) 

 Multi-agents Systems; (Opiyo et al, 2009) 
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 Ant colony optimization; (Zhang et al 2006) 

Artitifial Intelligence approaches have be identified by to have the following four main 

advantages.  

 They employ both quantitative and qualitative knowledge in the decision-making 

process. 

 Second, they are capable of generating heuristics that are significantly more complex 

problem instances than the earlier approaches 

  The third is that the selection of the best heuristic can be based on information about 

the entire JSSP and not localization like in local search policies. They can also adapt in a 

dynamic JSSP to the change in state or configuration of the JSSP e.g machine break 

downs, additional job arrivals. 

 They can model complex relationships in elegant new data structures and have 

techniques that can be used for powerful manipulation of the information in the data 

structures. 

This research will try to employ an Artificial intelligence approach to the classic JSSP problem, 

the approach used is based on Multi-agents and game theory. The approach is extends  to the 

works of (Opiyo et al, 2009) which employed game theoretic multi-agents in solving the parallel 

machine scheduling problem and has relations to agent based model techniques reviewed by ( 

G Weiss, 2013). As was earlier mentioned, the benefit of using this approach as, first, the 

schedules are generated according to the agent behavior. This associates the qualities of 

schedules that are produced with the behavior of the agents. This shifts the burden of the 

scheduling problem from the invention of algorithms to determining the agent behavior that 

would lead to good schedules. The main advantage of using the agent-based approach is that in 

the extreme case that the problem class is unfamiliar the agents can learn the behavior that 

leads to good schedules on their own. (Opiyo et al, 2009).Secondly, Use of multi-agents enables 

to distribute decision making thus allowing for the possibility of distributing the computational 

resource as well as including Profit from inherent properties of distributed systems like 

robustness, fault tolerance, parallelism and scalability.( G Weiss, 2013). 
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2.2. MULTI-AGENT SYSTEMS  

A multi-agent system (M.A.S.) is a computerized system composed of multiple 

interacting intelligent agents within an environment. Multi-agent systems can be used to solve 

problems that are difficult or impossible for an individual agent or a monolithic system to solve. 

Because of its nature it lends its self to solving problems where distributed decisions are 

necessary. Multi-agent systems are centered on the concept of a rational agent. An agent is 

anything that can perceive its environment through sensors and act upon that environment 

through actuators (Russell and Norvig, 2003). Flexibility and rationality are achieved by an agent 

on the basis of key processes such as problem solving, planning, and decision making, and 

learning. As an interacting entity, an agent can be affected in its activities by other agents and 

perhaps by humans (S. Russell, 2003). Multi-agent systems consist of multiple agents and their 

environment. MAS systems are used to model real world problems where distributed decision 

making is need to achieve the solutions. 

2.2.1. CHARACTERISTICS OF AGENTS IN MAS. 

The following are the main characteristics of agents in a multi-agent system. 

1. Autonomous: An agent is capable of acting independently, exhibiting control over their 

internal state. Agents collaborate/cooperate or compete with other agents in their 

environment in order to maximize/optimize a certain gain. The gain can be an individual 

gain or a social cumulative gain.  

2. Reactive: An agent maintains an ongoing interaction with its environment, and responds 

to changes that occur in it (in time for the response to be useful). If a program’s 

environment is guaranteed to be fixed, the program need never worry about its own 

success or failure – program just executes blindly. But this is not usually the case in real 

world application, where the environment is usually dynamic. This necessitates for 

intelligent software entities like agents to be reactive based on the environmental 

states. 

3. Pro-active: Agents should be capable of generating and attempting to achieve goals; not 

driven solely by events; taking the initiative and/or recognizing opportunities. 

http://en.wikipedia.org/wiki/Intelligent_agent
http://en.wikipedia.org/wiki/Monolithic_system
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4. Social ability:  Social ability in agents is the ability to interact with other agents (and 

possibly humans) via some kind of agent-communication mode, e.g Messaging or 

bulletin board in order to satisfy their design objectives. 

5. Mobility: the ability of an agent to move around an electronic network 

6. Veracity: an agent will not knowingly communicate false information 

7. Benevolence: agents do not have conflicting goals, and that every agent will therefore 

always try to do what is asked of it 

8. Rationality: agent will act in order to achieve its goals, and will not act in such a way as 

to prevent its goals being achieved — at least insofar as its beliefs permit 

9. Learning/adaption: agents improve performance over time 

According to (G WeiB, 2000) interest in multi-agent systems is largely founded on the insight 

that many real world problems are best modeled using a set of agents instead of a single agent. 

In particular, multi-agent modeling makes it possible to Cope with natural constraints like the 

limitations of the processing power of a single agent or the physical distribution of the data to 

be processed and profit from inherent properties of distributed systems like robustness, fault 

tolerance, parallelism and scalability. 

(V lesser,1995) state that The current set of multi-agent applications can be classified into three 

broad areas.  First, distributed situation assessment Applications, such as distributed network 

diagnosis, emphasize how (diagnostic) agents with different spheres of awareness and control 

(network segments)should share their local interpretations to arrive at consistent and 

comprehensive explanations and responses. 

Secondly distributed expert systems applications, such as concurrent engineering, emphasize 

how agents negotiate over collective solutions (designs) given their different expertise and 

criteria. The next generation of applications alluded to will probably involve all the emphases of 

these generic applications and more. 

Finally ,as in our case, Distributed resource planning and allocation applications, such as 

distributed factory scheduling, emphasize how (scheduling) agents (associated with each work 

cell) should coordinate their schedules to avoid and resolve conflicts over resources and to 

maximize system output.  
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2.3. GAME THEORY  

 

Game Theory was launched by (Neumann and Oskar Morgenstern,1944) in their book Theory of 

Games and Economic Behavior. They state that Game theory is an economic theory that models 

interactions between rational agents as games of two or more players that can choose from a 

set of strategies and the corresponding preferences. It is the mathematical study of interactive 

decision making in the sense that the agents involved in the decisions take into account their 

own choices and those of others. Choices are determined by stable preferences concerning the 

outcomes of their possible decisions, and agents act strategically, in other words, they take into 

account the relation between their own 

(Osborne and Rubinstein, 1994) described multi-agent decision making as a subject of game 

theory. (Vlassis, 2005 ) described the following, although originally designed for modeling 

economical interactions, game theory has developed into an independent field with solid 

mathematical foundations and many applications. The theory tries to understand the behavior 

of interacting agents under conditions of uncertainty, and is based on two premises, First that 

the participating agents are rational. Second, that they reason strategically, that is, they take 

into account the other agents' decisions in their decision making. 

Depending on how an Agent selects its action two classic types of game can be distinguished, 

 Strategic game, here each agent is allowed chooses their strategy once at the start of the 

game, and then all agents take their actions simultaneously. The normal (or strategic form) 

game is usually represented by a matrix which shows the players, strategies, and pay-offs as 

depicted by figure 1.4 below.  

 

 

 
Player 2 

chooses Left 

Player 2 

chooses Right 

Player 1 4, 3 –1, –1 
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Table 1: Normal form or payoff matrix of a 2-player, 2-strategy game 

 

In this example (borrowed from Wikipedia) there are two players; one chooses the row and 

the other chooses the column. Each player has two strategies, which are specified by the 

number of rows and the number of columns. The payoffs are provided in the interior. The 

first number is the payoff received by the row player; the second is the payoff for the 

column player. Suppose that Player 1 plays Up and that Player 2 plays Left. Then Player 1 

gets a payoff of 4, and Player 2 gets 3. This game assumes all players make moves 

simultaneously. 

 Extensive game, here the agents take their actions in turn and agents actions can be based 

on their actions of preceding agents action.  The extensive form can be used to formalize 

these games with a time sequencing of moves. Games here can be depicted as if they are  

played on decision tree as show  by figure 1.3 Here each vertex (or node) represents a point 

of choice for a player. The player is specified by a number listed by the vertex. The lines out 

of the vertex represent a possible action for that player. The payoffs are specified at the 

bottom of the tree.  

 

                        FIGURE 4:GAME THEORY IN EXTENSIVE NORM(BORROWED FROM WIKIPEDIA) 

chooses Up 

Player 1 

chooses Down 
0, 0 3, 4 
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The extensive form can be viewed as a multi-player generalization of a decision tree. 

(Fudenberg and Tirole, 1991) .The above figure represents a game where there are two 

players. Player 1 moves first and chooses either F or U. Player 2 sees Player 1's move and 

then chooses A or R. Suppose that Player 1 chooses U and then Player 2 chooses A, then 

Player 1 gets  8 and Player 2 gets 2. 

 

 (Opiyo et al, 2008) in seeking to devise game theoretic multi-agent based algorithms for solving 

parallel machine scheduling problem. In defined three types of games these are, 

Dispersion games: These are those in which the agents win positive payoffs when they choose 

distinct actions. This game is a form of anti-coordination games described by (Trond et al. 

2002).  He describes dispersion games as a game in which agents prefer to be disperse over 

their actions in that they choose deferent actions than those chosen by other agents. 

Dispersion Games are used to model real world problems, the classical example is a load 

balancing problem this problem can be modeled as a Dispersion game in which the agents are 

the users, the possible actions are the resources, and the equilibria of the game are the 

outcomes in which agents are maximally dispersed. (Opiyo et al, 2008)  gives natural examples 

such as  setting up new businesses in areas where there are no similar businesses and choosing 

to drive on streets with low traffic, are some of the activities that can be modeled by dispersion 

games.  

In dispersion games the desired end state is a Nash equilibrium, a Nash equilibrium is a state in 

which all players are relatively satisfied with the choices they’ve made, that is, If each player 

has chosen a strategy and no player can benefit by changing strategies while the other players 

keep theirs unchanged, then the current set of strategy choices and the corresponding payoffs 

constitute a Nash equilibrium. Therefore dispersion games seek to identify a Nash equilibrium. 

 

Potential games: In these games the key is to achieve/learn a social policy known as the 

potential function which will guide the actions of the players. It is assumed that the learned 

function will guided the players/agents in making decision that will ensure a social good. 

(Sandholm 2001) describes these games as those in which the incentive of all players to change 
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their strategy is expressed in one global function called the potential function. The progressive 

actions of the participants lead to a stable state. (Opiyo et al, 2008) describes the use of taxes 

or public charges to influence the decisions of people are a form of potential game.( Riedmiller, 

et al, 2009) describe reinforcement learning based approaches to achieve a potential function, 

they describe a policy based search algorithm based on Markov Decision Processes to achieve a 

potential function. 

Random Games, these are game in which players/agents randomly select an action with hope 

of achieving a near optimal state. These are done in a predefined number of iterations and the 

overall best state from the iterations is selected.  
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CHAPTER THREE:  METHODOLOGY 

In this section, research methods for this study are described 

3.1. RESEARCH APPROACH 

Our first objective is to model JSSP as a game theoretic Multi-agent environment in which 

agents interact to achieve global optima. We seek to define games that govern agent 

strategy/actions in these environments, evaluate and review Multi-agent environment/archi-

type to discover the best archi-type to adopt, this will also involve evaluating other models of 

multi-agents adopted in solving scheduling problems. We will further design/ definition of our 

multi-agent environment and finally review of the 3 games discussed in (Opiyo et al, 2009) to 

be able to extend or modify in order to be applicable to our problem.  

 

The second objective is to provide visualization of the algorithms the JSSP and the algorithms 

that will be defined. This will involve review of the available development toolkit and their 

appropriateness to use in our cause, designing a conceptual model of the visualization tool 

defining our multi-agents environment and finally developing the visualization tool/realize the 

conceptual model  

Our third objective involves evaluating the algorithms using the available benchmark data for 

JSSP. Example of which is the compilation of important provided by the Beasly’s Operations 

Research Library (Beasley, 2005) .This would involve a review on benchmark criteria in JSSP 

Including data instances and use of benchmark for each of our defined games. 

3.2. RESULT PRESENTATION 

In order to analyze the result the visualization tool will present the data and derivation of the 

solutions; we will then proceed to tabulate the result against available performance 

benchmarks.   Will then document our finding and conclusion from the study for each of the 

defined games 
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3.3.  TOOLS 

For Visualization we will use the following  Visual Studio 2012. 

 

 

CHAPTER FOUR:  ALGORITHM FORMULATION 

In this chapter we define our job Shop algorithm as a Multi-agent system environment and we 

formulate the game theoretic algorithms to solve the problem.  In the next chapter we will 

perform experiments on our algorithms and evaluate using the defined benchmark data. 

4.1. JOB SCHEDULING AS A MAS ENVIRONMENT 

In Chapter we formalized the job shop scheduling problem as follows; 

A problem instance P= (M, O, J) in job shop scheduling consists of  

1. A set M of Machines, 

2. A set O of operations  o, each associated with a machine M(o)Є M and having a duration 

d(o) Є N and  

3. A set J of jobs J(o1………….on)(each operation has exactly one occurrence.) 

A given Schedule S for P assigns to every operation o a starting time T(o): on the relevant   

machine time  

3. T (o)≥0 for all o Є O 

4. We define an operations processing time P(o) as 

P(o)= T (o)+ d(o) 

5. We define a precedent constraint on T (o’)on T (o) such that 

T (o)≥ T (o’)+ d(o') 

for operations o' preceding o in the same job. 
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Our objective function in the problem is to minimize the makespan in search of a near optimal 

schedule.  We defined the Makespan as the time the last machine finishes process the last 

operation, therefore the makespan of a schedule M(S), can be defined as 

M(S) = MAX( T(o1)+ d(o1) , T(o2)+ d(o2),……………..T(on)+ d(on)) 

EQUATION 9: CALCULATE MAKESPAN  

To define this as a multi-agent system, We adopt and extend *Opiyo et al,2009+’s definition of a 

multi-agent system for parallel machine  scheduling.  Same as their study had, we make the 

following considerations; First, A multi agent system to be a system that consists of the agents, 

the agents act as autonomous entities that can sense and react to the changes in their 

environments.  

Secondly, game theory as the study of interactions in contexts where the participants make the 

choices to affect the overall status in the game. A game is a structure that consists of a set of 

the agents, a set of the agent actions or choices and a set of the agent payoffs associated with 

their actions. A situation where schedules are generated by agents as they choose machines 

can be considered as a game [Opiyo et al. 2008b]. 

4.2. RANDOM TOKEN GAME 

4.2.1. MAS ENVIRONMENT FOR RANDOM TOKEN GAME 

 From the above perspective of a multi-agent system, we redefine the job shop scheduling 

problem as  MAS environment to suite our random token game as follows this follows; 

We define jobs as a categorization of agents, where agents represent a single operation. We 

define all operation as agents that will either compete or cooperate with each other in order to 

achieve a schedule. Each Agent belongs to a particular categorization/ job.   The current state of 

a schedule defines the agent’s external environment, while the agent’s internal state is defined 

by its attributes as shown by the table below. The Agent can also perform the actions as 

illustrated by the table below to affect its internal status. Some Actions act as it actuators to 

affect both the environment and its internal state, some act as preceptors to sense the state of 
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the environment and there is also a messaging action to enable the agent communicate with 

other agents. The  diagram below depicts an Agents environment  while the table that follows 

illustrates the agents attributes(internal State) and actions(actuators and Perceptors) 

  

FIGURE 5:SIMPLE  ILLUSTRATION OF A 1X1 MAS ENVIRONMENT 

       

 

Environment ( Current 

state of Schedule) 

State 

(Attribute) 

Actuators 

(actions) 

Preceptors 

(actions) 

Agent (operation) 

Attributes 

Waiting Queue 

Process Queue 

Resources(machin
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AGENT(OPERATION) 

 Attirbutes 

 

 OperationID The  Id of the operation 

PredecesorID ID of the operation’s predecessor 

SuccesorID ID of the operation’s successor 

MachineID ID of the machine which the operation is to be processed 

ProcessingTime The processing time on the machine 

Status The status of the operation e.g  

 Waiting:- The Agent is idle and waiting for a turn, 

 Active:- The Agent is allowed to make a move 

 Scheduled;-The agent as achieved time share on a 

schedule; 

JobID The  id of the job/ categorization of the operations 

StartTime The current processing start time if scheduled 

MessageQueue A queue for all incoming messages 

Actions 

 Move Action allowing agent to make a choice 

Message Action allowing agent to send message to other agents 

Read Action allowing agent to sense its environment 

  

  

TABLE 2: SIMPLE ILLUSTRATION OF THE AGENT’S ACTIONS AND ATTRIBUTES  

Agents can compete or cooperate in order to get processing time on the machines, this action 

lead to formulation of a schedule. We consider machines as a resource on which agents 

compete for processing time on. We also consider a schedule complete when the all the agents 

have made their turn and have acquired a time share allocation on a machine. To achieve this, 
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the agents act by employing a strategy in the moves, the strategy is based on the algorithms we 

define the sections that sections follow. 

As show by the diagram we consider machines as resources in the environment for which the 

agents compete for.  Machines have two key attributes; 

o Waiting Queue; this is a queue that holds an operation to be performed on the machine 

before they are allocated a time share on the machine.  

o Process Queue; this is a queue that the schedule of processing on the machine. The Queue 

holds the list of Agents that have been allocated a time share on the machine and the 

respective start time. 

We also define a referee agent in some games that responsible in marshaling the games, the 

role and structure of the referee and role of the referee will depend on the type of game 

environment that defined in. 

4.2.2. DEFINING RANDOM TOKEN GAME  

 

In defining algorithms for parallel machine scheduling [Opiyo et al, 2008] define random choice 

games are those in which the agents make choices at random without considering any other 

matters. In their definition an agent are allowed to make moves in turn and each agent in its 

turn makes random decision which machines they would like to be processed on and select the 

earliest available time slot on the machine.  After all the agents have made their move the 

resultant schedule is evaluated.  This process is repeated in several rounds and at the end the 

most suitable/ shortest schedule is select as a feasible solution. This work was able to 

demonstrate that it is possible to achieve a relatively feasible schedule using random select of 

schedule in a schedule search space. It gives us great in on the distribution of solution in the 

search space. We try to define a similar algorithm for job shop scheduling. 

Unlike in parallel machine scheduling, job shop scheduling as the following complications when 

trying to employ a pure random strategy in selection of a feasible solution from the search 

space; 
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 Agents/operations are tired to a machine, that is, the machine is already pre-selected. 

Unlike in parallel machine scheduling where agents act by selecting the machines. 

 The is a precedence constraints among agents, that is the start time S(A)of an agent  A , 

S(A) ≥ S(A’)+ T(A’) 

EQUATION 10: PRECEDENT CONSTRAINT 

Where A’   is the preceding Agent with a processing time of T(A’).  The availability of this 

constraint preempts the possibility of having a pure random strategy.  

These constraints limit the flexibility of an agent in machine selection and put a constraint its 

selection of a time slot on a machine. To achieve similar a random selection of solution in a 

such space with the above constraints in job shop scheduling, we introduce a random token 

notion. The Random token randomizes the playing turn for the agents. This works as follows; 

we divided the game in two stages for all rounds, the stages are as follows; 

 

Selection Stage; this stage allows random selection of agent turns with will result in random 

ordering of agents in the machine. The Process flows is as follows; First we introduce a single 

token in the environment. The token generated by the referee agent for the round and is 

assigned by the referee agent to an agent at random at least once in a single round. A round is 

instances of a game where all the agents have made a single move and a complete schedule 

can be define. The game start with all agent state with a waiting status, when an agent receives 

the token, their status changes to active and they are allowed to make a move to the assigned 

machine.  Once an agent selects a machine they are add to waiting queue of a machine in a 

priority of first come first served.  The agent then release the token to the referee agent which 

then assigns it to another agent at random and the selection process continues until all the 

agents have had the token and have made their selection. We then proceed to the allocation 

stage. 

Allocation Stage; the allocation stage was motivated by shift bottle neck paradigm. In shift 

Bottleneck, an initial selection of a schedule is selected as we have done in the selection stage 

without actual time share allocation. If we were to evaluate the schedule as it is now with the 

agents arranged in a first come first serve order, the schedule will have multiple delays among 
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the operations and we will have unnecessary idle time on the machine. In fact the initial 

schedule would be among the worst performers in the search space. An example would be in 

an instance of 10X10 problem where the last agent of job gets the random token first among 

all the other agents on other jobs that share the same machine instance, this   agent will select 

the machine, the machine will remain idle until all the other agents of the same job have 

finished processing, this in turns cause delay on the other agents waiting for that machine and 

the ripple effects can will spread across the schedule. This bottleneck can also cause a 

deadlock with the schedule. The shift bottle neck algorithm recognizes that in a schedule the is 

always at least one point/bottleneck that affects its performance. The aim of the shift 

bottleneck is slow minimize/shift the bottle in several iterations. We adopt a similar iterative 

approach but in our algorithm it’s the agent that makes the decision whether to shift or stay 

based on their internal states, The agent act for the social good and if an agent consider itself a  

possible bottleneck, it shifts self to remove the bottle neck if not its stays . The allocation stage 

proceeds as follows; After the selection stage all the agents would have acquired a priority on 

the machine’s waiting queue. Once a agent has selected a machine its status is changed back 

to ‘waiting’. since this its first come first serve, the  nth  Agent to make the selection of the 

machine will receive nth priority on the machine.  To formally state this, If  Omn Represents an 

agent O with processing time on machine m and it was the nth 
 agent to make a selection on 

the machine, then  its priority value P(Omn)  (lower value signifying higher priority ) is; 

 

P(Omn)  ≤ P(O’m(n+1))  ≤ P(O’’m(n+2)) 

EQUATION 11:AGENT PRIORITY SETTING  

Where O’ and O’’ followed agent O in selection of the machine in that respective order.  The 

Initial selection in most case will not be a candidate solution in the search space as the paths 

cannot be represented by a directed graph. The subsequent steps refine the selection into a 

candidate schedule. 
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In the next step, all the waiting agents with the highest priority on each machine’s waiting 

queue are allowed to a turn, there status changes to active and they are allowed to evaluate 

their position. If an agent see that they could be possible bottlenecks they will choose to move 

to the back of the queue assume the lowest priority on the queue and status change back to 

waiting. The Agent suspects it may bottleneck using the following criteria; One, is if an agent A 

has a predecessor and the predecessor has not been schedule yet (acquired a time share), then 

A knows it’s a might be a bottleneck on a machine if there exists other agents on the machine 

with a lower priority. In this case the agent will move to the back of the queue. 

 

Secondly, If an  agent  A’  has a predecessor A that has already been scheduled and its  

difference  between  A ‘s  expected processing end time , P(A)  and the ‘next available start 

time’ on the machine M , E(M)  is twice as big as the average processing time of the all the 

agents queued on the machine, then the agent suspect itself to be a bottleneck. A Machines 

‘next available start time’, E(M), is the sum of all the agents that have been scheduled on the 

machine.  If   a machine M has 3 agents scheduled on it, An agent defined as A(job, machine) . 

E(M)= ( P(A1M) + P(A2M) + P(A4M) )/3 

EQUATION 12:NAST 

if  (A’1m) is the one evaluating it situation and it has a predecessor A, the processing end time 

of A,  

P(A) =S(A)+D(A) 

Where;-  

S(A) is the processing start time of A, 

D(A) is  the processing time/duration of A. 

A at this point would consider its ‘possible’ processing start time, S(A’1m)  , as  equal to the 

processing end time , P(A),  of A 

S (A’1m) = P(A) 

EQUATION 13: PROCESING END TIME 
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(A’1m)   consider itself a bottleneck in the schedule, and move to the back   of the machines 

waiting queue. 

Thirdly, If the agent (A’1m)    has evaluated its situation and does not consider itself a 

bottleneck, the agent will be scheduled on the machine by selecting the earliest possible start 

time on the machine. This would be the greater of P(A)and E(M). That is  ; 

 

If  P(A)≥ E(M) then S (A’1m) = P(A) 

else 

S (A’1m) = E(M) 

 

Once an agent has been schedule the priority listing of all other jobs in the waiting queue is 

adjusted. 

 

The same steps are repeated for the number of Iteration needed till all the agents have been 

successfully scheduled. 

A complete selection stage followed by a complete allocation stage constitute a round in the 

game, each round produces a candidate schedule from the search space. At the end of the 

game the refree agents evaluates the makespan ms  of all the candidate solution  s Є S  where  

S  represents the search space and  selects a feasible solution f(s) using the following criteria. 

f(ms)= MIN(m1 , m2 , m3 ,……….. ms) 

EQUATION 14: FEASIBLE SCHEDULE FROM SEARCH SPACE 

Because we achieved a random initial selection by using a randomized token. We can say that 

we are selecting schedules at random from the search space and thus we have achieved a 

similar effect that [Opiyo, et al] achieved with their random games in parallel machine 

scheduling. Therefore we can state for a typical job shop problem there is a random distribution 

of solution on the search space.  
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4.2.3. ILLUSTRATION OF A RANDOM TOKEN GAME. 

In this section we illustrate the random token game using a simple example of a 2X3 Job shop 

scheduling problem. In our example we use the following syntax to represent an operation, 

Job (machine, processing time) 

We have the following job and their operations in order of processing sequence. 

Job X:  x(3,5) , x(1,6), x(2,2) 

Job Y: y(2,3), y(3,4), y(1,2) 

A disjunctive representation of the graph is as follows. 

 

 

 

 

 

 

 

 

o                      Conjunctive arc ,  agent precedence dependency 

o                         disjunctive arc ,  agents paired on same machine 

FIGURE 6: DISJUNCTIVE GRAPH 

Once an agent has been scheduled we introduce a third value to represent its processing start 

time (in minutes), that is 

Job (machine, processing time, processing start time) 

e.g. x(3,5,4 ) 

We have 3 machines each machine will have a waiting queue and schedule queue as we had 

earlier defined. Suppose after the random selection stage we had the following arrangement on 

waiting queue. Note that the schedule queue will always start empty with the NAST (next 

available start time of each machine set to time 0. Also note that agents arranged in the queue 

in order of first come first serve, therefore the jobs in the first cell always have the priority and 
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Waiting Queue 

Machine 1 x(1,6) 

 

y(1,2

) 

Machine 2 y(2,3) 

 

x(2,2

) 

Machine 3 x(3,5) y(3,4

) 

Schedule Queue 

Machine 1   

Machine 2   

 

Machine 3   

0 

NAST

0 

0 

are next in turn to move. If they suspect themselves to be bottle necks they will shift 

themselves to the furthers cell, allowing other agents to shift forward 

  

 

 

 

 

  

 

 

 

FIGURE 7: RTG INTERATION 0 

We begin iteration in the allocation stage as follows; 

o ITERATION 1 

From the initial arrangement, all the agents with priority on each machine evaluated their 

position. In this case all the agents deemed themselves bottlenecks (based on the earlier 

defined rule and shifted their positions 

 

 

 

 

 

 

 

 

 

 

FIGURE 8:RTG INTERATION 1 

 

Waiting Queue 

Machine 1 y(1,2) x(1,6

) 

Machine 2 x(2,2) y(2,3

) 

Machine 3 y(3,4) x(3,5

) 

Schedule Queue 

Machine 1   

Machine 2   

Machine 3   

 

0 

NAST

0 

0 
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Waiting Queue 

Machine 1 y(1,2) x(1,6

) 

Machine 2 x(2,2) 

 
 

Machine 3 y(3,4) 

 

 

 

Schedule Queue 

Machine 1   

Machine 2 y(2,3,0

) 

 

 

Machine 3 x(3,5,0

) 
 

0 

NAST

3 

5 

o ITERATION 2 

In this Iteration y(2,3) and x(3,5) having no predecessors considered themselves not to be 

bottlenecks and acquired a schedule on their respective machine while x(1,6) still deemed itself 

a bottle neck and shifted. The results are as follows. Also note change on the machines NAST 

 

 

 

 

 

 

 

 

 

FIGURE 9:RTG INTERATION 2 

 

o ITERATION 3 

In this Iteration y(3,4) having a scheduled predecessor and there being no other agents left on 

the machine, acquired a schedule on it respective machine.  Note that even though its 

predecessor’s processing time P(A)=3, it acquire a start time of 5. This is because the for its 

scheduled predecessor, y(2,3,0), which is calculated  as   

P(A) =S(A)+D(A) 

      =0+3 

      =3 

Where;-  

 S(A) is the processing start time of A, 

D(A) is  the processing time/duration of A. 

is lower than the y(3,4)’s  respective machine’s  NAST , E(M3).  machine 3 has a   
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Waiting Queue 

Machine 1 x(1,6) 

 

y(1,2

) 

Machine 2 x(2,2) 

 
 

Machine 3   

 

Schedule Queue 

Machine 1   

Machine 2 y(2,3,0

) 

 

 

Machine 3 x(3,5,0

) 

y(3,4,5

) 

0 

NAST

3 

9 

E(M3)=5 

And since our game rules say that, 

 If  P(A)≥ E(M) then S (A’1m) = P(A) 

else 

S (A’1m) = E(M) 

For A’ which is preceded by A  

 

Then the processing start time for y(3,4),  S(y(3,4))= 5 or y(3,4,5). This also affected its 

respective machines NAST as illustrated on the diagram. 

 Also on this y(1,2)  and x(2,2) deemed themselves bottlenecks. While y(1,2)   shifted, x(2,2)   

had no need to shift because there was no agent on its respective machine waiting queue with 

a lower priority.  The result is as shown by the illustration below 

 

 

 

 

 

 

 

 

 

FIGURE 10:RTG INTERATION 3 

o ITERATION 4 

This Iteration saw x(1,6) and x(2,2)  get scheduled while y(1,2) remained as the lone agent  

machine 1 waiting queue . Note the changes In NAST and also note x(1,6) ‘s eventual processing 

start time created a 5 min idle time on machine 1 .  
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FIGURE 11:RTG INTERATION 4 

 

 

o ITERATION 5 

This Iteration saw the last agent being scheduled y(1,2)  and  there being no agent in any of the 

machine’s waiting list the  Round ended . The results are as illustrated below. 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 12:RTG INTERATION 4 
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At the end of the round we now have a complete candidate schedule. The makespan of the 

schedule is calculated as follows 

makespan= Max( E(M1), E(M2), E(M3)) 

=MAX( 13, 13, 9) 

=13 

The candidate solution can represent in a Gantt chart as follows. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

                              

Machine 1           x(1,6) y(1,2)   

Machine 2 y(2,3)                 x(2,2)   

Machine 3 x(3,5) y(3,4)           

                              

               

               

 

  

Job: 

X   

Job: 

Y 

          FIGURE 13:RTG SAMPLE GANTT CHART 

Once a candidate schedule has been generated the game the schedule is noted by the referee 

agent and other rounds of turns are performed for a predetermined number of rounds. The 

number of rounds will depend on the scale of the problems. It’s expected that problem with 

larger problems will require more alteration to increase the probability of achieving a near 

optimal schedule.  

4.3. POTENTIAL GAMES  

[Opiyo et al, 2008] described potential games as those in which the incentive of all players to 

change their strategy is expressed in one global function called the potential function. The 

progressive actions of the participants lead to a stable state. In this section we defined a game 

that behaves in this way. In our interpretation we define a function that reward’s/penalize 

agents based of the action it takes in the environment. As agents take actions the gain a bit of 

appreciation of their environment as their actions are reinforced by their reward/penalty 

system. To achieve this we borrow concepts from reinforcement learning, which transform our 
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game into a policy search function, That is, the aim of the game is meant to teach an agent 

what to base their actions (what policy to use) and at the end of a learning phrase is able to 

make decision on a certain state based on their experience with on that particular state.  We 

start introducing the reinforcement learning concepts we borrowed and then proceed to 

modeling our job shop problem as multi-agent system environments that will enable us define 

this game. 

4.3.1. AGENT BASED REINFORCEMENT LEARNING 

( Sutton and Barto, 1998) describe reinforcement learning as follows.  

Its concept that follows the idea that an autonomously acting agent obtains its behavior policy 

through repeated interaction with its environment on a trial-and-error basis. In each time step 

a reinforcement learning agent observes the environmental state and makes a decision for 

a specific action, which incur some immediate reward (also called reinforcement) generated by 

the agent's environment and, on the other hand, transfers the agent into some successor state. 

The agent's goal is not to maximize the immediate reward, but its long-term, expected reward. 

To do so, it must learn a decision policy that is used to determine the best action for a given 

state. Such a policy is a function that maps the current state the agent ands itself in to an action 

from a set of viable actions.  (Thomas Gambel, 2008) describes the basic idea of learning 

through interaction within an agent’s environment in following steps that must be performed 

by the agent. 

o Step 1. The agent perceives an input state. 

o Step 2. The agent determines an action using a decision-making function (policy). 

o Step 3. The chosen action is performed. 

o Step 4. The agent obtains a scalar reward from its environment (reinforcement). 

o Step 5. Information about the reward that has been received for having taken the 

recent action in the current state is processed. 

Reinforcement Learning methods explore the environment over time to come up with a desired 

policy. 
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(Yailen Martínez Jiménez, 2012), formally describe a generic reinforcement learning model as  

as an agent is connected to its environment via perception and action. In each interaction step, 

the agent perceives the current state s of its environment, and then selects an action a to 

change this state. This transition generates a reinforcement signal r, which is received by the 

agent. The task of the agent is to learn a policy for choosing actions in each state to receive the 

maximal long-run cumulative reward. The diagram below provides a simple illustration.   

 

 

  

 

 

 

 

FIGURE 14: AGENT STRUCTURE 

(Yailen Martínez Jiménez, 2012) model can be formally described as follows. 

o a set of environment states S; 

o a set of actions A; 

o a set of scalar rewards in R; 

o a transition function T. 

At each time t, the agent perceives its state st Є  S and the set of possible actions A(st). It 

chooses an action a Є A(st) and receives from the environment the new state st+1 and a 

reward  rt+1 , this means that the agent implements a mapping from states to probabilities of 

selecting each possible action. This mapping is called the agent’s policy and is denoted πt, 

where πt(s, a) is the probability that at = a if st = s. In words, it is the probability of selecting 

action a in state s at time t. The reward function defines the goal in a reinforcement learning 

problem. It maps each perceived state (or state-action pair) of the environment to a single 

Select Action a 

Environment 

Agen

t 

Receive 

Reinforcement r 

Perceive state  s 
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Numerical value, a reward, indicating the intrinsic desirability of that action in that state. The 

objective of a reinforcement learning agent is to maximize the total reward it receives in the 

long run, that is, an agent will prefer action that maximize reward in the long run rather than 

one than an that gives a good reward at the current state only. 

4.3.2. MARKOV DECISION PROCESS 

Markov Decision Process provides a mathematical framework for modeling decision making in 

situations where outcomes are partly random and partly under the control of a decision maker. 

MDPs are useful for studying a wide range of optimization problems solved via dynamic 

programming and reinforcement learning.  Markov Decision Process is a good framework to use 

to model a decision process in an optimization problem where the search space is finite. Job 

shop problem has a finite search; the only limiting factor is that the search space the search 

space is becomes very big in large problem instance.  MDP can still be used to model a Job shop 

Scheduling problem by limiting the decision process to either a subset of the search space. The 

subset search space can be determined at random. 

A Markov Decision Process (MDP) is a 4-tuple [S, A, T, R] where: 

 S = s1, ..., sn denotes a finite set of states; 

 Set of actions A, and   A(s) Є A, where A(s) is the finite set of available actions in state s 

Є A; 

 T : S × A × S →*0, 1+ is the transition function, T(s, a, s’) specifies the probability of 

ending up in state s0 when performing action a in state s;  

 R : S × A × S → R is the reward function, R(s, a, s’) denotes the expected reward for 

the transition from state s to state s’ after taking action a. 

For MDPs, the Markov property assures that the transition from s to s’ and the corresponding 

reward R(s, a, s’) depend only on the state s and the action a, and not on the history of 

previous states and actions. 
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The formulation of MDP above assumes that an agent has full awareness of the environment 

which in the real world its rarely so. In most really world environment the agents usually have a 

partial observation of the Environment.  The same is true for the Job shop scheduling problem 

where we expect an agent to only have local knowledge of its environment and not the global 

knowledge.  We borrow a concept of reinforcement learning known a Q-learning that can help 

with partially observable environment. We describe the concept below. 

4.3.3. Q-LEARNING  

We borrow our description of Q-learning as describe by (Yailen Martínez Jiménez, 2012) and 

(Thomas Gambel, 2008). They describe Q-learning as a well-known reinforcement learning 

algorithm is Q-Learning (QL), as a reinforcement learning technique based on learning an 

action-value function that gives the expected utility of taking a given action in a given state. 

They describe the core of the algorithm as  

“Simple value iteration update, each pair (s, a) has a Q-value associated. When the action a is 

selected by the agent located in state s, the Q-value for that state-action pair is updated based 

on the immediate reward received when selecting that action, and the best Q-value for the 

subsequent state s’ “. The update rule for the state action pair (s, a) is the following: 

 

 

EQUATION 15: UTILITY FUNCTION 

Where; 

),( asQ - The utility of state s defined recursively the update rule above 

 - is a learning rate.  

 - Discount rate of subsequent action.  

r- Reward  of taking action a on state s 

The Equation we can see that the utility of pair ),( asQ  is not only based on the current reward 

or penalty achieved by taking action a in state s but we also consider the subsequent )','( asQ  . 

This will help use the agents converge at a optimal policy set at each time slice. To achieve this 

)),()','(max(),(),(
'

asQasQrasQasQ 
a


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we look at all the subsequent alternative )','( asQ  and pick the route with the maximum utility, 

which is 

),()','(max
'

asQasQ 
a

 

A discount   is usually applied to the subsequent actions utility so we have  

),()','(max
'

asQasQ 
a

  

We also apply a learning rate   which depends on the size of our search space. 

)),()','(max(
'

asQasQr 
a

  

Finally we add this to the utility of the single action a in state s to achieve the update rule 

below,  

  

We give a simple illustration of Q-learning below using a simple chart. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 15:POTENTIAL GAME SAMPLE DECISION TREE 
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The figure below shows a subset of an environment that has been learnt by an agent. The 

interest is to get from state S0 to state S7 . The agent previously had moved from state to state 

using either policy A or B at each state and learnt a reward the various possible policies taken at 

each state.  The reward is determined by a value system and in our case a potential function. 

With this knowledge an agent can recursively calculate the utility of each state as it continues 

with its exploration and during the decision making stage the agent will use the utility values to 

know which action will lead to maximize the total reward. Suppose the learning rate and 

discount is as follows; 

 = 1 

 =1.  

If an agent is at S0  and needs to know the optimal route/most rewarding route to take to r, it 

will not only use the learnings from the reward system alone, that is, it will take action B to get 

an immediate result 5 which seem to be better than taking action A with reward of 1. This is 

because an agent knows that an immediate high reward currently might not end up being the 

most rewarding route in the long run. To do this agent will use the utility of each successive 

state-action( Q-pair) to take the route that lead to the ( Q-pair)  with the highest utility enroute 

to the terminal state. The agent would have recursively determined the utility of each ( Q-pair)  

using  the update function, 
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The Psuedocode of the exploration/learning  process would  be similar to the following 

 Initialize Q-values arbitrarily 

 for each episode do 

o Initialize s 

o for each episode step do 

 Choose a from s 

 Take action a, observe state s’ and r 

 Update 

                                                        

o end for 

 end for 

 

The following table illustrates the utility of the q-pair achieved by the agent in our example. 

Note that for illustration purposes we calculate utility from the terminal state backward, that’s 

why our          on the table always seems to zero, in the actual process the agent would 

update  it recursively and its value would always be changing for each q-pair until the final state 

is reached. The table below notes the utility of each q-pair. 
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No. q-pair                              
  

                    utility 

q1 Q(S5 , A) =0+ 1(8+ 1(max(0,0)-0) 8 

q2 Q(S6, A) =0+ 1(3+ 1(max(0,0)-0) 3 

q3 Q(S1, B) =0+ 1(1+ 1(max(q1,0 )-0) 

=0+ 1(1+ 1(max(8,0 )-0) 

9 

q4 Q(S1, A) =0+ 1(1+ 1(max(q2,0 )-0) 

=0+ 1(1+ 1(max(3,0 )-0) 

4 

q5 Q(S0, A) =0+ 1(1+ 1(max(q3,q4,0 )-0) 

=0+ 1(1+ 1(max(9,4,0 )-0) 

10 

q6 Q(S3, A) =0+ 1(0+ 1(max(0,0)-0) 0 

q7 Q(S4, A) =0+ 1(0+ 1(max(0,0)-0) 0 

q8 Q(S2, A) =0+ 1(2+ 1(max(q6,0)-0) 

=0+ 1(2+ 1(max(0,0)-0) 

2 

q9 Q(S2, B) 0+ 1(1+ 1(max(q7,0)-0) 

=0+ 1(1+ 1(max(0,0)-0) 

1 

q10 Q(S0, B) =0+ 1(5+ 1(max(q8,q9,0 )-0) 

=0+ 1(5+ 1(max(2,1,0 )-0) 

7 

 

TABLE 3:Q-PAIR CALCULATION EXAMPLE 

Suppose we have now stopped our exploration stage and an agent wants to make a decision 

that on how to get from   state S0  to the terminal state S7 , The agents steps will proceed as 

follows; 

 Starting at state S0 , the agent will need to look at the utility of  Q-pair Q(S0 , A) and  Q(S0 

, B) to decide if to pick action A or B .  Since Q(S0 , A)   has a better utility the agent  will 

choose action B to move to the successive state S1  . 

 At S1  the agent is face with two options Q(S1 , A)=4 or   Q(S1 , B)=9 . The agent therefore 

selects Q(S1 , B)  and move to successive state S5 . 

 At state  S5 the agent  has only one option Q(S5 , A)=8 . The agent selects this to move to 

the terminal state S7 . 
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The route the agent follows will look as depicted by the illustration below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 16: SAMPLE POTENTIAL GAME DECISION TREE 

Note that because our learning rate  = 1 and  =1, We can still achieve an optimal route by 

adding up the rewards along each route and pick the route with the highest some of rewards as 

the optimal route. 

By using Q-learning in a an environment where the agent has partial observation of the 

environment, an agent can learn a finite set of the search space and using the potential 

function, derive utility for each its decisions and finally select a series of decision policy that are 

beneficial to it. If we utilize Q-learning we are able to achieve (opiyo, et al, 2008)’s description 

of a potential game where there is a global function that guides agent in decision making. The 

reward function and utility function act together to guide the agent in decision making.  In the 

section that follows we model our Job shop problem as a Multi-agent system and use Q-

learning to define our potential games.  
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4.3.4. JOB SHOP SCHEDULING AS POTENTIAL GAME WITH Q-LEARNING 

We start by modeling the multi-agent game environment for this game we use an agent to 

represent a machine.  In potential games as earlier discussed, there is one global function that 

governs the behave of all the agents this leads to the game being co-operative game where 

agent learn as a group and are motivated by the global function to employ similar policies. 

There we adopt a variation of Actor-Critic agent model where we have; 

 Multiple actor only agents that represent a machine and their main function is to 

choose the next job to be processed by employing a specific policy. 

 One Critic only agent whose main function is to evaluate successive policies taken by 

the agents and give feedback on their suitable using the global function. 

Our Agents have one which is to reduce the makespan of processing all the Jobs in the 

environment.  Our environment will therefore consist of the following; a  global dispatch queue, 

this is a queue that holds all jobs before they can be moved to a machines/agents waiting 

queue. Jobs move to from the dispatch queue to the machine queue when there is no 

constraint to their processing e.g. they have no predecessor or their predecessor has already 

been scheduled for processing. This is demonstrated in the illustration of a simple 3X3 problem. 

 

We include an actor only agents, these agents will be responsible for selection of policy during 

the exploration/learning stage of the game. The agent at each time step in schedule formation 

will employ a certain policy as they seek to achieve a complete schedule.   

 

We include a critic only agent will responsible for evaluating the policies employed by each 

agent at every time step and will give feedback to the agents in terms of a reward/penalty. In 

our algorithm the critic’s memory structure will also be responsible for storing the learned 

utility of each state.  Once the exploration is done information learned by actor agents is used 

by them to select successive policies, as they form what they consider to be an optimal 

schedule. 
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We also include action policies. These represent dispatch rules, the rules act as policies that is 

available for the actor to choose from when selecting the next action, that is, whenever  an 

actor makes a specific move, their move has to be based on a specific policy.  At learning stage 

an actor would tryout one or more policies and will observe the reward/penalty using that 

policy on that particular state.  The aim of our global function is to define a series of policies 

that an agent can employ that would lead to an optimal schedule We shall define four policies 

that can be used by agents in any state. This will be discussed further in our 3X3 problem 

illustration. 

o FIFO- First In First Out 

o LIFO-Last In First Out 

o SPT-Shortest Processing time. 

o LPT-Longest Processing time. 

A global potential function, this function is used by the critic agent to appraise and influence 

the action of the actors. As we had earlier demonstrated in the Q-learning algorithm, the 

function assigns a reward on agent actions and defines the utility of each   Q-pair. The utility 

will finally influence the agents’ decision on which policy to employ at the selection stage.  

A reward structure, the reward structure is used by the critic agent to appraise the agent 

actions.  A reward is quantification of how good the selected policy in the current state is. The 

several ways that we can determine a reward for a decision.  We choose two that we believe 

would lead convergence   of a near optimal solution from the search space. These are; 

o Number of jobs that remain in global dispatch queue after all actor agents have selected a 

single action. 

o Total process time in the global dispatch queue. This is a sum of the processing time p(o) of 

the  n jobs  remaining in the global dispatch queue after all actor agents have selected a 

single action.  That is, 

        ∑     

 

 

 

EQUATION 16: TOTAL DISPACTH QUEUE PROCESSING TIME 
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o Total process of all waiting Jobs. This is a sum of the processing time p(o) of the  n jobs  

that are  waiting global dispatch queue and on waiting queues of machine after all actor 

agents have selected a single action.  That is, 

        ∑     

 

 

 

EQUATION 17: TOTAL PROCESSING TIME 

Using this structure means the appraisal r to be a penalty/cost rather than a reward. That 

is, a decision that leads to more jobs or larger total processing time on the dispatch queue 

is less favorable. Because this is a cost/penalty, we negate the appraisal. 

          (∑     

 

 

) 

EQUATION 18: REWARD/PENALTY FOMULAE 

 

 

 

 

  The table below shows the structure of our machine agents. 

AGENT(Machine) 

 Attirbutes 

 MachineID The  Id of the Agent 

Status The status of the operation e.g  

 Idle:- The Agent is idle and waiting for a turn, 

 Active:- The Agent is allowed to make a move 

 

Waiting Queue Queue holding job to be processed on the machine but 

yet to be scheduled. 

Process Queue Multi-dimensional structure that notes the scheduled 
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jobs and there start and finish time. 

Actions 

 Move Action allowing agent to make a choice 

Message Action allowing agent to send message to other agents 

Read Action allowing agent to sense its environment 

  

TABLE 4: POTENTIAL GAME AGENT PROPERTIES 

With the above definition we have factored in the main characteristics that have to be 

considered when modeling the problem are adapted from [Gabel (2009)] and can be 

summarized as follows: 

 Factored World State: The world state of a job-shop scheduling problem J can be 

factored: We assume that each resource has one agent i associated that observes the 

local state at its resource and controls its behavior. Consequently, there are as many 

agents as resources in the JSSP. 

 Local Full Observability: The local state si of agent i, hence the situation of resource ri, 

is fully observable.  That is, an agent has full view of what is in its queues. Additionally, 

the composition of all resources fully determines the global state of the scheduling 

problem. Therefore, the system is jointly observable. 

 

 Factored Actions: Actions correspond to the starting of jobs’ operations (job 

dispatching). So, a local action of agent i reflects the decision to further process one 

particular job (more precisely, the next operation of that job) out of the set Ai of 

operations currently waiting at ri.  

 Changing Action Sets: If actions denote the dispatching of waiting operations on the 

machines waiting queue for further processing, then the set of actions available to an 

agent varies over time, since the set of operations waiting at a machine changes. 

Furthermore, the local state si of agent i is fully described by the changing set of 

operations currently waiting at resource ri for further processing, thus, si = Ai. We shall 
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demonstrate changing action sets of agents in our sample 3X3 problem in the next 

section 

 Dependency Functions:  Since operations have precedence function with other 

operation on other machines, a dependency function among agent action as  imply that, 

after one agent executes an action (processes one operation), the local state of 

maximally one further agent is influenced 

4.3.5. 3X3 POTENTIAL GAME EXAMPLE 

In this section we give a brief illustration of learning demo the learning stage of potential. We 

diagrams to depict the enviroment and we also use   decision trees represent the memory of 

what has been learnt. Suppose we have a 3X3 matrix,   

Job X:  x(3,5) , x(1,6), x(2,2) 

Job Y: y(2,3), y(3,4), y(1,2)  

Job Z:  z(2,5), z(1,4), y(2,4) 

In our enviroment we have the following as had earlier been discussed we have the following 

components, an actor agents representing machines, a List of Jobs and their operations which 

have precedence constraints with operations on the same job, a critic agent, a global dispatch 

and  a set of action policies. Agents can base their action on the following dispatch rules that 

act as action policies, e.g. SPT, LIFO,LPT and FIFO. For demo purposes we will use avail only 2 

policies to the agent, that is,  SPT and  LPT 

 

At the begin of the game all the jobs are in the global dispatch queue and no agent has an  

action set , that is, there are no operation in any of the agent’s  waiting queue. Suppose 

according to how earlier description of our actor agent structure ,  we have a waiting and 

processing queue for each agent and for our  qw and qp represents agents waiting and process 

queue respectively . 
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1.1.1.1. STATE 0 

 At the start of the game can depicted by as follows, 

 

 

 

 

 

 

 

FIGURE 17: POTENTIAL GAME SAMPLE STATEO 

Since no decision has been made on this state the decision tree start out a single node as 

shown below, 

 

 

 

 

 

 

 

 

 

FIGURE 18: SAMPLE POTENTIAL GAME DECICISION TREE GENERATION 

After this all the operations with without predecessor or whose predecessors have been 

scheduled (moved to QP of a machine) will be moved to the respective machine waiting 

queue. So we move to the next state as shown below. In this State Agent 1 has action set of 0 

there for cannot make a move, while Agent 2 and Agent 3  have actions sets of  2 and 1 

operations respectively. The State is as shown. 
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FIGURE 19:POTENTIAL GAME SAMPLE STATEO 

At this stage the agents can make a move and might choose any the available policies,  SPT or 

LPT for their next move. Upon which its reward by the critic agent. Our Critic agent uses the 

negation total processing time remaining in the dispatch queue has a reward. We had earlier 

formalized the reward as shown below.  

          (∑     

 

 

) 

Our critic will also update the utility of each Q-pair form as the agents learn, this will be done 

recursively using the update function, 

                            
  

                          

Earlier we had proved that if we have that if we have the learning rate as  = 1 and discount 

as  =1.   Then the utility of a Q-Pair can be achieved by  summing the along rewards at each 

possible route from the Q-pair to the terminal state and selecting the  summation of the 

route that offer the highest sum of rewards as the utility of the Q-Pair. Note that utility of a 

Q-pair may change multiples times as long as new routes are discovered or developed  
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1.1.1.2. STATE 1 ( Q(S0,SPT) ) 

 

Suppose our agents decided to employ SPT as a policy in state 0 we will arrive to arrive at 

state 1.  This move will for each agent result in scheduling of the job with the shortest 

processing time from the machines waiting qw  , into qp. It will also result in operations that 

are now ready to be processed (because the predecessors have been scheduled to process in 

qp) be moved their respective machines waiting queue therefore changing the action set of 

each machine. By employing policy SPT at state S0 We form a Q-Pair Q(S0,SPT) .The 

enviroment will change as shown below and the critic will appraise the Q-pair with the 

reward shown. The critic also calculates the utility for this Q-pair as shown. Our decision tree 

will further grow as follows. 

 

 

 

 

 

 

 

 

 

FIGURE 20: POTENTIAL GAME SAMPLE STATE1  
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           Our decision tree then transforms as shown. 

 

 

 

 

 

 

 

 

FIGURE 21: SAMPLE DECISION TREE AT STATE 1 

 

1.1.1.3. STATE 2( Q(S0,LPT) ) 

Since our agents are still in the learning phrase, suppose they back track to state S0 and try out 

LPT instead of SPT. This would create a new Q-pair q( S0, LPT).  The results will be as follows, 

note new reward; 

 

 

 

 

 

 

 

FIGURE 22: POTENTIAL GAME SAMPLE STATE2 

 

And we will transform our decision tree as 
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FIGURE 23: SAMPLE POTENTIAL GAME DECISION TREE 

1.1.1.4. REST OF THE STATES 

Because of the combinatory complexity of the problem, we will assume the agent continued 

learning by trying different Policies at different states and produced the decision tree below 

with hypothetical reward values as shown. We assume the agent  
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FIGURE 24: COMPLETE SAMPLE POTENTIAL GAME  DECISION 

 

As the agent continued to learn it also updated the utility of the each Q-Pair using the update 

function, 
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To demonstrate this we calculate the utility, we assume the learning rate and discount are both 

equal to 1, this means the utility of this of a Q-pair would be the route to terminal state with 

the highest sum of reward as we had earlier proven. So the utility of the Q-Pair Q(s1,SPT) would 

be -6 as opposed to the alternative route through S8 which has a much lower value of -16. As 

can be seen as more child and grandchild states emerge from a state, the more complex 

calculating it’s utility becomes. From the decision tree we can also see each route from the 

initial state to the final state represent complete schedule. After our agents have finished 

learning they will move to the decision stage where they will start from the initial state on the 

decision tree and use the utility learnt for each the q-pairs to select the most rewarding route 

to the terminal state. The combination of policies guided by our utility function along this route 

would lead to agent performing actions that would lead to a near optimal schedule. Thus 

achieving a successful potential game. 

4.4. RANDOM GAMES 

The last game we define is the random games. This game borrows the same concept as 

potential games where there are actor only agents that represent a machine. The MAS 

environment is structured as follows; 

Our environment will therefore consist of the following; A global dispatch queue, this is a queue 

that holds all jobs before they can be moved to a machines/agents waiting queue. Jobs move to 

from the dispatch queue to the machine queue when there is no constraint to their processing 

e.g. they have no predecessor or their predecessor has already been scheduled for processing 

and an actor only agents, these agents are responsible for selecting the next operation to 

process, but unlike the potential game this agents simply select a operation at random.   

The diagram illustrates the MAS environment for Potential games for a 3X3 instance  
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FIGURE 25: SAMPLE RANDOM GAME 

 

This description of a random game is the same as described in (opiyo et al, 2008) where game 

has multiple preset n number of iterations and in each iteration an agents select operations at 

random from there waiting queues until all operations have been schedule. This forms a 

candidate solution S0 and its makespan is noted.  At the end of the game a candidate solution Si 

is selected as the feasible solution with the near optimal schedule. The formula below shows 

the mode of selection of this schedule. 

   
 

                   

Just as shown by ( Opiyo et al, 2008). We believe selection of candidate solution at random 

from the search space there is a high probability of selecting a feasible schedule; this method 

would thus achieve a feasible solution way much quicker and demand the list of resources. 
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CHAPTER FIVE:  SYSTEM DESIGN AND IMPLIMENTATION 

In this section we discuss the design and implementation of the visualization tool. We go 

through the architecture of the 3 defined games and the implementation decisions made. 

5.1. IMPLIMENTATION TOOLS 

The following are the implementation tools to be used.  

IDE The Visualization tool was built using Visual studio.  This offers 

comprehensive debug tool for faster development 

UI We choose to use Windows Foundation Pages through its XAML 

notation for the user interface development because of its ability to 

represent graphical object and low memory demand and also offers 

ability to work with primitive data types in definition of graphical 

objects. 

 

Language The programing language used is C#. This was chosen because of ability 

to easily represent complex data structures with a lower memory 

demand. 

  

TABLE 5 : DEVELOPMENT TOOLS 

5.2. SYSTEM DESIGN 

In this section we discuss the design for each game in the implementation tool. In the tool we 

have the following two classifications. 

 Environment. This is a class object that defines the environment of a game. For each 

game we create and instance an environment. The environment represents the state of 

the entire object within it, that is, state of the agents, resources and utilities.  In games 

where learning states are involved an environment at each step represents a state. 

Therefore in those games we keep track multiple environment instances. So all the 
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previous environment instance for previous stages are stored in the utility of the current 

state.  

 Objects.  Both Agents and resources are defined as instance of the various object 

classes. Agents are defined object with the ability to learn (store experience). 

In the sections that follow we go through the design of each of the implemented  

5.2.1. POTENTIAL GAMES 

The Potential game includes the following objects. 

OBJECT : AGENT 

CLASS: PGagent 

DESCRIPTION:  Agents represent a machine and have the following attributes and Methods. 

Attributes 

AgentID Attribute defining the Agent ID, this is similar to the 

machine number. 

NAST Represent the next available start time of a machine at 

that particular state 

StateID Represent the current agent state. 

List<PGop> WQ  A represents the machines waiting queue. It contains a 

list of the job operations waiting to be scheduled for 

processing. Operations are members of the class PGop. 

List<PGop> SQ  A represents the machines Schedule queue. It contains 

a list of the job operations that have already been 

scheduled. Operations are members of the class PGop. 

Methods 

CryptoRandom RandomSelection   This is represent a random function based a 

CryptoRandom class that we developed that a allows an 

agent to make a true random action 

LPT() This represent a strategy, Longest processing time, that 
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can be used by an agent to select a job to schedule next 

from the available  operations in its queue 

SPT() This represent a strategy, shortest processing time, that 

can be used by an agent to select a job to schedule next 

from the available  operations in its queue 

LIFO() This represents a strategy, last in last out, that can be 

used by an agent to select a job to schedule next from 

the available operations in its queue. 

FIFO() This represents a strategy, first in first out, that can be 

used by an agent to select a job to schedule next from 

the available operations in its queue. 

RANDOM() This represents a strategy, random, that can be used by 

an agent to select a job to schedule next from the 

available operations in its queue. 

Move() This function allows an agent to make a move and 

select which of the above strategies the move will be 

based on. 

getOpStartTime() Once an agent selects a job operation to be  scheduled, 

as part of the scheduling tasks, this function allows 

assigning of a time slot on agent to a job’s operation. 

getNewNAST() After scheduling an operation, this function is used by 

the agent to recalculate its new ‘Next Available Start 

Time’ 

TABLE 6: PGAGENT PROPERTIES 
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OBJECT : Operations 

CLASS: PGop 

DESCRIPTION:  This object represent a single operation 

Attributes 

opID Identify the operations ID. 

JobID Identify which Job the operation belongs to. 

SeqID Identify the sequence position the operation occupies 

predecessor Identify operation’s predecessor(operation that precedes this operation 

on the same job) 

Successor Identify operation’s successor(operation that follows this operation on 

the same job) 

status; The current status of operation e.g Waiting, Scheduled, Active, e.t.c 

processingStartTime Represents the starting time for processing of the operation on its 

specific machine. 

load Represents the processing time required to process the operation on its 

specific machine. 

state; Represent the current  environment state of the operation 

machineID Identifies which machine the operation needs to be processed in.  

TABLE 7: PGOP PROPERTIES 

 

OBJECT : Enviroment 

CLASS: PGEnv 

DESCRIPTION:  Represent the potential game enviroment. 

Attributes 

List<PGagent> PGAgentList  This represent all the agents available in the 

environment 

List<PGop> PGOpList  This represent all the perations available in the 

environment 
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List<int> DispatchQueue  This represent the dispatch queue in the environment 

that holds operation that are yet to be selected 

List<List<envState>> allStreams This holds instances of all previous states 

Methods 

CreateDispatchQueue() Function used to create the Dispatch Queue. 

DispatchExit() Used to remove operations form the dispatch queue an 

deliver to the relevant Agent’s waiting Queue 

agentsAction() Functions used to prompt an agent to make a move 

checkTerminal() Check if the State arrived at is terminal 

penalty() Provides reinforcement (penalty) an Agent’s action. 

QValue() Used to determine the qValue( utility value)of the 

selected path of actions 

MoveToMachineQueue() Used by the function ‘CreateDispatchQueue’   to 

remove operation from dispatch queue to the relevant 

machines waiting queue. 

TABLE 8: PGENVIROMENT PROPERTIES 

 

 

 

OBJECT : State 

CLASS: envState 

DESCRIPTION:  Represents a state of environment. 

Attributes 

State Identifies the state. 

strategy Outlines the strategy selected/employed by the agents I 

selection on that particular state. 

qValue  Stores the utility value of a path of state-action pairs 

penalty Reinforcement given to an agent for making a specific 
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action at a specific state. 

List<PGagent> TAgentList; Store all agent states (as list of PGagent objects) for this 

particular state 

Methods 

envState A constructor used to initialized the state 

 

TABLE 9: ENVSTATE PROPERTIES 
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The potential game algorithm is implemented according to the following flowchart.
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FIGURE 26: POTENTIAL GAME FLOWCHART 
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5.2.2. RANDOM GAMES 

The random game include the following objects (Most items are similar to potential games 

above) 

OBJECT : AGENT 

CLASS: PGagent 

DESCRIPTION:  Agents represent a machine and have the following attributes and Methods. 

Attributes 

AgentID Attribute defining the Agent ID, this is similar to the 

machine number. 

NAST Represent the next available start time of a machine at 

that particular state 

StateID Represent the current agent state. 

List<PGop> WQ  A represents the machines waiting queue. It contains a 

list of the job operations waiting to be scheduled for 

processing. Operations are members of the class PGop. 

List<PGop> SQ  A represents the machines Schedule queue. It contains 

a list of the job operations that have already been 

scheduled. Operations are members of the class PGop. 

Methods 

CryptoRandom RandomSelection   This is represent a random function based a 

CryptoRandom class that we developed that a allows an 

agent to make a true random action 

RANDOM() This represents a strategy, random, that can be used by 

an agent to select a job to schedule next from the 

available operations in its queue. 

Move() This function allows an agent to make a move and 

select which of the above strategies the move will be 
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based on. 

getOpStartTime() Once an agent selects a job operation to be  scheduled, 

as part of the scheduling tasks, this function allows 

assigning of a time slot on agent to a job’s operation. 

getNewNAST() After scheduling an operation, this function is used by 

the agent to recalculate its new ‘Next Available Start 

Time’ 

 

 

TABLE 10: PGAGENT PROPERTIES 

OBJECT : Operations 

CLASS: PGop 

DESCRIPTION:  This object represent a single operation 

Attributes 

opID Identify the operations ID. 

JobID Identify which Job the operation belongs to. 

SeqID Identify the sequence position the operation occupies 

predecessor Identify operation’s predecessor(operation that precedes this operation 

on the same job) 

Successor Identify operation’s successor(operation that follows this operation on 

the same job) 

status; The current status of operation e.g Waiting, Scheduled, Active, e.t.c 

processingStartTime Represents the starting time for processing of the operation on its 

specific machine. 

load Represents the processing time required to process the operation on its 

specific machine. 

state; Represent the current  environment state of the operation 

machineID Identifies which machine the operation needs to be processed in.  



 
82 

TABLE 11: PGOPERATION  PROPERTIES 

 

TABLE 12: PGENVIROMEN PROPERTIES 

 

 

OBJECT : Enviroment 

CLASS: PGEnv 

DESCRIPTION:  Represent the potential game environment. 

Attributes 

List<PGagent> PGAgentList  This represent all the agents available in the 

environment 

List<PGop> PGOpList  This represent all the perations available in the 

environment 

List<int> DispatchQueue  This represent the dispatch queue in the environment 

that holds operation that are yet to be selected 

List<List<envState>> allStreams This holds instances of all previous states 

Methods 

CreateDispatchQueue() Function used to create the Dispatch Queue. 

DispatchExit() Used to remove operations form the dispatch queue an 

deliver to the relevant Agent’s waiting Queue 

agentsAction() Functions used to prompt an agent to make a move 

checkTerminal() Check if the State arrived at is terminal 

penalty() Provides reinforcement (penalty) an Agent’s action. 

QValue() Used to determine the qValue( utility value)of the 

selected path of actions 

MoveToMachineQueue() Used by the function ‘CreateDispatchQueue’   to 

remove operation from dispatch queue to the relevant 

machines waiting queue. 
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OBJECT : State 

CLASS: envState 

DESCRIPTION:  Represents a state of environment. 

Attributes 

State Identifies the state. 

strategy Outlines the strategy selected/employed by the agents I 

selection on that particular state. 

qValue  Stores the utility value of a path of state-action pairs 

penalty Reinforcement given to an agent for making a specific 

action at a specific state. 

List<PGagent> TAgentList; Store all agent states (as list of PGagent objects) for this 

particular state 

Methods 

envState A constructor used to initialized the state 

 

TABLE 13: ENVSTATE PROPERTIES 
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The potential game algorithm is implemented according to the following flowchart.
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FIGURE 27: RANDOM GAMES FLOWCHART 
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5.2.3. RANDOM TOKEN GAMES 

The random token game includes the following objects. 

OBJECT : AGENT 

CLASS: RTGagent 

DESCRIPTION:  Agents represent a job and have the following attributes and Methods. 

Attributes 

id  Identifies the operation 

JobId Identifies which job the operation belongs to. 

agentId Identifies the agent 

MachineId; Identifies the machine where the operation is to be processed on. 

ProcessingTime  Represents the processing time need to complete processing of the 

job. 

processingStartTime Represent the time when the processing of the operation will start, 

once scheduled on it respective machine. 

predecessor Represents the Agents predecessor operation on the same job 

successor  Represents the Agents successor operation on the same job 

status  Represent which status the agent is currently in. E.g. waiting, 

scheduled, Active, e.t.c 

OriginalMachinePriority  Represent the priority which is given to angent on a machine once it 

has been scheduled. 

Methods 

selectMachine() Methods allows the agent to select a position on its machines 

waiting queue 

Schedule() Methods used by agent to schedule itself on a machine once allowed 

to do so. 

checkPredessorStatus() Method used by agent to check the status of its predecessor(if 
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scheduled or not). 

getStartTimes() Method used by agent to calculate its start time based on the 

machine’s NAST and its predecessor’s start time 

TABLE 14: RTGAGENT PROPERTIES  

OBJECT : Enviroment 

CLASS: RTGenv 

DESCRIPTION:  Represents the environment of an instance of a game. 

Attributes 

List<rtgAgent> rtgAgentList  A list of Agent objects in the enviroment 

List<rtgMachine> rtgMachineList  A list of machine objects in the enviroment 

List<int> DispatchQueue  Represents ids of agents that are currently in the dispatch 

queue 

List<string> Derivations Stores the derivation path to the final solution 

List<decimal> Makespan List the makespan of all the solutions achived at each 

game round 

curentMakeSpan Holds the makespan of the current round 

Methods 

CreateDispatchQueue Method used to create dispatch queue at the games 

initialization 

AverageQueue Gets the average processing time of all the agent in all 

the specific queue 

scheduleAgent Method used to notify an agent to schedule after all the 

precedence constraints are met. 

reprioritize Method used to reprioritize agent if it fails to meet 

scheduling criteria’s while scheduling. 

CryptoRandom RandomSelection An object of the CryptoRandom class that we defined 

that to allow facilitation of real  random selection 

TABLE 15: RTGENVIROMENT PROPERTIES 
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OBJECT : Machine 

CLASS: RTGmachine 

DESCRIPTION:  Represents the machines in the games 

Attributes 

List<int> waitingQueue Holds the ids of the agent that are waiting to be 

scheduled on the machine. The index represent their 

priority rating 

List<int> sheduleQueue  Holds the ids of the agent that have been scheduled on 

the machine.  

machineID Identifies the machine. 

NAST Represents the ‘Next Available Start Time’ on the 

machine. 

Methods 

rtgMachine() Constructor to initiate the machine at creation. 

TABLE 16: RTG MACHINE PROPERTIES 

Random token game process is as outlined below. The process is repeated in every 

iteration/round, and at each game round a candidate solution is generated. 
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FIGURE 28 : RANDOM TOKEN GAME FLOWCHART 
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5.3. UI DESIGN 

In this section we give an overview of user interface for the visualization tool. The tool has 

three screen each representing the various games. We show the content of each screen in the 

sub sections below. 

5.3.1. POTENTIAL GAMES AND RANDOM GAMES 

The potential and random screens has the following tabs/sections 

Parameters Sections 

This section allows selection of games parameter and execution of the game. 

 

FIGURE 29: POTENTIAL ANDRANDOM GAMES PARMETER SECTION 
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Instance Sections 

This section displays the details of the problem instance that has been selected for scheduling. 

 

FIGURE 30: POTENTIAL ANDRANDOM GAMES INSTANCE SECTION 

Solution Sections 
This section displays the details of the feasible solution achieved by the algorithm. 

 

FIGURE 31: POTENTIAL ANDRANDOM GAMES SOLUTION SECTION 
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Search Space 

Gives details about the solution selected and places it in context of all other solutions 

generated. 

 

 

FIGURE 32: POTENTIAL ANDRANDOM GAMES SEACH SPACE SECTION 
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5.3.2. RANDOM TOKEN GAME 

The random token game screen has the following tabs/sections 

Parameters Sections 

This section allows selection of games parameter and execution of the game. 

 
FIGURE 33: RANDOM TOKEN GAMES PARMETER SECTION 

Instance Sections 
This section displays the details of the problem instance that has been selected for scheduling. 
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Derivation Sections 

This section displays details of how the schedule was achieved through the game. 

 

FIGURE 34:  RANDOM TOKEN GAMES DERIVATION SECTION 

Search Space Sections 
This section displays details of how the all schedules have been derived through the game. 

 

FIGURE 35: RANDOM TOKEN GAMES SEARCH SPACE SECTION 
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CHAPTER SIX:  TEST, RESULTS AND CONCLUSIONS 

For our test we use benchmark problems used in Beasley’s operation research library complied 

by Professor Beasley J (Beasley 2005), this is found on Brunel’s universities website.  The 

benchmarks offers a list of different instances of job shop problems complied by different 

researchers in there works. We compare the performance for each our defined games against 

other similar algorithms. We also compare the performance of the game given the various 

game parameters and against various instance setting; 

5.4. BENCHMARK CASES 

 

5.4.1. BENCHMARK PROBLEM INSTANCES 

in benchmarking performance of various algorithms.  The benchmark problems contain 

instance problems of varying size. Each of the benchmark problems has an optimal know 

solution’s makespan defined for them, some of the solution’s makespan are known to be 

optimal, while others are the best known solution. The Benchmark instance consists of the 

following; 

 ABZ 5 problems of 2 sizes proposed by Adams, Balas and Zawack (1989): ABZ 5 and ABZ 

6 instances of size 10×10 with processing times from the intervals [50,100] and [25,100] 

respectively and ABZ 7 – 9 instances of size 20×15 and processing times 

 la01-la40 are from "Resource constrained project scheduling: an experimental 

investigation of heuristic scheduling techniques" by S. Lawrence.   

 mt06, mt10, and mt20 are from "Industrial Scheduling" edited by Muth and Thompson.   

 Car1-car8 are from "Ordonnancements a contraintes disjonctives" by J. Carlier.  

 orb1-orb10 were generated in Bonn in 1986. 
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The benchmark problems are each presented in a separate text and each file has the following 

structure. 

 

FIGURE 36: BENCHMARK PROBLEM FILE STRUCTURE AND CONTENT 

The structure items are detailed as follows; 

 Instance Name; the instance name/title has the following information about the 

instance. 

o The name of the researcher who created the instance. 

o The source research of where Beasley acquired the instance. 

o It also contains information on the instance size, in the above example 10 X 10, 

represent the number of Machine and Jobs in the format (no. of jobs X no. of 

machines). 

 Instance Size; this details the number of jobs and machines the first number represents 

the number of jobs while the second number represent number of machines. 

 Instance Matrix; this matrix details the instance itself, it contains a matrix of (machine, 

operation) pairs.  The matrix structure is as follows; 

o Every row represents a Job, 

o In every row we have columns each defining an operation of the job. The 

operation of the job is describe using the pair (machine, load); 
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 The Machine, represent the machine where the operation need to be 

processed on. While, 

 Load; represent the amount of time it will take the operation to process 

on the machine. 

5.4.2. BENCHMARK ALGORITHMS 

We evaluated the performance of our games and compared them to the results from the 

following heuristic based studies. We only compare the work to heuristic based algorithms and 

we also only considered algorithms that have benchmarked with more than one problem 

instance size. We selected , “Multi-resource shop scheduling with resource flexibility and 

blocking.” (Y Mati and X Xie, 2011). This was chosen because the study relatively recent. The 

algorithms in the study are meant for 10X10 problems only. We will refer to the algorithm in 

the study has “MX”  We also compare our results to the mean results of “Use of an Artificial 

Immune System for Job Shop Scheduling”, ( CAC Coello et al, 2003). Chosen because it analyses 

performance across multiple different sizes of the problem instance. We will refer to this study 

as  “AIS” and we also compare against “Job-Shop with Generic Time-Lags: A Heuristic Based 

Approach”. (P. Lacomme, 2011). This study was chosen because it provides measures against 

both flow shop and job shop scheduling problems. We abbreviate this as “GTL”.  

The table below shows characteristics of the comparison algorithms chosen. 

Problem  Symbol Types of problem  Instances Sizes Handle 

“Multi-resource shop scheduling with resource 

flexibility and blocking.” (Y Mati and X Xie, 2011). 

MX Job Shop Scheduling  10 X 10, instance only 

“Use of an Artificial Immune System for Job Shop 

Scheduling”, ( CAC Coello et al, 2003) 

AIS Job Shop Scheduling Multiple 

“A contribution to the stochastic flow shop 

scheduling problem”, (M. Gourgand et al, 2003) 

SD Flow Shop Scheduling Multiple 

“Job-Shop with Generic Time-Lags: A Heuristic 

Based Approach”. (P. Lacomme, 2011) 

GLT Flow Shop Scheduling 

Job Shop Scheduling 

Multiple 

TABLE 17: BENCHMARK ALGORITHMS 
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5.5. RESULTS  

5.5.1. POTENTIAL GAMES RESULTS 

The following test was done on potential games and the results are as follows. 

Test with different configurations of the potential game  

The table below represents test on potential games done with different configurations; the 

table contains the following content; 

 Problem- This represents the benchmark problem being solved. 

 Size, the number of jobs and machine in the bench mark problem being solved. 

 Optimal, the known optimal solution for the benchmark being solved. 

 For each of the 3 above we compare against 4 test categorized into two categories and 

named “Best of X try (Y paths)” –This means  picking the best makespan after 

Performing X trials  on the benchmark problems with the potential games set to Y paths.  

 For each category we do test using only 2 strategies and all the strategies. For each we 

note the makespan and the error rate of the solution. 

Problem Size  Optimal  

Best of 10 (100 paths)  Best of 10 (1000 paths)  

(SPT and 
LPT) 
strategies 
only  

%Error 
All 4 
strategie
s 

%Error 

(SPT and 
LPT) 
strategies 
only  

%Error 
All 4 
strategies 

%Error 

la01 10 X 5 666 795 19.37 763 14.56 799 19.97 765 14.86 

la02 10 X 5 655 803 22.60 803 22.60 803 22.60 802 22.44 

la05 10 X 5 593 652 9.95 620 4.55 727 22.60 671 13.15 

abz5 10 X10 1234 1346 9.08 1370 11.02 1358 10.05 1354 9.72 

la16 10 X10 945 1093 15.66 1059 12.06 1229 30.05 1118 18.31 

la17 10 X10 784 916 16.84 997 27.17 915 16.71 1051 34.06 

la18 10 X10 848 1063 25.35 1067 25.83 1043 23.00 1068 25.94 

la19 10 X10 842 1020 21.14 1084 28.74 1072 27.32 1055 25.30 

la36 15 X 15 1268 1676 32.18 1627 28.31 1716 35.33 1692 33.44 

la38 15 X 15 1217 1658 36.24 1617 32.87 1718 41.17 1718 41.17 

la39 15 X 15 1233 1662 34.79 1628 32.04 1743 41.36 1677 36.01 

la40 15 X 15 1222 1779 45.58 1630 33.39 1707 39.69 1708 39.77 

abz7 15 X 20 668 881 31.89 857 28.29 864 29.34 870 30.24 

abz8 15 X 20 687 899 30.86 842 22.56 885 28.82 880 28.09 
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abz9 15 X 20 707 911 28.85 887 25.46 923 30.55 912 29.00 

la07 15 X 5 890 1048 17.75 1051 18.09 1063 19.44 946 6.29 

la08 15 X 5 863 1067 23.64 1017 17.84 1144 32.56 986 14.25 

la09 15 X 5 951 1144 20.29 1072 12.72 1152 21.14 1088 14.41 

la10 15 X 5 958 1102 15.03 1035 8.04 1123 17.22 1073 12.00 

la28 20 X 10 1216 1610 32.40 1630 34.05 1553 27.71 1551 27.55 

la29 20 X 10 1195 1633 36.65 1506 26.03 1649 37.99 1645 37.66 

orb02 10 X 10 888 1291 45.38 1154 29.95 1273 43.36 1306 47.07 

orb03 10 X10 1005 1496 48.86 1330 32.34 1437 42.99 1426 41.89 

orb04 10 X 10 1005 1397 39.00 1356 34.93 1274 26.77 1383 37.61 

car1 11 X 5 7038 10418 48.03 8296 17.87 10069 43.07 9463 34.46 

car2 13 X 4 7166 10418 45.38 9307 29.88 10354 44.49 9395 31.11 

car3 12 X 5 7312 10345 41.48 9557 30.70 10303 40.91 9695 32.59 

car4 14 X 4 8003 9318 16.43 8819 10.20 9318 16.43 8990 12.33 

car5 10 X 6 7702 10323 34.03 10980 42.56 11200 45.42 11030 43.21 

car6 8 X 9 8313 10291 23.79 10449 25.69 10895 31.06 10858 30.61 

car7 7 X 7 6558 8228 25.47 8224 25.40 8228 25.47 8404 28.15 
 

TABLE 18 : RESULTS OF THE POTENTIAL GAME WITH DIFFERENT SETTINGS. 

 

FIGURE 37: POTENTIAL GAME GRAPH GROUPED BY PROBLEM INSTANCE AND SIZE 

Performance against selected benchmark algorithms 

In this section we compare the potential game with the selected algorithms that were earlier 

discussed in section 6.1.2 . The comparison is against the best results of the potential game 

from the above test done with different configuration against the mean results obtained by the 

other algorithms has detailed in their respective literature.  
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Problem Size  Optimal  
Potential Game AIS MX GTL 

Makespan %error Makespan %error makespan %error makespan %error 

la01 10 X 5 666 763 14.56 776 16.46 881 32.28 875 31 

la02 10 X 5 655 802 22.44 775 18.34 900 37.40 897 37 

la05 10 X 5 593 620 4.55 617 3.96 742 25.13 878 48 

abz5 10 X10 1234 1346 9.08 1470 19.10 1705 38.17     

la16 10 X10 945 1059 12.06 1100 16.42 1205 27.51 1599 69 

la17 10 X10 784 915 16.71 912 16.30 1020 30.10 1292 65 

la18 10 X10 848 1043 23.00 1013 19.49 1156 36.32 0 -100 

la19 10 X10 842 1020 21.14 1031 22.42 1191 41.45 1403 67 

la36 15 X 15 1268 1627 28.31 1561 23.07 2058 62.30 1747 38 

la38 15 X 15 1217 1617 32.87 1548 27.23 2008 65.00 1725 42 

la39 15 X 15 1233 1628 32.04 1548 25.57 2046 65.94 0 -100 

la40 15 X 15 1222 1630 33.39 1537 25.81 2034 66.45 0 -100 

abz7 15 X 20 668 857 28.29 839 25.64         

abz8 15 X 20 687 842 22.56 859 24.96         

abz9 15 X 20 707 887 25.46 884 24.96         

la07 15 X 5 890 946 6.29 961 7.99 1209 35.84 1123 26 

la08 15 X 5 863 986 14.25 965 11.81 1261 46.12 0 -100 

la09 15 X 5 951 1072 12.72 1019 7.12 1380 45.11 0 -100 

la10 15 X 5 958 1035 8.04 982 2.49 1300 35.70 0 -100 

la28 20 X 10 1216 1551 27.55 1555 27.85 2381 95.81 1997 64 

la29 20 X 10 1195 1506 26.03 1463 22.43 2256 88.79 0 -100 

orb02 10 X 10 888 1154 29.95 1070 20.44 1181 33.00     

orb03 10 X10 1005 1330 32.34 1276 26.92 1311 30.45     

orb04 10 X 10 1005 1274 26.77 1221 21.47 1288 28.16     

car1 11 X 5 7038 8296 17.87         13788 96 

car2 13 X 4 7166 9307 29.88         0 -100 

car3 12 X 5 7312 9557 30.70         0 -100 

car4 14 X 4 8003 8819 10.20         0 -100 

car5 10 X 6 7702 10323 34.03         13597 77 

car6 8 X 9 8313 10291 23.79         0 -100 

car7 7 X 7 6558 8224 25.40         10948 66.94 
TABLE 19:  PONTENTIAL GAMES AGAINST BENCHMARKS 

 

5.5.2. RANDOM GAMES RESULTS 

The following test was done on random games and the results are as follows. 

Test with different configurations of the random game  
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The table below represents test on potential games done with different configurations; the 

table contains the following content; 

 Problem- This represents the benchmark problem being solved. 

 Size, the number of jobs and machine in the bench mark problem being solved. 

 Optimal, the known optimal solution for the benchmark being solved. 

 We perform test with 100 rounds and 1000 rounds. 

Problem Size  Optimal  

100 rounds 1000 rounds 

Best of 
10 

%Error 
Best of 
10 

%Error 

la01 10 X 5 666 782 14.83 773 16.07 

la02 10 X 5 655 796 17.71 810 23.66 

la05 10 X 5 593 652 9.05 695 17.20 

abz5 10 X10 1234 1395 11.54 1395 13.05 

la16 10 X10 945 1103 14.32 1145 21.16 

la17 10 X10 784 980 20.00 954 21.68 

la18 10 X10 848 1020 16.86 1087 28.18 

la19 10 X10 842 990 14.95 1003 19.12 

la36 15 X 15 1268 1696 25.24 1656 30.60 

la38 15 X 15 1217 1598 23.84 1697 39.44 

la39 15 X 15 1233 1647 25.14 1603 30.01 

la40 15 X 15 1222 1654 26.12 1637 33.96 

abz7 15 X 20 668 845 20.95 823 23.20 

abz8 15 X 20 687 910 24.51 934 35.95 

abz9 15 X 20 707 945 25.19 987 39.60 

la07 15 X 5 890 1048 15.08 1102 23.82 

la08 15 X 5 863 1034 16.54 1111 28.74 

la09 15 X 5 951 1132 15.99 1186 24.71 

la10 15 X 5 958 1034 7.35 1091 13.88 

la28 20 X 10 1216 1648 26.21 1570 29.11 

la29 20 X 10 1195 1599 25.27 1680 40.59 

orb02 10 X 10 888 1134 21.69 1154 29.95 

orb03 10 X10 1005 1137 11.61 1165 15.92 

orb04 10 X 10 1005 1404 28.42 1477 46.97 

car1 11 X 5 7038 8700 19.10 8787 24.85 

car2 13 X 4 7166 8664 17.29 9034 26.07 

car3 12 X 5 7312 8769 16.62 8654 18.35 

car4 14 X 4 8003 9408 14.93 9304 16.26 
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car5 10 X 6 7702 9876 22.01 9702 25.97 

car6 8 X 9 8313 9867 15.75 9707 16.77 

car7 7 X 7 6558 8790 25.39 8669 32.19 
 

TABLE 20: RANDOM GAMES WITH DIFFERENT CONFIGURATION 

 

 

 

 

 

 

 

 
 
FIGURE 38: RANDOM GAME GRAPH GROUPED BY INSTANCE TYPE AND SIZE 

 

Performance against selected benchmark algorithms 

In this section we compare the random game with the selected algorithms that were earlier 

discussed in section 6.1.2 . The comparison is against the best results of the random game from 

the above test done with different configuration against the mean results obtained by the other 

algorithms has detailed in their respective literature.  
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la01 10 X 5 666 782 14.83 776 16.46 881 32.28 875 31 

la02 10 X 5 655 796 17.71 775 18.34 900 37.40 897 37 

la05 10 X 5 593 652 9.05 617 3.96 742 25.13 878 48 

abz5 10 X10 1234 1395 11.54 1470 19.10 1705 38.17     
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la16 10 X10 945 1103 14.32 1100 16.42 1205 27.51 1599 69 

la17 10 X10 784 980 20.00 912 16.30 1020 30.10 1292 65 

la18 10 X10 848 1020 16.86 1013 19.49 1156 36.32 0 -100 

la19 10 X10 842 990 14.95 1031 22.42 1191 41.45 1403 67 

la36 15 X 15 1268 1696 25.24 1561 23.07 2058 62.30 1747 38 

la38 15 X 15 1217 1598 23.84 1548 27.23 2008 65.00 1725 42 

la39 15 X 15 1233 1647 25.14 1548 25.57 2046 65.94 0 -100 

la40 15 X 15 1222 1654 26.12 1537 25.81 2034 66.45 0 -100 

abz7 15 X 20 668 845 20.95 839 25.64         

abz8 15 X 20 687 910 24.51 859 24.96         

abz9 15 X 20 707 945 25.19 884 24.96         

la07 15 X 5 890 1048 15.08 961 7.99 1209 35.84 1123 26 

la08 15 X 5 863 1034 16.54 965 11.81 1261 46.12 0 -100 

la09 15 X 5 951 1132 15.99 1019 7.12 1380 45.11 0 -100 

la10 15 X 5 958 1034 7.35 982 2.49 1300 35.70 0 -100 

la28 20 X 10 1216 1648 26.21 1555 27.85 2381 95.81 1997 64 

la29 20 X 10 1195 1599 25.27 1463 22.43 2256 88.79 0 -100 

orb02 10 X 10 888 1134 21.69 1070 20.44 1181 33.00     

orb03 10 X10 1005 1137 11.61 1276 26.92 1311 30.45     

orb04 10 X 10 1005 1404 28.42 1221 21.47 1288 28.16     

car1 11 X 5 7038 8700 19.10         13788 96 

car2 13 X 4 7166 8664 17.29         0 -100 

car3 12 X 5 7312 8769 16.62         0 -100 

car4 14 X 4 8003 9408 14.93         0 -100 

car5 10 X 6 7702 9876 22.01         13597 77 

car6 8 X 9 8313 9867 15.75         0 -100 

car7 7 X 7 6558 8790 25.39         10948 67 

 
TABLE 21: RANDOM GAMES AGAINST BENCHMARK ALGORITHMS 

 

5.5.3. RANDOM TOKEN GAMES RESULTS 

The following test was done on random token games and the results are as follows. 

Test with different configurations of the random token  game  

The table below represents test on random token games done with different configurations; 

the table contains the following content; 

 Problem- This represents the benchmark problem being solved. 

 Size, the number of jobs and machine in the bench mark problem being solved. 
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 Optimal, the known optimal solution for the benchmark being solved. 

 We perform test with 100 rounds and 1000 rounds. 

 

Problem Size  Optimal  

100 rounds 1000 rounds 

Best of 
10 

%Error 
Best of 
10 

%Error 

la01 10 X 5 666 735 10.36 716 7.51 

la02 10 X 5 655 657 0.31 675 3.05 

la05 10 X 5 593 593 0.00 593 0.00 

abz5 10 X10 1234 1409 14.18 1482 20.10 

la16 10 X10 945 1111 17.57 1065 12.70 

la17 10 X10 784 980 25.00 920 17.35 

la18 10 X10 848 1011 19.22 1009 18.99 

la19 10 X10 842 1093 29.81 1008 19.71 

la36 15 X 15 1268 1704 34.38 1684 32.81 

la38 15 X 15 1217 1704 40.02 1682 38.21 

la39 15 X 15 1233 1610 30.58 1519 23.20 

la40 15 X 15 1222 1756 43.70 1724 41.08 

abz7 15 X 20 668 846 26.65 816 22.16 

abz8 15 X 20 687 867 26.20 901 31.15 

abz9 15 X 20 707 920 30.13 942 33.24 

la07 15 X 5 890 999 12.25 968 8.76 

la08 15 X 5 863 994 15.18 1007 16.69 

la09 15 X 5 951 1101 15.77 1001 5.26 

la10 15 X 5 958 1016 6.05 1067 11.38 

la28 20 X 10 1216 1643 35.12 1667 37.09 

la29 20 X 10 1195 1602 34.06 1598 33.72 

orb02 10 X 10 888 1089 22.64 999 12.50 

orb03 10 X10 1005 1023 1.79 1043 3.78 

orb04 10 X 10 1005 1189 18.31 1091 8.56 

car1 11 X 5 7038 10016 42.31 9750 38.53 

car2 13 X 4 7166 9960 38.99 9680 35.08 

car3 12 X 5 7312 10089 37.98 9878 35.09 

car4 14 X 4 8003 11189 39.81 10587 32.29 

car5 10 X 6 7702 10234 32.87 9996 29.78 

car6 8 X 9 8313 9678 16.42 9453 13.71 

car7 7 X 7 6558 8913 35.91 8167 24.53 
 

TABLE 22: RANDOM TOKEN GAME TEST WITH DIFFERENT CONFIGURATION 
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FIGURE 39: RANDOM TOKEN GAME GRAPH GROUPED BY PROBLEM SOURCE AND SIZE 

 

Performance against selected benchmark algorithms 

In this section we compare the random token game with the selected algorithms that were 

earlier discussed in section 6.1.2 . The comparison is against the best results of the random 

token game from the above test done with different configuration against the mean results 

obtained by the other algorithms has detailed in their respective literature.  

Problem Size  Optimal  
Random token Game AIS MX GTL 

Makespan %error Makespan %error makespan %error makespan %error 

la01 10 X 5 666 716 7.51 776 16.46 881 32.28 875 31 

la02 10 X 5 655 657 0.31 775 18.34 900 37.40 897 37 

la05 10 X 5 593 593 0.00 617 3.96 742 25.13 878 48 

abz5 10 X10 1234 1409 14.18 1470 19.10 1705 38.17     

la16 10 X10 945 1065 12.70 1100 16.42 1205 27.51 1599 69 

la17 10 X10 784 920 17.35 912 16.30 1020 30.10 1292 65 

la18 10 X10 848 1009 18.99 1013 19.49 1156 36.32 0 -100 

la19 10 X10 842 1008 19.71 1031 22.42 1191 41.45 1403 67 

la36 15 X 15 1268 1684 32.81 1561 23.07 2058 62.30 1747 38 

la38 15 X 15 1217 1682 38.21 1548 27.23 2008 65.00 1725 42 

la39 15 X 15 1233 1519 23.20 1548 25.57 2046 65.94 0 -100 

la40 15 X 15 1222 1724 41.08 1537 25.81 2034 66.45 0 -100 

abz7 15 X 20 668 816 22.16 839 25.64         

abz8 15 X 20 687 867 26.20 859 24.96         

abz9 15 X 20 707 920 30.13 884 24.96         

la07 15 X 5 890 968 8.76 961 7.99 1209 35.84 1123 26 
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la08 15 X 5 863 994 15.18 965 11.81 1261 46.12 0 -100 

la09 15 X 5 951 1001 5.26 1019 7.12 1380 45.11 0 -100 

la10 15 X 5 958 1016 6.05 982 2.49 1300 35.70 0 -100 

la28 20 X 10 1216 1643 35.12 1555 27.85 2381 95.81 1997 64 

la29 20 X 10 1195 1598 33.72 1463 22.43 2256 88.79 0 -100 

orb02 10 X 10 888 999 12.50 1070 20.44 1181 33.00     

orb03 10 X10 1005 1023 1.79 1276 26.92 1311 30.45     

orb04 10 X 10 1005 1091 8.56 1221 21.47 1288 28.16     

car1 11 X 5 7038 9750 38.53         13788 96 

car2 13 X 4 7166 9680 35.08         0 -100 

car3 12 X 5 7312 9878 35.09         0 -100 

car4 14 X 4 8003 10587 32.29         0 -100 

car5 10 X 6 7702 9996 29.78         13597 77 

car6 8 X 9 8313 9453 13.71         0 -100 

car7 7 X 7 6558 8167 24.53         10948 66.94 
TABLE 23:  RANDOM GAME TOKEN COMPARISION WITH OTHER ALGORITHMS 

 

Finally we compare all our algorithms against each other. 

Problem Size  Optimal  

Random token 
Games 

Random Games potential  Games 

makespan %Error makespan %Error makespan %Error 

la01 10 X 5 666 716 6.98 782 17.42 763 14.56 

la02 10 X 5 655 657 0.30 796 21.53 802 22.44 

la05 10 X 5 593 593 0.00 652 9.95 620 4.55 

abz5 10 X10 1234 1409 12.42 1395 13.05 1346 9.08 

la16 10 X10 945 1065 11.27 1103 16.72 1059 12.06 

la17 10 X10 784 920 14.78 980 25.00 915 16.71 

la18 10 X10 848 1009 15.96 1020 20.28 1043 23.00 

la19 10 X10 842 1008 16.47 990 17.58 1020 21.14 

la36 15 X 15 1268 1684 24.70 1696 33.75 1627 28.31 

la38 15 X 15 1217 1682 27.65 1598 31.31 1617 32.87 

la39 15 X 15 1233 1519 18.83 1647 33.58 1628 32.04 

la40 15 X 15 1222 1724 29.12 1654 35.35 1630 33.39 

abz7 15 X 20 668 816 18.14 845 26.50 857 28.29 

abz8 15 X 20 687 867 20.76 910 32.46 842 22.56 

abz9 15 X 20 707 920 23.15 945 33.66 887 25.46 

la07 15 X 5 890 968 8.06 1048 17.75 946 6.29 

la08 15 X 5 863 994 13.18 1034 19.81 986 14.25 

la09 15 X 5 951 1001 5.00 1132 19.03 1072 12.72 

la10 15 X 5 958 1016 5.71 1034 7.93 1035 8.04 
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la28 20 X 10 1216 1643 25.99 1648 35.53 1551 27.55 

la29 20 X 10 1195 1598 25.22 1599 33.81 1506 26.03 

orb02 10 X 10 888 999 11.11 1134 27.70 1154 29.95 

orb03 10 X10 1005 1023 1.76 1137 13.13 1330 32.34 

orb04 10 X 10 1005 1091 7.88 1404 39.70 1274 26.77 

car1 11 X 5 7038 9750 27.82 8700 23.61 8296 17.87 

car2 13 X 4 7166 9680 25.97 8664 20.90 9307 29.88 

car3 12 X 5 7312 9878 25.98 8769 19.93 9557 30.70 

car4 14 X 4 8003 10587 24.41 9408 17.56 8819 10.20 

car5 10 X 6 7702 9996 22.95 9876 28.23 10323 34.03 

car6 8 X 9 8313 9453 12.06 9867 18.69 10291 23.79 

car7 7 X 7 6558 8167 19.70 8790 34.03 8224 25.40 

 
TABLE 24: COMPARISON AMOUNGST THE GAMES 

 

 

 

5.6. DISCUSSIONS 

The following are the observations from the test on the potential games above. 

Test of algorithms with different configurations 

The potential games algorithm perform relative better with more strategies used. This is 

because it increases breadth of choice and actions available to an agent.  This increases the 

learning experience of an agent and increases the chance of learning a more favorable 

solution. The different in quality of solution produce when using only SPT and LPT compared to 

all four strategies, increase with the sizes of the instance. This is because using only 2 

strategies limits the game to a subset of solutions in the search space. Limiting the experience 

scope of the agents. 

 

Both the Potential game and Random games do not show improvement the quality of solution 

designed when the number of paths was increased significantly from 100 to 1000. This is 

because the quality of schedule generated for these more on the number of strategies used as 

they increase the breadth of choose or scope of learning for the agent. Increasing the number 
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learned paths learned without increasing the  number of strategies available to the agents only  

leads the agent to learn multiple similar schedules, thus the agents is already limited to a 

certain range quality of solutions they can achieve.  From further test we discovered that the 

quality solution increase gradually with increase of number of rounds until the number of 

round get to approximately 200 rounds for most problem instance, then quality reduces as the 

rounds increase. This can be attributed to the fact that increasing the number of rounds past a 

certain point, we also increase the chance of learning a false path, where the agent get good 

reinforce but decisions made lead to a poor schedule. This occurrence does expose a limitation 

in our reward structure of using the total remaining processing time. 

 

Increasing the number of rounds in the random token game does show improvement in the 

quality of schedule generated. This is because it increases the number of solution the 

algorithms has to choose from the search space increase the probability of selecting a more 

favorable solution. 

 

The tests on Potential and Random games  also shows relatively  poor performance on flow 

shop problems(car1-car7) compared to the job shop problem this can be attributed to the fact 

that because of the nature of a flow shop problem which leads to some agents having a larger 

action set(operations to choose from) than others. Machines/agents the process the initial 

operations of the jobs end up being the only ones playing at the beginning of the game.  The 

lower the number of agent learning at each stage reduces the learning experience and also 

reduces the chances of achieving favorable solutions. 

 

Comparison amongst the 3 games and the selected benchmark 

The test shows that quality of solution of Random Games and Potential Games are affecting by 

the sizes of the problem instance.  Quality reduces when dealing with large problem instances. 

This can be attributed to the fact increasing the size of instance significantly increases the size 

of search space.  Since this games are based on learning a subset of the search space based on 



 
108 

the strategies selected and searching for a solution within that subset, the large the search 

space the harder it is to get a quality subset.  

 

Only the Random Token Game doesn’t show better adaptation to change in instance problem 

size. This can be attributed to the fact that it works by selecting solutions from the workspace 

at random and refining them, thus not greatly affected by the size of the search space. 

 

Our algorithms have shown relatively good performance compared to the selected benchmark 

problems. On average we achieved better or equal performance across all problem instances. 

5.7. CONCLUSIONS 

This paper deals with defining 3 game theoretic algorithms for solving job shop scheduling 

problems. Our algorithms have shown relatively good performance on the benchmark data and 

we were able to converge to a feasible solution in relatively good time. We have also been able 

to demonstrate through visualization that by defining the job shop problem as a multi-agent 

system we are able to provide algorithms that provide good solution across different sizes of 

problem instances.  

 

5.8. RECCOMENDED FURTHER WORK 

The following are our recommendation for further work; 

 This paper has dealt with job shop scheduling where scheduling is static and job are scheduled 

as a batch. In the real world problems tend to be further research work can be done to the 

algorithms to apply the two dynamic job shop scheduling.  

 Our study choose a basic  where of structuring the reward/reinforcement  function based on 

total processing time of un-scheduled jobs at any given point.  Further work can be done to 

refine the algorithm by defining better reward structure to improve the learning of an  agent. 
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APPENDIX ONE: GLOSSARY 

Machine Time Share Processing time slot on a machine 

Token Indicator of the agent that’s making a choice 

Algorithmic deadlock When to process are blocking each other from proceeding. 

Processing end time The time an operation will complete processing 

Processing time The processing load of an operation on a machine 

Processing start time The time when an operation will start processing 

Possible start time A probable time when processing of an operation will start. 

Bottleneck An operation that cause delays in a schedule while laying 
idle 

Makespan Time it takes to complete processing all the jobs in a 
problem 

Next available start time (NAST). The next estimated time when a machine will be available to 
process another job. 

Waiting Queue, A queue on a machine that holds the operations that are 
waiting to be scheduled for processing 

Schedule queue A queue on a machine that holds the operations that have 
been scheduled for processing 

MDP Markov Decision Process 

Q-learning Reinforcement learning technique based on learning an 
action-value function that gives the expected utility of 
taking a given action in a given state. 

Q-pair Pair defining the utility of a decision. 

SPT Shortest Processing Time 

LPT Longest Processing Time 

FIFO First in First Out 

LIFO Last In Last Out 

Action set Set of available action for an agent 

Flow shop Scheduling problem A variation of job shop scheduling problem where all the 
operation on the jobs follow the same processing sequence. 

 

 

 


