

1

UNIVERSITY OF NAIROBI

SCHOOL OF COMPUTING AND INFORMATICS

GAME THEORETIC MULTI-AGENT ALGORITHMS FOR THE JOB SHOP

SCHEDULING PROBLEM

BY

ORWA HORACE OWITI

SUPERVISOR

DR. ELISHA OPIYO OMULO

THIS REPORT HAS BEEN SUBMITTED IN PARTIAL FULFILLMENT FOR THE DEGREE

OF MASTER OF SCIENCE IN COMPUTER SCIENCE IN THE UNIVERSITY OF NAIROBI

SEPTEMBER,2014

2

Declarations

The research project presented in this report is my original work and has not been presented

for any other university Award

Signature:__________________________ Date:________________________

Orwa Horace Owiti

Registration No: P58/63388/2011

This research project report has been submitted in partial fulfillment of the requirement of

Master of Science in Computer Science in the University of Nairobi with my approval as

Supervisor.

Signature:__________________________ Date:________________________

Dr Elisha. O. Omulo

3

ABSTRACT

 Job shop scheduling problem is a problem of scheduling n jobs on m machines with each job

having a set of equal number of operation that are to be process in unique machine routes.

The Job Shop Scheduling (JSSP) is one of the hardest combinatorial optimization problems

and has been researched over the decade. This study proposes a new approach to solve a

Job Shop Scheduling problem by structuring the problem as multi-agent system (MAS) and

using 3 game theoretic algorithms to achieve the scheduling objectives. The objective of this

study is to minimize the makespan. This approach is meant to achieve feasible schedules

within reasonable time across different problem instances. This research solves the

scheduling of operation on different machine and defines the sequence of operation

processing on the respective machine. Job Scheduling problem is a resource allocation

problem is mainly apparent in manufacturing environment, in which the jobs are allocated to

various machines. Jobs are the activities and a machine represents the resources. It is also

common in transportation, services and grid scheduling. The result and performance of the

proposed algorithms are compared against other conventional algorithms. The comparison is

on benchmark data used across multiple studies on JSSP.

4

LIST OF FIGURES

FIGURE 1 : A 3 X 3 JSSP ... 14

FIGURE 2: GRANTT CHART REPRESENTATION OF A JSSP SCHEDULE .. 14

FIGURE 3: DISJUNCTIVE GRAPH REPRESENTATION OF A JSSP ... 15

FIGURE 4:GAME THEORY IN EXTENSIVE NORM(BORROWED FROM WIKIPEDIA) ... 32

FIGURE 5:SIMPLE ILLUSTRATION OF A 1X1 MAS ENVIRONMENT ... 38

FIGURE 6: DISJUNCTIVE GRAPH ... 45

FIGURE 7: RTG INTERATION 0 .. 46

FIGURE 8:RTG INTERATION 1 ... 46

FIGURE 9: RTG INTERATION 2 .. 47

FIGURE 10:RTG INTERATION 3 ... 48

FIGURE 11:RTG INTERATION 4 ... 49

FIGURE 12:RTG INTERATION 4 ... 49

FIGURE 13:RTG SAMPLE GRANTT CHART.. 50

FIGURE 14: AGENT STRUCTURE ... 52

FIGURE 15:POTENTIAL GAME SAMPLE DECISION TREE .. 55

FIGURE 16: SAMPLE POTENTIAL GAME DECISION TREE ... 59

FIGURE 17: POTENTIAL GAME SAMPLE STATEO ... 65

FIGURE 18: SAMPLE POTENTIAL GAME DECICISION TREE GENERATION... 65

FIGURE 19:PONTENTIAL GAME SAMPLE STATE0 ... 66

FIGURE 20: PONTENTIAL GAME SAMPLE STATE 1 .. 67

FIGURE 21: SAMPLE DECISION TREE AT STATE 1 .. 68

FIGURE 22: PONTENTIAL GAME SAMPLE STATE 2 .. 68

FIGURE 23: SAMPLE POTENTIAL GAME DECISION TREE ... 69

FIGURE 24: COMPLETE SAMPLE POTENTIAL GAME DECISION ... 70

FIGURE 25: SAMPLE RANDOM GAME... 72

FIGURE 26: POTENTIAL GAME FLOWCHART ... 79

FIGURE 27: RANDOM GAMES FLOWCHART ... 84

FIGURE 28 : RANDOM TOKEN GAME FLOWCHART .. 88

FIGURE 29: POTENTIAL AND RANDOM GAMES PARAMETRIZATION SECTION .. 89

FIGURE 30: POTENTIAL AND RANDOM GAMES INSTANCE SECTION ... 90

FIGURE 31: POTENTIAL AND RANDOM GAMES SOLUTION SECTION ... 90

FIGURE 32: POTENTIAL AND RANDOM GAMES SEACH SPACE SECTION .. 91

FIGURE 33: RANDOM TOKEN GAMES PARAMETER SECTION .. 92

FIGURE 34: RANDOM TOKEN GAMES DERIVATION SECTION .. 93

FIGURE 35: RANDOM TOKEN GAMES SEARCH SPACE SECTION ... 93

FIGURE 36: BENCHMARK PROBLEM FILE STRUCTURE AND CONTENT .. 95

FIGURE 37: POTENTIAL GAME GRAPH GROUPED BY PROBLEM INSTANCE AND SIZE .. 98

FIGURE 38: RANDOM GAME GRAPH GROUPED BY INSTANCE TYPE AND SIZE .. 101

FIGURE 39: RANDOM TOKEN GAME GRAPH GROUPED BY PROBLEM SOURCE AND SIZE .. 104

5

LIST OF EQUATIONS

EQUATION 1: MINIMIZE THE MAKESPAN .. 11

EQUATION 2 MINIMIZE TARDINESS ... 12

EQUATION 3 MINIMIZE LATENESS .. 13

EQUATION 4: FINDING CMAX .. 17

EQUATION 5: STATISFACTION OBJECTIVE ... 17

EQUATION 6: MINIMIZE MAKESPAN ... 19

EQUATION 7: MINIMIZE TARDINESS .. 20

EQUATION 8: MINIMIZE LATENESS ... 20

EQUATION 9: CALCULATE MAKESPAN ... 37

EQUATION 10: PRECEDENT CONSTRAINT ... 41

EQUATION 11:AGENT PRIORITY SETTING ... 42

EQUATION 12:NAST ... 43

EQUATION 13: PROCESING END TIME ... 43

EQUATION 14: FEASIBLE SCHEDULE FROM SEARCH SPACE ... 44

EQUATION 15: UTILITY FUNCTION .. 54

EQUATION 16: TOTAL DISPACTH QUEUE PROCESSING TIME ... 61

EQUATION 17: TOTAL PROCESSING TIME ... 62

EQUATION 18: REWARD/PENALTY FOMULAE ... 62

6

LIST OF TABLES

TABLE 1: NORMAL FORM OR PAYOFF MATRIX OF A 2-PLAYER, 2-STRATEGY GAME ... 32
TABLE 2: SIMPLE ILLUSTRATION OF THE AGENT’S ACTIONS AND ATTRIBUTES ... 39
TABLE 3:Q-PAIR CALCULATION EXAMPLE ... 58
TABLE 4: POTENTIAL GAME AGENT PROPERTIES .. 63
TABLE 5 : DEVELOPMENT TOOLS .. 73
TABLE 6: PGAGENT PROPERTIES .. 75
TABLE 7: PGOP PROPERTIES ... 76
TABLE 8: PGENVIROMENT PROPERTIES .. 77
TABLE 9: ENVSTATE PROPERTIES ... 78
TABLE 10: PGAGENT PROPERTIES .. 81
TABLE 11: PGOPERATION PROPERTIES ... 82
TABLE 12: PGENVIROMEN PROPERTIES .. 82
TABLE 13: ENVSTATE PROPERTIES .. 83
TABLE 14: RTGAGENT PROPERTIES .. 86
TABLE 15: RTGENVIROMENT PROPERTIES ... 86
TABLE 16: RTG MACHINE PROPERTIES .. 87
TABLE 17: BENCHMARK ALGORITHMS .. 96
TABLE 18 : RESULTS OF THE POTENTIAL GAME WITH DIFFERENT SETTINGS. ... 98
TABLE 19: PONTENTIAL GAMES AGAINST BENCHMARKS ... 99
TABLE 20: RANDOM GAMES WITH DIFFERENT CONFIGURATION ... 101
TABLE 21: RANDOM GAMES AGAINST BENCHMARK ALGORITHMS ... 102
TABLE 22: RANDOM TOKEN GAME TEST WITH DIFFERENT CONFIGURATION .. 103
TABLE 23: RANDOM GAME TOKEN COMPARISION WITH OTHER ALGORITHMS ... 105
TABLE 24: COMPARISON AMOUNGST THE GAMES ... 106

7

CONTENTS

Abstract __ 3

List of Figures __ 4

List of Equations __ 5

List of Tables ___ 6

1. Introduction __ 9

1.1. Job Scheduling __ 9
1.1.1. Classification of scheduling problem ___ 11
1.1.2. Objective of Scheduling problems ___ 11

1.2. Job Shop Scheduling ___ 13
1.2.1. The Classical Job-Shop Scheduling Problem ___ 13

1.3. Problem Statement ___ 16
1.3.1. Research Objective ___ 16
1.3.2. Research questions ___ 16

1.4. Significance of study ___ 17

2. literature review ___ 19

2.1. Research on Job Shop scheduling __ 21
2.1.1. Optimization Algorithms __ 21
2.1.2. Approximation Algorithms ___ 24

2.2. Multi-Agent Systems __ 29
2.2.1. Characteristics of Agents in MAS. ___ 29

2.3. Game theory ___ 31

3. Methodology __ 35

3.1. Research Approach__ 35

3.2. Result Presentation ___ 35

3.3. Tools ___ 36

4. Algorithm Formulation __ 36

4.1. Job Scheduling as a MAS Environment __ 36

4.2. random Token Game __ 37
4.2.1. MAS environment for random Token Game ___ 37
4.2.2. Defining Random Token Game ___ 40
4.2.3. Illustration of a random token game. __ 45

4.3. Potential Games __ 50
4.3.1. Agent Based Reinforcement Learning __ 51
4.3.2. Markov Decision Process __ 53
4.3.3. Q-learning __ 54
4.3.4. Job Shop Scheduling as Potential Game with Q-learning _________________________________ 60

8

4.4. Random Games __ 71

5. System Design and implimentation __ 73

5.1. Implimentation tools __ 73

5.2. System Design ___ 73
5.2.1. Potential Games ___ 74
5.2.2. Random Games ___ 80
5.2.3. Random Token Games __ 85

5.3. UI Design __ 89
5.3.1. Potential games and RANDOM gAMES ___ 89
5.3.2. Random Token Game ___ 92

6. Test, Results and Conclusions ___ 94

6.1. Benchmark Cases ___ 94
6.1.1. Benchmark Problem INSTANCES __ 94
6.1.2. Benchmark Algorithms __ 96

6.2. Results __ 97
6.2.1. Potential Games Results ___ 97
6.2.2. Random Games Results ___ 99
6.2.3. Random Token Games results ___ 102

6.3. Discussions ___ 106

6.4. Conclusions ___ 108

6.5. Reccomended Further Work ___ 108

7. References ___ 109

Appendix 1: Glossary __ 114

9

CHAPTER ONE: INTRODUCTION

1.1. JOB SCHEDULING

A Scheduling problem can be defined as the problem of allocation of limited shared resources

over time to competing activities. Scheduling problems have over the years attracted interest in

much research and has been the subject of a significant amount of literature in the operations

research and Artificial intelligence fields. A huge amount of emphasis has been on investigating

machine scheduling problems where jobs represent activities and machines represent resource

and each machine can process at most one job at a time. This has kind of problem is apparent

in a multitude of diverse real world domains e.g. scheduling of task in an assembly lines,

scheduling of jobs in multi-processors/ multi-core machine, assignment of tasks to employees,

job scheduling in distributed computing ,etc. We can categorize real world scheduling

application areas as follows,

 Demand scheduling for customers: problem of assigning customers to a definite

time for an order or service.

 Workforce scheduling for employees: problem of determining when employees

work.

 Operations scheduling: combines workforce scheduling with job scheduling.

1. Assigning jobs to workstations.

2. Assigning people to workstations.

3. Assigning people to jobs.

 Distributed computing: assigning jobs to processors time in multi-processor or

multi-computer environment.

There are diverse variations of scheduling problems that have been formulated in machine

scheduling, the simplest of which is a single machine scheduling problem. In the single machine

scheduling problem involves trying to schedule a finite number of jobs onto one machine.

Other variations depend on of the following factors.

10

 Machines can be related, independent, equal

 Machines can require a certain gap between jobs(recovery time) or no idle-time

 Machines can have sequence-dependent setups, that is, each machine processes a

single stage of processing cycle.

 Jobs may have constraints, for example a job i needs to finish before job j can be

started

 Jobs and machines have mutual constraints, for example, certain jobs can be scheduled

on some machines only

 Set of jobs can relate to different set of machines

 Jobs can have different operations and machines can only process a single operation.

 Deterministic (fixed) processing times or probabilistic processing times.

 Scheduling can be non-pre-emptive, that is, processing of a job on a machine can be

interrupted after it has started

 Jobs can have deadlines in which they need to be processed.

 Scheduling can be static, that is, all jobs are presented for scheduling at the same time

or it can be deterministic that is jobs appear at different intervals and are scheduled as

they appear. In this case processing and scheduling are concurrent.

Reasons for scheduling complexity include (Fox and Sadeh 1990):

Scheduling is a feasibility problem. The final solution must accomplish all the problem

constraints. Another objective to be satisfied is the optimization of an evaluation function,

adjusting to certain criteria as cost, lateness, process time, inventory time, etc.

 Some scheduling problems have many constraints due to the unavailability of resources, due

dates, etc.

 Constraint representation cannot express the importance of the value domains. The number

and identity of tasks that require a resource over a particular time interval is a key piece of

information that can suppose the basis for heuristic variable and value orderings.

http://en.wikipedia.org/wiki/Sequence-dependent_setup

11

1.1.1. CLASSIFICATION OF SCHEDULING PROBLEM

Classification of scheduling problems depends on one or more variation of the above

parameters. The most common classification of scheduling problems is as follows.

Open-shop scheduling problem (OSSP) is a scheduling problem where, given n jobs

and m workstations, each job has to be processed on a workstation at least once. Job might

have operations but there is no ordering precedence on the operation. However, some of these

processing times may be zero. This problem becomes an NP-Hard when three or more machine

are involved but can be solved in polynomial time if

Only two machines are involve,

All the jobs have the same length.

Flow-shop scheduling problem (FSSP) is a scheduling problem where, there are m machines

and j jobs where m>1, each job has a set of operations o and the jth operation of the job must

be processed by jth machine. The number of operations on each job is equal with the number of

machines; each job must be processed on each of the machine.

Job-shop scheduling problem is a scheduling problem where, there are m machines and j jobs

where m>1, each job has a set of operations o and has associated a processing order assigned

for its operations. Unlike in flow-shop scheduling, the precedence sequence for operation in a

job may differ from job to job. Job-Shop scheduling is a known NP-Hard.

1.1.2. OBJECTIVE OF SCHEDULING PROBLEMS

The objective of any job scheduling algorithm can have any of the following objectives;

Minimize the Makespan- The Makespan is the total length of the schedule, that is, the time it

takes all jobs finish processing. This is formulated as

M= max{ C1……….Cn}

EQUATION 1: Minimize The Makespan

http://en.wikipedia.org/wiki/Scheduling_(production_processes)

12

Where,

Cj= the earliest time job j finishes processing.

Minimize Tardiness- In situations where the jobs j have deadlines dj, tardiness is the duration

of time delays past its deadline

Then tardiness tj ,

 { }

The tardiness of the schedule T is,

 ∑ { }

Therefore,

 ∑

EQUATION 2 Minimize Tardiness

Minimize lateness- Lateness for a job is defined as,

The Lateness of the schedule L

 ∑ { }

 ∑

13

EQUATION 3 Minimize Lateness

1.2. JOB SHOP SCHEDULING

Job-shop scheduling is one of the most commonly researched about problems in the domain of

scheduling problems. In this section we outline the main attributes of this kind of scheduling

problem.

1.2.1. THE CLASSICAL JOB-SHOP SCHEDULING PROBLEM

In assembly lines, staff roasters, manufacturing, or production planning, The production of a

good involves a number of processing steps that have to be performed in a set order. The

decision to further process some good can only be taken, if all preceding steps are completed.

In most cases, however, it is usually a common scenario that not just a single, but a variety of

products is assembled concurrently. This means that, an appropriate sequencing and

scheduling of individual processing operations is crucial, if maximal joint productivity is desired.

This type of problems can be formulated as a classical job-shop scheduling problem.

The most generalized formulation of job-shop scheduling is a follows, there is an existence of n

jobs that must be processed on m machines in a pre-determined order. Each job j consists of

oji operations such that job j is j(o1…..on) , each of the operation of a job must be processed

by a specific machine, p(oji , mk) and processing of the job on the machine can take a certain

duration p(oji , mk) A processing of a job is completed after completion of processing of its

last operation, the completion of a job is denoted as cj.

equation 1.3: Formalizing a job shop scheduling problem

A problem instance P=(M,O,J) in job shop scheduling consists of

 A set M of Machines,

 A set O of operations o, each associated with a machine M(o)Є M and having a duration

d(o) Є N and

14

 A set J of jobs (o1………….on)(each operation has exactly one occurrence.)

A Schedule S for P assigns to every operation o a time b(o):

1. b(o)≥0 for all o Є O

2. b(o)≥ b(o') + d(o') for operations o' preceding o in the same job.

A Schedule has cost T if b(o)+d(o)≤ T for all oЄ O.

(Takeshi Yamada and Ryohei Nakano, 1997) describes a grant chart as a convenient way of

visually representing a solution of the JSSP. An example of a solution for the 3 X 3 problem

depicted in table 1 can be represented as shown on Figure 1.0

FIGURE 1 : A 3 X 3 JSSP

FIGURE 2: GRANTT CHART REPRESENTATION OF A JSSP SCHEDULE

15

They further illustrate that JSSP can be formally described by a disjunctive graph

 G = (V, C U D), where;

V is a set of nodes representing operations of the jobs together with two special

nodes, a source (0) and a sink *, representing the beginning and end of the schedule,

respectively.

C is a set of conjunctive arcs representing technological sequences of the operations.

D is a set of disjunctive arcs representing pairs of operations that must be performed

on the same machines.

The processing time for each operation is the weighted value attached to the corresponding

nodes. Figure 1.2 shows this in a graph representation for the problem given in Table 1.0

FIGURE 3: DISJUNCTIVE GRAPH REPRESENTATION OF A JSSP

Disjunctive graph helps in visualizing and understanding the structure of a JSSP problem.

The JSSP is not only N P-hard, but it is one of the worst members in the class. Even with a 3 X 3

problem where each job has 3 operations the search space can be as big as

Search Space= (33)3

16

An indication complex a JSSP is, is the fact that one 10 X 10 problem formulated by (Muth and

Thompson, 1963) remained unsolved for over 20 years before it was finally settled in 1985.

1.3. PROBLEM STATEMENT

1.3.1. RESEARCH OBJECTIVE

This study has the following objectives.

 Model JSSP as a game theoretic Multi-agent environment in which agents interact to

achieve global optima. We seek to define games that govern agent strategy/actions in

these environments.

 Visualization of the algorithms the JSSP and the algorithms that will be defined,

 Evaluating the algorithms using the available benchmark data for JSSP. Example of

which is the compilation of important provided by the Operations Research Library

(Beasley, 2005) .

1.3.2. RESEARCH QUESTIONS

The research problem in this thesis is defined as a job shop problem with precedence

constraints on job operations denoted by definition one. The scheduling problem to be solved

involves determining an optimal assignment of the operations of independent n jobs, where

n>0 that are to be processed on m non identical machines so that the total processing time for

all the jobs, the makespan, is minimized. The jobs and the machines the following properties;

 Machine don’t require idle time between jobs

 The schedule must be non-preemptive. That is, once a machine begins processing a

stage of a job, it must complete that stage before doing anything else.

 Each job j consists of oji operations such that job j is j(o1…..on) , and

 there is a precedent constraint on the operation such that operation oˈ preceding and

operation o, should be processed before o is processed,

17

 each of the operation of a job must be processed by a specific machine, p(oji , mk) and

 processing of the job on the machine can take a certain duration p(oji , mk)

 A processing of a job is completed after completion of processing of its last operation,

the completion of a job is denoted as cj.

The study aims to address the following questions,

 How can JSSP be modeled as game theoretic multi-agent environment. Modeling the

problem multi-agent systems provides a number of advantages compared to centralized

solution approaches. Among those is the ability to distribute the required computations over

a number of entities, an increased amount of robustness, flexibility, and scalability due to

the possibility of exchanging individual agents, or the benefit of allowing for spatial

distribution of the work.Using the variation of games modeled by (Opiyo et al, 2009) in

solving the parallel machine scheduling problem, these are, potential games and Random

choice games. We seek to determine.How can the games be modified in order be able to

provide feasible solutions to the Job Shop scheduling problems. The aims of algorithms

defined here would be to reduce/minimize the makespan of a JSSP. The makespan(J||

Cmax) is defined as the time the last job finishes processing, that is,

If Cj is the time job j finishes processing then

EQUATION 4: FINDING CMAX

The objective that needs satisfying becomes the search of C* such that,

EQUATION 5: STATISFACTION OBJECTIVE

1.4. SIGNIFICANCE OF STUDY

Scheduling and sequencing have always been crucial decision-making tasks to support and

enhance the productiveness of manufacturing organizations as well as logistics and service

18

providers. Job Shop Scheduling Problem (JSSP) has emerged as one most studied scheduling

problem because of its common occurrence and complexity. The classical JSSP is well-known as

an NP-hard problem. Most of the proposed evolutionary and operation research based

solutions are sequential in their decision making and with current computational capabilities

are able to provide solutions for small problems cases but as the job get larger it becomes

computationally infeasible to achieve a feasible solution. Use of multi-agents to distribute

decision making thus allowing for the possibility of distributing the computational resource as

well as including fault tolerance.

Apart from the offering scalability advantage due to is distributed decision making nature. Multi

agent systems also offer adaptability. (Opiyo et al, 2009) also state that The issue with the OR

approaches is that most solutions are limited to each class of the scheduling problem that is

solved. This makes it necessary to seek the invention of algorithms or heuristics for different

problem classes. For example algorithms for 1||Cmax are not guaranteed to solve the 3||Cmax

or the Q||Cmax problems. The agent-based approaches are different. The schedules are

generated according to the agent behavior. This associates the qualities of schedules that are

produced with the behavior of the agents. This shifts the burden of the scheduling problem

from the invention of algorithms to determining the agent behavior that would lead to good

schedules. The main advantage of using the agent-based approach is that in the extreme case

that the problem class is unfamiliar the agents can learn the behavior that leads to good

schedules on their own. (Opiyo et al, 2009) defined such algorithms for the parallel machine

scheduling problem using game theoretic multi-agents. This study seeks to use the same

concept in order to achieve adaptable algorithms for JSSP in attempt to solve for most J||Cmax

instances.

19

CHAPTER TWO: LITERATURE REVIEW

Job shop scheduling is among the hardest combinatorial optimization problems and is NP-

complete (Garey and Johnson, 1979). An NP-complete or NP-hard problem is where no

algorithm exists (unless P=NP) that in polynomial time is able to solve all possible instances of

the problem. Hence, the solution time risks increasing exponentially with the number of jobs.

(Karin Thörnblad, 2013). According to (Karin Thörnblad, 2013) JSSP remains a NP-complete

problem despite the objective function selected. As noted in section 1, the following can be the

objective of a job shop scheduling problem.

Minimize the Makespan- The Makespan is the total length of the schedule, that is, the time

it takes all jobs finish processing. This is formulated as

M= max{ C1……….Cn}

Where,

 Cj= the earliest time job j finishes processing.

 EQUATION 6: MINIMIZE MAKESPAN

Minimize Tardiness- In situations where the jobs j have deadlines dj, tardiness is the

duration of time delays past its deadline

 Then tardiness tj ,

 { }

The tardiness of the schedule T is,

 ∑ { }

20

Therefore,

 ∑

EQUATION 7: MINIMIZE TARDINESS

Minimize lateness- Lateness for a job is defined as,

The Lateness of the schedule L

 ∑ { }

 ∑

EQUATION 8: MINIMIZE LATENESS

The objective that is most often utilized for scheduling problems is the minimization of the

makespan , i.e., the time between the start of the first operation and the completion of the last

operation of the schedule.

(Metta Haritha, 2008) noted that the nature of the scheduling environment plays a vital role in

determining the job Schedules. she differentiated between two environments, A static

environment, where the number of jobs and the arrival times are known in advance and a

dynamic environment, where the arrival times of jobs are unknown at time of scheduling and

scheduling is usually done as processing continues.(Madureira et al., 2001) observed that a

dynamic scheduling system encounters the difficulties of randomness such as machine

breakdowns, unexpected job orders etc. which are experienced in real world problems.

21

2.1. RESEARCH ON JOB SHOP SCHEDULING

Job Shop scheduling has been the subject of a significant amount of literature in the operations

research and artificial intelligence. Research in scheduling theory has evolved over the past

forty years and has been the subject of much significant literature. This is because, this problem

is not only NP-hard it is also has the well-earned reputation of being one of the most

computationally stubborn combinatorial problems considered to date. Over the past forty years

different solution approaches have been proposed to address the JSSP. These approaches can

be categorized in two, these are ;

Optimization Algorithms: These are usually mathematical programming based approaches that

work toward achieving optimal solutions. According to (Azizizoglu and Kirca 1999a) they involve

the process like formulating Mathematical models for the problem, and using exact algorithm

such as branch-and-bound algorithms or mathematical formulation to solve the problem.

Approximation Algorithms: These are usually heuristic/Meta-heuristic algorithms based

approaches that aim to give an approximately near optimal solution rather than the optimal

solution. We look at the main classification of approximation algorithms , that is, priority

dispatch rules, bottleneck based heuristics, artificial intelligence and local search methods.

In the following sub-sections we review the above approach, illustrating past and recent studies

on each.

2.1.1. OPTIMIZATION ALGORITHMS

These methods simply build an optimum solution from the problem data by following a simple

set of rules which exactly determine the processing order. Optimization algorithms have been

known to solve a given problem optimally with a requirement that increases polynomial with

respect to the size of the input. Optimization approaches usually process like formulating

Mathematical models for the problem. These approaches form the earliest of approaches in

solving scheduling problems, The first example of an efficient method and probably the earliest

work in scheduling theory is (Johnson ,1954) who develops an efficient algorithm for a simple

two machine flow shop whose objective function was to minimizes the maximum flow time.

The two most common methods in these approaches are;

22

 Branch-and-bound algorithms

 Mathematical formulation.

2.1.1.1. BRANCH AND BOUND

Branch and Bound (B&B) is by far the most widely used tool for solving large scale NP-hard

combinatorial optimization problems. The general definition of branch and bound is a general

algorithm for finding optimal solutions of various optimization problems, especially in discrete

and combinatorial optimization. According to (A S Jain and S Meeran,1998) , A branch-and-

bound algorithm consists of a systematic enumeration of all candidate solutions. The algorithm

searches the complete space of solutions for a given problem for the best solution. However,

explicit enumeration is normally impossible due to the exponentially increasing number of

potential solutions. The use of bounds for the function to be optimized combined with the

value of the current best solution enables the algorithm to search parts of the solution space

only implicitly (Jens Clausen,199). (A S Jain and S Meeran,1998) explains that in a typical branch

and bound algorithm, large subsets of fruitless candidates are discarded en masse, by using

upper and lower estimated bounds of the quantity being optimized. They state that Branch and

Bound (BB) algorithms use a dynamically constructed tree structure as a means of representing

the solution space of all feasible sequences. The search begins at the topmost (root) node and a

complete selection is achieved once the lowest level (leaf) node has been evaluated. At any

point during the solution process, the status of the solution with respect to the search of the

solution space is described by a pool of yet unexplored subset of the tree and the best solution

found so far. Initially only one subset exists, namely the complete solution space, and the best

solution found so far is 1. The unexplored subspaces are represented as nodes in a dynamically

generated search tree. Each node at a level p in the search tree represents a partial sequence of

p operations. As implied by their name a branching as well as a bounding scheme is applied to

perform the search. From an unselected (active) node the branching operation determines the

next set of possible nodes from which the search could progress.

One of the most popular branch and bound is based on work of (Brucker et al, 1994) which was

later extended by (Brucker and Thiele, 1996) where They consider is the general shop problem

23

with sequence-dependent setup time. The method is based on the disjunctive graph

representation. E.g. for an instance of the job-shop scheduling problem the disjunctive graph

 G = (V, C u D)

 is defined as follows.

 V is the set of nodes, representing the operations of the jobs.

 There are two special nodes, a source 0 and a sink *. Each node i has a weight which is

equal to the processing time pi of the corresponding operation, whereby p. and p* are

equal to 0.

 C is the set of conjunctive arcs which reflect the job-order of the operations. For every

pair of operations that require the same machine there is an undirected, so-called

disjunctive arc.

 The set of all these arcs is denoted by D.

The basic scheduling decision on this model is to define an ordering between all those

operations which have to be processed on the same machine, i.e. to fix precedence relations

between these operations. This branch and bound algorithm solved the famous 10 x 10

benchmark problem in less than 19 min on a workstation. The algorithm proved unsuitable for

benchmark problems larger than the 10 X 10 problem.

More recently,(A. AitZai and M. Boudhar, 2013) proposed a parallel version of a branch-and-

bound method based on an implicit enumeration, that further improved the speed of solving

instances smaller or equal to the 10 X10. Though the algorithm still proved inefficient for case

larger than this.

24

2.1.1.2. MATHEMATICAL FORMULATION

These methods usually involve finding the optimal solution by describing the JSSP as some

mathematical model. Mathematical modeling as a solution technique was made popular after

works (Wagner, 1959) and (Manne, 1960) who both introduced an integer linear-programming

model for machine scheduling. Integer linear-programming is a mathematical optimization or

feasibility program in which some or all of the variables are restricted to be integers the aim of

linear programing is to achieve the best outcome) in a mathematical model whose

requirements are represented by linear relationships.

Since them other models have been devised to solve for scheduling problems. Most notably

Lagrangian relaxation (LR) approaches devised by (Van De Velde, 1991) and (H. Chen and P.B.

Luh, 2003). Lagrangian relaxation is a relaxation method which approximates a difficult problem

of constrained optimization by a simpler problem. It works on the assumption that a solution

to the relaxed problem is an approximate solution to the original problem.

Mathematical optimization models with currently available resources have proved successful

when present with simple problem instance but their complexity grows polynomially with the

increase with the instance size and the algorithms become computationally infeasible.

2.1.2. APPROXIMATION ALGORITHMS

These are usually heuristic/Meta-heuristic algorithms based approaches. A Meta-heuristic is a

higher-level procedure or heuristic designed to find or generate procedure or heuristic (partial

search algorithm) that may provide a sufficiently good solution to an optimization problem.

These methods are usually preferred and are better for larger problem/dynamic problems/

problems with multiple constraints as they are more likely to converge to a good enough

solution much earlier than optimization methods can achieve an optimal solution. In most

problem instance successful algorithm have shown that the solution derived from

approximation approaches are usually close to enough to the optimal solution. Since the

http://en.wikipedia.org/wiki/Mathematical_model

25

solution is close to optimal and generated in much less time, (Blum and C.Roli, A. 2003) argue

that the benefit of having using far less resources outweighs the disadvantage of not arriving to

an absolute optimal solution. We review four main categories of approximation technique are

considered: priority dispatch rules, bottleneck based heuristics, artificial intelligence and local

search methods.(Karin Thörnblad, 2013) explained that the major disadvantage of

metaheuristics is that there is often no other stopping criteria than a maximum allowed

number of iterations, or a maximum computation time. She also states that because of this the

quality of the solution obtained is often unknown.

In the following sub section we look at early and recent research on the four main common

classifications of approximation methods, that is, priority dispatch rules, bottleneck based

heuristics, artificial intelligence and local search methods.

2.1.2.1. PRIORITY DISPATCH RULES

Priority dispatch rules is a technique of finding a near optimal solution for scheduling problems

by applying heuristic dispatching rules. Dispatch rule in a simplistic approach would involve

assigning priorities to jobs/operations based on criteria which could be a task corresponding to

longest/shortest operation time; most/least successors; or ranked positional weight, i.e., sum

of operation times of its predecessors, the jobs or operations deadline, etc. The priority is used

to assign jobs/operations to machine whenever they become available.

Priority dispatch rules perform reasonably well in a wide range of environments, and are

relatively easy to understand. They also need only minimal computational time, which allows

them to be used even in real-time, on-line scheduling environments. (Torsten Hildebrandt et al,

2010). Hundreds over approaches based on priority dispatch rules have been proposed in

handling job shop scheduling. A summary of over 100 classical dispatching rules can be found in

(Panwalkar and Iskander, 1977). The Earliest being work being by (Jackson, 1955). More

recently (H Ingimundardottir and P Runarsson, 2010) introduced a priority dispatch rules

approach for job shop scheduling based on Supervised Learning.

26

2.1.2.2. BOTTLENECK BASED HEURISTICS

The most common of these approaches is the shifting bottleneck heuristics. These algorithms

work on the assumption that in cases where jobs/machines are competing with each other for

the same resources (machines), there is always be one or more resources that act as a

'bottleneck' in the processing. The algorithm then works to reduce/minimize the bottleneck.

This algorithm has proven very efficient for solving for instances equal or less to those of 30

machines and 50 jobs. It was first introduced for the reducing makespan for JSSP problems by

(Adams et al., 1988) and this was later extended by (Balas et al. 1995). Because of is relatively

good performance the approach has been extended to other performance measures in solving

a JSSP like total weighted tardiness by (Pinedo M, Singer M, 1999) and maximum lateness by

(Demirkol et al,1997) and (Uzsoy R and Wang C S., 2000). More recently (Gokhale et al, 2011)

address a scheduling problem for minimizing total weighted tardiness in JSSP.

2.1.2.3. LOCAL SEARCH METHODS

Local search algorithms have been around for over forty years and are in evolution through

many research papers. The algorithms work on the fundamental idea that given an initial or set

of initial solution, a best fit can be obtained making small improvement on solution, this is done

over and over until a certain criteria is met. How the initial set selected allows with the

improvement/search methodology and the evaluation functions have been subject of much

research. Currently the two most popular approaches in local searches include;

Tabu search algorithms; Tabu searches where introduced by (Glover, 1986) . (Metta Haritha,

2008) works defines as follows. “A Tabu search as the Tabu search algorithm stores the previous

search history (list of obtained solutions) in its memory. When the search process is carried out

in a new neighborhood the algorithm tries to find the best solution by excluding earlier solutions

stored in the memory. Therefore this procedure forbids/ tabus moves in new neighborhoods, by

guiding the search process away from solutions that resemble previous ones”.

27

Simulated Annealing is based on the works of (Kirkpatrick, et al. ,1983) and (Metropolis, et al,

1953) the technique coined the methodology from the analogy between annealing process

and the search for the minimum in a general process. (Metta Haritha, 2008) describes the

algorithm as follows. The algorithm starts with a randomly generated set of initial solutions and

at a high starting temperature ‘T’. The algorithm replaces the present solution with a solution

from its neighborhood if that solution is better than the current one. A better solution in this

algorithm could be the one whose objective function value is less than latter solutions. The

value of temperature gradually decreases during the search process, thereby the solutions are

replaced more number of times at the beginning and then toward the end. The above steps are

repeated until a termination criterion is reached. In most case once the termination criteria is

achieved, the best out of the current set of solution is selected as the near optimal solution.

The most notable recent studies on local search algorithms is Zhang et al.’s hybrid tabu search /

simulated annealing algorithm (Zhang et al., 2008) . Local Search methods are known to be

simplistic, easy to implement and very efficient in regards to use of computing resources. The

major disadvantage is that local search emphasis fails to consider effects at a global scale, a fact

that sometimes lead to poor solutions in larger test instances.

2.1.2.4. ARTIFICIAL INTELLIGENCE

Artificial intelligence (AI) is the subfield of computer science concerned with building software

that can think and act rationally and independently as if to exhibit human intelligence. Artificial

intelligence has been used as problem solving mechanism in different fields. In JSSP, hundreds

of artificial intelligence approaches have been developed over the last 40 years. Common

artificial intelligence employed for JSSP includes use of;

 Genetic Algorithms; (Davis, 1985)

 Artificial Immune System; (Coello et al 2003)

 Artificial Nueral Networks; (Yu and liang 2001)

 Reinforcement Learning ; (G Weiss, 2013)

 Multi-agents Systems; (Opiyo et al, 2009)

28

 Ant colony optimization; (Zhang et al 2006)

Artitifial Intelligence approaches have be identified by to have the following four main

advantages.

 They employ both quantitative and qualitative knowledge in the decision-making

process.

 Second, they are capable of generating heuristics that are significantly more complex

problem instances than the earlier approaches

 The third is that the selection of the best heuristic can be based on information about

the entire JSSP and not localization like in local search policies. They can also adapt in a

dynamic JSSP to the change in state or configuration of the JSSP e.g machine break

downs, additional job arrivals.

 They can model complex relationships in elegant new data structures and have

techniques that can be used for powerful manipulation of the information in the data

structures.

This research will try to employ an Artificial intelligence approach to the classic JSSP problem,

the approach used is based on Multi-agents and game theory. The approach is extends to the

works of (Opiyo et al, 2009) which employed game theoretic multi-agents in solving the parallel

machine scheduling problem and has relations to agent based model techniques reviewed by (

G Weiss, 2013). As was earlier mentioned, the benefit of using this approach as, first, the

schedules are generated according to the agent behavior. This associates the qualities of

schedules that are produced with the behavior of the agents. This shifts the burden of the

scheduling problem from the invention of algorithms to determining the agent behavior that

would lead to good schedules. The main advantage of using the agent-based approach is that in

the extreme case that the problem class is unfamiliar the agents can learn the behavior that

leads to good schedules on their own. (Opiyo et al, 2009).Secondly, Use of multi-agents enables

to distribute decision making thus allowing for the possibility of distributing the computational

resource as well as including Profit from inherent properties of distributed systems like

robustness, fault tolerance, parallelism and scalability.(G Weiss, 2013).

29

2.2. MULTI-AGENT SYSTEMS

A multi-agent system (M.A.S.) is a computerized system composed of multiple

interacting intelligent agents within an environment. Multi-agent systems can be used to solve

problems that are difficult or impossible for an individual agent or a monolithic system to solve.

Because of its nature it lends its self to solving problems where distributed decisions are

necessary. Multi-agent systems are centered on the concept of a rational agent. An agent is

anything that can perceive its environment through sensors and act upon that environment

through actuators (Russell and Norvig, 2003). Flexibility and rationality are achieved by an agent

on the basis of key processes such as problem solving, planning, and decision making, and

learning. As an interacting entity, an agent can be affected in its activities by other agents and

perhaps by humans (S. Russell, 2003). Multi-agent systems consist of multiple agents and their

environment. MAS systems are used to model real world problems where distributed decision

making is need to achieve the solutions.

2.2.1. CHARACTERISTICS OF AGENTS IN MAS.

The following are the main characteristics of agents in a multi-agent system.

1. Autonomous: An agent is capable of acting independently, exhibiting control over their

internal state. Agents collaborate/cooperate or compete with other agents in their

environment in order to maximize/optimize a certain gain. The gain can be an individual

gain or a social cumulative gain.

2. Reactive: An agent maintains an ongoing interaction with its environment, and responds

to changes that occur in it (in time for the response to be useful). If a program’s

environment is guaranteed to be fixed, the program need never worry about its own

success or failure – program just executes blindly. But this is not usually the case in real

world application, where the environment is usually dynamic. This necessitates for

intelligent software entities like agents to be reactive based on the environmental

states.

3. Pro-active: Agents should be capable of generating and attempting to achieve goals; not

driven solely by events; taking the initiative and/or recognizing opportunities.

http://en.wikipedia.org/wiki/Intelligent_agent
http://en.wikipedia.org/wiki/Monolithic_system

30

4. Social ability: Social ability in agents is the ability to interact with other agents (and

possibly humans) via some kind of agent-communication mode, e.g Messaging or

bulletin board in order to satisfy their design objectives.

5. Mobility: the ability of an agent to move around an electronic network

6. Veracity: an agent will not knowingly communicate false information

7. Benevolence: agents do not have conflicting goals, and that every agent will therefore

always try to do what is asked of it

8. Rationality: agent will act in order to achieve its goals, and will not act in such a way as

to prevent its goals being achieved — at least insofar as its beliefs permit

9. Learning/adaption: agents improve performance over time

According to (G WeiB, 2000) interest in multi-agent systems is largely founded on the insight

that many real world problems are best modeled using a set of agents instead of a single agent.

In particular, multi-agent modeling makes it possible to Cope with natural constraints like the

limitations of the processing power of a single agent or the physical distribution of the data to

be processed and profit from inherent properties of distributed systems like robustness, fault

tolerance, parallelism and scalability.

(V lesser,1995) state that The current set of multi-agent applications can be classified into three

broad areas. First, distributed situation assessment Applications, such as distributed network

diagnosis, emphasize how (diagnostic) agents with different spheres of awareness and control

(network segments)should share their local interpretations to arrive at consistent and

comprehensive explanations and responses.

Secondly distributed expert systems applications, such as concurrent engineering, emphasize

how agents negotiate over collective solutions (designs) given their different expertise and

criteria. The next generation of applications alluded to will probably involve all the emphases of

these generic applications and more.

Finally ,as in our case, Distributed resource planning and allocation applications, such as

distributed factory scheduling, emphasize how (scheduling) agents (associated with each work

cell) should coordinate their schedules to avoid and resolve conflicts over resources and to

maximize system output.

31

2.3. GAME THEORY

Game Theory was launched by (Neumann and Oskar Morgenstern,1944) in their book Theory of

Games and Economic Behavior. They state that Game theory is an economic theory that models

interactions between rational agents as games of two or more players that can choose from a

set of strategies and the corresponding preferences. It is the mathematical study of interactive

decision making in the sense that the agents involved in the decisions take into account their

own choices and those of others. Choices are determined by stable preferences concerning the

outcomes of their possible decisions, and agents act strategically, in other words, they take into

account the relation between their own

(Osborne and Rubinstein, 1994) described multi-agent decision making as a subject of game

theory. (Vlassis, 2005) described the following, although originally designed for modeling

economical interactions, game theory has developed into an independent field with solid

mathematical foundations and many applications. The theory tries to understand the behavior

of interacting agents under conditions of uncertainty, and is based on two premises, First that

the participating agents are rational. Second, that they reason strategically, that is, they take

into account the other agents' decisions in their decision making.

Depending on how an Agent selects its action two classic types of game can be distinguished,

 Strategic game, here each agent is allowed chooses their strategy once at the start of the

game, and then all agents take their actions simultaneously. The normal (or strategic form)

game is usually represented by a matrix which shows the players, strategies, and pay-offs as

depicted by figure 1.4 below.

Player 2

chooses Left

Player 2

chooses Right

Player 1 4, 3 –1, –1

32

Table 1: Normal form or payoff matrix of a 2-player, 2-strategy game

In this example (borrowed from Wikipedia) there are two players; one chooses the row and

the other chooses the column. Each player has two strategies, which are specified by the

number of rows and the number of columns. The payoffs are provided in the interior. The

first number is the payoff received by the row player; the second is the payoff for the

column player. Suppose that Player 1 plays Up and that Player 2 plays Left. Then Player 1

gets a payoff of 4, and Player 2 gets 3. This game assumes all players make moves

simultaneously.

 Extensive game, here the agents take their actions in turn and agents actions can be based

on their actions of preceding agents action. The extensive form can be used to formalize

these games with a time sequencing of moves. Games here can be depicted as if they are

played on decision tree as show by figure 1.3 Here each vertex (or node) represents a point

of choice for a player. The player is specified by a number listed by the vertex. The lines out

of the vertex represent a possible action for that player. The payoffs are specified at the

bottom of the tree.

 FIGURE 4:GAME THEORY IN EXTENSIVE NORM(BORROWED FROM WIKIPEDIA)

chooses Up

Player 1

chooses Down
0, 0 3, 4

33

The extensive form can be viewed as a multi-player generalization of a decision tree.

(Fudenberg and Tirole, 1991) .The above figure represents a game where there are two

players. Player 1 moves first and chooses either F or U. Player 2 sees Player 1's move and

then chooses A or R. Suppose that Player 1 chooses U and then Player 2 chooses A, then

Player 1 gets 8 and Player 2 gets 2.

 (Opiyo et al, 2008) in seeking to devise game theoretic multi-agent based algorithms for solving

parallel machine scheduling problem. In defined three types of games these are,

Dispersion games: These are those in which the agents win positive payoffs when they choose

distinct actions. This game is a form of anti-coordination games described by (Trond et al.

2002). He describes dispersion games as a game in which agents prefer to be disperse over

their actions in that they choose deferent actions than those chosen by other agents.

Dispersion Games are used to model real world problems, the classical example is a load

balancing problem this problem can be modeled as a Dispersion game in which the agents are

the users, the possible actions are the resources, and the equilibria of the game are the

outcomes in which agents are maximally dispersed. (Opiyo et al, 2008) gives natural examples

such as setting up new businesses in areas where there are no similar businesses and choosing

to drive on streets with low traffic, are some of the activities that can be modeled by dispersion

games.

In dispersion games the desired end state is a Nash equilibrium, a Nash equilibrium is a state in

which all players are relatively satisfied with the choices they’ve made, that is, If each player

has chosen a strategy and no player can benefit by changing strategies while the other players

keep theirs unchanged, then the current set of strategy choices and the corresponding payoffs

constitute a Nash equilibrium. Therefore dispersion games seek to identify a Nash equilibrium.

Potential games: In these games the key is to achieve/learn a social policy known as the

potential function which will guide the actions of the players. It is assumed that the learned

function will guided the players/agents in making decision that will ensure a social good.

(Sandholm 2001) describes these games as those in which the incentive of all players to change

34

their strategy is expressed in one global function called the potential function. The progressive

actions of the participants lead to a stable state. (Opiyo et al, 2008) describes the use of taxes

or public charges to influence the decisions of people are a form of potential game.(Riedmiller,

et al, 2009) describe reinforcement learning based approaches to achieve a potential function,

they describe a policy based search algorithm based on Markov Decision Processes to achieve a

potential function.

Random Games, these are game in which players/agents randomly select an action with hope

of achieving a near optimal state. These are done in a predefined number of iterations and the

overall best state from the iterations is selected.

35

CHAPTER THREE: METHODOLOGY

In this section, research methods for this study are described

3.1. RESEARCH APPROACH

Our first objective is to model JSSP as a game theoretic Multi-agent environment in which

agents interact to achieve global optima. We seek to define games that govern agent

strategy/actions in these environments, evaluate and review Multi-agent environment/archi-

type to discover the best archi-type to adopt, this will also involve evaluating other models of

multi-agents adopted in solving scheduling problems. We will further design/ definition of our

multi-agent environment and finally review of the 3 games discussed in (Opiyo et al, 2009) to

be able to extend or modify in order to be applicable to our problem.

The second objective is to provide visualization of the algorithms the JSSP and the algorithms

that will be defined. This will involve review of the available development toolkit and their

appropriateness to use in our cause, designing a conceptual model of the visualization tool

defining our multi-agents environment and finally developing the visualization tool/realize the

conceptual model

Our third objective involves evaluating the algorithms using the available benchmark data for

JSSP. Example of which is the compilation of important provided by the Beasly’s Operations

Research Library (Beasley, 2005) .This would involve a review on benchmark criteria in JSSP

Including data instances and use of benchmark for each of our defined games.

3.2. RESULT PRESENTATION

In order to analyze the result the visualization tool will present the data and derivation of the

solutions; we will then proceed to tabulate the result against available performance

benchmarks. Will then document our finding and conclusion from the study for each of the

defined games

36

3.3. TOOLS

For Visualization we will use the following Visual Studio 2012.

CHAPTER FOUR: ALGORITHM FORMULATION

In this chapter we define our job Shop algorithm as a Multi-agent system environment and we

formulate the game theoretic algorithms to solve the problem. In the next chapter we will

perform experiments on our algorithms and evaluate using the defined benchmark data.

4.1. JOB SCHEDULING AS A MAS ENVIRONMENT

In Chapter we formalized the job shop scheduling problem as follows;

A problem instance P= (M, O, J) in job shop scheduling consists of

1. A set M of Machines,

2. A set O of operations o, each associated with a machine M(o)Є M and having a duration

d(o) Є N and

3. A set J of jobs J(o1………….on)(each operation has exactly one occurrence.)

A given Schedule S for P assigns to every operation o a starting time T(o): on the relevant

machine time

3. T (o)≥0 for all o Є O

4. We define an operations processing time P(o) as

P(o)= T (o)+ d(o)

5. We define a precedent constraint on T (o’)on T (o) such that

T (o)≥ T (o’)+ d(o')

for operations o' preceding o in the same job.

37

Our objective function in the problem is to minimize the makespan in search of a near optimal

schedule. We defined the Makespan as the time the last machine finishes process the last

operation, therefore the makespan of a schedule M(S), can be defined as

M(S) = MAX(T(o1)+ d(o1) , T(o2)+ d(o2),……………..T(on)+ d(on))

EQUATION 9: CALCULATE MAKESPAN

To define this as a multi-agent system, We adopt and extend *Opiyo et al,2009+’s definition of a

multi-agent system for parallel machine scheduling. Same as their study had, we make the

following considerations; First, A multi agent system to be a system that consists of the agents,

the agents act as autonomous entities that can sense and react to the changes in their

environments.

Secondly, game theory as the study of interactions in contexts where the participants make the

choices to affect the overall status in the game. A game is a structure that consists of a set of

the agents, a set of the agent actions or choices and a set of the agent payoffs associated with

their actions. A situation where schedules are generated by agents as they choose machines

can be considered as a game [Opiyo et al. 2008b].

4.2. RANDOM TOKEN GAME

4.2.1. MAS ENVIRONMENT FOR RANDOM TOKEN GAME

 From the above perspective of a multi-agent system, we redefine the job shop scheduling

problem as MAS environment to suite our random token game as follows this follows;

We define jobs as a categorization of agents, where agents represent a single operation. We

define all operation as agents that will either compete or cooperate with each other in order to

achieve a schedule. Each Agent belongs to a particular categorization/ job. The current state of

a schedule defines the agent’s external environment, while the agent’s internal state is defined

by its attributes as shown by the table below. The Agent can also perform the actions as

illustrated by the table below to affect its internal status. Some Actions act as it actuators to

affect both the environment and its internal state, some act as preceptors to sense the state of

38

the environment and there is also a messaging action to enable the agent communicate with

other agents. The diagram below depicts an Agents environment while the table that follows

illustrates the agents attributes(internal State) and actions(actuators and Perceptors)

FIGURE 5:SIMPLE ILLUSTRATION OF A 1X1 MAS ENVIRONMENT

Environment (Current

state of Schedule)

State

(Attribute)

Actuators

(actions)

Preceptors

(actions)

Agent (operation)

Attributes

Waiting Queue

Process Queue

Resources(machin

39

AGENT(OPERATION)

 Attirbutes

 OperationID The Id of the operation

PredecesorID ID of the operation’s predecessor

SuccesorID ID of the operation’s successor

MachineID ID of the machine which the operation is to be processed

ProcessingTime The processing time on the machine

Status The status of the operation e.g

 Waiting:- The Agent is idle and waiting for a turn,

 Active:- The Agent is allowed to make a move

 Scheduled;-The agent as achieved time share on a

schedule;

JobID The id of the job/ categorization of the operations

StartTime The current processing start time if scheduled

MessageQueue A queue for all incoming messages

Actions

 Move Action allowing agent to make a choice

Message Action allowing agent to send message to other agents

Read Action allowing agent to sense its environment

TABLE 2: SIMPLE ILLUSTRATION OF THE AGENT’S ACTIONS AND ATTRIBUTES

Agents can compete or cooperate in order to get processing time on the machines, this action

lead to formulation of a schedule. We consider machines as a resource on which agents

compete for processing time on. We also consider a schedule complete when the all the agents

have made their turn and have acquired a time share allocation on a machine. To achieve this,

40

the agents act by employing a strategy in the moves, the strategy is based on the algorithms we

define the sections that sections follow.

As show by the diagram we consider machines as resources in the environment for which the

agents compete for. Machines have two key attributes;

o Waiting Queue; this is a queue that holds an operation to be performed on the machine

before they are allocated a time share on the machine.

o Process Queue; this is a queue that the schedule of processing on the machine. The Queue

holds the list of Agents that have been allocated a time share on the machine and the

respective start time.

We also define a referee agent in some games that responsible in marshaling the games, the

role and structure of the referee and role of the referee will depend on the type of game

environment that defined in.

4.2.2. DEFINING RANDOM TOKEN GAME

In defining algorithms for parallel machine scheduling [Opiyo et al, 2008] define random choice

games are those in which the agents make choices at random without considering any other

matters. In their definition an agent are allowed to make moves in turn and each agent in its

turn makes random decision which machines they would like to be processed on and select the

earliest available time slot on the machine. After all the agents have made their move the

resultant schedule is evaluated. This process is repeated in several rounds and at the end the

most suitable/ shortest schedule is select as a feasible solution. This work was able to

demonstrate that it is possible to achieve a relatively feasible schedule using random select of

schedule in a schedule search space. It gives us great in on the distribution of solution in the

search space. We try to define a similar algorithm for job shop scheduling.

Unlike in parallel machine scheduling, job shop scheduling as the following complications when

trying to employ a pure random strategy in selection of a feasible solution from the search

space;

41

 Agents/operations are tired to a machine, that is, the machine is already pre-selected.

Unlike in parallel machine scheduling where agents act by selecting the machines.

 The is a precedence constraints among agents, that is the start time S(A)of an agent A ,

S(A) ≥ S(A’)+ T(A’)

EQUATION 10: PRECEDENT CONSTRAINT

Where A’ is the preceding Agent with a processing time of T(A’). The availability of this

constraint preempts the possibility of having a pure random strategy.

These constraints limit the flexibility of an agent in machine selection and put a constraint its

selection of a time slot on a machine. To achieve similar a random selection of solution in a

such space with the above constraints in job shop scheduling, we introduce a random token

notion. The Random token randomizes the playing turn for the agents. This works as follows;

we divided the game in two stages for all rounds, the stages are as follows;

Selection Stage; this stage allows random selection of agent turns with will result in random

ordering of agents in the machine. The Process flows is as follows; First we introduce a single

token in the environment. The token generated by the referee agent for the round and is

assigned by the referee agent to an agent at random at least once in a single round. A round is

instances of a game where all the agents have made a single move and a complete schedule

can be define. The game start with all agent state with a waiting status, when an agent receives

the token, their status changes to active and they are allowed to make a move to the assigned

machine. Once an agent selects a machine they are add to waiting queue of a machine in a

priority of first come first served. The agent then release the token to the referee agent which

then assigns it to another agent at random and the selection process continues until all the

agents have had the token and have made their selection. We then proceed to the allocation

stage.

Allocation Stage; the allocation stage was motivated by shift bottle neck paradigm. In shift

Bottleneck, an initial selection of a schedule is selected as we have done in the selection stage

without actual time share allocation. If we were to evaluate the schedule as it is now with the

agents arranged in a first come first serve order, the schedule will have multiple delays among

42

the operations and we will have unnecessary idle time on the machine. In fact the initial

schedule would be among the worst performers in the search space. An example would be in

an instance of 10X10 problem where the last agent of job gets the random token first among

all the other agents on other jobs that share the same machine instance, this agent will select

the machine, the machine will remain idle until all the other agents of the same job have

finished processing, this in turns cause delay on the other agents waiting for that machine and

the ripple effects can will spread across the schedule. This bottleneck can also cause a

deadlock with the schedule. The shift bottle neck algorithm recognizes that in a schedule the is

always at least one point/bottleneck that affects its performance. The aim of the shift

bottleneck is slow minimize/shift the bottle in several iterations. We adopt a similar iterative

approach but in our algorithm it’s the agent that makes the decision whether to shift or stay

based on their internal states, The agent act for the social good and if an agent consider itself a

possible bottleneck, it shifts self to remove the bottle neck if not its stays . The allocation stage

proceeds as follows; After the selection stage all the agents would have acquired a priority on

the machine’s waiting queue. Once a agent has selected a machine its status is changed back

to ‘waiting’. since this its first come first serve, the nth Agent to make the selection of the

machine will receive nth priority on the machine. To formally state this, If Omn Represents an

agent O with processing time on machine m and it was the nth
 agent to make a selection on

the machine, then its priority value P(Omn) (lower value signifying higher priority) is;

P(Omn) ≤ P(O’m(n+1)) ≤ P(O’’m(n+2))

EQUATION 11:AGENT PRIORITY SETTING

Where O’ and O’’ followed agent O in selection of the machine in that respective order. The

Initial selection in most case will not be a candidate solution in the search space as the paths

cannot be represented by a directed graph. The subsequent steps refine the selection into a

candidate schedule.

43

In the next step, all the waiting agents with the highest priority on each machine’s waiting

queue are allowed to a turn, there status changes to active and they are allowed to evaluate

their position. If an agent see that they could be possible bottlenecks they will choose to move

to the back of the queue assume the lowest priority on the queue and status change back to

waiting. The Agent suspects it may bottleneck using the following criteria; One, is if an agent A

has a predecessor and the predecessor has not been schedule yet (acquired a time share), then

A knows it’s a might be a bottleneck on a machine if there exists other agents on the machine

with a lower priority. In this case the agent will move to the back of the queue.

Secondly, If an agent A’ has a predecessor A that has already been scheduled and its

difference between A ‘s expected processing end time , P(A) and the ‘next available start

time’ on the machine M , E(M) is twice as big as the average processing time of the all the

agents queued on the machine, then the agent suspect itself to be a bottleneck. A Machines

‘next available start time’, E(M), is the sum of all the agents that have been scheduled on the

machine. If a machine M has 3 agents scheduled on it, An agent defined as A(job, machine) .

E(M)= (P(A1M) + P(A2M) + P(A4M))/3

EQUATION 12:NAST

if (A’1m) is the one evaluating it situation and it has a predecessor A, the processing end time

of A,

P(A) =S(A)+D(A)

Where;-

S(A) is the processing start time of A,

D(A) is the processing time/duration of A.

A at this point would consider its ‘possible’ processing start time, S(A’1m) , as equal to the

processing end time , P(A), of A

S (A’1m) = P(A)

EQUATION 13: PROCESING END TIME

44

(A’1m) consider itself a bottleneck in the schedule, and move to the back of the machines

waiting queue.

Thirdly, If the agent (A’1m) has evaluated its situation and does not consider itself a

bottleneck, the agent will be scheduled on the machine by selecting the earliest possible start

time on the machine. This would be the greater of P(A)and E(M). That is ;

If P(A)≥ E(M) then S (A’1m) = P(A)

else

S (A’1m) = E(M)

Once an agent has been schedule the priority listing of all other jobs in the waiting queue is

adjusted.

The same steps are repeated for the number of Iteration needed till all the agents have been

successfully scheduled.

A complete selection stage followed by a complete allocation stage constitute a round in the

game, each round produces a candidate schedule from the search space. At the end of the

game the refree agents evaluates the makespan ms of all the candidate solution s Є S where

S represents the search space and selects a feasible solution f(s) using the following criteria.

f(ms)= MIN(m1 , m2 , m3 ,……….. ms)

EQUATION 14: FEASIBLE SCHEDULE FROM SEARCH SPACE

Because we achieved a random initial selection by using a randomized token. We can say that

we are selecting schedules at random from the search space and thus we have achieved a

similar effect that [Opiyo, et al] achieved with their random games in parallel machine

scheduling. Therefore we can state for a typical job shop problem there is a random distribution

of solution on the search space.

45

4.2.3. ILLUSTRATION OF A RANDOM TOKEN GAME.

In this section we illustrate the random token game using a simple example of a 2X3 Job shop

scheduling problem. In our example we use the following syntax to represent an operation,

Job (machine, processing time)

We have the following job and their operations in order of processing sequence.

Job X: x(3,5) , x(1,6), x(2,2)

Job Y: y(2,3), y(3,4), y(1,2)

A disjunctive representation of the graph is as follows.

o Conjunctive arc , agent precedence dependency

o disjunctive arc , agents paired on same machine

FIGURE 6: DISJUNCTIVE GRAPH

Once an agent has been scheduled we introduce a third value to represent its processing start

time (in minutes), that is

Job (machine, processing time, processing start time)

e.g. x(3,5,4)

We have 3 machines each machine will have a waiting queue and schedule queue as we had

earlier defined. Suppose after the random selection stage we had the following arrangement on

waiting queue. Note that the schedule queue will always start empty with the NAST (next

available start time of each machine set to time 0. Also note that agents arranged in the queue

in order of first come first serve, therefore the jobs in the first cell always have the priority and

X(3,5
)

0

X(3,5

)

X(3,5

)
X(3,5

)

X(3,5

)

X(3,5
)

y

46

Waiting Queue

Machine 1 x(1,6)

y(1,2

)

Machine 2 y(2,3)

x(2,2

)

Machine 3 x(3,5) y(3,4

)

Schedule Queue

Machine 1

Machine 2

Machine 3

0

NAST

0

0

are next in turn to move. If they suspect themselves to be bottle necks they will shift

themselves to the furthers cell, allowing other agents to shift forward

FIGURE 7: RTG INTERATION 0

We begin iteration in the allocation stage as follows;

o ITERATION 1

From the initial arrangement, all the agents with priority on each machine evaluated their

position. In this case all the agents deemed themselves bottlenecks (based on the earlier

defined rule and shifted their positions

FIGURE 8:RTG INTERATION 1

Waiting Queue

Machine 1 y(1,2) x(1,6

)

Machine 2 x(2,2) y(2,3

)

Machine 3 y(3,4) x(3,5

)

Schedule Queue

Machine 1

Machine 2

Machine 3

0

NAST

0

0

47

Waiting Queue

Machine 1 y(1,2) x(1,6

)

Machine 2 x(2,2)

Machine 3 y(3,4)

Schedule Queue

Machine 1

Machine 2 y(2,3,0

)

Machine 3 x(3,5,0

)

0

NAST

3

5

o ITERATION 2

In this Iteration y(2,3) and x(3,5) having no predecessors considered themselves not to be

bottlenecks and acquired a schedule on their respective machine while x(1,6) still deemed itself

a bottle neck and shifted. The results are as follows. Also note change on the machines NAST

FIGURE 9:RTG INTERATION 2

o ITERATION 3

In this Iteration y(3,4) having a scheduled predecessor and there being no other agents left on

the machine, acquired a schedule on it respective machine. Note that even though its

predecessor’s processing time P(A)=3, it acquire a start time of 5. This is because the for its

scheduled predecessor, y(2,3,0), which is calculated as

P(A) =S(A)+D(A)

 =0+3

 =3

Where;-

 S(A) is the processing start time of A,

D(A) is the processing time/duration of A.

is lower than the y(3,4)’s respective machine’s NAST , E(M3). machine 3 has a

48

Waiting Queue

Machine 1 x(1,6)

y(1,2

)

Machine 2 x(2,2)

Machine 3

Schedule Queue

Machine 1

Machine 2 y(2,3,0

)

Machine 3 x(3,5,0

)

y(3,4,5

)

0

NAST

3

9

E(M3)=5

And since our game rules say that,

 If P(A)≥ E(M) then S (A’1m) = P(A)

else

S (A’1m) = E(M)

For A’ which is preceded by A

Then the processing start time for y(3,4), S(y(3,4))= 5 or y(3,4,5). This also affected its

respective machines NAST as illustrated on the diagram.

 Also on this y(1,2) and x(2,2) deemed themselves bottlenecks. While y(1,2) shifted, x(2,2)

had no need to shift because there was no agent on its respective machine waiting queue with

a lower priority. The result is as shown by the illustration below

FIGURE 10:RTG INTERATION 3

o ITERATION 4

This Iteration saw x(1,6) and x(2,2) get scheduled while y(1,2) remained as the lone agent

machine 1 waiting queue . Note the changes In NAST and also note x(1,6) ‘s eventual processing

start time created a 5 min idle time on machine 1 .

49

Waiting Queue

Machine 1 y(1,2)

Machine 2

Machine 3

Schedule Queue

Machine 1 x(1,6,5

)

Machine 2 y(2,3,0

)

x(2,2,11

)

Machine 3 x(3,5,0

)

y(3,4,5

)

111

NAST

13

9

Waiting Queue

Machine 1

Machine 2

Machine 3

Schedule Queue

Machine 1 x(1,6,5

)

y(1,2,11

)

Machine 2 y(2,3,0

)

x(2,2,11

)

Machine 3 x(3,5,0

)

y(3,4,5

)

13

NAST

13

9

FIGURE 11:RTG INTERATION 4

o ITERATION 5

This Iteration saw the last agent being scheduled y(1,2) and there being no agent in any of the

machine’s waiting list the Round ended . The results are as illustrated below.

FIGURE 12:RTG INTERATION 4

50

At the end of the round we now have a complete candidate schedule. The makespan of the

schedule is calculated as follows

makespan= Max(E(M1), E(M2), E(M3))

=MAX(13, 13, 9)

=13

The candidate solution can represent in a Gantt chart as follows.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Machine 1 x(1,6) y(1,2)

Machine 2 y(2,3) x(2,2)

Machine 3 x(3,5) y(3,4)

Job:

X

Job:

Y

 FIGURE 13:RTG SAMPLE GANTT CHART

Once a candidate schedule has been generated the game the schedule is noted by the referee

agent and other rounds of turns are performed for a predetermined number of rounds. The

number of rounds will depend on the scale of the problems. It’s expected that problem with

larger problems will require more alteration to increase the probability of achieving a near

optimal schedule.

4.3. POTENTIAL GAMES

[Opiyo et al, 2008] described potential games as those in which the incentive of all players to

change their strategy is expressed in one global function called the potential function. The

progressive actions of the participants lead to a stable state. In this section we defined a game

that behaves in this way. In our interpretation we define a function that reward’s/penalize

agents based of the action it takes in the environment. As agents take actions the gain a bit of

appreciation of their environment as their actions are reinforced by their reward/penalty

system. To achieve this we borrow concepts from reinforcement learning, which transform our

51

game into a policy search function, That is, the aim of the game is meant to teach an agent

what to base their actions (what policy to use) and at the end of a learning phrase is able to

make decision on a certain state based on their experience with on that particular state. We

start introducing the reinforcement learning concepts we borrowed and then proceed to

modeling our job shop problem as multi-agent system environments that will enable us define

this game.

4.3.1. AGENT BASED REINFORCEMENT LEARNING

(Sutton and Barto, 1998) describe reinforcement learning as follows.

Its concept that follows the idea that an autonomously acting agent obtains its behavior policy

through repeated interaction with its environment on a trial-and-error basis. In each time step

a reinforcement learning agent observes the environmental state and makes a decision for

a specific action, which incur some immediate reward (also called reinforcement) generated by

the agent's environment and, on the other hand, transfers the agent into some successor state.

The agent's goal is not to maximize the immediate reward, but its long-term, expected reward.

To do so, it must learn a decision policy that is used to determine the best action for a given

state. Such a policy is a function that maps the current state the agent ands itself in to an action

from a set of viable actions. (Thomas Gambel, 2008) describes the basic idea of learning

through interaction within an agent’s environment in following steps that must be performed

by the agent.

o Step 1. The agent perceives an input state.

o Step 2. The agent determines an action using a decision-making function (policy).

o Step 3. The chosen action is performed.

o Step 4. The agent obtains a scalar reward from its environment (reinforcement).

o Step 5. Information about the reward that has been received for having taken the

recent action in the current state is processed.

Reinforcement Learning methods explore the environment over time to come up with a desired

policy.

52

(Yailen Martínez Jiménez, 2012), formally describe a generic reinforcement learning model as

as an agent is connected to its environment via perception and action. In each interaction step,

the agent perceives the current state s of its environment, and then selects an action a to

change this state. This transition generates a reinforcement signal r, which is received by the

agent. The task of the agent is to learn a policy for choosing actions in each state to receive the

maximal long-run cumulative reward. The diagram below provides a simple illustration.

FIGURE 14: AGENT STRUCTURE

(Yailen Martínez Jiménez, 2012) model can be formally described as follows.

o a set of environment states S;

o a set of actions A;

o a set of scalar rewards in R;

o a transition function T.

At each time t, the agent perceives its state st Є S and the set of possible actions A(st). It

chooses an action a Є A(st) and receives from the environment the new state st+1 and a

reward rt+1 , this means that the agent implements a mapping from states to probabilities of

selecting each possible action. This mapping is called the agent’s policy and is denoted πt,

where πt(s, a) is the probability that at = a if st = s. In words, it is the probability of selecting

action a in state s at time t. The reward function defines the goal in a reinforcement learning

problem. It maps each perceived state (or state-action pair) of the environment to a single

Select Action a

Environment

Agen

t

Receive

Reinforcement r

Perceive state s

53

Numerical value, a reward, indicating the intrinsic desirability of that action in that state. The

objective of a reinforcement learning agent is to maximize the total reward it receives in the

long run, that is, an agent will prefer action that maximize reward in the long run rather than

one than an that gives a good reward at the current state only.

4.3.2. MARKOV DECISION PROCESS

Markov Decision Process provides a mathematical framework for modeling decision making in

situations where outcomes are partly random and partly under the control of a decision maker.

MDPs are useful for studying a wide range of optimization problems solved via dynamic

programming and reinforcement learning. Markov Decision Process is a good framework to use

to model a decision process in an optimization problem where the search space is finite. Job

shop problem has a finite search; the only limiting factor is that the search space the search

space is becomes very big in large problem instance. MDP can still be used to model a Job shop

Scheduling problem by limiting the decision process to either a subset of the search space. The

subset search space can be determined at random.

A Markov Decision Process (MDP) is a 4-tuple [S, A, T, R] where:

 S = s1, ..., sn denotes a finite set of states;

 Set of actions A, and A(s) Є A, where A(s) is the finite set of available actions in state s

Є A;

 T : S × A × S →*0, 1+ is the transition function, T(s, a, s’) specifies the probability of

ending up in state s0 when performing action a in state s;

 R : S × A × S → R is the reward function, R(s, a, s’) denotes the expected reward for

the transition from state s to state s’ after taking action a.

For MDPs, the Markov property assures that the transition from s to s’ and the corresponding

reward R(s, a, s’) depend only on the state s and the action a, and not on the history of

previous states and actions.

54

The formulation of MDP above assumes that an agent has full awareness of the environment

which in the real world its rarely so. In most really world environment the agents usually have a

partial observation of the Environment. The same is true for the Job shop scheduling problem

where we expect an agent to only have local knowledge of its environment and not the global

knowledge. We borrow a concept of reinforcement learning known a Q-learning that can help

with partially observable environment. We describe the concept below.

4.3.3. Q-LEARNING

We borrow our description of Q-learning as describe by (Yailen Martínez Jiménez, 2012) and

(Thomas Gambel, 2008). They describe Q-learning as a well-known reinforcement learning

algorithm is Q-Learning (QL), as a reinforcement learning technique based on learning an

action-value function that gives the expected utility of taking a given action in a given state.

They describe the core of the algorithm as

“Simple value iteration update, each pair (s, a) has a Q-value associated. When the action a is

selected by the agent located in state s, the Q-value for that state-action pair is updated based

on the immediate reward received when selecting that action, and the best Q-value for the

subsequent state s’ “. The update rule for the state action pair (s, a) is the following:

EQUATION 15: UTILITY FUNCTION

Where;

),(asQ - The utility of state s defined recursively the update rule above

 - is a learning rate.

 - Discount rate of subsequent action.

r- Reward of taking action a on state s

The Equation we can see that the utility of pair),(asQ is not only based on the current reward

or penalty achieved by taking action a in state s but we also consider the subsequent)','(asQ .

This will help use the agents converge at a optimal policy set at each time slice. To achieve this

)),()','(max(),(),(
'

asQasQrasQasQ 
a



55

we look at all the subsequent alternative)','(asQ and pick the route with the maximum utility,

which is

),()','(max
'

asQasQ 
a

A discount  is usually applied to the subsequent actions utility so we have

),()','(max
'

asQasQ 
a



We also apply a learning rate  which depends on the size of our search space.

)),()','(max(
'

asQasQr 
a



Finally we add this to the utility of the single action a in state s to achieve the update rule

below,

We give a simple illustration of Q-learning below using a simple chart.

FIGURE 15:POTENTIAL GAME SAMPLE DECISION TREE

)),()','(max(),(),(
'

asQasQrasQasQ 
a



A=1

B=1

A=2

B=5

A = 8

A = 1

S
0

S
2

S
4

S
1

S
3

S
5

S
6

S
7

A = 3

B=1

A = 0

A = 0

56

The figure below shows a subset of an environment that has been learnt by an agent. The

interest is to get from state S0 to state S7 . The agent previously had moved from state to state

using either policy A or B at each state and learnt a reward the various possible policies taken at

each state. The reward is determined by a value system and in our case a potential function.

With this knowledge an agent can recursively calculate the utility of each state as it continues

with its exploration and during the decision making stage the agent will use the utility values to

know which action will lead to maximize the total reward. Suppose the learning rate and

discount is as follows;

 = 1

 =1.

If an agent is at S0 and needs to know the optimal route/most rewarding route to take to r, it

will not only use the learnings from the reward system alone, that is, it will take action B to get

an immediate result 5 which seem to be better than taking action A with reward of 1. This is

because an agent knows that an immediate high reward currently might not end up being the

most rewarding route in the long run. To do this agent will use the utility of each successive

state-action(Q-pair) to take the route that lead to the (Q-pair) with the highest utility enroute

to the terminal state. The agent would have recursively determined the utility of each (Q-pair)

using the update function,

57

The Psuedocode of the exploration/learning process would be similar to the following

 Initialize Q-values arbitrarily

 for each episode do

o Initialize s

o for each episode step do

 Choose a from s

 Take action a, observe state s’ and r

 Update

o end for

 end for

The following table illustrates the utility of the q-pair achieved by the agent in our example.

Note that for illustration purposes we calculate utility from the terminal state backward, that’s

why our on the table always seems to zero, in the actual process the agent would

update it recursively and its value would always be changing for each q-pair until the final state

is reached. The table below notes the utility of each q-pair.

58

No. q-pair

 utility

q1 Q(S5 , A) =0+ 1(8+ 1(max(0,0)-0) 8

q2 Q(S6, A) =0+ 1(3+ 1(max(0,0)-0) 3

q3 Q(S1, B) =0+ 1(1+ 1(max(q1,0)-0)

=0+ 1(1+ 1(max(8,0)-0)

9

q4 Q(S1, A) =0+ 1(1+ 1(max(q2,0)-0)

=0+ 1(1+ 1(max(3,0)-0)

4

q5 Q(S0, A) =0+ 1(1+ 1(max(q3,q4,0)-0)

=0+ 1(1+ 1(max(9,4,0)-0)

10

q6 Q(S3, A) =0+ 1(0+ 1(max(0,0)-0) 0

q7 Q(S4, A) =0+ 1(0+ 1(max(0,0)-0) 0

q8 Q(S2, A) =0+ 1(2+ 1(max(q6,0)-0)

=0+ 1(2+ 1(max(0,0)-0)

2

q9 Q(S2, B) 0+ 1(1+ 1(max(q7,0)-0)

=0+ 1(1+ 1(max(0,0)-0)

1

q10 Q(S0, B) =0+ 1(5+ 1(max(q8,q9,0)-0)

=0+ 1(5+ 1(max(2,1,0)-0)

7

TABLE 3:Q-PAIR CALCULATION EXAMPLE

Suppose we have now stopped our exploration stage and an agent wants to make a decision

that on how to get from state S0 to the terminal state S7 , The agents steps will proceed as

follows;

 Starting at state S0 , the agent will need to look at the utility of Q-pair Q(S0 , A) and Q(S0

, B) to decide if to pick action A or B . Since Q(S0 , A) has a better utility the agent will

choose action B to move to the successive state S1 .

 At S1 the agent is face with two options Q(S1 , A)=4 or Q(S1 , B)=9 . The agent therefore

selects Q(S1 , B) and move to successive state S5 .

 At state S5 the agent has only one option Q(S5 , A)=8 . The agent selects this to move to

the terminal state S7 .

59

The route the agent follows will look as depicted by the illustration below.

FIGURE 16: SAMPLE POTENTIAL GAME DECISION TREE

Note that because our learning rate  = 1 and  =1, We can still achieve an optimal route by

adding up the rewards along each route and pick the route with the highest some of rewards as

the optimal route.

By using Q-learning in a an environment where the agent has partial observation of the

environment, an agent can learn a finite set of the search space and using the potential

function, derive utility for each its decisions and finally select a series of decision policy that are

beneficial to it. If we utilize Q-learning we are able to achieve (opiyo, et al, 2008)’s description

of a potential game where there is a global function that guides agent in decision making. The

reward function and utility function act together to guide the agent in decision making. In the

section that follows we model our Job shop problem as a Multi-agent system and use Q-

learning to define our potential games.

A=1

B=1

A=2

B=5

A = 8

A = 1

S
0

S
2

S
4

S
1

S
3

S
5

S
6

S
7

A = 3

B=1

A = 0

A = 0

60

4.3.4. JOB SHOP SCHEDULING AS POTENTIAL GAME WITH Q-LEARNING

We start by modeling the multi-agent game environment for this game we use an agent to

represent a machine. In potential games as earlier discussed, there is one global function that

governs the behave of all the agents this leads to the game being co-operative game where

agent learn as a group and are motivated by the global function to employ similar policies.

There we adopt a variation of Actor-Critic agent model where we have;

 Multiple actor only agents that represent a machine and their main function is to

choose the next job to be processed by employing a specific policy.

 One Critic only agent whose main function is to evaluate successive policies taken by

the agents and give feedback on their suitable using the global function.

Our Agents have one which is to reduce the makespan of processing all the Jobs in the

environment. Our environment will therefore consist of the following; a global dispatch queue,

this is a queue that holds all jobs before they can be moved to a machines/agents waiting

queue. Jobs move to from the dispatch queue to the machine queue when there is no

constraint to their processing e.g. they have no predecessor or their predecessor has already

been scheduled for processing. This is demonstrated in the illustration of a simple 3X3 problem.

We include an actor only agents, these agents will be responsible for selection of policy during

the exploration/learning stage of the game. The agent at each time step in schedule formation

will employ a certain policy as they seek to achieve a complete schedule.

We include a critic only agent will responsible for evaluating the policies employed by each

agent at every time step and will give feedback to the agents in terms of a reward/penalty. In

our algorithm the critic’s memory structure will also be responsible for storing the learned

utility of each state. Once the exploration is done information learned by actor agents is used

by them to select successive policies, as they form what they consider to be an optimal

schedule.

61

We also include action policies. These represent dispatch rules, the rules act as policies that is

available for the actor to choose from when selecting the next action, that is, whenever an

actor makes a specific move, their move has to be based on a specific policy. At learning stage

an actor would tryout one or more policies and will observe the reward/penalty using that

policy on that particular state. The aim of our global function is to define a series of policies

that an agent can employ that would lead to an optimal schedule We shall define four policies

that can be used by agents in any state. This will be discussed further in our 3X3 problem

illustration.

o FIFO- First In First Out

o LIFO-Last In First Out

o SPT-Shortest Processing time.

o LPT-Longest Processing time.

A global potential function, this function is used by the critic agent to appraise and influence

the action of the actors. As we had earlier demonstrated in the Q-learning algorithm, the

function assigns a reward on agent actions and defines the utility of each Q-pair. The utility

will finally influence the agents’ decision on which policy to employ at the selection stage.

A reward structure, the reward structure is used by the critic agent to appraise the agent

actions. A reward is quantification of how good the selected policy in the current state is. The

several ways that we can determine a reward for a decision. We choose two that we believe

would lead convergence of a near optimal solution from the search space. These are;

o Number of jobs that remain in global dispatch queue after all actor agents have selected a

single action.

o Total process time in the global dispatch queue. This is a sum of the processing time p(o) of

the n jobs remaining in the global dispatch queue after all actor agents have selected a

single action. That is,

 ∑

EQUATION 16: TOTAL DISPACTH QUEUE PROCESSING TIME

62

o Total process of all waiting Jobs. This is a sum of the processing time p(o) of the n jobs

that are waiting global dispatch queue and on waiting queues of machine after all actor

agents have selected a single action. That is,

 ∑

EQUATION 17: TOTAL PROCESSING TIME

Using this structure means the appraisal r to be a penalty/cost rather than a reward. That

is, a decision that leads to more jobs or larger total processing time on the dispatch queue

is less favorable. Because this is a cost/penalty, we negate the appraisal.

 (∑

)

EQUATION 18: REWARD/PENALTY FOMULAE

 The table below shows the structure of our machine agents.

AGENT(Machine)

 Attirbutes

 MachineID The Id of the Agent

Status The status of the operation e.g

 Idle:- The Agent is idle and waiting for a turn,

 Active:- The Agent is allowed to make a move

Waiting Queue Queue holding job to be processed on the machine but

yet to be scheduled.

Process Queue Multi-dimensional structure that notes the scheduled

63

jobs and there start and finish time.

Actions

 Move Action allowing agent to make a choice

Message Action allowing agent to send message to other agents

Read Action allowing agent to sense its environment

TABLE 4: POTENTIAL GAME AGENT PROPERTIES

With the above definition we have factored in the main characteristics that have to be

considered when modeling the problem are adapted from [Gabel (2009)] and can be

summarized as follows:

 Factored World State: The world state of a job-shop scheduling problem J can be

factored: We assume that each resource has one agent i associated that observes the

local state at its resource and controls its behavior. Consequently, there are as many

agents as resources in the JSSP.

 Local Full Observability: The local state si of agent i, hence the situation of resource ri,

is fully observable. That is, an agent has full view of what is in its queues. Additionally,

the composition of all resources fully determines the global state of the scheduling

problem. Therefore, the system is jointly observable.

 Factored Actions: Actions correspond to the starting of jobs’ operations (job

dispatching). So, a local action of agent i reflects the decision to further process one

particular job (more precisely, the next operation of that job) out of the set Ai of

operations currently waiting at ri.

 Changing Action Sets: If actions denote the dispatching of waiting operations on the

machines waiting queue for further processing, then the set of actions available to an

agent varies over time, since the set of operations waiting at a machine changes.

Furthermore, the local state si of agent i is fully described by the changing set of

operations currently waiting at resource ri for further processing, thus, si = Ai. We shall

64

demonstrate changing action sets of agents in our sample 3X3 problem in the next

section

 Dependency Functions: Since operations have precedence function with other

operation on other machines, a dependency function among agent action as imply that,

after one agent executes an action (processes one operation), the local state of

maximally one further agent is influenced

4.3.5. 3X3 POTENTIAL GAME EXAMPLE

In this section we give a brief illustration of learning demo the learning stage of potential. We

diagrams to depict the enviroment and we also use decision trees represent the memory of

what has been learnt. Suppose we have a 3X3 matrix,

Job X: x(3,5) , x(1,6), x(2,2)

Job Y: y(2,3), y(3,4), y(1,2)

Job Z: z(2,5), z(1,4), y(2,4)

In our enviroment we have the following as had earlier been discussed we have the following

components, an actor agents representing machines, a List of Jobs and their operations which

have precedence constraints with operations on the same job, a critic agent, a global dispatch

and a set of action policies. Agents can base their action on the following dispatch rules that

act as action policies, e.g. SPT, LIFO,LPT and FIFO. For demo purposes we will use avail only 2

policies to the agent, that is, SPT and LPT

At the begin of the game all the jobs are in the global dispatch queue and no agent has an

action set , that is, there are no operation in any of the agent’s waiting queue. Suppose

according to how earlier description of our actor agent structure , we have a waiting and

processing queue for each agent and for our qw and qp represents agents waiting and process

queue respectively .

65

1.1.1.1. STATE 0

 At the start of the game can depicted by as follows,

FIGURE 17: POTENTIAL GAME SAMPLE STATEO

Since no decision has been made on this state the decision tree start out a single node as

shown below,

FIGURE 18: SAMPLE POTENTIAL GAME DECICISION TREE GENERATION

After this all the operations with without predecessor or whose predecessors have been

scheduled (moved to QP of a machine) will be moved to the respective machine waiting

queue. So we move to the next state as shown below. In this State Agent 1 has action set of 0

there for cannot make a move, while Agent 2 and Agent 3 have actions sets of 2 and 1

operations respectively. The State is as shown.

S0

QP

QW

Agent 1

QP

QW

Agent 2

QP

QW

Agent 3

DISPATCH QUEUE

o x(3,5) , x(1,6), x(2,2)

o y(2,3), y(3,4), y(1,2)

o z(2,5), z(1,4), z(2,4)

Critic

Reward Utility

66

FIGURE 19:POTENTIAL GAME SAMPLE STATEO

At this stage the agents can make a move and might choose any the available policies, SPT or

LPT for their next move. Upon which its reward by the critic agent. Our Critic agent uses the

negation total processing time remaining in the dispatch queue has a reward. We had earlier

formalized the reward as shown below.

 (∑

)

Our critic will also update the utility of each Q-pair form as the agents learn, this will be done

recursively using the update function,

Earlier we had proved that if we have that if we have the learning rate as  = 1 and discount

as  =1. Then the utility of a Q-Pair can be achieved by summing the along rewards at each

possible route from the Q-pair to the terminal state and selecting the summation of the

route that offer the highest sum of rewards as the utility of the Q-Pair. Note that utility of a

Q-pair may change multiples times as long as new routes are discovered or developed

QP

QW

Agent 1

y(2,3), z(2,5)

QP

QW

Agent 2

x(3,5)

QP

QW

Agent 3

DISPATCH QUEUE

o x(1,6), x(2,2)

o y(3,4), y(1,2)

o z(1,4), z(2,4)

Critic

Reward Utility

67

1.1.1.2. STATE 1 (Q(S0,SPT))

Suppose our agents decided to employ SPT as a policy in state 0 we will arrive to arrive at

state 1. This move will for each agent result in scheduling of the job with the shortest

processing time from the machines waiting qw , into qp. It will also result in operations that

are now ready to be processed (because the predecessors have been scheduled to process in

qp) be moved their respective machines waiting queue therefore changing the action set of

each machine. By employing policy SPT at state S0 We form a Q-Pair Q(S0,SPT) .The

enviroment will change as shown below and the critic will appraise the Q-pair with the

reward shown. The critic also calculates the utility for this Q-pair as shown. Our decision tree

will further grow as follows.

FIGURE 20: POTENTIAL GAME SAMPLE STATE1

x(1,6), z(1,4),

QP

QW

Agent 1

z(2,5)

y(2,3),
QP

QW

Agent 2

y(3,4),

x(3,5)

QP

QW

Agent 3

DISPATCH QUEUE

o x(2,2)

o y(1,2)

o z(2,4)

Critic

Reward
Q(s0,SPT)= -8

Utility
Q(s0,SPT)= -8

68

 Our decision tree then transforms as shown.

FIGURE 21: SAMPLE DECISION TREE AT STATE 1

1.1.1.3. STATE 2(Q(S0,LPT))

Since our agents are still in the learning phrase, suppose they back track to state S0 and try out

LPT instead of SPT. This would create a new Q-pair q(S0, LPT). The results will be as follows,

note new reward;

FIGURE 22: POTENTIAL GAME SAMPLE STATE2

And we will transform our decision tree as

S0

S1
SPT= -8

x(1,6),

QP

QW

Agent 1

y(2,3),

z(2,5)
QP

QW

Agent 2

z(1,4),

x(3,5)

QP

QW

Agent 3

DISPATCH QUEUE

o x(2,2)

o y(3,4), y(1,2)

o z(2,4)

Critic

Reward
Q(s0,SPT)= -8

Q(s0,LPT)=-12

Utility
Q(s0,SPT)= -8

Q(s0,LPT)=-12

69

FIGURE 23: SAMPLE POTENTIAL GAME DECISION TREE

1.1.1.4. REST OF THE STATES

Because of the combinatory complexity of the problem, we will assume the agent continued

learning by trying different Policies at different states and produced the decision tree below

with hypothetical reward values as shown. We assume the agent

SPT= -8

S0

S1
SPT= -8

S0 LPT= -

12

70

FIGURE 24: COMPLETE SAMPLE POTENTIAL GAME DECISION

As the agent continued to learn it also updated the utility of the each Q-Pair using the update

function,

SPT= -8

SPT= -8

szs

S1
SPT= -8

LPT= -12
S4

S3

S1

S1

S6

S5

S7

S8

S9

S10

S11

ST

LPT= -12

LPT= -

5

LPT= -12

LPT= -7

LPT= -5

SPT= -

3

SPT= -2

SPT= -4

S2

LPT= -

8

71

To demonstrate this we calculate the utility, we assume the learning rate and discount are both

equal to 1, this means the utility of this of a Q-pair would be the route to terminal state with

the highest sum of reward as we had earlier proven. So the utility of the Q-Pair Q(s1,SPT) would

be -6 as opposed to the alternative route through S8 which has a much lower value of -16. As

can be seen as more child and grandchild states emerge from a state, the more complex

calculating it’s utility becomes. From the decision tree we can also see each route from the

initial state to the final state represent complete schedule. After our agents have finished

learning they will move to the decision stage where they will start from the initial state on the

decision tree and use the utility learnt for each the q-pairs to select the most rewarding route

to the terminal state. The combination of policies guided by our utility function along this route

would lead to agent performing actions that would lead to a near optimal schedule. Thus

achieving a successful potential game.

4.4. RANDOM GAMES

The last game we define is the random games. This game borrows the same concept as

potential games where there are actor only agents that represent a machine. The MAS

environment is structured as follows;

Our environment will therefore consist of the following; A global dispatch queue, this is a queue

that holds all jobs before they can be moved to a machines/agents waiting queue. Jobs move to

from the dispatch queue to the machine queue when there is no constraint to their processing

e.g. they have no predecessor or their predecessor has already been scheduled for processing

and an actor only agents, these agents are responsible for selecting the next operation to

process, but unlike the potential game this agents simply select a operation at random.

The diagram illustrates the MAS environment for Potential games for a 3X3 instance

 QP

QW

Agent 1

QP

QW

Agent 2

QP

QW

Agent 3

DISPATCH QUEUE

o x(3,5) , x(1,6), x(2,2)

o y(2,3), y(3,4), y(1,2)

72

FIGURE 25: SAMPLE RANDOM GAME

This description of a random game is the same as described in (opiyo et al, 2008) where game

has multiple preset n number of iterations and in each iteration an agents select operations at

random from there waiting queues until all operations have been schedule. This forms a

candidate solution S0 and its makespan is noted. At the end of the game a candidate solution Si

is selected as the feasible solution with the near optimal schedule. The formula below shows

the mode of selection of this schedule.

Just as shown by (Opiyo et al, 2008). We believe selection of candidate solution at random

from the search space there is a high probability of selecting a feasible schedule; this method

would thus achieve a feasible solution way much quicker and demand the list of resources.

73

CHAPTER FIVE: SYSTEM DESIGN AND IMPLIMENTATION

In this section we discuss the design and implementation of the visualization tool. We go

through the architecture of the 3 defined games and the implementation decisions made.

5.1. IMPLIMENTATION TOOLS

The following are the implementation tools to be used.

IDE The Visualization tool was built using Visual studio. This offers

comprehensive debug tool for faster development

UI We choose to use Windows Foundation Pages through its XAML

notation for the user interface development because of its ability to

represent graphical object and low memory demand and also offers

ability to work with primitive data types in definition of graphical

objects.

Language The programing language used is C#. This was chosen because of ability

to easily represent complex data structures with a lower memory

demand.

TABLE 5 : DEVELOPMENT TOOLS

5.2. SYSTEM DESIGN

In this section we discuss the design for each game in the implementation tool. In the tool we

have the following two classifications.

 Environment. This is a class object that defines the environment of a game. For each

game we create and instance an environment. The environment represents the state of

the entire object within it, that is, state of the agents, resources and utilities. In games

where learning states are involved an environment at each step represents a state.

Therefore in those games we keep track multiple environment instances. So all the

74

previous environment instance for previous stages are stored in the utility of the current

state.

 Objects. Both Agents and resources are defined as instance of the various object

classes. Agents are defined object with the ability to learn (store experience).

In the sections that follow we go through the design of each of the implemented

5.2.1. POTENTIAL GAMES

The Potential game includes the following objects.

OBJECT : AGENT

CLASS: PGagent

DESCRIPTION: Agents represent a machine and have the following attributes and Methods.

Attributes

AgentID Attribute defining the Agent ID, this is similar to the

machine number.

NAST Represent the next available start time of a machine at

that particular state

StateID Represent the current agent state.

List<PGop> WQ A represents the machines waiting queue. It contains a

list of the job operations waiting to be scheduled for

processing. Operations are members of the class PGop.

List<PGop> SQ A represents the machines Schedule queue. It contains

a list of the job operations that have already been

scheduled. Operations are members of the class PGop.

Methods

CryptoRandom RandomSelection This is represent a random function based a

CryptoRandom class that we developed that a allows an

agent to make a true random action

LPT() This represent a strategy, Longest processing time, that

75

can be used by an agent to select a job to schedule next

from the available operations in its queue

SPT() This represent a strategy, shortest processing time, that

can be used by an agent to select a job to schedule next

from the available operations in its queue

LIFO() This represents a strategy, last in last out, that can be

used by an agent to select a job to schedule next from

the available operations in its queue.

FIFO() This represents a strategy, first in first out, that can be

used by an agent to select a job to schedule next from

the available operations in its queue.

RANDOM() This represents a strategy, random, that can be used by

an agent to select a job to schedule next from the

available operations in its queue.

Move() This function allows an agent to make a move and

select which of the above strategies the move will be

based on.

getOpStartTime() Once an agent selects a job operation to be scheduled,

as part of the scheduling tasks, this function allows

assigning of a time slot on agent to a job’s operation.

getNewNAST() After scheduling an operation, this function is used by

the agent to recalculate its new ‘Next Available Start

Time’

TABLE 6: PGAGENT PROPERTIES

76

OBJECT : Operations

CLASS: PGop

DESCRIPTION: This object represent a single operation

Attributes

opID Identify the operations ID.

JobID Identify which Job the operation belongs to.

SeqID Identify the sequence position the operation occupies

predecessor Identify operation’s predecessor(operation that precedes this operation

on the same job)

Successor Identify operation’s successor(operation that follows this operation on

the same job)

status; The current status of operation e.g Waiting, Scheduled, Active, e.t.c

processingStartTime Represents the starting time for processing of the operation on its

specific machine.

load Represents the processing time required to process the operation on its

specific machine.

state; Represent the current environment state of the operation

machineID Identifies which machine the operation needs to be processed in.

TABLE 7: PGOP PROPERTIES

OBJECT : Enviroment

CLASS: PGEnv

DESCRIPTION: Represent the potential game enviroment.

Attributes

List<PGagent> PGAgentList This represent all the agents available in the

environment

List<PGop> PGOpList This represent all the perations available in the

environment

77

List<int> DispatchQueue This represent the dispatch queue in the environment

that holds operation that are yet to be selected

List<List<envState>> allStreams This holds instances of all previous states

Methods

CreateDispatchQueue() Function used to create the Dispatch Queue.

DispatchExit() Used to remove operations form the dispatch queue an

deliver to the relevant Agent’s waiting Queue

agentsAction() Functions used to prompt an agent to make a move

checkTerminal() Check if the State arrived at is terminal

penalty() Provides reinforcement (penalty) an Agent’s action.

QValue() Used to determine the qValue(utility value)of the

selected path of actions

MoveToMachineQueue() Used by the function ‘CreateDispatchQueue’ to

remove operation from dispatch queue to the relevant

machines waiting queue.

TABLE 8: PGENVIROMENT PROPERTIES

OBJECT : State

CLASS: envState

DESCRIPTION: Represents a state of environment.

Attributes

State Identifies the state.

strategy Outlines the strategy selected/employed by the agents I

selection on that particular state.

qValue Stores the utility value of a path of state-action pairs

penalty Reinforcement given to an agent for making a specific

78

action at a specific state.

List<PGagent> TAgentList; Store all agent states (as list of PGagent objects) for this

particular state

Methods

envState A constructor used to initialized the state

TABLE 9: ENVSTATE PROPERTIES

79

The potential game algorithm is implemented according to the following flowchart.

Potential Game

In
it

ia
liz

at
io

n
st

ag
e

Le
ar

n
in

g
St

ag
e

Sc
h

ed
u

lin
g

st
ag

e

Phase

Start
Create Dispatch

queue
Load operations to

Dispatch Queue
Load agents to the

enviroment

Move operation without precedent
restriction to respective Machine Waiting

Queue

Agent select a
strategy at random

Agents use Strategy to select
Schedule an operation from its

Waiting Queue

Agents receives
reward/penalty for

the action at the
state

Agent action moves
to successive state

Utility/Qvalue of the
previous(state action pair is

calculated)

Is successive state
terminal?

Save Initial State

Load Initial State

End of Rounds?

YES

NO

NO

YES

Select Path with
lowest Utility/

Qvalue

Adopt the schedule
presented along

that path

Determine the
Makespan

End

FIGURE 26: POTENTIAL GAME FLOWCHART

80

5.2.2. RANDOM GAMES

The random game include the following objects (Most items are similar to potential games

above)

OBJECT : AGENT

CLASS: PGagent

DESCRIPTION: Agents represent a machine and have the following attributes and Methods.

Attributes

AgentID Attribute defining the Agent ID, this is similar to the

machine number.

NAST Represent the next available start time of a machine at

that particular state

StateID Represent the current agent state.

List<PGop> WQ A represents the machines waiting queue. It contains a

list of the job operations waiting to be scheduled for

processing. Operations are members of the class PGop.

List<PGop> SQ A represents the machines Schedule queue. It contains

a list of the job operations that have already been

scheduled. Operations are members of the class PGop.

Methods

CryptoRandom RandomSelection This is represent a random function based a

CryptoRandom class that we developed that a allows an

agent to make a true random action

RANDOM() This represents a strategy, random, that can be used by

an agent to select a job to schedule next from the

available operations in its queue.

Move() This function allows an agent to make a move and

select which of the above strategies the move will be

81

based on.

getOpStartTime() Once an agent selects a job operation to be scheduled,

as part of the scheduling tasks, this function allows

assigning of a time slot on agent to a job’s operation.

getNewNAST() After scheduling an operation, this function is used by

the agent to recalculate its new ‘Next Available Start

Time’

TABLE 10: PGAGENT PROPERTIES

OBJECT : Operations

CLASS: PGop

DESCRIPTION: This object represent a single operation

Attributes

opID Identify the operations ID.

JobID Identify which Job the operation belongs to.

SeqID Identify the sequence position the operation occupies

predecessor Identify operation’s predecessor(operation that precedes this operation

on the same job)

Successor Identify operation’s successor(operation that follows this operation on

the same job)

status; The current status of operation e.g Waiting, Scheduled, Active, e.t.c

processingStartTime Represents the starting time for processing of the operation on its

specific machine.

load Represents the processing time required to process the operation on its

specific machine.

state; Represent the current environment state of the operation

machineID Identifies which machine the operation needs to be processed in.

82

TABLE 11: PGOPERATION PROPERTIES

TABLE 12: PGENVIROMEN PROPERTIES

OBJECT : Enviroment

CLASS: PGEnv

DESCRIPTION: Represent the potential game environment.

Attributes

List<PGagent> PGAgentList This represent all the agents available in the

environment

List<PGop> PGOpList This represent all the perations available in the

environment

List<int> DispatchQueue This represent the dispatch queue in the environment

that holds operation that are yet to be selected

List<List<envState>> allStreams This holds instances of all previous states

Methods

CreateDispatchQueue() Function used to create the Dispatch Queue.

DispatchExit() Used to remove operations form the dispatch queue an

deliver to the relevant Agent’s waiting Queue

agentsAction() Functions used to prompt an agent to make a move

checkTerminal() Check if the State arrived at is terminal

penalty() Provides reinforcement (penalty) an Agent’s action.

QValue() Used to determine the qValue(utility value)of the

selected path of actions

MoveToMachineQueue() Used by the function ‘CreateDispatchQueue’ to

remove operation from dispatch queue to the relevant

machines waiting queue.

83

OBJECT : State

CLASS: envState

DESCRIPTION: Represents a state of environment.

Attributes

State Identifies the state.

strategy Outlines the strategy selected/employed by the agents I

selection on that particular state.

qValue Stores the utility value of a path of state-action pairs

penalty Reinforcement given to an agent for making a specific

action at a specific state.

List<PGagent> TAgentList; Store all agent states (as list of PGagent objects) for this

particular state

Methods

envState A constructor used to initialized the state

TABLE 13: ENVSTATE PROPERTIES

84

The potential game algorithm is implemented according to the following flowchart.

RANDOM Game

In
it

ia
liz

at
io

n
st

ag
e

Le
ar

n
in

g
St

ag
e

Sc
h

ed
u

lin
g

st
ag

e

Phase

Start
Create Dispatch

queue
Load operations to

Dispatch Queue
Load agents to the

enviroment

Move operation without precedent
restriction to respective Machine Waiting

Queue

Agent select the
‘RANDOM’ strategy

Agents use Strategy to select
Schedule an operation from its

Waiting Queue

Agents receives
reward/penalty for

the action at the
state

Agent action moves
to successive state

Utility/Qvalue of the
previous(state action pair is

calculated)

Is successive state
terminal?

Save Initial State

Load Initial State

End of Rounds?

YES

NO

NO

YES

Select Path with
lowest Utility/

Qvalue

Adopt the schedule
presented along

that path

Determine the
Makespan

End

FIGURE 27: RANDOM GAMES FLOWCHART

85

5.2.3. RANDOM TOKEN GAMES

The random token game includes the following objects.

OBJECT : AGENT

CLASS: RTGagent

DESCRIPTION: Agents represent a job and have the following attributes and Methods.

Attributes

id Identifies the operation

JobId Identifies which job the operation belongs to.

agentId Identifies the agent

MachineId; Identifies the machine where the operation is to be processed on.

ProcessingTime Represents the processing time need to complete processing of the

job.

processingStartTime Represent the time when the processing of the operation will start,

once scheduled on it respective machine.

predecessor Represents the Agents predecessor operation on the same job

successor Represents the Agents successor operation on the same job

status Represent which status the agent is currently in. E.g. waiting,

scheduled, Active, e.t.c

OriginalMachinePriority Represent the priority which is given to angent on a machine once it

has been scheduled.

Methods

selectMachine() Methods allows the agent to select a position on its machines

waiting queue

Schedule() Methods used by agent to schedule itself on a machine once allowed

to do so.

checkPredessorStatus() Method used by agent to check the status of its predecessor(if

86

scheduled or not).

getStartTimes() Method used by agent to calculate its start time based on the

machine’s NAST and its predecessor’s start time

TABLE 14: RTGAGENT PROPERTIES

OBJECT : Enviroment

CLASS: RTGenv

DESCRIPTION: Represents the environment of an instance of a game.

Attributes

List<rtgAgent> rtgAgentList A list of Agent objects in the enviroment

List<rtgMachine> rtgMachineList A list of machine objects in the enviroment

List<int> DispatchQueue Represents ids of agents that are currently in the dispatch

queue

List<string> Derivations Stores the derivation path to the final solution

List<decimal> Makespan List the makespan of all the solutions achived at each

game round

curentMakeSpan Holds the makespan of the current round

Methods

CreateDispatchQueue Method used to create dispatch queue at the games

initialization

AverageQueue Gets the average processing time of all the agent in all

the specific queue

scheduleAgent Method used to notify an agent to schedule after all the

precedence constraints are met.

reprioritize Method used to reprioritize agent if it fails to meet

scheduling criteria’s while scheduling.

CryptoRandom RandomSelection An object of the CryptoRandom class that we defined

that to allow facilitation of real random selection

TABLE 15: RTGENVIROMENT PROPERTIES

87

OBJECT : Machine

CLASS: RTGmachine

DESCRIPTION: Represents the machines in the games

Attributes

List<int> waitingQueue Holds the ids of the agent that are waiting to be

scheduled on the machine. The index represent their

priority rating

List<int> sheduleQueue Holds the ids of the agent that have been scheduled on

the machine.

machineID Identifies the machine.

NAST Represents the ‘Next Available Start Time’ on the

machine.

Methods

rtgMachine() Constructor to initiate the machine at creation.

TABLE 16: RTG MACHINE PROPERTIES

Random token game process is as outlined below. The process is repeated in every

iteration/round, and at each game round a candidate solution is generated.

88

Random Token Game

In
iti

al
iz

at
io

n
st

ag
e

Se
le

ct
io

n
St

ag
e

Al
lo

ca
tio

n
St

ag
e

Phase

Start Load Machines
Create

DispatchQueue
Load Agents into
Dispatch Queue

Pass token to
unconstrained agent

Agent with to
moved to respective

Machine Waiting
Queue

Is Dispatch
Queue Empty?

NO

Agent with Next
highest priority
allowed a turn

Selected Agent
check if predecessor

is scheduled

Is predecessor
Scheduled?

YES

YES

NO

Selected Agent
reprioritizes and

loses turn
Check delay period

constraint

Am I a
bottleneck?

NO
YES

Agent calculates its available
process start time and gets

scheduled

Any Waiting
Operations?

YES

Calculate Makespan
of candidate

solution

FIGURE 28 : RANDOM TOKEN GAME FLOWCHART

89

5.3. UI DESIGN

In this section we give an overview of user interface for the visualization tool. The tool has

three screen each representing the various games. We show the content of each screen in the

sub sections below.

5.3.1. POTENTIAL GAMES AND RANDOM GAMES

The potential and random screens has the following tabs/sections

Parameters Sections

This section allows selection of games parameter and execution of the game.

FIGURE 29: POTENTIAL ANDRANDOM GAMES PARMETER SECTION

90

Instance Sections

This section displays the details of the problem instance that has been selected for scheduling.

FIGURE 30: POTENTIAL ANDRANDOM GAMES INSTANCE SECTION

Solution Sections
This section displays the details of the feasible solution achieved by the algorithm.

FIGURE 31: POTENTIAL ANDRANDOM GAMES SOLUTION SECTION

91

Search Space

Gives details about the solution selected and places it in context of all other solutions

generated.

FIGURE 32: POTENTIAL ANDRANDOM GAMES SEACH SPACE SECTION

92

5.3.2. RANDOM TOKEN GAME

The random token game screen has the following tabs/sections

Parameters Sections

This section allows selection of games parameter and execution of the game.

FIGURE 33: RANDOM TOKEN GAMES PARMETER SECTION

Instance Sections
This section displays the details of the problem instance that has been selected for scheduling.

93

Derivation Sections

This section displays details of how the schedule was achieved through the game.

FIGURE 34: RANDOM TOKEN GAMES DERIVATION SECTION

Search Space Sections
This section displays details of how the all schedules have been derived through the game.

FIGURE 35: RANDOM TOKEN GAMES SEARCH SPACE SECTION

94

CHAPTER SIX: TEST, RESULTS AND CONCLUSIONS

For our test we use benchmark problems used in Beasley’s operation research library complied

by Professor Beasley J (Beasley 2005), this is found on Brunel’s universities website. The

benchmarks offers a list of different instances of job shop problems complied by different

researchers in there works. We compare the performance for each our defined games against

other similar algorithms. We also compare the performance of the game given the various

game parameters and against various instance setting;

5.4. BENCHMARK CASES

5.4.1. BENCHMARK PROBLEM INSTANCES

in benchmarking performance of various algorithms. The benchmark problems contain

instance problems of varying size. Each of the benchmark problems has an optimal know

solution’s makespan defined for them, some of the solution’s makespan are known to be

optimal, while others are the best known solution. The Benchmark instance consists of the

following;

 ABZ 5 problems of 2 sizes proposed by Adams, Balas and Zawack (1989): ABZ 5 and ABZ

6 instances of size 10×10 with processing times from the intervals [50,100] and [25,100]

respectively and ABZ 7 – 9 instances of size 20×15 and processing times

 la01-la40 are from "Resource constrained project scheduling: an experimental

investigation of heuristic scheduling techniques" by S. Lawrence.

 mt06, mt10, and mt20 are from "Industrial Scheduling" edited by Muth and Thompson.

 Car1-car8 are from "Ordonnancements a contraintes disjonctives" by J. Carlier.

 orb1-orb10 were generated in Bonn in 1986.

95

The benchmark problems are each presented in a separate text and each file has the following

structure.

FIGURE 36: BENCHMARK PROBLEM FILE STRUCTURE AND CONTENT

The structure items are detailed as follows;

 Instance Name; the instance name/title has the following information about the

instance.

o The name of the researcher who created the instance.

o The source research of where Beasley acquired the instance.

o It also contains information on the instance size, in the above example 10 X 10,

represent the number of Machine and Jobs in the format (no. of jobs X no. of

machines).

 Instance Size; this details the number of jobs and machines the first number represents

the number of jobs while the second number represent number of machines.

 Instance Matrix; this matrix details the instance itself, it contains a matrix of (machine,

operation) pairs. The matrix structure is as follows;

o Every row represents a Job,

o In every row we have columns each defining an operation of the job. The

operation of the job is describe using the pair (machine, load);

96

 The Machine, represent the machine where the operation need to be

processed on. While,

 Load; represent the amount of time it will take the operation to process

on the machine.

5.4.2. BENCHMARK ALGORITHMS

We evaluated the performance of our games and compared them to the results from the

following heuristic based studies. We only compare the work to heuristic based algorithms and

we also only considered algorithms that have benchmarked with more than one problem

instance size. We selected , “Multi-resource shop scheduling with resource flexibility and

blocking.” (Y Mati and X Xie, 2011). This was chosen because the study relatively recent. The

algorithms in the study are meant for 10X10 problems only. We will refer to the algorithm in

the study has “MX” We also compare our results to the mean results of “Use of an Artificial

Immune System for Job Shop Scheduling”, (CAC Coello et al, 2003). Chosen because it analyses

performance across multiple different sizes of the problem instance. We will refer to this study

as “AIS” and we also compare against “Job-Shop with Generic Time-Lags: A Heuristic Based

Approach”. (P. Lacomme, 2011). This study was chosen because it provides measures against

both flow shop and job shop scheduling problems. We abbreviate this as “GTL”.

The table below shows characteristics of the comparison algorithms chosen.

Problem Symbol Types of problem Instances Sizes Handle

“Multi-resource shop scheduling with resource

flexibility and blocking.” (Y Mati and X Xie, 2011).

MX Job Shop Scheduling 10 X 10, instance only

“Use of an Artificial Immune System for Job Shop

Scheduling”, (CAC Coello et al, 2003)

AIS Job Shop Scheduling Multiple

“A contribution to the stochastic flow shop

scheduling problem”, (M. Gourgand et al, 2003)

SD Flow Shop Scheduling Multiple

“Job-Shop with Generic Time-Lags: A Heuristic

Based Approach”. (P. Lacomme, 2011)

GLT Flow Shop Scheduling

Job Shop Scheduling

Multiple

TABLE 17: BENCHMARK ALGORITHMS

97

5.5. RESULTS

5.5.1. POTENTIAL GAMES RESULTS

The following test was done on potential games and the results are as follows.

Test with different configurations of the potential game

The table below represents test on potential games done with different configurations; the

table contains the following content;

 Problem- This represents the benchmark problem being solved.

 Size, the number of jobs and machine in the bench mark problem being solved.

 Optimal, the known optimal solution for the benchmark being solved.

 For each of the 3 above we compare against 4 test categorized into two categories and

named “Best of X try (Y paths)” –This means picking the best makespan after

Performing X trials on the benchmark problems with the potential games set to Y paths.

 For each category we do test using only 2 strategies and all the strategies. For each we

note the makespan and the error rate of the solution.

Problem Size Optimal

Best of 10 (100 paths) Best of 10 (1000 paths)

(SPT and
LPT)
strategies
only

%Error
All 4
strategie
s

%Error

(SPT and
LPT)
strategies
only

%Error
All 4
strategies

%Error

la01 10 X 5 666 795 19.37 763 14.56 799 19.97 765 14.86

la02 10 X 5 655 803 22.60 803 22.60 803 22.60 802 22.44

la05 10 X 5 593 652 9.95 620 4.55 727 22.60 671 13.15

abz5 10 X10 1234 1346 9.08 1370 11.02 1358 10.05 1354 9.72

la16 10 X10 945 1093 15.66 1059 12.06 1229 30.05 1118 18.31

la17 10 X10 784 916 16.84 997 27.17 915 16.71 1051 34.06

la18 10 X10 848 1063 25.35 1067 25.83 1043 23.00 1068 25.94

la19 10 X10 842 1020 21.14 1084 28.74 1072 27.32 1055 25.30

la36 15 X 15 1268 1676 32.18 1627 28.31 1716 35.33 1692 33.44

la38 15 X 15 1217 1658 36.24 1617 32.87 1718 41.17 1718 41.17

la39 15 X 15 1233 1662 34.79 1628 32.04 1743 41.36 1677 36.01

la40 15 X 15 1222 1779 45.58 1630 33.39 1707 39.69 1708 39.77

abz7 15 X 20 668 881 31.89 857 28.29 864 29.34 870 30.24

abz8 15 X 20 687 899 30.86 842 22.56 885 28.82 880 28.09

98

abz9 15 X 20 707 911 28.85 887 25.46 923 30.55 912 29.00

la07 15 X 5 890 1048 17.75 1051 18.09 1063 19.44 946 6.29

la08 15 X 5 863 1067 23.64 1017 17.84 1144 32.56 986 14.25

la09 15 X 5 951 1144 20.29 1072 12.72 1152 21.14 1088 14.41

la10 15 X 5 958 1102 15.03 1035 8.04 1123 17.22 1073 12.00

la28 20 X 10 1216 1610 32.40 1630 34.05 1553 27.71 1551 27.55

la29 20 X 10 1195 1633 36.65 1506 26.03 1649 37.99 1645 37.66

orb02 10 X 10 888 1291 45.38 1154 29.95 1273 43.36 1306 47.07

orb03 10 X10 1005 1496 48.86 1330 32.34 1437 42.99 1426 41.89

orb04 10 X 10 1005 1397 39.00 1356 34.93 1274 26.77 1383 37.61

car1 11 X 5 7038 10418 48.03 8296 17.87 10069 43.07 9463 34.46

car2 13 X 4 7166 10418 45.38 9307 29.88 10354 44.49 9395 31.11

car3 12 X 5 7312 10345 41.48 9557 30.70 10303 40.91 9695 32.59

car4 14 X 4 8003 9318 16.43 8819 10.20 9318 16.43 8990 12.33

car5 10 X 6 7702 10323 34.03 10980 42.56 11200 45.42 11030 43.21

car6 8 X 9 8313 10291 23.79 10449 25.69 10895 31.06 10858 30.61

car7 7 X 7 6558 8228 25.47 8224 25.40 8228 25.47 8404 28.15

TABLE 18 : RESULTS OF THE POTENTIAL GAME WITH DIFFERENT SETTINGS.

FIGURE 37: POTENTIAL GAME GRAPH GROUPED BY PROBLEM INSTANCE AND SIZE

Performance against selected benchmark algorithms

In this section we compare the potential game with the selected algorithms that were earlier

discussed in section 6.1.2 . The comparison is against the best results of the potential game

from the above test done with different configuration against the mean results obtained by the

other algorithms has detailed in their respective literature.

0

10

20

30

40

50

60

ab
z5

ab
z7

ab
z8

ab
z9

ca
r1

ca
r2

ca
r3

ca
r4

ca
r5

ca
r6

ca
r7

la
0

1

la
0

2

la
0

5

la
0

7

la
0

8

la
0

9

la
1

0

la
1

6

la
1

7

la
1

8

la
1

9

la
2

8

la
2

9

la
3

6

la
3

8

la
3

9

la
4

0

o
rb

0
2

o
rb

0
3

o
rb

0
4

Er
ro

r
R

at
e

Potential game

2 stategies (100 rounds) All 4 strategies(100 rounds) 2 strategies only(1000 rounds) 4 strategies(1000 rounds)

99

Problem Size Optimal
Potential Game AIS MX GTL

Makespan %error Makespan %error makespan %error makespan %error

la01 10 X 5 666 763 14.56 776 16.46 881 32.28 875 31

la02 10 X 5 655 802 22.44 775 18.34 900 37.40 897 37

la05 10 X 5 593 620 4.55 617 3.96 742 25.13 878 48

abz5 10 X10 1234 1346 9.08 1470 19.10 1705 38.17

la16 10 X10 945 1059 12.06 1100 16.42 1205 27.51 1599 69

la17 10 X10 784 915 16.71 912 16.30 1020 30.10 1292 65

la18 10 X10 848 1043 23.00 1013 19.49 1156 36.32 0 -100

la19 10 X10 842 1020 21.14 1031 22.42 1191 41.45 1403 67

la36 15 X 15 1268 1627 28.31 1561 23.07 2058 62.30 1747 38

la38 15 X 15 1217 1617 32.87 1548 27.23 2008 65.00 1725 42

la39 15 X 15 1233 1628 32.04 1548 25.57 2046 65.94 0 -100

la40 15 X 15 1222 1630 33.39 1537 25.81 2034 66.45 0 -100

abz7 15 X 20 668 857 28.29 839 25.64

abz8 15 X 20 687 842 22.56 859 24.96

abz9 15 X 20 707 887 25.46 884 24.96

la07 15 X 5 890 946 6.29 961 7.99 1209 35.84 1123 26

la08 15 X 5 863 986 14.25 965 11.81 1261 46.12 0 -100

la09 15 X 5 951 1072 12.72 1019 7.12 1380 45.11 0 -100

la10 15 X 5 958 1035 8.04 982 2.49 1300 35.70 0 -100

la28 20 X 10 1216 1551 27.55 1555 27.85 2381 95.81 1997 64

la29 20 X 10 1195 1506 26.03 1463 22.43 2256 88.79 0 -100

orb02 10 X 10 888 1154 29.95 1070 20.44 1181 33.00

orb03 10 X10 1005 1330 32.34 1276 26.92 1311 30.45

orb04 10 X 10 1005 1274 26.77 1221 21.47 1288 28.16

car1 11 X 5 7038 8296 17.87 13788 96

car2 13 X 4 7166 9307 29.88 0 -100

car3 12 X 5 7312 9557 30.70 0 -100

car4 14 X 4 8003 8819 10.20 0 -100

car5 10 X 6 7702 10323 34.03 13597 77

car6 8 X 9 8313 10291 23.79 0 -100

car7 7 X 7 6558 8224 25.40 10948 66.94
TABLE 19: PONTENTIAL GAMES AGAINST BENCHMARKS

5.5.2. RANDOM GAMES RESULTS

The following test was done on random games and the results are as follows.

Test with different configurations of the random game

100

The table below represents test on potential games done with different configurations; the

table contains the following content;

 Problem- This represents the benchmark problem being solved.

 Size, the number of jobs and machine in the bench mark problem being solved.

 Optimal, the known optimal solution for the benchmark being solved.

 We perform test with 100 rounds and 1000 rounds.

Problem Size Optimal

100 rounds 1000 rounds

Best of
10

%Error
Best of
10

%Error

la01 10 X 5 666 782 14.83 773 16.07

la02 10 X 5 655 796 17.71 810 23.66

la05 10 X 5 593 652 9.05 695 17.20

abz5 10 X10 1234 1395 11.54 1395 13.05

la16 10 X10 945 1103 14.32 1145 21.16

la17 10 X10 784 980 20.00 954 21.68

la18 10 X10 848 1020 16.86 1087 28.18

la19 10 X10 842 990 14.95 1003 19.12

la36 15 X 15 1268 1696 25.24 1656 30.60

la38 15 X 15 1217 1598 23.84 1697 39.44

la39 15 X 15 1233 1647 25.14 1603 30.01

la40 15 X 15 1222 1654 26.12 1637 33.96

abz7 15 X 20 668 845 20.95 823 23.20

abz8 15 X 20 687 910 24.51 934 35.95

abz9 15 X 20 707 945 25.19 987 39.60

la07 15 X 5 890 1048 15.08 1102 23.82

la08 15 X 5 863 1034 16.54 1111 28.74

la09 15 X 5 951 1132 15.99 1186 24.71

la10 15 X 5 958 1034 7.35 1091 13.88

la28 20 X 10 1216 1648 26.21 1570 29.11

la29 20 X 10 1195 1599 25.27 1680 40.59

orb02 10 X 10 888 1134 21.69 1154 29.95

orb03 10 X10 1005 1137 11.61 1165 15.92

orb04 10 X 10 1005 1404 28.42 1477 46.97

car1 11 X 5 7038 8700 19.10 8787 24.85

car2 13 X 4 7166 8664 17.29 9034 26.07

car3 12 X 5 7312 8769 16.62 8654 18.35

car4 14 X 4 8003 9408 14.93 9304 16.26

101

car5 10 X 6 7702 9876 22.01 9702 25.97

car6 8 X 9 8313 9867 15.75 9707 16.77

car7 7 X 7 6558 8790 25.39 8669 32.19

TABLE 20: RANDOM GAMES WITH DIFFERENT CONFIGURATION

FIGURE 38: RANDOM GAME GRAPH GROUPED BY INSTANCE TYPE AND SIZE

Performance against selected benchmark algorithms

In this section we compare the random game with the selected algorithms that were earlier

discussed in section 6.1.2 . The comparison is against the best results of the random game from

the above test done with different configuration against the mean results obtained by the other

algorithms has detailed in their respective literature.

Problem Size Optimal

Random games AIS MX GTL

Best of
10

%Error Makespan %error makespan %error makespan %error

la01 10 X 5 666 782 14.83 776 16.46 881 32.28 875 31

la02 10 X 5 655 796 17.71 775 18.34 900 37.40 897 37

la05 10 X 5 593 652 9.05 617 3.96 742 25.13 878 48

abz5 10 X10 1234 1395 11.54 1470 19.10 1705 38.17

0

20

40

60

ab
z5

ab
z7

ab
z8

ab
z9

ca
r1

ca
r2

ca
r3

ca
r4

ca
r5

ca
r6

ca
r7

la
0

1

la
0

2

la
0

5

la
0

7

la
0

8

la
0

9

la
1

0

la
1

6

la
1

7

la
1

8

la
1

9

la
2

8

la
2

9

la
3

6

la
3

8

la
3

9

la
4

0

o
rb

0
2

o
rb

0
3

o
rb

0
4

Er
ro

r
R

at
e

Random Games

100 rounds 1000 rounds

102

la16 10 X10 945 1103 14.32 1100 16.42 1205 27.51 1599 69

la17 10 X10 784 980 20.00 912 16.30 1020 30.10 1292 65

la18 10 X10 848 1020 16.86 1013 19.49 1156 36.32 0 -100

la19 10 X10 842 990 14.95 1031 22.42 1191 41.45 1403 67

la36 15 X 15 1268 1696 25.24 1561 23.07 2058 62.30 1747 38

la38 15 X 15 1217 1598 23.84 1548 27.23 2008 65.00 1725 42

la39 15 X 15 1233 1647 25.14 1548 25.57 2046 65.94 0 -100

la40 15 X 15 1222 1654 26.12 1537 25.81 2034 66.45 0 -100

abz7 15 X 20 668 845 20.95 839 25.64

abz8 15 X 20 687 910 24.51 859 24.96

abz9 15 X 20 707 945 25.19 884 24.96

la07 15 X 5 890 1048 15.08 961 7.99 1209 35.84 1123 26

la08 15 X 5 863 1034 16.54 965 11.81 1261 46.12 0 -100

la09 15 X 5 951 1132 15.99 1019 7.12 1380 45.11 0 -100

la10 15 X 5 958 1034 7.35 982 2.49 1300 35.70 0 -100

la28 20 X 10 1216 1648 26.21 1555 27.85 2381 95.81 1997 64

la29 20 X 10 1195 1599 25.27 1463 22.43 2256 88.79 0 -100

orb02 10 X 10 888 1134 21.69 1070 20.44 1181 33.00

orb03 10 X10 1005 1137 11.61 1276 26.92 1311 30.45

orb04 10 X 10 1005 1404 28.42 1221 21.47 1288 28.16

car1 11 X 5 7038 8700 19.10 13788 96

car2 13 X 4 7166 8664 17.29 0 -100

car3 12 X 5 7312 8769 16.62 0 -100

car4 14 X 4 8003 9408 14.93 0 -100

car5 10 X 6 7702 9876 22.01 13597 77

car6 8 X 9 8313 9867 15.75 0 -100

car7 7 X 7 6558 8790 25.39 10948 67

TABLE 21: RANDOM GAMES AGAINST BENCHMARK ALGORITHMS

5.5.3. RANDOM TOKEN GAMES RESULTS

The following test was done on random token games and the results are as follows.

Test with different configurations of the random token game

The table below represents test on random token games done with different configurations;

the table contains the following content;

 Problem- This represents the benchmark problem being solved.

 Size, the number of jobs and machine in the bench mark problem being solved.

103

 Optimal, the known optimal solution for the benchmark being solved.

 We perform test with 100 rounds and 1000 rounds.

Problem Size Optimal

100 rounds 1000 rounds

Best of
10

%Error
Best of
10

%Error

la01 10 X 5 666 735 10.36 716 7.51

la02 10 X 5 655 657 0.31 675 3.05

la05 10 X 5 593 593 0.00 593 0.00

abz5 10 X10 1234 1409 14.18 1482 20.10

la16 10 X10 945 1111 17.57 1065 12.70

la17 10 X10 784 980 25.00 920 17.35

la18 10 X10 848 1011 19.22 1009 18.99

la19 10 X10 842 1093 29.81 1008 19.71

la36 15 X 15 1268 1704 34.38 1684 32.81

la38 15 X 15 1217 1704 40.02 1682 38.21

la39 15 X 15 1233 1610 30.58 1519 23.20

la40 15 X 15 1222 1756 43.70 1724 41.08

abz7 15 X 20 668 846 26.65 816 22.16

abz8 15 X 20 687 867 26.20 901 31.15

abz9 15 X 20 707 920 30.13 942 33.24

la07 15 X 5 890 999 12.25 968 8.76

la08 15 X 5 863 994 15.18 1007 16.69

la09 15 X 5 951 1101 15.77 1001 5.26

la10 15 X 5 958 1016 6.05 1067 11.38

la28 20 X 10 1216 1643 35.12 1667 37.09

la29 20 X 10 1195 1602 34.06 1598 33.72

orb02 10 X 10 888 1089 22.64 999 12.50

orb03 10 X10 1005 1023 1.79 1043 3.78

orb04 10 X 10 1005 1189 18.31 1091 8.56

car1 11 X 5 7038 10016 42.31 9750 38.53

car2 13 X 4 7166 9960 38.99 9680 35.08

car3 12 X 5 7312 10089 37.98 9878 35.09

car4 14 X 4 8003 11189 39.81 10587 32.29

car5 10 X 6 7702 10234 32.87 9996 29.78

car6 8 X 9 8313 9678 16.42 9453 13.71

car7 7 X 7 6558 8913 35.91 8167 24.53

TABLE 22: RANDOM TOKEN GAME TEST WITH DIFFERENT CONFIGURATION

104

FIGURE 39: RANDOM TOKEN GAME GRAPH GROUPED BY PROBLEM SOURCE AND SIZE

Performance against selected benchmark algorithms

In this section we compare the random token game with the selected algorithms that were

earlier discussed in section 6.1.2 . The comparison is against the best results of the random

token game from the above test done with different configuration against the mean results

obtained by the other algorithms has detailed in their respective literature.

Problem Size Optimal
Random token Game AIS MX GTL

Makespan %error Makespan %error makespan %error makespan %error

la01 10 X 5 666 716 7.51 776 16.46 881 32.28 875 31

la02 10 X 5 655 657 0.31 775 18.34 900 37.40 897 37

la05 10 X 5 593 593 0.00 617 3.96 742 25.13 878 48

abz5 10 X10 1234 1409 14.18 1470 19.10 1705 38.17

la16 10 X10 945 1065 12.70 1100 16.42 1205 27.51 1599 69

la17 10 X10 784 920 17.35 912 16.30 1020 30.10 1292 65

la18 10 X10 848 1009 18.99 1013 19.49 1156 36.32 0 -100

la19 10 X10 842 1008 19.71 1031 22.42 1191 41.45 1403 67

la36 15 X 15 1268 1684 32.81 1561 23.07 2058 62.30 1747 38

la38 15 X 15 1217 1682 38.21 1548 27.23 2008 65.00 1725 42

la39 15 X 15 1233 1519 23.20 1548 25.57 2046 65.94 0 -100

la40 15 X 15 1222 1724 41.08 1537 25.81 2034 66.45 0 -100

abz7 15 X 20 668 816 22.16 839 25.64

abz8 15 X 20 687 867 26.20 859 24.96

abz9 15 X 20 707 920 30.13 884 24.96

la07 15 X 5 890 968 8.76 961 7.99 1209 35.84 1123 26

0

10

20

30

40

50
ab

z5

ab
z7

ab
z8

ab
z9

ca
r1

ca
r2

ca
r3

ca
r4

ca
r5

ca
r6

ca
r7

la
0

1

la
0

2

la
0

5

la
0

7

la
0

8

la
0

9

la
1

0

la
1

6

la
1

7

la
1

8

la
1

9

la
2

8

la
2

9

la
3

6

la
3

8

la
3

9

la
4

0

o
rb

0
2

o
rb

0
3

o
rb

0
4

Er
ro

r
R

at
e

Random Token Games

100 rounds 1000 rounds

105

la08 15 X 5 863 994 15.18 965 11.81 1261 46.12 0 -100

la09 15 X 5 951 1001 5.26 1019 7.12 1380 45.11 0 -100

la10 15 X 5 958 1016 6.05 982 2.49 1300 35.70 0 -100

la28 20 X 10 1216 1643 35.12 1555 27.85 2381 95.81 1997 64

la29 20 X 10 1195 1598 33.72 1463 22.43 2256 88.79 0 -100

orb02 10 X 10 888 999 12.50 1070 20.44 1181 33.00

orb03 10 X10 1005 1023 1.79 1276 26.92 1311 30.45

orb04 10 X 10 1005 1091 8.56 1221 21.47 1288 28.16

car1 11 X 5 7038 9750 38.53 13788 96

car2 13 X 4 7166 9680 35.08 0 -100

car3 12 X 5 7312 9878 35.09 0 -100

car4 14 X 4 8003 10587 32.29 0 -100

car5 10 X 6 7702 9996 29.78 13597 77

car6 8 X 9 8313 9453 13.71 0 -100

car7 7 X 7 6558 8167 24.53 10948 66.94
TABLE 23: RANDOM GAME TOKEN COMPARISION WITH OTHER ALGORITHMS

Finally we compare all our algorithms against each other.

Problem Size Optimal

Random token
Games

Random Games potential Games

makespan %Error makespan %Error makespan %Error

la01 10 X 5 666 716 6.98 782 17.42 763 14.56

la02 10 X 5 655 657 0.30 796 21.53 802 22.44

la05 10 X 5 593 593 0.00 652 9.95 620 4.55

abz5 10 X10 1234 1409 12.42 1395 13.05 1346 9.08

la16 10 X10 945 1065 11.27 1103 16.72 1059 12.06

la17 10 X10 784 920 14.78 980 25.00 915 16.71

la18 10 X10 848 1009 15.96 1020 20.28 1043 23.00

la19 10 X10 842 1008 16.47 990 17.58 1020 21.14

la36 15 X 15 1268 1684 24.70 1696 33.75 1627 28.31

la38 15 X 15 1217 1682 27.65 1598 31.31 1617 32.87

la39 15 X 15 1233 1519 18.83 1647 33.58 1628 32.04

la40 15 X 15 1222 1724 29.12 1654 35.35 1630 33.39

abz7 15 X 20 668 816 18.14 845 26.50 857 28.29

abz8 15 X 20 687 867 20.76 910 32.46 842 22.56

abz9 15 X 20 707 920 23.15 945 33.66 887 25.46

la07 15 X 5 890 968 8.06 1048 17.75 946 6.29

la08 15 X 5 863 994 13.18 1034 19.81 986 14.25

la09 15 X 5 951 1001 5.00 1132 19.03 1072 12.72

la10 15 X 5 958 1016 5.71 1034 7.93 1035 8.04

106

la28 20 X 10 1216 1643 25.99 1648 35.53 1551 27.55

la29 20 X 10 1195 1598 25.22 1599 33.81 1506 26.03

orb02 10 X 10 888 999 11.11 1134 27.70 1154 29.95

orb03 10 X10 1005 1023 1.76 1137 13.13 1330 32.34

orb04 10 X 10 1005 1091 7.88 1404 39.70 1274 26.77

car1 11 X 5 7038 9750 27.82 8700 23.61 8296 17.87

car2 13 X 4 7166 9680 25.97 8664 20.90 9307 29.88

car3 12 X 5 7312 9878 25.98 8769 19.93 9557 30.70

car4 14 X 4 8003 10587 24.41 9408 17.56 8819 10.20

car5 10 X 6 7702 9996 22.95 9876 28.23 10323 34.03

car6 8 X 9 8313 9453 12.06 9867 18.69 10291 23.79

car7 7 X 7 6558 8167 19.70 8790 34.03 8224 25.40

TABLE 24: COMPARISON AMOUNGST THE GAMES

5.6. DISCUSSIONS

The following are the observations from the test on the potential games above.

Test of algorithms with different configurations

The potential games algorithm perform relative better with more strategies used. This is

because it increases breadth of choice and actions available to an agent. This increases the

learning experience of an agent and increases the chance of learning a more favorable

solution. The different in quality of solution produce when using only SPT and LPT compared to

all four strategies, increase with the sizes of the instance. This is because using only 2

strategies limits the game to a subset of solutions in the search space. Limiting the experience

scope of the agents.

Both the Potential game and Random games do not show improvement the quality of solution

designed when the number of paths was increased significantly from 100 to 1000. This is

because the quality of schedule generated for these more on the number of strategies used as

they increase the breadth of choose or scope of learning for the agent. Increasing the number

107

learned paths learned without increasing the number of strategies available to the agents only

leads the agent to learn multiple similar schedules, thus the agents is already limited to a

certain range quality of solutions they can achieve. From further test we discovered that the

quality solution increase gradually with increase of number of rounds until the number of

round get to approximately 200 rounds for most problem instance, then quality reduces as the

rounds increase. This can be attributed to the fact that increasing the number of rounds past a

certain point, we also increase the chance of learning a false path, where the agent get good

reinforce but decisions made lead to a poor schedule. This occurrence does expose a limitation

in our reward structure of using the total remaining processing time.

Increasing the number of rounds in the random token game does show improvement in the

quality of schedule generated. This is because it increases the number of solution the

algorithms has to choose from the search space increase the probability of selecting a more

favorable solution.

The tests on Potential and Random games also shows relatively poor performance on flow

shop problems(car1-car7) compared to the job shop problem this can be attributed to the fact

that because of the nature of a flow shop problem which leads to some agents having a larger

action set(operations to choose from) than others. Machines/agents the process the initial

operations of the jobs end up being the only ones playing at the beginning of the game. The

lower the number of agent learning at each stage reduces the learning experience and also

reduces the chances of achieving favorable solutions.

Comparison amongst the 3 games and the selected benchmark

The test shows that quality of solution of Random Games and Potential Games are affecting by

the sizes of the problem instance. Quality reduces when dealing with large problem instances.

This can be attributed to the fact increasing the size of instance significantly increases the size

of search space. Since this games are based on learning a subset of the search space based on

108

the strategies selected and searching for a solution within that subset, the large the search

space the harder it is to get a quality subset.

Only the Random Token Game doesn’t show better adaptation to change in instance problem

size. This can be attributed to the fact that it works by selecting solutions from the workspace

at random and refining them, thus not greatly affected by the size of the search space.

Our algorithms have shown relatively good performance compared to the selected benchmark

problems. On average we achieved better or equal performance across all problem instances.

5.7. CONCLUSIONS

This paper deals with defining 3 game theoretic algorithms for solving job shop scheduling

problems. Our algorithms have shown relatively good performance on the benchmark data and

we were able to converge to a feasible solution in relatively good time. We have also been able

to demonstrate through visualization that by defining the job shop problem as a multi-agent

system we are able to provide algorithms that provide good solution across different sizes of

problem instances.

5.8. RECCOMENDED FURTHER WORK

The following are our recommendation for further work;

 This paper has dealt with job shop scheduling where scheduling is static and job are scheduled

as a batch. In the real world problems tend to be further research work can be done to the

algorithms to apply the two dynamic job shop scheduling.

 Our study choose a basic where of structuring the reward/reinforcement function based on

total processing time of un-scheduled jobs at any given point. Further work can be done to

refine the algorithm by defining better reward structure to improve the learning of an agent.

109

CHAPTER SEVEN: REFERENCES

1. A. AitZai and M. Boudhar, (2013). “Parallel branch-and-bound and parallel PSO for the job

shop sche duling with blocking”, Int. J. Operational Research, vol. 16, No. 1.

2. Adams J, Balas E, Zawack D. (1988).The shifting bottleneck procedure for job shop

scheduling. Management Science, 34(3): 391-401.

3. Anant Singh Jain and Sheik Meeran, (1998). A State-Of-The-Art Review Of Job-Shop

Scheduling Techniques Department of Applied Physics, Electronic and Mechanical

Engineering University of Dundee, Dundee, Scotland, UK.

4. Balas E, Lenstra J K, Vazacopoulos A. (1995).The one machine problem with delayed

precedence constraints and its use in job shop scheduling. Management Science,

41(1):94{109.

5. Beasley J (2005) Or-library http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html.

6. Blum, C.; Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and

conceptual comparison 35 (3). ACM Computing Surveys. pp. 268–308.

7. CAC Coello et al, (2003), “Use of an Artificial Immune System for Job Shop Scheduling”

.Department of electrical engineering. National Polytechnic Institute, Mexico.

8. Chu, C., Portmann, M. C. and Proth, J. M. (1992) A Splitting-Up Approach to Simplify Job-

Shop Scheduling Problems, International Journal of Production Research 30(4), 859-870.

9. Demirkol E, Mehta S V, Uzsoy R. A computational study of shifting bottleneck procedures

for shop scheduling problems. Journal of Heuristics, 1997, 3(2): 111{137.

10. Elisha T. O. Opiyo, Erick Ayienga, Katherine Getao, William Okello-Odongo, Bernard

Manderick, and Ann Nowé. Game Theoretic Multi-Agent Systems Scheduler for Parallel

Machines. International Journal of Computing and ICT Research, Special Issue Vol. 1, No. 1,

pp. 21-27

11. Fox, M. S.; and Sadeh, N. (1990). Why is Scheduling difficult? A CSP Perspective. In 9th

European Conferenceon Artificial Intelligence.

12. Fudenberg, Drew; Tirole, Jean (1991), Game theory, MIT Press, ISBN 978-0-262-06141-4.

Acclaimed reference text.

http://en.wikipedia.org/wiki/Jean_Tirole
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0-262-06141-4

110

13. G WeiB. (2009) Learning to Coordinate Actions in multi-agent Systems, Institut fur

lnformatik, Technische Universitat Miinchen Arcisstr. 21, 8000 Miinchen 2, Germany

14. G Weiss (2013). A Modern Approach to Distributed Modern Approach to Artificial

Intelligence, Multiagent Systems , MIT press , Cambridge , Massachusetts, USA.

15. Garey, M. R. and Johnson, D. S. (1979) Computers and Intertractability: A Guide to the

Theory of NPCompleteness, W. H. Freeman, San Francisco.

16. Glover, F., (1986), “Future Paths for Integer Programming and Links to Artificial

Intelligence”, Journal of Computer and Operations Research, Vol. 13, No. 5, pp.533-549.

17. Gokhale NA, Zaremba A, Shears SB. Receptor-dependent compartmentalization of PPIP5K1,

a kinase with a cryptic polyphosphoinositide binding domain. Biochem J. 2011;434:415–426

18. H. Chen, P.B. Luh, (2003). European Journal of Operational Research 149 (2003) 499–512-

2003

19. Helga Ingimundardottir, Thomas Philip Runarsson (2010).Supervised Learning Linear Priority

Dispatch Rules for Job-Shop Scheduling, School of Engineering and Natural Sciences,

University of Iceland

20. J.F. Muth and G.L. Thompson. (1963) Industrial Scheduling. Prentice-Hall, Englewood Cliffs,

N.J.

21. Jackson, J. R. (1955). Scheduling a Production Line to Minimise Maximum Tardiness,

Research Report 43, Management Science Research Projects, University of California, Los

Angeles, USA.

22. Jens Clausen, (1999). Branch and Bound Algorithms -Principles and Examples. Department

of Computer Science, University of Copenhagen, Universitetsparken 1, DK-2100

Copenhagen, Denmark.

23. Johnson, S. M. (1954). Optimal Two- and Three-Stage Production Schedules with Set-Up

Times Included, Naval Research Logistics Quarterly, vol 1, 61-68.

24. Karin Thörnblad(2013), Mathematical Optimization in Flexible Job Shop Scheduling: Modelling,

Analysis, and Case Studies, Department of Mathematical Sciences, Chalmers University of

Technology and the University of Gothenburg.

http://publications.lib.chalmers.se/record/index.xsql?pubid=181850&lang=en
http://publications.lib.chalmers.se/record/index.xsql?pubid=181850&lang=en

111

25. Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P., (1983), “Optimization by Simulated

Annealing”, Journal of Science, Vol. 220, No. 4598, pp. 671 - 680.

26. M Azizoglu and O Kirca , (1999). On the minimization of total weighted flow time with

identical and uniform parallel machines. European Journal of Operational Research 113 (1),

91-100-1999.

27. M. Gourgand et al, 2003. A contribution to the stochastic flow shop scheduling problem,

European Journal of Operational Research 151 (2003) 415–43

28. Madureira, A., Ramos, C., and Silva, S.C. , (2001). “A Genetic Approach for Dynamic Job-

Shop Scheduling Problems”, 4th Metaheuristics International Conference 2001, Porto,

Portugal, July 16-20.

29. Manne, A. S. (1960) On the Job-Shop Scheduling Problem, Operations Research, vol 8, 219-

223.

30. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E., (1953),

“Equation of State Calculations by Fast Computing Machines”, The Journal of Chemical

Physics, Vol. 21, Issue 6, pp. 1087-1092.

31. Metta, Haritha,(2008), "ADAPTIVE, MULTI-OBJECTIVE JOB SHOP SCHEDULING USING

GENETIC ALGORITHMS" . University of Kentucky Master's Theses.Paper 518.

32. Nikos Vlassis(2005). A Concise Introduction to Multiagent Systems and Distributed AI,

Intelligent autonomous Systems Informatics Institute University of Amsterdam.

33. Osborne, M. J. and Rubinstein, A. (1994). A Course in Game Theory. MIT Press.

34. P. Brucker and O. Thiele. (1996). A branch and bound method for the general shop problem

with sequence-dependent setup times. Operations Research Spektrum, 18:145-161.

35. P. Brucker, P. Jurisch, and B. Sievers. (1994). A fast branch and bound algorithm for the job-

shop scheduling problem. Discrete Applied Mathematics, 49:107-127.

36. P. Lacomme, N. Tchernev and M.J. Huguet. (2012). Job-Shop with Generic Time-Lags: A

Heuristic Based Approach”. 9th International Conference of Modeling, Optimization and

Simulation - MOSIM’12 June 06-08, 2012 – Bordeaux - France

37. Panwalkar, S., Iskander, (1977). A Survey of Scheduling Rules. Operations Research 25(1)

45–61

http://scholar.google.com.tr/citations?view_op=view_citation&hl=tr&user=2WPPvMIAAAAJ&citation_for_view=2WPPvMIAAAAJ:d1gkVwhDpl0C
http://scholar.google.com.tr/citations?view_op=view_citation&hl=tr&user=2WPPvMIAAAAJ&citation_for_view=2WPPvMIAAAAJ:d1gkVwhDpl0C

112

38. Pinedo M, Singer M.(1995) A shifting bottleneck heuristic for minimizing the total weighted

tardiness in a job shop. Naval Research Logistics, 46(1): 1-17.

39. R. Sutton and A. Barto. Reinforcement Learning. An Introduction. MIT Press/A Bradford

Book, Cambridge, USA, 1998.

40. S. Russell and P. Norvig(2003). Artificial Intelligence { A Modern Approach. Prentice Hall,

Englewood Cliffs, USA.

41. SANDHOLM W. H. (2001). Potential Games with Continuous Player Sets. In Journal of

Economic Theory, Volume 97, pp. 81 – 108, 2000.

42. Takeshi Yamada and Ryohei Nakano. (1997)Chapter 7: Job-shop scheduling (pp. 134–160).

Genetic algorithms in engineering systems. IEE control engineering series 55. The Institution

of Electrical Engineers.

43. Thomas Gabel. (2009).Multi-Agent Reinforcement Learning, Approaches for Distributed,Job-

Shop Scheduling Problems, Tag der wissenschaftlichen Aussprache: 26.06.

44. Torsten Hildebrandt , Jens Heger, Bernd Scholz-Reiter, (2010). Bremen Institute of

Production and Logistics – BIBA at the University of Bremen Hochschulring 2028359

Bremen, Germany.

45. Trond Grenegar, Rob Powers, Yoav Shoham. (2002) Dispersion Games: General Definitions

and Some Specific Results. In proc. AAAI02, pages 398-403. AAAI Press.

46. Uzsoy R, Wang C S. Performance of decomposition procedures for job shop scheduling

problems with bottleneck machines. International Journal of Production Research, 2000,

38(6): 1271-1286.

47. V Lesser(1995), Mullti-agent. Systems: An Emerging Sub-discipline of AI. ACM Computing

Surveys, Vol 27, No 3, September 1995

48. Van De Velde, S. (1991) Machine Scheduling and Lagrangian Relaxation, Ph. D. Thesis, CWI

Amsterdam, The Netherlands.

49. von Neumann, J., Morgenstern, O., Theory of Games and Economic Behaviour, Princeton

University Press, 1944.

50. Wagner, H.M .(1959) "An integer linear-programming model for machine scheduling." Nav.

Res. Logist. Quart. (6) 131-140.

113

51. Y Mati and X Xie “Multi-resource shop scheduling with resource flexibility and blocking.”

(2011) ,IEEE transactions on automation science and engineering.

52. Yailen Martínez Jiménez. (2012). A Generic Multi-Agent Reinforcement Learning Approach

for Scheduling Problems. Brussels University Press

53. Zhang, C.Y., P. Li, Y. Rao, Z. Guan. 2008. A very fast TS/SA algorithm for the job shop

scheduling problem. Computers and Operations Research 35 282–294.

114

APPENDIX ONE: GLOSSARY

Machine Time Share Processing time slot on a machine

Token Indicator of the agent that’s making a choice

Algorithmic deadlock When to process are blocking each other from proceeding.

Processing end time The time an operation will complete processing

Processing time The processing load of an operation on a machine

Processing start time The time when an operation will start processing

Possible start time A probable time when processing of an operation will start.

Bottleneck An operation that cause delays in a schedule while laying
idle

Makespan Time it takes to complete processing all the jobs in a
problem

Next available start time (NAST). The next estimated time when a machine will be available to
process another job.

Waiting Queue, A queue on a machine that holds the operations that are
waiting to be scheduled for processing

Schedule queue A queue on a machine that holds the operations that have
been scheduled for processing

MDP Markov Decision Process

Q-learning Reinforcement learning technique based on learning an
action-value function that gives the expected utility of
taking a given action in a given state.

Q-pair Pair defining the utility of a decision.

SPT Shortest Processing Time

LPT Longest Processing Time

FIFO First in First Out

LIFO Last In Last Out

Action set Set of available action for an agent

Flow shop Scheduling problem A variation of job shop scheduling problem where all the
operation on the jobs follow the same processing sequence.

