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ABSTRACT
The first objective of this project is to construct Negative Binomial Distributions when the two
parameters p and r are fixed using various methods based on: Binomial expansion; Poisson —
Gamma mixture; Convolution of jid Geometric random variables; Compound Poisson
distribution with the iid random variables being Logarithmic series distributions; Katz recursive
relation in probability; Experiments where the random variable is the number of failures before
the rth success and the total number of trials required to achieve the rth success.

Properties considered are the mean, variance, factorial moments, Kurtosis, Skewness and
Probability Generating Function.

The second objective is to consider p as a random variable within the range 0 and 1. The
distributions used are:

i The classical Beta (Beta 1) distribution and its special cases (Uniform, Power, Arcsine
and Truncated beta distribution).

ii. Beyond Beta distributions: Kumaraswamy, Gamma, Minus Log, Ogive and two —
sided Power distributions.

iii. Confluent and Gauss Hypergeometric distributions.

The third objective is to consider r as a discrete random variable. The Logarithmic series and
Binomial distributions have been considered. As a continuous random variable, an Exponential
distribution is considered for r.

The Negative Binomial mixtures obtained have been expressed in at least one of the following
forms.

a. Explicit form
b. Recursive form
c. Method of moments form.

Comparing explicit forms and the method of moments, some identities have been derived.

For further work, other discrete and continuous mixing distributions should be considered.
Compound power series distributions with the iid random variables being Geometric or shifted
Geometric distributions are Negative Binomial mixtures which need to be studied.

Properties, estimations and applications of Negative Binomial mixtures are areas for further
research.
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CHAPTER 1

GENERAL INTRODUCTION
1.1 Background information

Negative Binomial Distribution

Pierre de Montmort first mentioned Negative Binomial distribution in 1713. He considered a
series of Binomial trials and came up with a finding of the probability of the number of failures
“x"”, before the rth success in the series.

In 1838 Poisson Simeon (1781 - 1840) developed the Poisson regression. He first introduced the
new distribution as the limiting case of the Binomial. He later discovered that we can derive
Poisson from the Binomial distribution and he demonstrated how the two distributions actually
relate. Poisson regression was developed to handle count data, and later became the standard
method used to model counts.

It is important to note that Poisson assume equality in its mean and variance. This is a very rare
characteristic in real data. Data that has greater variance than the mean is termed as “Poisson
over dispersed”, yet more commonly known as “overdispersed”. It is recommended that we
apply Negative Binomial distribution instead of Poisson distribution when dealing with count
data that is “overdispersed”.

Some of the most prominent and well known discrete distributions are the Binomial, the
Poisson and the Negative Binomial distribution. The theoretical connection between these
distributions is too close that it is hardly convenient to discuss any one of them without
referring to the other.

For instance, the Negative Binomial distribution is based on the other two distributions (Poisson
and Binomial) in relation to its construction as you will see later in this project.

Negative Binomial distribution can be expressed in two different ways depending on the
definition of the parameter r as follows.



a. 1° Form of Negative Binomial Distribution

Consider a sequence of independent Bernoulli (p) trials. In each trial the probability of success
is p. Let the random variable X denote the trial, at which the rth success occurs, where r is a
fixed integer, then,

Pr(X =x/r,p) = (J; : i) p"(1—p)* " x=rr+1,r+2,.. (1.01)

And we say that X has a Negative Binomial distribution with parameters r and p expressed as
X~NB(r,p)

b. 2" Form of Negative Binomial Distribution
Negative Binomial distribution can as well be expressed as follows.
x = the Number of failures before the rth success in an infinite series of

indipendent trials with a constant probability of success p.

x +1r — 1 = the number of trials excluding the rth success

(x+r—1

X ) = the number of ways of obtaining x failures and r — 1 success

Thus the alternative form of the Negative Binomial distribution is expressed as follows
Prob(X = x/r,p) = (T + 3; - 1) p"(1—-p)* (1.02)

forx=0,12,..andr >0

Distribution Mixtures

A mixture distribution is the probability distribution of random variable whose values can be
interpreted as being derived from an underlying set of other random variables: specifically, the
final outcome value is selected at random from among the underlying values, with a certain
probability of selection being associated with each. Here the underlying random variables may
be random vectors each having the same dimension, in which case the mixture distribution is a
multivariate distribution.



In cases where each of the underlying random variable is continuous, the outcome variable will
also be continuous and its probability density function is sometimes referred to as a mixture
density.

A mixture distribution constitutes a number of components which are often restricted to being
FINITE, although in some cases the components may be COUNTABLE. More general cases (i.e.

an UNCOUNTABLE set of component distributions), as well as the countable case, are referred
to as COMPOUND DISTRIBUTIONS

Finite or countable mixtures

F(x) = ) wiPi(x)

FG) = > wipi(®)
j=1

The sum is finite and the mixture is called a finite mixture, and in applications, an unqualified
reference to a "mixture density" usually means a finite mixture. The case of a countable set of
components is covered formally by allowingn = oo,

Uncountable mixtures

Consider a probability density function p(x;a) for a variable x, parameterized by a. That is, for

each value of a in some set A, p(x;a) is a probability density function with respect to x. Given a
probability density function w (meaning that w is nonNegative and integrates to 1), the function

FG) = fA w(@)p(x; a)da

is again a probability density function for x. A similar integral can be written for the cumulative
distribution function.

Mixtures of parametric families
Parameters in a mixture distribution can be grouped together into a parametric family and they

don’t follow any arbitrary probability distributions. In such cases, assuming that it exists, the
density can be written in the form of a sum as:

flx;aq, o ,Ay) = Z w;p; (x; a;)



for one parameter, or

for two parameters, and so forth.

Negative Binomial mixtures
The Negative Binomial distribution is constituted of two parameters r and p, and either of the
parameters can be randomized to achieve the Negative Binomial mixture.

This project entails the scenarios where the parameter p has a continuous mixing distribution
with the probability g(p) such that

) = fo 1 ("D a-prgmdp

where f(x) is the Negative Binomial mixture

1.2 Problem statement
The project considers the Negative Binomial of the following format

Prix =k/p) = ("N N praa - pt

The problem statement is to find the Negative Binomial mixtures in the following distribution

L @=L (T T a-ptgmap

p is within the [0,1] domain

i =g (T Y ra-ptgemar

We need to develop these new distributions to help in solving the problem associated with over
dispersed data.



Evaluating data that has several factors that affect the final outcome of the analysis need to be
fitted using a heterogeneous distribution that will capture a majority of the aspects. This will
reduce the risk that is associated with data loss or generality

1.3 Objectives
Main objective

To construct Negative Binomial mixtures when the mixing distributions come from the
probability of success and the number of success as random variable.

Specific objectives

a. To express the Negative Binomial mixed distributions in explicit forms, recursive forms
and expectation forms when the mixing distributions are:
i Classical beta distribution and its special cases.
ii. The beyond beta distributions
b. To construct the Negative binomial mixtures when the number of successes takes
i. Logarithmic distribution
ii. Binomial distribution
iii. Negative Binomial distribution
c. To construct generalized Negative Binomial mixture when the number of successes (r) is
Exponential distribution
d. To construct Geometric Mixtures as special cases of Negative Binomial distribution

1.4 Methodology
The methods applied to construct the Negative Binomial mixtures include:

i Explicit or direct method
ii. Moment Generating Function method
iii. Recursive relation method



1.5 Literature review

Here, we will analyze and access some of the works that has been done in relation to Negative
Binomial distribution and its mixtures

Wang, Z. (2010) has done research on a three parameter distribution which is called the Beta
Negative binomial (BNB) distribution. He derived the closed form and the factorial moment of
the BNB distribution. A recursion on the pdf of the BNB stopped-sum distribution and a
stochastic comparison between BNB and NB distributions are derived as well. He observed that
BNB provides a better fit with a heavier tail compared to the Poisson and the NB for count data
especially in the insurance company claim data

Li Xiaohu et al (2011) have studied the Kumaraswamy Binomial Distribution. They considered
two models of the Kumaraswamy Distribution, derived their pdfs and other basic properties.
The stochastic orders and dependence properties are also worked on by the group.
Applications based on the incident of international terrorism and drinking days in two weeks
were highlighted as well.

Nadarajah, S. et al (2012) proposed a new three — parameter distribution for modeling lifetime
date. This is the Exponential — Negative Binomial distribution. It is advocated as most
reasonable among the many exponential mixture type distributions proposed in the recent
years.

Kotz S. et al (2004) came up with other Continuous families of Distributions that are Beyond
Beta with Bounded Support and applications. Properties studied included moments, CDF,
Quartiles, maximum likelihood method of estimating parameters amongst others. The
distributions highlighted include Triangular distribution, Standard Two sided Power series

Sarabia J. et al (2008) have done some work on construction of multivariate distributions. The
paper reviews the following set of methods: (a) Construction of multivariate distributions based
on order statistics, (b) Methods based on mixtures, (c) Conditionally specified distributions, (d)
Multivariate skew distributions, (e) Distributions based on the method of the variables in
common and (f) Other methods, which include multivariate weighted distributions, vines and
multivariate Zipf distributions.

Furman E.(2007) has done some work on the generation of the Negative Binomial Distribution
from the sum of random variables. He also talks about the reasons why the negative Binomial
distribution has been frequently proposed as a reasonable model for the number of insurance
claims.



Ghitany et al (2001) has also shown that Hypergeometric generalized negative binomial
distribution has moments of all positive orders, is overdispersed, skewed to the right and
leptokurtic.

1.6 Significance of the study and its applications

This is an important project both in substance and timing. The objectives of this project as well
as the analysis, as scheduled for discussion are important in identifying new distributions, their
properties, identities as well as relevant applications.

Statistical distributions are at the core of statistical science and are a leading requisite tool for
its applications. Negative Binomial and especially its mixtures are used widely in the insurance
industry in the measure of total claims. This can be done by calculating the total claims
distribution (according to the different methods known) by spending a reasonable computing
time and without incurring in underflow and overflow (this problem could be defined as a
“compatibility” problem of the parameters).

A finite mixture of Negative Binomial (NB) regression models has been proposed to address the
unobserved heterogeneity problem in vehicle crash data. This approach can provide useful
information about features of the population under study. For a standard finite mixture of
regression models, previous studies have used a fixed weight parameter that is applied to the
entire dataset. However, various studies suggest modeling the weight parameter as a function
of the explanatory variables in the data.



Chapter 2

CONSTRUCTIONS AND PROPERTIES OF NEGATIVE BINOMIAL
DISTRIBUTION

2.1. Introduction
Negative Binomial distribution can be constructed from a variety of methods. Some of the

techniques are based on:

Binomial expansion

Mixtures

Compound Poisson distribution

Katz Recursive relation in probability

Logarithmic series

Sums of a fixed number of Geometric random variables

Nouk~ownNe

From experiment

Below are the brief discussions of these methods.

2.2. NBD based on Binomial expansion
Expanding (a + b)"wherer > 0,we get

(a+b)7" = (—Or) a’T+ (—1r) a7 pl + (—Zr) aT2p? + -
=Yro()a " b (2.01)

Leta=1and b = -0

Then
(1-60)7 = 37,(;)(=0)" (2.02)

Dividing both sides by (1 — 6)~"

- (7))
1:;0( )

1-6)"

- Z () or@ra-oy (2.03)

x=0



2o = (7)ED*O)* A= 6) forr >0; x=10,1,2,.. (2.04)
Is a pmf

But

(—r) B —r(=r=1D(-r—=2)(-r=3) ......... (—r —(x— 2))(—r —(x— 1))
B 1:2-3 .. (x—Dx

(—7‘) _ —D*r(r+1D)r+2)Tr+3)...... (r + (x — 2))(r + (x — 1))

x!

(—xr) = (1) (r + zcc - 1>

Thus

-T r+x—1
_1 ’ - ( )
G .
Replacing this in equation above

-r X X T
pe=( ) (DO A-0) forx=012,..

r+x—1
px:( ) )exu—e)rforxz0,1,2,....;0<9<1 (2.05)

This is the Negative Binomial distribution with parametersrand 6 =1 —p

2.3.NBD based on mixtures

Negative Binomial distribution can be developed from mixing Poisson distribution with Gamma
distribution. Gamma distribution is considered as the prior distribution while the Poisson
distribution a posterior distribution

Poisson distribution

This is expressed as the probability of a given number of events occurring in a fixed interval of
time and/or space if these events occur with a known average rate and independent of time
since the last event.

A discrete random variable X is said to have a Poisson distribution with parameter 4 > 0 , if for
x=0, 1, 2, ..., the probability mass function of X is expressed as:



-A9x

e
Pr(X =x/2) = x=012.; 1>0 (2.06)

x! ;
Gamma distribution

A
a-1,"35

Fap®

gt ap) = ;for A=0anda,f >0 (2.07)

The mixture

oo = f Pr(X = x/) g(1; a, B)dA
0

Inserting the equations

flx) = XTape fowe—ux Ae—le=4/Bg)
f(x) = por Faﬁ“J;) e~ A=A/B jx+a=1 4,
— ” _A(ﬂ) x+a—
F&) = rpage | ¢ et
but
foo e_l(%)/lx”‘_l dA =T(a + x) {L}Hx
0 1+
3 ﬁ a+x
fO) = TrapaT@+ %) {1 n ﬁ}
C(a+x—DI( BT
F&) = = 1)!,8“{1+[>’}
a+x—1 1 ) 1 )"
f(x):( x ){1+ﬁ} {1_1+/3} (2.08)

forx=0,12,..;B,«>0

The marginal distribution of X is a Negative Binomial distribution withr = a and p = ﬁ
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2.4. Construction from a fixed number of Geometric random variables

Lets, = X1 + X, + X3 + --- + X, denote the sum of iid random variables X;and r is fixed
The PGF of syis given by
H(s) = E(s°) (2.09)
= E(s¥X1HXat Xy
= E(s¥1s%2s%3 .. s%)
= E(s*1)E(s*2)E(s%3) ... ... E(s"") (2.10)

(since X; are independent and identical)

H(S) = [E(s®)] (because Xl-’s are identical)
=[G
where G(s)is the pgf of X;
Let X;~Geometric(p)
Case 1l

The pmf of X is
Px = pq* forx=012,..;q=1-p;0<p<1

and the pgf of Xis

G(s) = E(s¥) = sl<(@-p)™*

1—gs’

Therefore

H(s) ={G(s)}"

H(s) = [1_"qs]r (2.11)

[ﬁ] is the pgf of a Negative Binomial distribution with0 <p < 1,g+p =1landr >0

11



Proof

= E(s*)

where p,is the pdf of the negative Binomial distribution and hence the above statement is validated

Case 2
The pmf of x is

Dy =pq* ! forx=123,..;q=1—-p;0<p<1
The pgf of X in this case is given by

ps . 1
= — < —
66 =70 iflsl<

Therefore

H(s) ={G(s)}"

ps ]r

H(s) = [1 —qs

-
[—ﬁzs] is the pgf of a Negative Binomial distribution with0 <p <1,q+p =1landr >0

12



Proof

H(s) = [1 gsqs]r

=@s)(1—gqgs)™"

= sy Y (0¥ (F) @)
x=0

=y ) (") sy
x=0

= oo [("g ) @ + (D@t ("E ) @+ ((HET N @y 4]

[ee]

=y Y (7 )@

X=r

oo

= Y (X7 D@

xX=r

[oe]
=) s
x=r

= E(s%)

where p,is the pdf of the negative Binomial distribution and hence the above statement is validated
bx = (x:i)prqx_r for0O<p<1lp+qgq=1lx=rr+1,r+2,..
2.5. Construction from logarithmic series
Construction of Logarithmic distribution.
1 2 3 4 5
1 p=1+p+p +p°+p +p>+-

Integrating both sides with respect to pwe get

13



d
%=f(1+p+p2+p3+p4+p5+---)dp
pZ
—log(l-p)=p+=

X x
_zp_
X
x=1
(0¢]
x

_ p
1= z —xlog(1—p)

x=1

3 4 5 x

p p p p

S T TN S TN 2.12
S e S S (2.12)

And hence the logarithmic distribution takes the form below

px

=— =123, ... 1 2.14
“xTog(1 —p) forx=123,...;0<p< (2.14)

Px

If we consider the associated power equation 2.12 and find its derivative, we get

1
1+p+p2+p3+...+px+...:m (2.15)

multiplying both sides of (2.15) by 1 —p

1-p+A-pp+A-pP*+A-pp°++A—pp*+- =1

Note that the generating term of this series (1 — p)p*is the pmf of the Geometric distribution
where x = 0,1,2, ...represents the number of successes before the first failure in a sequence of
independent Bernoulli trials with parameter p

Derivative of both sides of equation (2.15)

14+2p+3p2+4p3 + 4+ xp" 1+ (x+ Dp* + - = (2.16)

(1-p)?
Multiply across by(1 — p)? and consider the associated generating distribution

x+Dp*1-p)?=kx+1DA-p)*»" x=012,..

=("THa-pwp

-3

14



which is the pmf of the negative Binomial distribution with parameters 2 and p for x = 0,1,2, ...

Again take the derivative of (2.16)

2
2+ 3x2p + 4x3p? + 5x4p> + -+ (x + Daxp*  + (x + 2)(x + Dp* + -+ =

Multiplying across by the reciprocal of ﬁand taking the associated pmf

(x+2)(x+1)
2

a-pp = (*1 ) a-p¥p*

SGRELE

forx=20,12, ..

which is the pmf of the negative Binomial distribution with parameter 3 and p

(1-p)?

Taking the rth derivative of each side the power series, we find a series from which the NBD

with parameters r and p can be obtained

7! r+1) (k + 2)! (r+x-—1)! (r—1)!
— 1)+ — - T2~ T3 s X = T
=Dt ppt P gt (1—p)

which is associated with NBD with parameters r and p, and hence

(r+x-1)!
(r—1D!x!

r+x—1

(1-p)p* = ( o

)(1—p)rp"
forx=012,.;r>00<p<1

This is a negative Binomial distribution with parameters r and p

2.6. Representation as compound Poisson distribution

(2.17)

(2.18)

Let Y, n=1,2,3,...denote a sequence of identical and independent distributed random

variables each having a logarithmic distribution log(p) with a pmf

py

= ory=123,...;0<p<1
Slogd-p 7Y P

Py

15
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Let N be a random variable independent of the sequence and suppose
N~Poisson(A = rin(1 —p))
letsy =X+ X, + Xz + ... + Xy be sum of the independent random variables

To calculate the pgf H(s) of X which is the composition of theProbability Generating
functions Gy (s) and G, (s)

Gy(s) = e?s—D (2.20)
and

_In(1 —ps) 1
Gy(S) = mlSl < E (2.21)

We get
H(s) = Gy (G, (s))

= el(Gy (5)_1)

B In(1 — ps)
= eXpA(ln(l ) 1)
= exp(—r(ln(l —ps) —In(1 — P)))

H(s) = [ 11__55] (2.22)

which is the probability generating function for the negative Binomial distribution

Proof

H(s) = [1 —qps]r

=q"(1—-ps)™

qri( 0 () @)

x=0

16



= E(s%)

where p, is the pdf of the negative Binomial distribution and hence the above statement is validated

2.7. Construction using Katz recursive relation in probability
Consider the following recursive relation in probabilities

f(x+1) P(x)

— (2.23)
fx) Q)
Where P(x)and Q(x)are polynomials of x
f(.) is the probability mass function in particular
Let
P(x) _ a+px
TR (2 .24)
which is the Katz relationship
This implies
x+1 a+
fC ) = px ;x=0,1,2 ...
f(x) 1+x
leta#0and B +#0
Then
a+ fx
1) = ;x=0,1,2 ... 2.2
fr+D=7——f() ;x=01, (2.25)

We shall use two approaches to obtain the negative Binomial distribution.

17



2.7.1. Iteration technique

When x = 0 f) = af(0)
When x = 1 f@ =55 = [FF] af (@
When x = 2 @) =@ = [FF| [FE] af (0)
When x = 3 F@ ==L 53 = [ [ [5E] e @
Whenx = k — 1 £ = =L f e - 1)
k) = [a + (k- 1)51 la + (k — 2)/3 ...... [a + 3;3] [a + 2[9] [a + ,8] 2f (0) (2.26)

ek [ 2l D] Qo

fl) = k!

(+k 1)

fk) = gk~ f(0)
(F-1)w
Therefore
a
Flk) = Bt (E k= 1)f(O); k=0123.. (2.27)
k

Since equation 2.27 is a pmf, then;

k=0

FO)+) f =1
k=1

oo a
f(0)+Zﬁ" (E”‘_l)fm) _1
=1

k

18



But

o a
f(0)<1+2ﬁk(ﬁ+k‘1>)=1
k=1

k
1
/0y = “+k-1
1+ Y%7, B <ﬁ )
k
But
a
Flk) = B (E k= 1>f(0); k=0123..
k
This implies that f (k) will be
gt <% +k— 1)
fk) = N (2.28)
ZZO:oﬁk <.[_3+ k — 1)
k=0,12,..
Iifr = %is a positive integer
¢ +k-1 +k-—-1 r
hd — r _ —
7)== ()
N z +k—-1 N —r
Zﬁk(ﬁ >=Z(—B)"(k)
k=0 k k=0
=a-p
0<p<1
Conclusion
Foe+1) = (“;:fi x) ) x=012.. (2.29)

19



For

1. r= %is a positive integer

2. 0<B<1
3. a>0

flk) =

Bk<%+k—1> ‘.
e =<E+ } )ﬁ"(l—ﬁ)r
k

fU = ("R N gra - py (2:30)

0<B<1,k=0123..

This is a Negative Binomial distribution with parameterskandp =1—-

2.7.2. Using the Probability Generating Function (PGF) technique
Remember

a+ pbx
b fx) ;x=012,.;a>00<p<1

fr+D = 1+x

leta #0and f #0

Then
Z[l +x]f(x+ 1)s* = Z[a + Bx] f(x)s* (2.31)
x=0 x=0
Define
G(s) = Z f(x)s* (2.32)
x=0

[00]

G (s) = Z xf(x)s*1

x=0

20



G (s) = Z(x+ Df(x+1)s*
x=0

G()=a) f()s*+B ) xf()s*
x=0 x=0

(ee]

G (s) = aG(s) + Bsz xf(x)s* 1 (2.33)

x=0

G (s) = aG(s) + BsG (s)

(1—Bs)G (s) = aG(x)

(-2 agis)
9G(s) B a
| o =l a=m® (234

InG(s) = _iﬁlnu —Bs)+1InC

InG(s) =In(1 - ﬁs)—a_ﬁ +1InC
InG(s) =InC(1 — ,BS)%

G(s) = C(1— Bs)F (2.35)

Lets =1
G(1) = C(1—p)F
1=cl-p)7

c=—1" —=( _p)F (2.36)
1-pB)F

1- [35)_/?_(1

.-.G(s)=<1_ﬁ

21



Let% = r be a positive integer

1_ =T
6(s) = (1—[;:
_(1=BY
6 = (5 —Bs) (2.37)
Supposep =1—Lfandp + q = 1,then
_(_P_Y
6(s) = (1 qs) (2.38)

This is a PGF of a NBD with parametersr > 0 and p

Note: proof is carried out in section 2.4 above under case 1

2.7. From experiment
Let X be the number of failures preceding the rth success in an infinite series of independent
trials with a constant probability of success p

r + x — 1 = the toatal number of trials excluding the rth success

(T + 9; - 1) = The number of ways of obtaining x failures and r — 1 success
~ Prob(X =x) = (r + fc B 1) P (1 —-p).p

+x—-1
=(" o (1= p)* (2:39)
X
forr>0;,0<p<1,x=0123...
Alternatively, denote the probability of X=x by p,. (1), k = 0,1,2, ...

We can formulate a difference equation for p, (1)as follows.

px(r) = The probability of the first trial being a success followed by a prob of a failure with r — 1 successes

Or

px(r) = The probability of the first trial being a failure followed by x — 1failures with r successes

p() =pp,(r = 1) +qp,_1(r); x=123,..andr >1 (2.40)
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In terms of pgf,

D 5T =p ) plr= 15T+ ) pea@)s” (2.41)
x=1 x=1 x=1

But G(s,7) = Xxlopx (1) s*
~G(s,r) —po(r) =plG(s,r = 1) —po(r —1)] + qsG(s,1) (2.42)
But po(r) = p" and po(r — 1) = p" 1
2 G(s,m)—p" =pG(s,r —1) —p" +qsG(s,1)

(1—-gs)G(s,r) =pG(s,r—1)

G(s,r) = 1_LqSG(s,r -1)

Putr =1 =>G(s,1) = 1_19?6(5, 0)

But
6(5,0) = ) pe(0)s* = po(®) + ) p.(0)s*
x=0 x=1
p.(0) = The prob of x failures before zero success
=0
p,(0) =0and py(0) =1 forx +0
G(s,1) = —P—G(s,0) = —2
1—gs 1—gs
2
— __p _(_»
Putr = 2 G(5,2) = 2=G(s,1) = (1_qs>
In general
p r
= 2.4
G(s,7) (1 — qs) (2.43a)

This is the pgf of a NBD where the random variable X is the number of failures before the rth
success.
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The other case is to consider X to be the total number of trials required to achieve r successes.
Let us denote X=x with Probability p, (). The corresponding difference equation is:

Px (1) =ppxa(r — 1) +qp1(r); x=123,..andr =1 (2.44)
In terms of pgf,
D ST =) P = DT 49 ) pea ()" (2.45)
x=1 x=1 x=1

But G(s,1) = X3=oPx (1) 5™
~G(s, 1) —po(r) =plsG(s,r —1)] + qsG(s, 1)
But po(r) = p" and po(r — 1) =p"~!
~G(s,r)—p" =psG(s,r—1) +qsG(s,T)

(1—-gs)G(s,r) —0=psG(s,r—1)

__ps
G(S,T') = 1_—qSG(S,T' - 1)

Putr =1 =>G(s, 1) = %G(s, 0)

But

6(5,0) = ) p.(0) "
x=0

= po(0) + ) p.(0) 5"
x=1

p,(0) = The prob of x failures before zero success
=0
p,(0) = 0and py(0) =1 forx +#0
. G(s,0)=1

ps ps
L G(s, 1) = A=
(s, 1) 1—gs 1—gs

(2.46)
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Putr =2 G(Sz)_ps GG, )_( q)z

In general

G(s,7r) = (1 fsqs>2 (2.43b)

This is the pgf of a NBD where the random variable X is the number of trials required to achieve
r>1 successes.

Properties
From the construction of Negative Binomial distribution, we have established that Negative
Binomial distribution can be expressed in the following formats

1. px:(r+§_1)pr(1—p)x for r>0,0<p<1;x=0123..

This is a Negative Binomial distribution with parameters r and p, x represents the total number
of failures before the rth success

2. px=(;f:})pr(1—p)x‘r x=rr+1,r+2,..

If p is a sequence of independent Bernoulli trials and random variable x is taken to denote the
trial, at which the rth success occurs, where ris a fixed integer

Probability generating function

The probability generating function of a Negative Binomial distribution is given by the following
equation

6() =E(s¥) = ) pos”
x=0

[ee)

Z r tx— 1 prq"s" (2.47)

r+x—1
=p z QS)"

x=0



=p’ Z(—l)" ()@ =p-gs)
x=0

6(s) = _pqs]r (2.48)

This is the probability generating function for the negative Binomial distribution with
lgs]|<1,0<p<1l,gq+p=1landr>0

Consider

p, = (T+§_ 1)pr(1—p)x forr>0,0<p<1;x=0123...

The first derivative of the pgf of this distribution is

: rqp’
G =" 2.49
/ rqp”
lets=1 G ()= m
) rq
G(1)=— (2.50)
p
The second derivative of the pgf of the negative Binomial distribution is
" r(r+ 1)q?p"
" r(r + 1)q*
lets =1 ¢ (1) = (p—z)q (2.52)
Mean
EX) =6 (1)
r(1l—
£y =1 —P) (2.53)
p
Variance
var(X) = 6" (1) + 6 (1) - (6 (1))’
rq
var(X) = ? (2.54)
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Factorial moments of Negative Binomial distribution
For a natural number r, the rth factorial moment of a probability distribution on the real or
complex numbers, or in other words, a random variable X with that probability distribution is

E(XD) =wm@X) =EXX-DX=2)..(X =k +1)] (2.55)

Where E refers to the expectation and (x);, = x(x — 1)(x — 2) ... (x — k + 1)is the falling
factorial.

Thus for the negative binomial distribution

I'(r+k)(1-p)*

ur (X) = = o fork =123 .. (2.56)
X) = EQn = =D T 2.57
m(X) = ()—m;—? (2.57)

I'(r+2)(1-p)?

w(X) =EX*-X) = Tr 2 (2.58)
qZ
w,X) =rr+1) 7 (2.59)
So
qZ

EX?-X)=r(r+ 1)p—2 (2.60)
E(X?) = r(r + L,
P> p

E(X?) = ;—Z [(r + 1q + p] (2.61)

us(X) = E(X3 —3X%2+2X) (2.62)

q3
=r+2)(r+ 1)7“; (2.63)
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So

3
EX3-3X242X)=(r+2)(r+ 1)rq—3
p

3
EXH=0+2)+ 1)r% + 3E(X?) + 2E(X)

3
E(X?) = (r+2)(r+1)r—+3—[(r+1) +1] —z—

:_Z{(r+2)(r+1)q +3p? [(r“) +1]_2p}
:;_Z{(r+2)(r+1)q2+292 [3(”1)%“]}

rq
E(X?) = ?{(r +2)(r + Dg* + p[3(r + Dq +pl}

pa(X) = E[X(X — DX — 2)(X — 3)]
= E[(X* — 6X3 +11X? — 6X)]
= E(X" —6E(X3) + 11E(X?) — 6E(X)
4

(X)) = (r+3)(r + 2)(r + 1)r%

Hence

4

EXH=0+3)T+2)0+ 1)r% + 6E(X3) — 11E(X?) + 6E(X)

4

=r+3)T+2)r+ 1)r + 6—{(r +2)(r + Dg? + p[3(r + g + p}

—11—((r+1)q+p)+6?q

(2.64)

(2.65)

(2.66)

(2.67)

(2.68)

E(XY = ;—Z{(r +3)r+2)r+ 1Dg® + 6p{(r + 2)(r + Dg? + p[3(r + Dq + pl} — 11p*((r + g +p) + 6p°}  (2.69)
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Skewness and kurtosis

Skewness is a measure of symmetry or the lack of symmetry. A distribution, or data set, is
symmetric if it looks the same to the left and right of the center point.

Kurtosis is a measure of whether the data are peaked or flat relative to a normal distribution. That
is, data sets with high kurtosis tend to have a distinct peak near the mean, decline rather rapidly,
and have heavy tails. Data sets with low kurtosis tend to have a flat top near the mean rather than
a sharp peak. A uniform distribution would be the extreme case.

According to Pearson’s moment coefficient of skewness, the skewness of a random variable X is
the third Standard moment denoted by y,

Suppose X;,i = 1,2,3,.... N are univariate data that follows a Negative Binomial distribution
then

y,=E [(x — ”)3] (2.70)

1 3
= E[x3 — 3x%u + 3xu? + u] (E)

1 3
= [EG*) = 3EG) + 312ECO + 121 (5

3
= [EG) — 30(EG) + 3%} + 1)
3

= [E(x®) = 3us® + 1] (%)

_|ra rq\ (ra\  (ra\*] (p*\?
"= p—g{(r +2)(r + 1)g* +p[3(r + Dg +pl} -3 (?) (?> + (?) l (5) (2.71)

Negative values for the skewness indicate data that are skewed left and positive values for the
skewness indicate data that are skewed right
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kurtosis

Z§V=1(Xi - .U)4
(N —1)s*

=£|(5 M)g] (2.72)

S

Kurtosis =

4
= [E(X)*—4uE(X3) + 6)2E(X?) — 3u*] (1)

S
= [+ 36 + 20+ D + 6pllr + 20+ Dg? +pI3Gr+ Vg + 1)

—11p?((r + 1)q + p) + 6p3} — 4,11;—2{(7” +2)(r+1q? +p[3(r + g +p]}

rq rq\*] [p* z
v e -]
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CHAPTER 3

BETA - NEGATIVE BINOMIAL MIXTURES

3.1. Introduction
From chapter 2, we have identified the following forms of Negative Binomial distribution.

Lope=("p @-p)kfork=012..;0<p<1 (3.01)

with parameters r and p. k represents the total number of failures before the rth success and;
2. pp = (’r‘: i)prm —p)*" k=rr+lr+2.;0<p<1 (3.02)

If p is a sequence of independent Bernoulli trials and random variable k is taken to denote the
number of trials required to produce r successes, where r is a fixed integer

In this chapter we are going to consider the Negative Binomial distribution as given in (3.01)
when ris fixed and p is varying between 0 and 1.

The distribution of p is the classical beta distribution is given by

x*1(1 = x)F1

B B) 0<x<1l;ap>0 (3.03)

fGx) =

This will act as acts as the mixing distribution.
We shall also use the special cases of the classical beta distribution. These are

Uniform distribution
Power function distribution
Truncated beta distribution

bl R

Arc — sine distribution
Apart from the beta distribution and its special cases, we shall also consider

5. Confluent Hypergeometric distribution
6. Gauss Hypergeometric distribution
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The mixed negative Binomial distributions obtained by various mixing (prior) distributions will

be expressed

1. Explicitly (where integration is possible)
2. Recursively
3. Using method of Moments

In section 3.2 we shall have a brief discussion of the forms.

For the other sections we shall briefly introduce the mixing distributions before mixing them

with the negative Binomial distribution.

3.2. A brief discussion of the various forms of expressing the mixed distribution

3.2.1. Explicit form
The mixed distribution is expressed as

=" =) gy

If the integration is possible then we say that f(x) is expressed explicitly.

However, in most cases this is not possible so we resort to alternative forms.

3.2.2. Method of moments

=" (=) gy

=Y () vy | gy

k=0

fo=(""1TH Z () COYEET)

X
k=0
I'(r+x) .
!
I'(r)x! £

fG) =

forO<p<1;r>0x=012,..

(;i) (_1)kE(p(r+k))

(3.04)

(3.05)

(3.06)

(3.07)

E(p"*)is the moment of order r + k about the origin of the mixing distribution
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3.2.3. Recursion
One way of obtaining recursions is by considering the ratios of two consecutive probabilities i.e. f(x)/ f(x-
1)

3.3. Classical beta - Negative Binomial distribution

3.3.1. Construction of Classical Beta Distribution
Classical beta distribution can be constructed in various ways.

Method 1

We can consider a beta function which is expressed in the following format.

1
B(a,B) = f x* 11— x)P1dx (3.08)
0

If we divide both sides byB(a, ), we get

1 xa—l(l _ x)ﬁ—l
1= f dx (3..09)
0

B(a,B)

The right hand side of equation 3.06 is a pdf since the integral is equal to 1 and hence the pdf is

expressed as follows

xa—l(l _ x)[f’—l
B(a,p)

fX=xap) = ;0<x<1; >0 (3.10)

This is the Beta distribution.

Method 2
An alternative way of constructing a beta distribution is shown below.

Let xjand x, be two stochastically independent random variables that have Gamma
distributions and joint pdf

1 a—1,—x 1 B—-1,—x
f(xpxz):%?ﬁ e lﬁxz ez (3.11)
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1
flxy,x,) = mxl”‘_lxzﬁ_le_"le‘"2 0<x; <00,0<x, <o

X1

LetY =x+x, andp =

X1+x2
Therefore
X1 =yp, X=y—-yp=y(1l-p)
Then
1
= a=1Ty(1 = p)]F-le v e—v{1-p) 12
91(0,y) Falp (Py)*ly(1—=p)]F " ePe I/ (3.12)
Where
'dxl dx1'
dxp dx| =P Y
dy dp
/= —yp—y(1-p) = |-yl =y

Therefore equation 3.12 becomes

1
g1(p,y) = ——=p® 11 — p]f-Lya-1+i-1+1g—yp-y(1-p)
Tal'f

1
91(0,y) = mpa‘l[l —plflyatbtley (3.13)

with0<y<o and0<p<1

Integrating g1 (p, y) with respect to y, the results to the marginal pdf is given by

[0e]

1
, — = sa-1 1— B-1,,a+f-1,—y d 3.14
9:(p,y) fO Farp? [1-p]" "y e dy (3.14)

Introducing

['(a+pB)
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p* 1 -plf '@+ p) [yl

9:(p,y) = Tl . T@+p) dy
_p T i-plir@+p) o pt - pl
gz(P»}’) - F(ll—‘ﬁ . = B((x,ﬁ)
a=111 _ »18-1
9:(p,y) = pr U-pl 0<p<1laB>0 (3.15)

B(a,p)

Equation 3.16 is also called the Classical Beta distribution with parameters a and 8

3.3.2. Properties of the Classical Beta distribution
The jth moment of this pdf (classical beta) about the origin is given by

N 1pa+i—1[1_p]ﬂ—1
)= | ap — @

B(a+j,B)

E(P!) = 3.16i
") =5 p (3.161)
. (a+j—D!(a+ g—-1)!
E(P') = 3.16ii
() (@+B+j-Dl(a—1)! (3.16i0)
The Mean of the classical beta is therefore
E(P) = — 3.17
Ca+p (317)
The 2" moment about the origin is
(a+1Da
E(P?) = 3.18
(P%) (a+p)(a+p+1) (318)
And finally the variance of the mixing distribution becomes
Var(P) = E(P?) — (E(P))?
Var(P) = ap 3.19
T @ pia+p+ D) (3:19)
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3.3.3 The mixture

In explicit form

-1

Crx—1y A -p)f
fo=(""" )fop(l—m e

r+x—1 1 1
— r+a—1 _ x+p-1
( X ) B(a,pB) J;) P 1-p) dp

3 (r+x—1)B(r+a,x+ﬁ)
- B(a, )

X

_(r+x-D!Br+a,x+p)
C (r=D'x! B(a,B)

_ Tr+x) Br+a,x+p)
T T(r)x! B@p)

where x = 0,1,2,,

x=012,.;rapf>0

T +x)(a+ T+ a)l(x+p) _
 T(Mx!'TalfT(r+a+x+p) '

where x = 0,1,2,

dp

(3.20)

(3.21q)

(3.21b)

(3.21¢)

=012 ..;ra,f>0 (3.21d)

Z. Wang (2010). One mixed negative binomial distribution with application. Journal of

Statistical Planning and Inference

Using Method of Moments

I['(r+ x) =
fe) = I'(r)x!
k

(i) (_1)kE(p(r+k))

E(p"**)is the moment of order r + k about the origin of the mixing distribution

But

B(a+j,B)

E(P) = wm

“ ) = I'(r+x) (i) (_1)kB(a+r+k,ﬁ)_

I'(r)x! B(a,B)

36

;forx=012,...;r,a,6 > 0(3.22)



Mixing using Recursive relation
There are three ways of applying the recursive relation in this mixture, namely

1. Using ratio of the conditional distribution
2. Using ratio of the mixed distribution
3. Using a dummy function

1. Using ratio of the conditional distribution

1
() = | Fex/r)o@)ap (3.23)
p(x/p)is a Negative Binomial distribution in this case
_(rtx—=1\ ,1 N«
fem =TI )pra-p (3.24)

Substituting x with x — 1 in equation 3.24 we get

fa-nm= ("t ra-p (3.25)

Dividing equation 3.24 by equation 3.25 we get

o (T Dra-p
FC =D/~ Ty

X —

r+x—D0@r+x-2)(x—-1'(r-1)!
x(x— 1) (r—1)! (r+x-2)!

f(x/p) = A -p)f((x—-1)/p)

f(x/p) = (1 -p)f((x—1)/p) (3.26)

Substituting equation (3.26) into equation (3.23)

P (x) = jo T (= 1) /p)gw)dp
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—1[rt 1
po() = [ | £ = D/mamdn - | = 0/pgwrdp (3.27)
0 0

Consider
1
|| =D/ (3.28)
This can be expressed as
! r+x—2
[ (272 a-mg@ddp =p, (e - 1) (3:290)
0
Consider
1
fo pf((x = D) /p)g(p)p (3.30)

- jo r XA - py T g@)dp

= ) (1= p)* g (p)dp

_ (riizz) Yrdl4x—2
jh

(T +1+4+x-2 x—1
x—1
(r +x — 2)
iz wrpy SR IC R
( x—1 )
1 r

jo pf((x—1)/p)g(p)dp = T_I_x—_lpr—i-l(x -1 (3.30a)
Substituting equation 3.29a and 3.30a into 3.27 the Beta - Negative Binomial recursive mixture
becomes

r+x—1 r
pr(x) =—— [Pr(x -1) - m—_lprﬂ(x - 1)] (3.31)

r>1,x=012....;
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2. Using ratio of the mixed distribution
From equation 3.21b

r+x—D!'B(r+a,x+pB)
(r—1)!x! B(a,B)

f&x) =

wherex = 0,1,2, ...

Considering the below ratio.

f(x) _(r+x—1)!B(r+a,x+,8) (r—1)!x! B(a,B)
fx—1) (-1« B(a,f) (+x-1!Br+a,x—1+p)

fx) r+x—-1 B+x—1
fix—-1) X [r+x+a+ﬁ—1]

B+x—-—Dr+x-1)
x(r+x+a+p-1)

f&x) = fx—=1) (3.32)

forr,a,f >0,x=0,1,2...;

3. Using a dummy function

Consider the mixture equation below

-1, 1 1
flx) = (r +i )B(a ﬁ)fo p (1 = p)*Fdp (3.33)
Introducing the dummy function
1
L(r,a,p) = % = fo pte (1 —p)**F1dp (3.34)

Integrating the integral by parts.

1

1
f pr+a—1(1 _p)x+ﬂ—1dp :f udv
0 0

1 1
fudv=uv—f vdu
0 0

Let
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u=ptel and dv=(1-p)**ldp

Hence

_@-p**F

du = — prte2d d v=
u=r+a—-1p p an v py

(1 _ p)x+ﬁpr+a—1]1 (T +a— 1)

1 1
f pr+a—1(1 _ p)x+ﬁ—1dp — f (1 _ p)x+ﬂpr+a—2dp
0 0

x+p 0 x+p
-1
= (TA;IC__T_—'B)IX+1(7' -1 B) (335)
B(a, -1
L(r) = (gﬁ)j)&) = 4 ;t j(_ B )Ix+1(7” -1)

B(a,p)f(x) _(r+a—-1)B(ap)f(x+1)

= 3.3
G BT R G 3
This leads to
_(r+x-D+-1)
f(x) = Xt x=2) fx—=1) (3.37)
forr,B,a>0and x =1,2,3, ...
Identity

We can draw an identity based on the result from explicit mixing and that from method of
moments as follows.

X

B(r+ax+p)= z (i) (-D*Bla+71+k,B); forx=012,...;r,a,8>0 (3.38)
k=0
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3.3.4 Properties of Beta - Negative Binomial Distribution

Mean
Considering the result got from the recursive relation mixture i.e. equation 3.31

r+x—1 r
pr(x) = — [Pr(x -1)- r_l_x—_lpr+1(x - 1)]

[ee]

EOO = xp, ()

x=0

Pra(c— 1) (339)

= r
E(X) =;(r+x—1) [pr(x_l)_r-i-x——l

= Z(r+x— D p(x—1) —szrﬂ(x— 1
x=0 x=0

[0¢]

E(X) = ;@ +x-D("TEE T pra—pyt - rzo (CEET D a-pt (340)

Consider the first part of the equation

Z(r+x—1) (r:fzz)pr(l_p)x—l (3.400)

This can be expressed as follows

(r+x-—1)! ~
;(T—l)!(x— o (=p (3.40)
But
r+x-1D! 74 x—1
(r—l)!(x—l)!_r( x—1 )
Hence
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o9} [}

(r+x—1)' r x—1 r+x—1 T x—=1
oo nr A=y (T a-w (3:41)
x=0 x=0
r +x—-1 _ r
Z_Z(rxf1 Jpra-p =2
b p

Since

ri ("rE - (342)

This can be expressed as
Since

The mean therefore becomes

1 —
E(x) = =P (3.43)
p
Variance
E(X*) = ) X*p,(x)
E(X?) = Zox(r +x=0("EE T ra-pet- r; (TEET D prra - (3.44)
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Consider the first part of the equation above

(o]

Zx(r+x— 1) (r+f1 )pr(l—p)"_1 (3.44q)

x=0

It can be expressed or manipulated as follows

1 - x(r+x—-1! X
l—p;(r—l)!(x—l)!p(l_p)

1 w2 +x—1)!
= p"(1—-p)*
1-p 4 (r—1D!x!
povs

i Ty a-p»

But considering a Negative Binomial Distribution

E/py = ) 2 (T AT D pra-py

x=0
r(1-p)(1+7r(1—-p)
E(X?/p) = ( > )
p
And hence
1 x(r+x—1)! r(1+r(1-—
( Iy AT =P)
—p& (=D x-D! p®
Consider the second part of the equation
T' +x— r+1 _ x—1
Z rx 1 1-p) (3.44b)

This can be expressed as follows

_Tp = x(r+x—1)!
T 1-p Or(r—l)!(x—l)!
xX=

p"(1—-p)*
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_p S x2(r +x — 1)!
T 1-p r(r—1)!x!
x=0

PN\ +x—1y »
=1—p2;ﬂ(r ; )prai-p)
__p  ra-p(+rd-p)

(1-p) p’

B r(l +r(1 - p))
- p

p'(1—-p)*

The second moment therefore becomes

r(l +7r(1-p)) 3 r(1+r(1— P))

E(X?) = >
p p
r(1+r(1- 1
E(X?) = ( (1-p) (— — 1) (3.45)
p p
Hence
r(1+r(1 - 1 r?(1 - p)?
var(X) = ( ( p)) (__ 1) _#
p p p
r(r* —p)
var(X) = 7 (3.46)
3.3.5. Moment Generating Function
Consider the explicit mixture of Beta distribution with the Negative Binomial distribution
rr+x)B(r+a,x+p)
X = = ; =012, ..;r,a,>0
f( 2 r(r)x! B(a, ) x nap
MGF g(t) = E(t"); n=10,1,2, ...
gt)=H(@r,B;r+a+ B, t)pr(Z =0) (3.47)
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Where

o (am)b(n))t
Cn . .
H(a,b;c,t) = z @) is the Hypergeometric function

I'(x+n)
O

a=1;, b= c=r+a+pt=t

, N TmBmy  \t"

[(r+n)I(B+n) I'r+a+p) |t"
(t)_Z[ B T(r+a+pB+n)|n (3.48)
Differentiate g(t) with respect to t
Fr+n)T(B+n) Tr+a+p) [t"?
g =n Z[ g Tr+a+pf+n)| n
Frr+n)T(B+n) Tr+a+p) tnt
g® _Z[ r'p F(r+a+ﬁ+n)l (n—1)! (349)
Hence
"5y Fr+n)T(B+n) Tr+a+p) [t"2
g()—n(n—l);[ I'r g T'r+a+pf+n)| n (3:50)
von Frr+n)T(B+n) Tr+a+p) tn—2
9 ® _;[ Ir I F(r+a+ﬁ+n)l (n—2)! (3:51)
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3.4. Special cases of beta - negative Binomial distribution
3.4.1. Uniform - Negative Binomial distribution

3.4.1.1. Uniform distribution
Construction

Consider a beta distribution defined as follows

p i -p)!
B(a,B)

gp) = 0<p<1 ap>0

fweleta=p=1

We get the uniform distribution [0,1] given by

1 O0<p<i1

9(p) = {0 elsewhere (3:52)
Properties
Moment of order j about the origin of the uniform distribution g(p)
. 1 .
E(p}) :f p/ dp
0
]
j+1 0
E(p/) = ! 3.53
| (3.53)
Mean
E(P) = 3 (3.54)
Variance
(P) = ! 3.55
var =1 (3.55)
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3.4.1.2. The mixtures
Explicit mixing

=" =) g)dp

where g(p)is the uniform distribution.

ro=(""170) folzm - p)dp

p'(1—p)*
Br+Lx+1)P

f(x)=(r+z_1)3(r+1,x+1)fol

f(x)=(r+§_1)B(r+1,x+1)

(r+x—Dr@r+ Dr(x + 1)

f&x) = (r—D!x! r(r+x+2)

r
r+x+ 1) +x)

flx) = x=012.;r>0 (3.56)

Using recursive relation

The mixture between Negative Binomial and uniform distribution can be expressed in a
recursive format in the following two ways.

1°* Form

Here we consider the mixture from explicit mixing i.e. equation 3.56

r
r+x+ D0 +x)

f&) =

Formulation and working the below ratio.

flx) r r+x)r+x-1)
fx—1) (@+x+DE+x) r
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Hence

r+x—1

f(x)_r+ +1

fx-1) (3.57)

2" Form

Here we introduce a dummy functionl, (r) that is of a Beta format as follows.

=) 01—y

(r+gx)1) j-p (1—-p)*dp

L(r)= (LEC )1) folpr(l —p)¥dp (3.58)
Using integral by parts
Let
u=(1-p)*

du= —x(1—p)*ldp

r+1

:P
r+1

dv = p"dp

ju dv=uv—Jv du

r+11 X 1
r+1 1— x—ld
T

I(r) = [(1 -p)*

1

I,(r) = & p™+1 (1 - p)*~ldp (3.59)

L) ==l G+ D)
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fO _ x fx=-1

L(r )_(r+x 1) r+1 (r+x T
B (r+x—1)
f(X) +1(r+x1f(x_1)
Hence
r
f(x) = H—lf(x -1 (3.60)
Using Method of Moments
_Tr+0N\ (x K E ()
0 =Tt 2, () CDEET)

E(p™%)is the moment of order r + k about the origin of the mixing distribution
. 1
E(p) = ——

I['(r+ x) .
fx) = sz ( )(— )km (3.61)

forr >0;x=0,1,2,..

Identity

We can draw an identity based on the result from explicit mixing and that from method of
moments as follows.

r I'(r+x) e x 1
r+x+ 1T +x) - I'(r)x! o (k) (_1)kr+k+1

X

r!x!
(r+x+1)(r+x)!=kzzo( )(_ )kr+k+1

forr>0;x=0,1,2,..
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3.4.2. Power function - negative Binomial distribution

3.4.2.1. Power function distribution
Construction

Consider the beta function

p A -p)f!
9(p) = B(a,B) 0<p<lap>0
0 elsewhere

Let f =1then

() = p*'(1-p)°
9W) = TR 1)

a—1 0<p<l,a>0
o) = [ p<iia
0 elsewhere

This is the pdf of a power function distribution with parameter a

Properties

The moments of order j about the origin is
. 1 .
E(P)) =j ap®p/dp
0

1
— af pa+j—1dp
0
1

at+j—1
e
a+j 0

. a
E(Pj) = (I_-l-]
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Mean

a
E(P) =——
(P) a+1

Variance

var(p) = E(p*) —{E(p)}*

a a?

+2 (a+1)2

var(p) = —

a
(a+1)%(a+2)

var(p) =

3.4.2.2 The mixing
Explicit mixing

r+x—1

oo =" [rra-prowa

X

g(p)is the power function distribution
g(p) = ap*™!

f(x) = (T ¥ i - 1) jolpr(l —p)*ap*tdp

1

r@ =" e[ prreta e

pr+a—1 (1 _ p)x

f(x)=(T-H;_1)0{B(r+oz,x+1)J01

f(x)=(r+i_1)a3(r+a,x+1)

forx=012... ;a,r>0

B(r+ax+1) dp

(3.64)

(3.65)

(3.66)

This is the density function of the Negative Binomial — Power function expressed explicitly
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Using Method of Moments

['(r+x) .
I'(r)x! £

flx) = (3,) CDFE@T)

E(p™**)is the moment of order r + k about the origin of the mixing distribution

E(P) =
( ) a+j
I(r+ %) N
r+x X a
— —1)k 3.67
&) I'(r)x! £ (k)( ) a+r+k (3.67)
forr,a>0;x =0,1,2, ...
Using the recursive relation expression
We can achieve this by the use of two different ways.
1* Form
Consider the result from explicit mixture as shown below.
r+x—1
f(x)=( N )aB(r+a,x+1)
Expressing this a ratio
fe0 ("B +ax+1)

fx—1) (r:fIZ)B(r + a,x)

Hence
r+x—1
= — -1 3.68
f@) = —fx~ 1) (368)
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2" Form

Consider the explicit expression below

1

r+x—1
o= (""" e [ et pyap
0
Manipulate this to a dummy function I, (r, @)as shown below

1
—(r-{x(icl)) o fo p"t71(1 —p)*dp

Let

1
L(r,a) = %= fo p (1 —p)¥dp (3.69)

Integrating the integral by parts
Let

u=(1-p)*

du = —x(1 —p)* ldp

dv = pr+a—1dp
pr+a
- r+a
Judv=vu—jvdu
pr—i-a 1 X 1
I ) — 1— X r+a 1— x—ld
o =[a-p) T+aL e A R
X 1
—_ r+a _ x—1
L) = o [ e py iy (3.70)
X X
L(r,a) = S __ Li1(r—1a)

(r+§_1)a Tr+a
f)  x flx—1)
(r+§—1)a - r+a (r+x_3)a (3.71)

x—1
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(r+x 1)

FO = g ey -
Hence
r+x—1D@r+x-2)
[0 =—Se—p &1 (3.72)
Identity

We can draw an identity based on the result from explicit mixing and that from method of
moments as follows.

r _T(r+x)  x o
(r+x+ DT +x) Tl - (k) (—D* YTtk
rlx! a x a
rt+x+ DT +0! kzo(k) (_1)km (3.73)

for x=012,...;r,a>0

3.4.3. Arcsine - negative Binomial distribution
3.4.3.1 Arcsine distribution

Construction

The standard Arcsine distribution is a special case of the beta distribution with a = f§ = 3

Consider a beta distribution below

() = p*[1-p)ft
I = TR p)

0<p<1l,apf>0

Ifa=ﬁ=%

Then
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p—l/Z [1 _ p]—l/Z

g(p) = — 0<p<1;aB>0
B(.5)
1 1
ﬂ}%zﬂﬁﬂﬁzn
2’2 rd)
(p) —1 0<p<1ab>0 (3.74)
g\p) = =p=1la .
n\p(1—p)
This is the pdf of Arcsine distribution
Properties of Arcsine distribution
Jth moment about the origin
_1[1 ]_1
2 _ 2
g(p)=—p np 0<p<1;aB8>0
o1t 1
E(p/) =—j p'2[1—p] 2 dp
Ty
11
(1Y)
s F J = #
*’) -
31
B|=,=
T
31
B|=,=
E(P) = (f f)
B(=2
(33)
1

Var(P) = E(p*) — [E(p)]?

s~ Var(P) = % (3.76)
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3.4.3.2 The mixture

a) Explicit mixing

1

flx) = (r * }; - 1”0 p"(1—p)g(p)dp (3.77)

Where g1 (p)is the arcsine distribution

1

feo= (") [ra-p

1 1
r+x—1 B(r+5,x+5)
£ = ) (3.78)
X T
11
forr >0;x=0,12,..;and m =B (E'E)
b) Using recursive relation
We can achieve this by the use of two different ways.
1* Form
Consider the result from explicit mixture as shown below.
1 1
Fe = )
X T
Expressing this a ratio
r+x—1 1 1
f (e )B(r+5,x+5)
— 1)  (r+x-2 1 1
fle=1) (Txfl )B(r+5,x—z)
Hence
r+x-1)02x—-1)
fx) = flx=1) (3.79)

2x(r + x)

forr >0;x=0,12,...;
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2" Form

Consider the mixture equation

oo =" - i

Manipulate this to a dummy function I, (r) as shown below

1 1 1
L(r,p) = (ffx(icl))= fo p 2(1—p) 2g(p)dp (3.80)

Using integration by parts to solve the integral

We let

1
u= (1-p)2

1
dv =p" 2dp

pr+%
v = T
T+E
11! 1
19" 12 -— 1 1 3
L(r,p) = |1 —-p) 2L | + (2 1)J p" "z (1—p) T2dp (3.81)
r+s r+z- Yo
0

1
-— X 1 1 3
I,(r,p) = (2 ) f p"*2(1—p) 2dp
0

1

T'+E
(1-2x) (' 1 3
B A

0

1— 2x
L(r,p) = Tl L,_1(r+1,p) (3.82)
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_onf(x)  1-2xmf(x—1)

Ix(r,p) o (r+x-1\ T +x-1
() 2+l (T
1— 2X (r+x—1)
f(X) = 2r + 1 (T+§—1 f(x_ 1)
x—1
hence
r(1l— 2x)
flx) = mf(x -1 (3.83)
a. Mixture from the method of moment
_T(r+x) -

fx) = () CDFE@TH)

I'(r)x! 4

E(p™**)is the moment of order r + k about the origin of the mixing distribution

E(Pj) — B (J +%'%)

T

x 11

forr,a>0;x =0,12, ..

Identity
We can draw an identity based on the result from explicit mixing and that from method of
moments as follows.

X

B( - +1)—Z(x)( 1)’<B( ko 1) (3.85)
Ty X Ty ~ Lk r 2’2 '
forr,a>0;x =0,1,2, ...
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3.4.4. Negative Binomial - Truncated Beta distribution
3.4.4.1 Truncated Beta distribution

Construction
Consider a two sided truncated function given by

B
f p* 11 —-p)~ldp withl<a<p<pf<1lab>0 (3.86)
a

This function can be expressed in terms of incomplete beta function as

a

g g
f p*1(1—-p)~tdp =f p*l(1—-p)~tdp — f p*1(1—p)~tdp
a 0 0

= Bg(a,b)—B,(a,b)

Thus

B pa—l(l _ p)b—l
1= dp
Bg(a,b)—B,(a,b)

a

This gives a distribution referred to as truncated beta distribution g(p)with parameters a, 8, a, b

_ pla-pr
" Bg(a,b)—By(a,b)

9g) ;forl<a<p<f<l;a,b>0 (3.87)

Properties
Moments of order j about the origin of de distribution can be expressed as

N (Pt a-p P
E(P) = J By (a, b)—B,(a, b) dp

L B pati-1(1 — p)b-1
E(P])‘fa By(a,b) — B (@, b) "

Bﬂ(a +Jlb) - Ba(a +]lb)
Bg(a,b)—B,(a,b)

E(P)) = (3.88)
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3.4.4.2 The mixture
a) Explicit mixing
r+x—1y (' .
=" [ ra-wrawa
0
Where g(p) is the truncated beta distribution

a+j—1(1_p)b—1

-1 1 p
[ =) a-p)” 5pt@n) D@ P

r+x—1 1 pa+r+j—1(1 _ p)x+b—1
)] i
0

f@) = ( x By (a,b) — B, (a,b)

r+x—1)Bﬁ(a+r,b+x)—Ba(a+r,b+x)

fx) = ( Bg(a,b) — B,(a,b)

X

_(rt+x-1 Bg(a+71,b+x)—By(a+r,b+x)
/ (x)‘( ) By (a,b) — B, (a,b)

fora,b>0;1<a<p<f<L;x=012..
This is the pdf of the Negative Binomial — truncated beta mixture

b) Using method of moments

F X
fx) = % () CDFE@T)
k

(3.89)

(3.90)

E(p™**)is the moment of order r + k about the origin of the mixing distribution

And
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Bﬁ(a +]rb) - Ba(a +]lb)
Bﬁ (a; b)_Ba (a; b)

E(PY) =

(3.91)

f(x)zl“(r+x) x (x)(_ Y Bg(a+1+k,b)—B,(a+r+k,b)

r'(r)x! £ k Bg (a,b)—B,(a,b)

forr>0;1<a<p<f<1l;ab>0x=012,..

Identity

We can draw an identity based on the result from explicit mixing and that from method of
moments as follows.

X

Bg(a+7,b+x)—By(at+7,b+x) =Z(i) (—D*{ Bg(a+7+kb)—B,(a+r+k,b)}
k=0

(3.92)

forr>0;1<a<p<f<1l;a,b>0;,x=01,2,..

3.5. Negative Binomial - Confluent Hypergeometric distribution

3.5.1. Confluent Hypergeometric
Construction

Given the confluent Hypergeometric function

1.,a-1 b
_ _(pA=-p)>
1Fi(a,a+b; —p) = JO B(ab) e Phdp

Dividing both sides by, F; (a, a + b; —u) we get

1 a—1 1— b—-1
j p* " (1—-p) ePhdp = 1
0

B(a,b){Fi(a,a + b; —p)
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Since the LHS of the above equation is equated to 1, then the LHS equation qualifies to be a
pdf. This is the pdf of Confluent Hypergeometric and is expressed as follows.

P -p)’!
B(a, b)lFl(a, a+ b, —,Ll)

gp) = e Pt for0<p<1l;a,b>0; —0o<pu<ow (3.93)

ref Nadarajah and Kotz (2007)

Finding the jth moment of the Confluent Hypergeometric distribution

E(P)) = fo p/ g(p)dp

' 1 jpa-1(1 — p)b-1
E(P) = j p'p*(1-p) e dp
o B(a,b)1Fi(a,a+ b; —p)

, 1 1 '
E(P) = jra=1(1 — p)b—1p—p1
( ) B(a,b){Fi(a,a + b; _P‘)j() p ( p)° e Phdp

. B(j+a,b Lpj+a=1(1 — p)b—1lg=px
E(P) = U ) f P -p) dp
B(a,b){Fi(a,a+ b; —p) J, B(j +a,b)
But
1. j+a—1(1 _ \b—1,—pu
p (1-p)" e . .
dp =1Fi(a+j,a+j+b; —
j(; B(]+a,b) p 1 1(a Ja ] ,Ll)
Thus

B(j+a,b)Fi(a+j,a+j+b; —u)
B(a,b);F;(a,a+ b; —u)

E(P)= (3.94)

62



3.5.2 Confluent Hypergeometric - Negative Binomial mixing
a) Explicit mixing

1
FG) = f /)9 (P)dp
0
Where

r+x-—1
f(x/p) =< . )p’”(l—p)x 0<p<L;r>0 x=01.2,..

() Pt 1-p) P 0<p<l;a,b>0 <pu<
= . o o
IV = gy Faat s e for0<p<Liab>0 o<y
1 r+x—1y (1
= r — xX,a—1 _ b —pu
10 =5 b)1F,(a,a+ b; —#)( x )jo p"(1—p)*p* (1 —p)’e Ptdp
1 r+x—1y (1
= r+a—1 _ x+b ,—pu
B(a!b)lFl(a;a‘l'b, —‘Ll)( X ).[0 p (1 p) e dp

B(r+a,x+Db) <r+x—1)-]‘1;9”“_1(1—p)x”’_le_p”d
p
0

" B(@b)F (aath —m\ «x B(r+a,x+Db)

B(r+ax+b)F(a+r,a+b+r+x; —,u)<r+x—1)

fo) = B(a,b){F (a,a+ b; —p)

- (3.95)

Forr,a,b > 0; —co< u<oo; x=0,1,2,..

Properties of Confluent Hypergeometric — Negative Binomial Mixture
First 3 moments about the origin

aFi(a+1l,a+b+1;,—p

EX) =
0 (a+b)1Fi(a,a+ b;—p)
E(XZ) _ a(a+1) 1Fila+2,a+b+2;—p)
“(a+b)(a+b+1) 1Fi(a,a + b; —p)
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a(a+ 1)(a+ 2) 1Fi@a+3,a+b+3;,—w

E(X?) = (@a+b)a+b+1(a+tb+2) Fi(a,a+b;,—p)

Var(X) = E(X?) — [EC)]?

a(a+ 1) Fi(a+2,a+b+2;—p) [a;Fi(a+1,a+b+1;—m

Vo) = @@t bt iR@at b L@+ bif@at b

Ref; A paper by E.Gomez; J.M. Perez — Sanchez; F.J Vazquez — Polo and A. Hernandez — Bastida

b) Mixing using method of moments

I'(r+x) =
fe) = I'(r)x!
k=0

(i) (_1)kE(p(r+k))

E(p"**)is the moment of order r + k about the origin of the mixing distribution

B(j+ab)Fi(a+j,a+j+b; —p)
B(a,b),F,(a,a + b; —u)

E(P)) =

Therefore

I'(r+x) . (x)(_l)kB(r+k+a,b)1F1(a+r+k,a+r+k+b; —u)
k

f(x) = szo B(a,b){Fi(a,a + b; —p)

(3.96)

forx=0,12,..;a,b>0;r>0

Identity

We can draw an identity based on the result from explicit mixing and that from method of
moments as follows.

X

B(r+a,x+b)Fila+r,a+b+r+x; —u :Z(i) (—D*B(r+k+ab)Filat+tr+ka+r+k+b; —p)
k=0

forx=0,12,..;a,b>0;r>0 (3.97)
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Applications of Confluent Hypergeometric — Negative Binomial mixture

Confluent Hypergeometric — Negative Binomial mixture is a common distribution used in insurance to a
variety of claims

E.Gomez; J.M. Perez — Sanchez; F.J Vazquez — Polo and A. Hernandez — Bastida found out that when you
calculate the expected frequencies for automobile insurance claims and using the Confluent
Hypergeometric — Negative Binomial mixture then the outcome came out satisfactorily fit.

The mixture was found to be a better alternative to the standard Negative Binomial distribution and
other mixtures.

Suppose the number of claims in a portfolio of policies in a time period is denoted by N

Let X;,i = 1,2,3,, ... be the amount of the ith claim

S=X;+X, + X3+ - .....+Xy will be the aggregate or total claims generated by the potfolio.
Note

1. Therandom variables X;,i = 1,2,3,, ... N are i.i.d with a CDF F(x) and pdf f(x)
2. The random variable N; X1, X5, X3 are mutually independent

Suppose we are using the Confluent Hypergeometric — Negative Binomial mixture model for N, the CDF
of the distribution of total claims become

[00)

E(X) = z F**(X)PrifN = k)

k=0

Where

F*k is the kth fold convolution of F and PrifiV = k) is defined above

3.6. Gauss Hypergeometric - Negative Binomial Distribution

3.6.1. Gauss Hypergeometric distribution
Construction

Given the Gauss Hypergeometric function

1 ta—l(l _ t)b_l
B(a,b)(1 + zt)¢

2Fi(a,e,a+b;—2z) = f
0

forO0<t<1l;a,b>0; —0o<eg<o00
Divide both sides by, F;(a, €, a + b; —z) to get
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fo B(a,b)(1 + zt)*,F(a,&,a + b; —z) =1

This forms the pdf of gauss Hypergeometric given by

B(a,b)(1 + zt)*,F (a,&,a + b; —z)

g(t) =

forO0<t<1l;a,b>0; —0o<eg<o0

(see Armero and Bayarri (1994))

Finding the jth moment about the origin

E(T)) =
( ) B(a,b),F;(a,&,a+ b; —Z)_[0 (1 + zt)¢

B B(j +a,b) flt”“%l—ﬂ“1
" B(a, b),Fi(a,e,a+b;—z) )y B(j +a,b)(1+ zt)®

B(j+a,b),F;(j+aea+b+j;—2)

E(T/) =
( ) B(a,b),F;(a,&,a + b; —z)

3.6.2. Gauss Hypergeometric - Negative Binomial mixture
a) Explicit mixing

o= [ (T ra-praea

Where g(p) is the pdf of the Gauss Hypergeometric distribution

_ p*ta-p)!
9() = B(a,b)(1 + zt)*,F,(a,&,a + b; —z)
_(rtx-1 1 “p (1 -p)p A -p)*!
fe) = ( x )B(a, b),F;(a,&,a+ b; —z)_f0 (1 + zt)
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3 (r +x - 1) B(a+7,b+x) f‘” prtaTl(1 — p)¥th-t
—2 J,

d
x B(a,b),F;i(a, & a + b; B(a+1,b+ x)(1+ zt) p

r+x—1)B(a+r,b+x)2F1(a+r,£;a+b+r+x;—z)

fx) = ( B(a,b),Fi(a,e,a + b; —z)

; (3.100)

Forx =0,12..;r=0,12....;a,b>0; —0 < £ <0

b) Using method of moments

I'(r+x) -

fe) = I'(r)x! o

() CDFE@)

E(p"**)is the moment of order r + k about the origin of the mixing distribution

And the jth moment for the Gauss Hypergeometric distribution is given by

B(j+a,b),F;(j+aea+b+j;—2)

) =
EPT) B(a,b),F;(a,&,a + b; —z)
Hence
X
I'(r+x) x B(j+ab),Fi(r+k+aca+b+r+k —z)
=— —1)k 3.101
F&) =T 2, (L) D B(a,b),F,(a,5a+ b;—2) (3.101)
Identity

We can draw an identity based on the result from explicit mixing and that from method of
moments as follows.

X

B(a+r,b+x),F(a+r,a+b+r+x;,—2) =Z(J]z)(—l)"B(j+a,b)zFl(r+k+a,£,a+b+r+k;—z)
k=0

Forx=0,12..;1r=012...;a,b>0;, —0o < < (3.102)
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CHAPTER 4

NEGATIVE BINOMIAL MIXTURES BASED ON DISTRIBUTIONS BEYOND
BETA

4.1 Introduction

All the distributions we are going to consider in this category are within the [0,1] domain and
are not based on beta distribution. Some of them are listed below;

Kumaraswamy (I) and (ll) distribution
Triangular distribution

Truncated Exponential distribution
Truncated Gamma distribution
Minus Log distribution

Two — Sided Ogive distribution

Ogive distribution

© No Uk wNR

Two — sided power distribution
When carrying out the mixing we will use the following methods

a. Moments method
b. Direct integration and substitution also referred to as explicit mixing
c. Iteration method(where applicable)
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4.2 Negative Binomial - Kumaraswamy (I) Distribution

4.2.1 Kumaraswamy (I) Distribution
Construction

Given the Kumaraswamy (ll) Distribution with a pdf

gp) =ab(1 —p»)P1p* 1 0<p<l;a,b>0

Letp=U1/a o<ux<i; a>0

Then

g@) = ab(1—w)1ul"a|

But

1
||_|dp|_ua
JI= dul a

Substituting |/ |

1
14
1 Ya
gw) = ab(1 —w)Pu'"a—

Therefore

—_ \b-1 .
g(u)={b(1 u) forO<u<1;b>0
0 elsewhere

This is the pdf of Kumaraswamy (l) distribution with parameter b

It is always denoted by Kw (1) distribution
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Properties of Kw (I) distribution

The jth moment about the origin of the Kw (l) distribution is given below
. 1 .
E(U)= bf w(1—u)ldp
0
E(U)=bB(+1,b) (4.03)
1

E(U) = bB(2,b) = TSNS (4.04)

var (U) = E(U?) — (E(W))°

2 1
T B+3)(b+2)(b+1) (A+b)Z2+b)?

2b%2 +5b +1

var V) = 0¥ 2z + b2 G 1 b)

(4.05)

4.2.2 Negative Binomial - Kumaraswamy (I) distribution mixing
4.2.2.1 Explicit mixing

This refers to the mixing on the direct substitution basis

r+x—1y (!
f(x) =( N )f pr"(1—p)*g(p)dp
0
Such that g(p) is he pdf of Kw (l) distribution

—_ n)b—1 .
g(p)z{b(l p) for0<p<1;b>0
0 elsewhere

Replacing g(p)
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=" W= ) dp

1

ro =" e [ra-peria

r+x—1

f(x)=( )bB(r+1,x+b)

f)=(""bB(r+1L,x+b) x=01.2,..; br>0 (4.06)

See Li Xiaohuet al (2011) on Binomial mixture

4.2.2.2 Mixing using the moments method

Prob(X = x) = Fﬁr( ;:?Z( ¢ (1) E@T+)

E(p"**)is the moment of order r + k about the origin of the mixing distribution

L Tr+x) o x
Prob(X = x) = —eob kz:o(_l)k (3)BG+k+1,b) (4.07)

forr,b>0;x=0,1,2,...

Identity

We can draw an identity based on the result from explicit mixing and that from method of
moments as follows.

B(r+1,x +b) = zx:(—nk (i)B(r +k+1,b)

forr,b>0;x =0,1,2,3, ..
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4.3 Negative Binomial - Truncated Exponential Distribution

4.3.1 Truncated Exponential Distribution (TEX(4, b))
Construction

Let Y be a one sided truncated Exxponential randon variable, the pdf of Ycan be evaluated as
follows

b o=y/2
f dy =[1—e™"/"]
o A

Dividing both sides by [1 — e /4]

Lety = pb

dy = bdp

This is a pdf which can be expressed as

(

p b
-e 2

A
—— 0<p<1 b1>0
— b ] )

0 elsewhere

(4.08)

This the Truncated Exponential distribution with parameters A and b

4.3.2 Negative Binomial - Truncated Exponential distribution mixing
4.3.2.1 Explicit mixing

This is direct substitution and integration expressed as follows

=" =) gy

g(p)is the pdf of truncated exponential distribution with parameters A and b
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bp

e

—/1 [1 — A]f p"(1—p)e tdp (4.09)

oo =" [ra-pr

r+x—1)
X

e =(

Consider a Confluent Hypergeometric function

1
1Fi(a,a + b; —x)B(a,b) = f p¢~1(1 —p)P~leP*dp
0

Therefore

1 b b
f p"(1—p)e idp =, F (r Fr+x+2; —Z>B(r +1,0+1) (4.10)
0

Thus equation 4.09 results to

rtx—1\biF (r+Lr+x+2-2)BOr+1Lx+1)
ro=("5 ) :
1[1—97]
b
) blFl(T+1.T+X+2:—;)(r+x—1)! r(r—1!x!
xX) =
/’l[l—e_%] r—D'x! r+x+ DT +x)(r+x—1)!
blFl(r+1,r+x+2;—%> r
xX) = orx=0,12,..;b,1,A>0 (4.11
) A[l—e_ﬂ r+x+ D0 +x) f (411)

This the mixture distribution of Negative Binomial distribution and Truncated Exponential
distribution in its simplest form
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4.4 Negative Binomial - Truncated Gamma Distribution

4.4.1 Truncated Gamma Distribution
Construction
Consider an incomplete Gamma function given by

a

v(b,a) =f th=letdt
0

Divide both sides by y(a, b)

th=1p—t
dt =1
jo y(a,b)
Thenlett = ap which implies dt = a dp

Therefore

1abpb 1 —ap
P °  ap=1
fo y(a,b) P

It forms a pdf which can be expressed as

abpb—le—ap

g(p) = —y(a,b) 0<p<1l;ab>0 (4.12)

elsewhere
ith moment
b+] -1 e ar

1
B(P) = f —

E(P ) _ aby(a,b +]) 1ab+jpb+j—1e—ap p
ady@b) Jy  v@b+p T

a’y(a, b +))
)=

y(a,b+))
B(P) = @by
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4.4.2 Negative Binomial - Truncated Gamma Distribution mixing
4.4.2.1 Explicit mixing

By substituting g(p) and integrating the integral

flx) = (r ’ z - 1) folpr(l —p)*g(p)dp

Where g(p) is he pdf of truncated gamma distribution
b b—1e—ap

o= [ra-p e

-1 b 1
=" s ) At
r+x—1\ a® (b B
=" s ) ey (413)

Consider a Confluent Hypergeometric Function

1

1Fi(a,a + b; —x)B(a,b) = J p¢1(1 —p)P~leP*dp
0

Therefore

1
f p P (1 —p)e®dp =, FF(r+b,r +b+x+1;,—a)B(r + b,x + 1)
0

Thus

60 (r+x—1)ab1F1(r+b,r+b+x+1;—a)B(r+b,x+1)
x =
y(a, b)

forx=0,12,..;r,a,b >0

(4.14)

(see Bhattacharya (1968) on Binomial mixture)
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4.4.2.2. Using the method of moments

_T(r+x) -
) = oy Z( D (1) E@T)

E(p"**)is the moment of order r + k about the origin of the mixing distribution

I +x)z( )k y(ab+r+k)

1= I'(r)x! a(”")y(a,b)

forx=0,12,..;r,a,b >0

Identity

We can draw an identity based on the result from explicit mixing and that from method of
moments as follows.

y(a,b +7r+k)
(r+k)

a’ Fi(r+b,r+b+x+1; —a)B(r+bx+1)—Z( 1)k )

forx=0,12,..;1r,a,b >0

4.5. Negative Binomial - Minus Log Distribution

4.5.1. Minus Log Distribution
Construction

Let the Random variable X have the uniform pdf U[0,1], Let [x{, x,]denote a random sample
from the distribution.

The joint pdf x; andx,is then

n _ (fx)f(x2) 0<x<1;0<x,<1
(%172 { 0 elsewhere

Consider the two random variables P = x;x, and Y = x;

The joint pdf of P and Y is
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gp,y) = 1lJ|

Where
=lgn an
dp dy
LA
I = %1 1y =5
Thus g(p,y)=% 0<p<y<l1

The marginal pdf of p is

11
g() =] ;dy

14
g() = [logyl; = 0—logp

gp)=—-logp 0<p<1 (4.16)

This is the pdf of minus log distribution

Properties of Minus log distribution

The jth moment of the minus log distribution is given below

1
E(P) =j P/ (—logp)dp
0
Leta = —logp p=e“ dp = —e “%da
. 1 .
E(P)) = —f ae 0+ Vdq
0

Using the minus sign outside the integral to swap the limits, we will have.
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E(P) =f ae~*U+Ddq
0

E(P)=r—= 4.17
(") =575 (4.17)
1
E(P) = 7 (4.18)
P) =— 4.19
var (P) = —= (419)
4.5.2Negative Binomial - Minus Log Distribution mixing
4.5.2.1 Explicit mixing
_ 1
r+x—1 . N
f =" [ ra-mrgmap
0
g(p) is he pdf of minus log distribution.
Thus
1
r+x—1 . .
e =(""T7) [ pra-pc-lognd (4:20)
0
Let a = —logp p=e“ dp = —e™¢
We have

1

) = (r+9;—1>{_J0
f(x) = <r * ); B 1) zx: (le) (—1)* {— folae_a"e_me_“da}

k=0

F) = (r + J; - 1) Zx: (i) (=1)k {_ Jolae_a(”k“)da}

k=0

ae (1 — e_a)xe_“da}
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Using the minus sign outside the integral to swap the limits, we will have.

f(x) = (r * fc B 1) zx: (i) (- {f()ooae_a(r+k+1)da}

f(x):(r+x—1> - (i)(_l)k 1

X — (r+k+1)>2
The mixture can be expressed as
rx— 1\ x 1
flx) = ( . )Z (k) (—1)"m x=012..7r>0 (4.21)

k=0

4.5.2.1 Mixing using method of moments

I'(r+x) .
@ =156 )'Z( D () E0)

E(p™**)is the moment of order r + k about the origin of the mixing distribution

I
F) = (’"”)z( D (}

T 00! (4.22)

(r+k+1)2

for x=012,..1r>0
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4.6 Negative Binomial - Standard Two - Sided Power Distribution

4.6.1 Standard Two - Sided Power Distribution
Construction

The standard Il sided power distribution can be viewed as a particular case of the general two
sided continuous family with support [0, 1] given by the density below

p
h([g]/go) 0<p<8
9(/8,h(./p)) = _p (4.23)
([7=5]7) 1
-6 /o 0<p<
Where h(./¢@) is an appropriately selected continuous pdf on [0, 1] with parameter(s) ¢
h(./@) is called a general density such that
h(y) =ky*1 0<y<1;k>0
which is a power function distribution
Then
k—1
k (g) 0<p<b
ORI (4.24)
— 1
\k (1 — 9) 0<p<

And this is the pdf of a two — sided power distribution with parameters k and 6
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4.6.2 Negative Binomial - Standard Two - Sided Power Distribution
4.6.2.1 Explicit mixing

This entails direct substitution into the following equation
r+x—1y (' .
=" [ ra-wrgwa
0
Where g(p) is he pdf of Standard Two — Sided Power Distribution

F) = (r + 3; - 1) i {ekl_l j(‘)g pr+k—1(1 —p)*dp + (1——;)’”[(9

F) = (r +x— 1) " {BQ (r -Ié—)kl\zlx +1) N [B(r+1,x +(11c)_—6§(9_(: +1,x+ k)]} (4.25)

This is the mixture between Negative Binomial distribution and the standard two — side power

1

p'(1—p)*ldp }

distribution.

4.7. Negative Binomial - Ogive Distribution

4.7.1. Ogive Distribution
Construction

The general form of an Ogive distribution is given by

gp)=——pmD24—_— pm 0<p>1;m>0  (4.26)
From (Dorp and Kotz (2003))

4.7.2. Negative Binomial - Ogive Distribution mixing
4.7.2.1. Explicit mixing

This entails direct substitution into the following equation

flx) = (r * z - 1) folpr(l —p)*g(p)dp

Where g(p) is he pdf of the Ogive distribution
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-1\ (! 2 1) m-1 1-—m?
=7 o PR e a2

r+x—1)(m+1)

reo=( )

X

1 M1 1
{me p’ T (1—-p)dp+(1- m)f p (1 -p)* dp}
0 0

r+x—1\(m+1) b orem— . 1r+m x
—( N )3m+1{2mf0p 2 (1-p) dp+(1—m)f0p (1-p)dp

r+x—1)(m+1){ (2r+m—1

f(x):( 3m + 1

N +1,x+1)+(1—m)B(r+m+1,x+1)} (4.27)

forx=012,...;r>0m>0
4.8. Negative Binomial - Standard Two - Sided Ogive Distribution

4.8.1. Standard Two - Sided Ogive Distribution
Construction

The two sided ogive distribution can be viewed as a particular case of the general two sided
continuous family with [0, 1] given by the density

p
h([g]/go) 0<p<§@
9g(/0,h(./p)) = 1—p (4.28)
w(izgle)  e<r<a
Where h(./¢) is an appropriately selected continuous pdf on [0, 1] with parameter(s) ¢
h(./p) is called a general density such that
) 2m(m+1) m_—l_l_l—m2 . 129
= 2 .
ZY 3m+1 y 3m+ 1y ( )

0<y<1m>0

This is an Ogive distribution and so
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2m(m+ 1) p

[] [p] 0<p<6;m>0

3m+1 3m+1
9(p) = (4.30)
2m(m+1)1— ] p] D<p<l-m>0
3m + 1 3m+111—0 p=t.m

And this is the pdf of the two sided Ogive Distribution with parameters m and 6
When p = 0 then the two — sided Ogive distribution is smooth and this is the reflection point.

Although this contradicts the situation at the reflection point of the two — sided power function

4.8.2. Negative Binomial - Standard Two - Sided Ogive Distribution mixing
This entails direct substitution into the following equation

flx) = (r ’ ); - 1) jolpr(l —p)*g(p)dp

g(p) is the pdf of the Standard Two — Sided Ogive Distribution

Zm(m +1)
“3m+1

=) a0 |

3m+1

m-—1

2

2m(m + 1) [1 — p]

3m+1

0
{[e]mT_l 0"

2m 1
+—m_—1f p'(1—p)
1-6)z "7

r+x—1)(m+1)

f(x)=( 3m + 1

X

1-26]

2r+m—1 1-—

+3m+1 1-0 ] ] dp

(1—-p)dp+

0
r-meq — x
gm Jop (1—-p)dp

2x+m—1 1 —

dp +——- fl r(1-pymd
P+ Tgyn ), PP
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r+x—1\(m+1)| 2m 2r+m-—1 1 "
f(X)_( X )3m+1 [Q]mT_l 9( 2 + 'x+ )
1-m
+ om By(r—m+1,x+1)
2m 2x+m-—1 2x+m-—1
+—m_1[B(r+1,—+1> — By(r+1,———
(1-6)7 2 2
1-m
+1)]m[8(7‘+1,x+m+1)—89(r+1,x+m+1)]} (4.31)

forx=012,.... ;m>0;r>0

4.9. Negative Binomial - Triangular Distribution

4.9.1. Triangular Distribution
Construction

A

Diagram 1

The Triangular distribution T'(0,1, 8) arise from the conjuction of two lines which share a

common vertex.

The density of the triangular distribution is defined by
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91(p) if0<p<o
9g) =1g,(p) if6<p<1
0 else where

When

g1 (p) is the equation of the line (0,0), (6, 2) computed as

91(p) _ 2
p 0
Therefore
2p
g1(p) = )

g>(p) is the equation of the line (6, 2), (1, 0) computed as

92(p) _ —2
p—1 1-6
Therefore
21-p)
9:(p) = 1_9

Thus the density of the triangular distribution becomes

2
!{719 0<p<éb
=<2(1-
9() (1_619) 6<p<i

0 elsewhere

Ref (Kotz S et al (2004) - Beyond Beta — Other Continuous families of Distributions with

Bounded Support and applications page 1 —31)

85

(4.32)

(4.320)

(4.32i)

(4.33)



Properties of Triangular distribution

The moment of order j about the origin of triangular distribution is worked out below

- 2p '21-p)
E(P) = —Pld P/ d
(P) foe p+f9 Db ap

2 +2 2 j+1 j+211
E(P) = 2p P °L
6G +2)], —0j+1 j+2],
207 +2 2 1 1 gt g2
E(P)) = +
(P) = 060G+ 2) 1—9L+1 j+2 j+1 ]+2]

L 200 G+ 182 — (j+2)6/*1
E(P’)—9(]-+2)+1—9I(j+1)(j+2)+ G+DG+2) l

2 [02(1-6) 1 G+ Do+~ (j+2)6+

E(P])_l—el 0( + 2) +(j+1)(]'+2)+ G+DG+2) l
L2 [ot-6) 1 G+ Do/ —(j+2)0/

E(P])_l_gl G +2) +(j+1)(]'+2)+ G+DG+2) l

oy — 2 [U+ DO +14 G+ DO~ (i + 2o

( )—1_9l G+DG+2) l

2 [(+HDT -G+ DO+ 14+ G+ DO - (+2)0/
_1—9[ G+1D(G+2) l

]+1
E(P)=1—5 l(1+1)(/+2) (4.34)
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Mean is therefore

E(P) = 1+ (4.35)

Variance od p is given by

Var(P) = E(P?) — (E(P))’

0> —60+1
Var(P) = —5 (4.36)

4.9.2. Negative Binomial - Triangular distribution mixing
4.9.2.1. Explicit mixing

This entails direct substitution into the following equation

=" =) gy

Where g(p) is he pdf of the Triangular distribution
r+x—1y(2 (¢ 2 (!
=" G [ty [ Pa-papl @)

f(x) = <r+i_ 1>{§Bg(r+2,x+ 1) +%[B(r+ 1,x+2)— Bg(r + 1,x+2)]}

fx) = (4.38)

2r(r + x) {Bg(r+2,x+ 1) +B(r+ 1,x+2)— By(r+ 1,x+2)}
x!Tr

0 1-6

forx=20,1.2, ... .. 0<0<1,r>0
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And this is the mixture of Triangular distribution and Negative Binomial distribution expressed
explicitly

4.9.2.2. Mixing using the method of moments
Here we have two ways of carrying out mixing using this method

Casel

fx) = (r * z - 1) folpr(l —p)*g(p)dp

Where g(p) is he pdf of the triangular distribution

But we know that

X

W=p)y = ) (i) D Hp

k=0
Therefore
-1 1 X
fl) = (r +i )fo P’ ; () D p** g(w)ap
+x—1\ % 1
reo= () @ e R aOT I CED
("IN () o e (4.40)
k=0
r+x—1 al o 2(1 _ 9r+x—k+1)
fe) = ( X )kzo(i)(_l) k(r+x—k+1)(r+x—k+2)(1—9) (4.41)
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Case 2

From the formula

— 1!
Fo) = Z e (CDAE )

E(p"**)is the moment of order r + k about the origin of the mixing distribution

( I'(r+x) z( 1 —grtk+l 142
F&) = oo 9) G+k+ D +k+2) (4-42)
Properties of Negative Binomial — Triangular distribution mixture
The mean is given by
'a(1-p)
En = [ S0 (4.43)
0 p
EX)=aE(P) -«
—2log6
E(X) = -1 4.44
00 = a2~ 1) (4.44)
Since0 <8 <1
Therefore
EX)>a Vv©O
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Variance

Variance of this mixture doesn’t exist since the second inverse moment of the triangular
distribution doesn’t exist. It is important to note that this distribution has a very long tail.

Identity

We can draw an identity based on the result from explicit mixing and that from method of
moments as follows.

(1-6)
2 {(1 -0)0

1— 9r+k+1

r+k+D0@r+k+2)

B+ 2 D40 4 x4+ D - BG4 1x 2= Y 0 ()]
k=0

Forx =0,1,2, ... ... ;0<0<L,r>0
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CHAPTER 5

GEOMETRIC DISTRIBUTION MIXTURES WITH BETA GENERATED
DISTRIBUTIONS IN THE [0, 1] DOMAIN

5.1. Introduction

Geometric distribution is a special form of the Negative Binomial Distribution whenr = 1. It is
therefore important to note that the results of Negative Binomial mixtures can be used to
generate the geometric mixtures by substituting the value of r = 1lin the Negative Binomial
mixtures. We are going to review the Geometric distribution mixtures with Beta generated
distributions in the [0,1] domain in this chapter.

5.2. Geometric - Classical Beta Distribution
Classical Beta Distribution

x®1(1 = x)B1
B(a,p)

for 0<x<1;af>0

fX=xa,p) =

5.2.1. Classical Beta - Geometric distribution from explicit mixing
Classical Beta — Negative Binomial distribution from explicit mixing

_(r+x-DIB(r+ax+p)
&) =D Bap

fora,fp>0;,x=0,12,,..

From the above expression of the BND, when r=1, we attain the following distribution which is
the Beta - geometric mixture

B(A+a,x+p)
B(a,p)

fora,f>0;x=0,12,,..

fx) = (5.01)
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5.2.2. Classical Beta - Geometric distribution from method of moments mixing
Classical Beta — Negative Binomial distribution from method of moments mixing

_T(r+x)! - o\Bla+r+k,p)
f&) = reraon kZO(‘m (i B(a, B)

fora,f >0;x=0,1,2,,..

From the above expression of the BND we substitute r with 1 to attain the following
distribution which is the Beta - geometric mixtures

RN xBla@+k+1,p)
f@) = kzzo(_l)k (0~ 3@p (5.02)

fora,f>0;x=0,1,2,,..

5.2.3. Classical Beta - Geometric distribution from recursive relation
There are three ways of applying the recursive relation in this mixture, namely

a. Using ratio of the conditional distribution
b. Using ration of the mixed distribution
c. Using a dummy function

a. Using ratio of the conditional distribution

Prob(x) = jo /g (5.03)
£(x/p)is a Geometric distribution in this case
fx/p) =p(1 —p)* (5.04)
Substituting x with x — 1 in equation 5.04 we get
£ = 1)/p) = p(1 = py*= (5.05)

Dividing equation 5.04 by equation 5.05 we get
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fix/p) _ pA-p)*
flx=D/p) p(L—p)

fix/p)=A-pf((x—1)/p)
fx/p) =0 -p)f(x—1)/p)

Substituting equation (5.06) into equation (5.03)

1
Prob(x) = f (1 - p)f((x = 1)/p)g(p)dp
0

1 1
Prob(x) = fo (= 1)/p)g()dp fo pf((x = 1)/p)g(p)dp

Consider

1
jo £(Cx = 1)/p)g(p)dp

This can be expressed as

1
fo p(1—p)*1g(p)dp =p;(x — 1)

Consider
1
fo pf (= 1)/p)g(p)dp
1
= fo p*(1—p)*tg(p)dp

_ PPl -p)! _
=560 | gy =56,

1
fo pf((x = 1)/p)g(P)dp = B(3,%)

Substituting equation 5.08a and 5.09a into 5.07 the Beta - Geometric recursive mixture

becomes
Prob(x) = [Prob(x — 1) — B(3,x)]; forx=0,12....;
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b. Using ratio of the mixed distribution
From equation 5.01

fx) = B(l;—(z,;; B where x = 0,1,2, ...

Considering the below ratio.

f) _B+ax+p)  B(ap)

fx-1  B(a,f) BA+ax+p-1)
@) Wikl
fx-1) Ix+p+a
F@) = [ re= (511)

forr,a,f >0,x=0,12....;

c¢. Using a dummy function

Consider the mixture equation below

— 1 ! a _ x+p-1
FO) =Gy ) P — P (5.11)
Introducing the dummy function
1
L@ f) = B@pf@) = | p(1—py*ldp (5.13)

Integrating the integral by parts.

1 1
f p*(1—p)*+Ftdp =f udv
0 0

1 1
fudvzuv—f vdu
0 0

Let

and dv = (1—-p)**ldp
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Hence

_(@=p**F

du = ap®~1d d =
u=ap p an v o

(@ —p)**+Fpe
x+p

1 1 1
a
f p*(1—p)**F-1ldp = l + f (1-p)**¥p*ldp
0 0 X + ﬁ 0

= ﬁlx+1(a - 1'ﬁ)

I (@ B) = B ) () = ——

le+1(a - 1lﬁ)

B, f)f () = 5 B@~ 1B (x+1)

-1
Fo =L

fora>0and x =1,2,3, ...

This is the beta geometric distribution expressed iteratively

5.2.4. Properties of beta - Geometric distribution
Moment generating function

(5.14)

(5.15)

(5.16)

Consider the moment generating function from the beta — Negative Binomial distribution as

expressed in chapter 2

[00]

_ TwBm  \t"
9(t) = Z <(r +a+ ,B)(n)> n!

n=0

O [fr+mT@B+n) Tr+a+p) |
g(t)—;l I'r B T(r+a+pB+n)|n!
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When r = 1 we will end up with the moment generating function for the beta geometric
distribution as stipulated below.

ra+ n)I‘(B +n) TA+a+p) |t"
g(t)_Z[ rl+a+pB+n)|n! (5.06)
Differentiate g(t) with respect to t
, {1+ n)F(ﬁ +n) TA+a+p) |ttt
(t) _
Z l Frl+a+p+n) (5.07)
, r(1+ n)F(ﬁ +n) TA+a+p) tn1
( ) —
t Zl FTM+a+p+n)|(n—1)! (5.08)
g r(1 r r( n-2
© _n(n_l)zl (1+n) (B+n)r(1(+zjxr;i)n) t (5.09)
g r(1+ n)r(ﬁ +n) T(A+a+p) tn2
) —
Z I rll+a+p+ n)l (n—2)! (5-10)
5.3. Geometric - Uniform distribution
The uniform distribution [0,1] given by
(1 0<p<i1
9(p) = {O elsewhere (5.11)

The Negative Binomial — uniform distribution have the following formats from the respective
methods used in mixing the two distributions

Negative Binomial — uniform distribution from explicit mixing

f(x) = forr>0andx =0,12,.. (5.12)

r+x+1DTr+x )
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Negative Binomial — uniform distribution from recursive relation

1 form

F0 =

2" form

r
) =451

Negative Binomial — uniform distribution from method of Moments

_T(r+x) 1
fe) = I'(r)x! Z( r+k+1

f(x—1) forr>0andx=0,12,..

f(x—1) forr>0andx=0,12,..

(5.13a)

(5.13a)

(5.14)

In the above Negative Binomial mixtures it is important to note that if r=1 then they become

geometric - uniform distribution mixtures from the respective mixing methods as shown below.

5.3.1. Geometric - uniform distribution from explicit mixing

F) =

2+x)(1+x)

f(x)=B2,x+1) forx=0,1,2,..

5.3.2. Geometric - uniform distribution from recursive relation
1° form

Here we consider the mixture from explicit mixing method.

flx) = xx?f(x —1); forx=0,12,..

2" form

f(x) = %f(x —1); forx=0,12,..

97

forx=0,12,..

(5.15q)

(5.15b)

(5.16a)

(5.16b)



5.3.3. Geometric - uniform distribution from Method of moments

f(x)—Z( 1)k k+2 ; forx=0,1,2,.. (5.16)

5.4. Negative Binomial - power function distribution

5.4.1. Power function distribution
gp)=ap*t  0<p<La>0 (5.17)

This is the pdf of a power function distribution with parameter a

The following are the results of from chapter 3 in relation to the distributions emanating from
the Negative Binomial mixture with the power function.

a. Negative Binomial — power function mixing from explicit format
f(x):(r+§_1)a8(r+a,x+1) (5.18)

forr,a>0;x=0,12 ...
This is the density function of the Negative Binomial — power function expressed explicitly

b. Negative Binomial — power function from method of moments

_T'(r+x) a
f& =160, 2(_ 7 (i a at+r+k (5.19)

forr,a >0and x =0,1,2, ...
c. Negative Binomial — power distribution in a recursive expression
1* form (from explicit mixture result)

r+x—1
x+a+1

fx) = fix—-1) (5.20a)

2" form (using a dummy function)

r+x—1Dr+x-2)
r+a)(r—1)

f&) = fx=1) (5.20b)
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When r=1 the above mixtures become geometric — power mixtures

5.4.2. Geometric - Power distribution from explicit mixture

fx)=aB(1+ax+1) (5.21)

fora>0; x=0,12 ...

5.4.3. Geometric - Power distribution from moments method

a
fx) —Z(— )" a+k+1 (5.22)

fora>0and x =0,1,2, ...

5.4.4. Geometric - Power distribution in a recursive format
1* form (from explicit mixture result)

fx) = fix—-1) (5.23a)

x+a +1

2" form (using a dummy function)
Replacing r by 1 in the denominator of the below equation will nullify the result.

r+x—1Dr+x-2)
r+a)(r-—-1)

We can however calculate this from scratch to achieve the below result

f&x) = fx—=1)

Consider the explicit expression below
1
fo) =a [ peai-pyap

0

Manipulate this to a dummy function I,y (x)as shown below
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1
Iigy(x) = % = f p*(1—p)*dp
0

Integrating the integral by parts

Let
u=1-p)*
du = —x(1 —p)* ldp
dv = p%dp
B pa+1
T a+1
fudv=vu—jvdu
a+111
I,(x) = (1—p)"p - +— jlpa“ (1—-p)tdp
“ a+1]  a+1l
B ' 1 1
— a+ 1_ x—d
I (x) P Op (1-p)~dp
f(x) x
Ia(x)=7=a+1la+1(x_1)
f@_ x fx=1)
a r+a) (a—1)
Hence

ax
f(x)=r_|_—af(x—1)
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5.5. Geometric - Arcsine distribution
5.5.1. Arcsine distribution

1
P) = —F/—
I¥ mp(1—p)

This is the pdf of arcsine distribution

11
0<p<1l;ab>0and n=3(5,5>

(5.28)

The following are some of the expressions of the Negative Binomial — arcsine distributions

a. Negative Binomial — Arcsine from Explicit mixing

r+x_1)B(T+%,X+%)
X

Fo =

T
b. Negative Binomial— Arcsine distribution in a recursive format
1* form (from explicit mixture result)

r+x—-1)2x—-1)
2x(r + x)

fx) = fx=1)

2" form (using a dummy function)

_r(r 2x) 3
f(x) X )f(x 1)

c. Negative Binomial— Arcsine distribution from method of moments
11
o =IO () Nl Gkt )
X)=——— -
I'(r)x! & k i

forr,a >0;x=0,12, ..

When r=1 the above mixtures become geometric — arcsine distributions mixtures

5.5.2 Geometric - Arcsine from explicit mixing

B(Gx+3)

T

f&) =
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5.5.3. Geometric - Arcsine distribution in a recursive format
1* form (from explicit mixture result)

Flx) = % fx—1) fora>0;x=012.. (533a)

2" form (using a dummy function)

1-—2x

f(x) = fx—1) forx=0,12,.. (5.33b)

X

5.5.4. Geometric - Arcsine distribution from method of moments

x 31
F0 = () ~DF il G ) (5.34)

k=0 T
fora>0;x=0,12,..

5.6 Geometric - Truncated beta distribution

5.6.1. Truncated beta
This below distribution is referred to as truncated beta distribution g(p)with parameters
a,f,a,b

B pa—l(l _ p)b—l
B Bg(a,b)—B,(a, b)

9() fori<a<p<pf<1l;a,b>0 (5.35)

The following are some of the expressions of the Negative Binomial — arcsine distributions

a. Negative Binomial — Truncated beta distribution explicitly mixed

_ (r+x—1\ Bgla+r,b+x)—B,(a+r,b+x)
=) " b (5.36)

forr,a,b>0;1<a<p<pf<1;x=01.2..

This is the pdf of the Negative Binomial — truncated beta mixture
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b. Negative Binomial — Truncated beta distribution from method of moments

F( + x) B(a+k+rb) B,(a+ k +1,b)
76 Z(— PR (5:37)
F(r)|x' Bﬁ(aﬂ b) B(X(al b)
forr,a,b>0;1<a<p<f<1;x=012..
When r=1 we will have truncated beta — geometric as follows
5.6.2 Geometric - Truncated beta from explicit mixing
__Bp (a+1,b+x)—By(a+1,b+x)
fO) = e an (5.38)
fora,b>0;1<a<p<f<L;x=012..
5.6.3. Geometric - Truncated beta distribution from method of moments
B (a+k+1,b)—B,(a+k+1,b)
x) = k(1)L 5.39
f= 2( * B (a,5)B, (D) (539

fora,b>01<a<p<pf<Lx=012..

5.7 Geometric - Confluent Hypergeometric

5.7.1. Confluent Hypergeometric
The pdf of confluent Hypergeometric expressed as follows

pa_l(l _ p)b—l
B(a,b);F;(a,a+ b; —u)

g(p) = e P for0<p<1l;a,b>0; —co< u< o (5.40)

ref Nadarajah and Kotz (2007)

The Negative Binomial — confluent Hypergeometric distribution have the following formats
from the respective methods used in mixing the two distributions

a. Confluent Hypergeometric — Negative Binomial distribution from explicit mixing

(5.41)

B(r+a,x+b)F (a+r,a+b+r+x —p)r+x—-1
f) = 1 ( )

B(a,b)1F(a,a+ b; —p) x
forr,a,b >0; —o<u<oo; x=0,1,2,..
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Properties of confluent Hypergeometric — Negative Binomial Mixture
First 3 moments about the origin

a 1Fila+1l,a+b+1;,—p

EX) =50 Fi(a,a+ b —p0) (542)
o a(a+1) 1FE(a+2,a+b+2;,—u)
EXT) = (a+b)(a+b+1) 1Fi(a,a + b; —p) (5.43)
a(a+1(a+2) 1Fia+3,a+b+3;,—w
E(X3) = 44
& (a+b)(a+b+1D(a+b+2) 1Fi(a,a + b; —p) (G.44)
Var(X) = E(X*) — [E(X)]?
_a(a+ 1) F(a+2,a+b+2;—p) a(a+1) 1F1(a+2,a+b+2;—u)2
Var) = @b+ ) F@atbi—m) |@+b)@tb+ D Fi(a,a+b;—p (5.45)
b. Confluent Hypergeometric — Negative Binomial distribution from Method of Moments
_T(r+x B(r+k+ab) 1F.(a+r+ka+r+k+b;, —p)
Fla) = ?Z( Dk (§ ) T (5.46)
GIE) B(a,b)1F,(a,a+ b; —)

forx=012,..;a,b>0;r>0

In the above negative Binomial mixtures it is important to note that if r=1 then they become
geometric Hypergeometric mixtures from the respective mixing methods as shown below.
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5.7.2 Geometric - Confluent Hypergeometric distribution from explicit mixing

B(1+ax+b) F (a+ La+b+1+x —p

e = B@ b)iF;(a,a+ b; = G47)
fora,b>0; —o< u<oo; x=0,1,2,..
Properties of Geometric — Confluent Hypergeometric Mixture
First 3 moments about the origin
a 1Fila+1l,a+b+1;,—pn
E(X) = 5.48
) a+b 1Fi(a,a+ b;—p) ( )
+1 Fi(a+2,a+b+2;—
E(X?) = a(a+1) 1Fi(a a D (5.49)
(a+b)(a+b+1) 1Fi(a,a+ b; —p)
a(a+1)(a+2 Fila+3,a+b+3;—
E(X3) = ( )( ) 1F1( D) (5.50)
(a+b)a+b+1)(a+b+2) 1Fi(a,a + b; —p)
Var(X) = E(X*) — [E(X)]?
_ a(@+DiF(a+2a+h+2-p) a(a+1) 1Fi(a+2,a+b+2;—p)1%
Var(X) - (a+b)(a+b+1)1Fi(a,a+b;—u) (a+b)(a+b+1) 1F1(a,a+b;—p) (5:51)
5.7.2 Geometric - Hypergeometric distribution from Method of Moments
X
B(l+k+ab) F,(a+k+1l,a+k+b+1; —p)
X ) 1 ) ]
) =Y (=D (}) 1 T (5.52)
=0 B(a'l b)lFl(ala-l_ b, ,Ll)

forx=012,..;a,b>0;r>0
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5.8. Geometric - Gauss Hypergeometric distribution

5.8.1. Gauss Hypergeometric distribution
The pdf of gauss Hypergeometric given by

t) = 5.53
9 B(a,b)(1 + zt)*,F (a,&,a + b; —z) ( )
forO0<t<1l;a,b>0; —0o<eg<o0
(see Armero and Bayarri (1994))
a. Gauss Hypergeometric — Negative Binomial distribution from Explicit mixing
r+x—1\Bla+r,b+x),F(a+r,ea+b+r+x—2)
e = ) _ (5.54)
x B(a,b),F;(a,e,a + b; —2)

Forr,a,b,z>0;—c0 < e<00;x=0,1,2...;

b. Gauss Hypergeometric — Negative Binomial distribution from method of moments mixing

_T(r+x B +k+ab)Fi(r+k+ +b+r+k—
f@) ( )z( 1)k (r a,b),F, (r acsa T z) (5.55)
F( )(x)| B(a,b)zF1(a,€,a+b, _Z)
Forr,a, b,z > 0;—0o < e¢<00;x=0,1,2...;
5.8.3. Gauss Hypergeometric - Geometric distribution from Explicit mixing
Bla+1,b+x),Fi(a+1l,&a+b+x+1;—
FOo) = (a x),F; (a ga X z) (5.56)

B(a,b),F;(a,&,a + b; —z)

Fora,b,z>0;—0o < es<o0;x=0,1,2...;

5.8.4. Gauss Hypergeometric - Geometric distribution from method of moments
mixing
B +k+ab)Fi(k+a+lea+b+k+1;—
f(x)—Z( () Bk e dlhllcr et Lea D (s57)
B(al b)ZFl(al g a + bl _Z)
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CHAPTER 6

GEOMETRIC MIXTURES BASED ON DISTRIBUTIONS BEYOND BETA FROM
NEGATIVE BINOMIAL MIXTURES

6.1. Introduction
All the distributions we are going to consider in this category are within the [0,1] domain and
are not based on beta distribution. Below distributions will be studied;

Kumaraswamy (1) and (ll) distribution
Triangular distribution

Truncated exponential distribution
Truncated gamma distribution
Minus log distribution

Two — sided ogive distribution

Ogive distribution

© No vk wN PR

Two — sided power distribution

5.2. Geometric - Kumaraswamy (I) Distribution

5.2.1. Kumaraswamy (I) Distribution
gw)=b(A—-uw)’ ! foro0<u<1;b>0 (6.01)

This is the pdf of Kumaraswamy (l) distribution with parameter b’

The Negative Binomial — Kumaraswamy (l) Distribution have the following formats from the
respective methods used in mixing the two distributions

a. Negative Binomial — Kumaraswamy (l) distribution from explicit mixing
r+x—1
flx) = ( N )bB(r +1,x+b) x=012,..; br>0 (6.02)

See Li Xiaohuet et al (2011) on Binomial mixture

b. Negative Binomial — Kumaraswamy () distribution mixing from the method moments
I'(r+x)
P(X = Z( D% () bB(r +k +1,) 6.03
GO (6:03)

forr,b>0and x =0,1,2, ...
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When r=1 we will have the following geometric — Kumaraswamy (I) distribution as obtained
from explicit mixing of the geometric distribution and the Kumaraswamy (l) distribution

5.2.2. Geometric - Kumaraswamy (I) distribution from explicit mixing

f(x)=bB(2,x+b); x=012,...; b>0 (6.04)

5.2.2. Geometric - Kumaraswamy (I) distribution from method of moments mixing
When r=1 we will have geometric — KW (I) mixtures from the above negative Binomial mixtures
as follows.

P(X = x) = Zx:(—nk (’,ﬁ) bB(k + 2,b) (6.05)
k=1

forr,b>0and x =0,1,2, ...

6.3. Geometric - Truncated Exponential Distribution (TEX(A, b))

6.3.1. Truncated Exponential Distribution (TEX(4, b))
This is a pdf which can be expressed as

b _
—e~bp/2

[fe——b/ﬂ] 0<p<1; hA>0 (6.06)

g(p) =

This the truncated exponential distribution with parameters A and b

Negative Binomial — Truncated Exponential distribution from explicit mixing

_ blFl(r+1,r+x+2;—%) r _ )
flx) = /1[1—(3‘%] Y forx=012,..;b,7r,A>0 (6.07)

6.3.1. Geometric - Truncated Exponential distribution from explicit maxing

When r=1 the above mixture attains the status of a geometrical - truncated exponential
distribution from explicit mixing of the geometric distribution with the truncated exponential
distribution

biFy (21 +x+2;-3) 1
(x+2)(A+x)

f(x) = forx=012,..;b,A>0 (6.08)

i)
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6.4. Geometric - Truncated Gamma Distribution

6.4.1. Truncated Gamma Distribution
Below is the pdf of Truncated Gamma Distribution

abpb—le—ap
0 elsewhere

a. Negative Binomial — Truncated Gamma Distribution from explicit mixing

60 (r+x—1)ab1F1(r+b,r+b+x+ 1;,—a)B(r + b,x + 1)
x =

x=012,..;r,a,b>0 (6.10
7@ b) (6-10)

(see Bhattacharya, S.K. (1968) on Binomial mixture)

b. Negative Binomial — Truncated Gamma Distribution from moments method mixing

F) = I'(r+x) Z(—l)k (i) y(a,b+1r+k)
k=0

T'(r)(x)! a*tky(a,b)

fora,b,r >0;x=0,12,..

6.4.2. Geometric - Truncated Gamma distribution from explicit mixing
When r=1 the above mixture attains the status of a Geometric — Truncated Gamma distribution
stated below
b
a’FFA+b,b+x+2:—a)B(1+b,x+1
flx) = 1F1( )B( ) x=012..;a,b>0 (6.11)
y(a,b)
6.4.1. Geometric - Truncated Gamma distribution from moments method mixing
When r=1 the above mixture attains the status of a geometric — truncated gamma distribution

stated below

B C x\yY(@ab+k+1)
fx) = kZO(—nk (0™ by (6.12)

fora,b,r >0;x =0,1,2, ...
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6.5. Geometric - Minus Log Distribution

6.5.1. Minus Log Distribution
gp) =—logp for1<p<0 (6.13)

This is the pdf of minus log distribution

a. Negative Binomial — Minus Log Distribution from method of moments mixing

r+x—1 X x 1k 1 012 0 ‘14
X )Z(k)( )m x=012,..r> (6.14)

k=0

£ = (

6.5.1Geometric — Minus Log distribution from method of moments mixing

When r=1 the above mixtures attains the status of a geometric — minus log distribution which is
expressed in the equation below

X

Flx) = Z (i) (—1)’(@ Xx=012, ... (6.15)

k=0

6.6. Geometric - Standard Two - Sided Power Distribution

6.6.1. Standard Two - Sided Power Distribution

pk—l
k(= O<p<é@
g@)={ %zpkl (6.16)
kk(—l_e) f<p<i1

This is the pdf of a two — sided power distribution with parameters k and 6

a. Negative Binomial — Standard Two — Sided Power Distribution from explicit mixing

fx) = (r +’;_ 1)k{%3g(r+k,x + 1)+ [B(r+1,x + k) — By(r + 1,x + k)]} (6.17)

1
a=gy—T

This is the distribution obtained from the mixture of Negative Binomial distribution and the
standard two — side power distribution.
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6.6.1. Geometric - Standard Two - Sided Power distribution from explicit mixing
When r=1, the above mixture reduces to geometric — standard two — sided power distribution
which is stated below.

fx) = k{LBQ(l +kx+1)+

T Bx+0)-Bx+0I}  (618)

1
(1 — g)k—l

6.7. Geometric - Ogive Distribution

6.7.1. Ogive Distribution
The general form of an Ogive distribution is given by

——p"  0<p>1;m>0 (6.19)

From (Dorp and Kotz (2003))

a. Negative Binomial — Ogive Distribution from explicit mixing

r+x—1)(m+1){ <2r+m—1

f(x):( 3m + 1 2

. +1,x+1)+(1—m)B(r+m+1,x+1)} (6.20)

forx=012,...;r>0m>0

6.7.2. Geometric - Ogive distribution from explicit mixing
When r=1, the above mixture reduces to geometric — ogive distribution which is stated below.

fx) = 37:;-:_11 {ZmB (mT-I-l +1,x+ 1) +(1—-m)B(m+2,x+ 1)} (6.21)
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6.8. Geometric - Standard Two - Sided Ogive Distribution

6.8.1. Standard Two - Sided Ogive Distribution

m-—

2m(m + 1
3;+1)[] 3m+1F] 0<p<fm>0
9(p) = ) (6.22)
2m(m+ 1) l—p 1-m?[1—p

3m+1 [1-0 +3m+11—9 O<p<1;m>0

This is the pdf of the two sided Ogive Distribution with parameters m and 6
When p = 0 then the two —sided Ogive distribution is smooth and this is the reflection point.

Although this contradicts the situation at the reflection point of the two — sided power function

a. Negative Binomial — Standard Two - Sided Ogive Distribution from explicit mixing

f(x)z( X 3m+1 m-l

r+x—1>(m+1){ 2m <2r+m—1
0
[6]

> +1,x+1)

2

+ Qm Bg(r—m+1x+1)
2x+m—1 2x+m-—1
[B( > +1>—B9(r+1,T
9) 2
1
+1)]W[B(r+1x+m+1) BQ(T+1,X+m+1)]} (6.23)
forx=012,... ;m>0;r>0

6.8.1. Geometric - Standard Two - Sided Ogive Distribution from explicit
mixing

When r=1, the above mixture reduces to geometric — Two Sided Ogive distribution which is
stated below.
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f(x)_m+1{[21n:1_1 6(m+3 1_mBg(2—m,x+1)

3m + 1 ([p" 2 om

4 2m [B(Z 2x+m+1) B ( +12x+m+1>] -m (B(2
—m— y T A~ - r ) rx
1-0'7 2 ’ 2 1 -6y

+m+1)—Bg(2,x+m+ 1)]} (6.24)

,x+1) +

6.9. Geometric - Triangular Distribution

6.9.1. Triangular Distribution
AR

0 0 1
Thus the density of the triangular distribution is

2
{729 O0<p<é@

gp) =421 -p) (6.25)
-y I<p<l

0 elsewhere

a. Negative Binomial — triangular distribution mixing

F) = 2F(T+X){B9(T+2,X+ 1) +B(r+ 1,x+2)— Bg(r+1,x+2)

. — } (6.26)

x!rr
forx =012, .. .. ;0<0<1,r>0

This is the mixture of triangular distribution and Negative Binomial distribution expressed
explicitly
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b. Negative Binomial — Triangular distribution from method of moments mixing

Casel
LT+ 0! O N 2(1 — grx—k+1y
PO) = Ty o kZO (o) 0 Ciri—k+Dotri—k+a-g *+27
forr>0;,0<p<f8<landx=0,12,..
Case 2
d x 2 1— 9r+k+1
f&) :Z(_l)k (k) A-0)|r+k+D0+k+2) (6.28)

k=0

forr>0;,0<p<6f6<landx=0,1.2,..

6.9.2. Geometric - Triangular distribution from explicit mixing
When r=1, the above mixture reduces to geometric — Triangular distribution which is stated
below.

By(3,x+1) B(2,x+2)— By(2,x + 2)} (6.29)

f(x)zz{ o 1-0

forx =0,12, ... .. 0<0<1

6.9.2. Geometric - Triangular distribution from method of moments mixing
Case 1

When r=1, equation 4.27 above reduces to Geometric — Triangular distribution which is stated

below.

X

B x o 2(1 _ 9x—k+2)
p() —kZO(k) D A ey e oy e v (6:30)
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Case 2
When r=1, equation 2.28 above reduces to geometric — Triangular distribution which is stated
below.

X

x 2 1— 9k+2
£ = Y 0 () g [ s 3)] (631)

k=0

forr>0;,0<p<f8<landx=0,12,..

Properties of geometric — Triangular distribution mixture

The mean is given by

EX) = a (% - 1) (6.32)
Since0 <0 <1
Therefore
EX)>a VvO
Variance

Variance of this mixture doesn’t exist since the second inverse moment of the triangular
distribution doesn’t exist. It is important to note that this distribution has a very long tail.

115



CHAPTER 7

NEGATIVE BINOMIAL MIXTURES WITH P AS A CONSTANT IN THE MIXING
DISTRIBUTION

7.1. Introduction
This chapter talks about mixing of the negative Binomial with other distributions having r as a
variable and holding p constant.

We are going to consider four mixing distributions, namely

1. Logarithmic distribution
2. Exponential distribution
3. Binomial distribution

To get the mean and variance of the mixture, we use the method of probability generation
function by getting the moments i.e.

G(s) = Z Dy sk (7.01)
k=0

7.2. Logarithmic distribution/ logarithmic series distribution/ log series
distribution
Construction

Consider a Maclaurin Series expansion

2 .3
Y N
log(1-p)=p+ >+ 3 +
-1 pZ p3
1= 4B 4 7.02
10g(1—p)<p+2+3+ (7.02)
1 =Z—— 7.03
£ log(1—p) k (7:09)
=3

This qualifies to be a PMF since it cumulates to 1.
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The probability mass function is a log(p) distribution expressed as

-1 pk

fE=b=fa—p*

;fork=012...and0<p <1
Its Cumulative Distribution Function is
px

S|
0= |, gt 7

F(k) ! fkpxd
=————| —dx
log(1-p)J, x

B(p;k+1.0)

F(k) =1+ og (1p)

where B is an incomplete Beta function

Negative Binomial — logarithmic mixture

Pi = ]Om (") prat gyar

—1 pr
r

90 = g —p)

T

* r+k—1 k -1 b
= rgk ————dr
P fo ( k )pq log(1—p) r

The PGF is given by the following expression

6(s)= ) pis*
k=0

-1 [(2p¥ _
G(s)zlog(l—_p)Jo Pr kzzo(r+llz 1)(sq)kdr
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0 21

-1 2
G(s) = mj; kaZ:(:)( kr) (—sq)*dr

o1 (tpr-sg”
6O =g ),

-1 °l pz 11
G(s)‘log(l—mfo l(l—sq)l Far

7.3. Negative Binomial - exponential distribution
7.3.1. Exponential distribution

g(r) = pe "

7.3.2. Negative Binomial — exponential mixture

Pi = fom (") rat g@yar

“rr+k—1 _
D =ﬁ] (7‘ I )pque BT dr
0

The PGF is given by the following expression

6()= ) pist
k=0

6 = [ ety (TR @orar
k=0

[oe]

G(s) =P fo ety (V) asytar

k=0

G(s) = ,Bjoopre_ﬁr (1—-gs)Tar
0

G(s) =B Lwe—ﬁr [1 —pqs]—r .
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Let

Hence

or

Mean

1+ E In [1—pqs]

_ p
G(s) = B +In [1—qS]

p

Differentiate the PGF with respect to s

B

119

(7.15)

(7.16)

(7.17)

(7.18)



prinfse 0= 2 ()
[ﬁ+l 1 qs”
Baq
(1-gs) [,B-i-ln - qs]r

G'(s) =

G (s) =

(7.19)

Ba 1
1— 2
(=a lﬁ +In [—1;61 l

q
B(1—q)

G'(1) =

G (1) = (7.20)
qg 1-p

EX)=6Q) “B(1-q)  Pp

(6.21)

p=1-g¢

Variance

Let

2
=V

(1—qs)|B+1In [1 —pqs]

pein [ 2] -

penf S [ -a

dv
Fri 2(1—qs)

+|8+mn [1 _pqs]r [—4]

dv - 21 )
ds as

prmfls qs]r

Now

— [ﬁ +In* ]]2>

2
(1—gqs) [,8 + In [%]] .0 —Bq <—2(1 —qs) [ﬁ +In [1; ]]
G (s) =

(1 — gs)? [ﬁ +In [1;&]]4

120



Bq (2(1 qs) lﬁ”" = qs” e qs]+qlﬁ+ln 5 qS]D

G (s) = -
(1-a92 g+ m[22]
Bq (2(1 q)I,B+ln ]l[ ]+q[ﬁ+ln —]] )
G' (1) =
1—
(1-¢q)? [/3 +In [Tq”
.~ Bq(2Bq +qB?)
== e
N )
CO=a e
Or
p 1-p)%(2
¢ 1) =" z;)zgz +B)
Var(X) =6" (1) —[6 (D]* -6 (1)
1-p?@+p) [1-p)® 1-
A S
varp) = LTPYCHE) - gl —p)’ +pp(1—p)
p*p*
varc) = LR+ p— 1]+ pp(1—p)
p*p?
1—p)? 1 1-—
Var(x) = 1 -p)°[B ;2;; pr(1—p)
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Negative Binomial — Binomial

Binomial distribution

n —-r
g(r) = {(r) p"(1=p)" 0<p<1;r=012..

0 elsewhere

Tr+k-—1
pk=f (" ) pdtamar
0

p= [ (e (rra-prar

The PGF is given by the following expression

6()= ) pist
k=0

(e¢]

G(s) = fo O - Y (TR saytar

k=0

[o¢]

6 = [ (o a-pr Y () sotar

k=0

G(s) = jo (e - sayar

[oe]

) =q" | (M)p¥ [q(1 —sq)]"dr
T

0
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CHAPTER 8

SUMMARY AND CONCLUSION

New distributions were generated as anticipated in the project statement and objectives.

Chapter 1 briefly explained the concept around the Negative Binomial distribution. It goes to the extent
of explaining the evolution and the reason why negative Binomial distribution is more efficient or more
preferred as compared to other discrete distributions like Binomial and Poisson. The importance of
probability mixing was highlighted as well. Applications areas were also briefly studied in this chapter

In the second chapter, we have shown various methods constructing Negative Binomial distribution. The
main aim of this section was to not only identify various ways of developing Negative Binomial
distribution, but to also verify the various forms of the Negative Binomial distribution. Some of the
properties of the Negative Binomial distribution were identified in this chapter. Eg. Moments, mean,
Variance, Kurtosis and Skewness

Chapter three majored in the construction of Negative Binomial Mixtures with prior distributions that
are within the range of [0,1] and are related to beta distribution. The approach was to construct the
mixing priors before subjecting them to the mixture. A few properties of these mixing distributions were
discussed e.g. the jth moment, mean and variance.

Mixing distributions that are beyond Beta and within the [0,1] domain were considered as the mixing
priors in chapter 4. The basic properties of the mixing distributions such as the jth moment, mean and
variance were highlighted. The jth moment was key to mixing using the method of moments.

Chapter 5 and 6 were special cases of chapter 3 and 4 respectively by the fact that geometric
distribution is also a special case of the Negative Binomial distribution. These chapters talks about the
Geometric distribution mixtures with beta generated priors and Beyond Beta priors respectively. This
was achieved by considering the first success (r=1).

A new way to conduct the mixing is through letting r be the varying variable instead of x. the parameter
p is held constant in the respective mixtures. This was done in chapter 7 with few mixing distributions.

In conclusion, the project actually met its main objective of construction of Negative Binomial
mixtures when the mixing distributions come from the probability of success and the number of
success as random variable.

The following table is a summary of the project
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TABLED SUMMARY OF THE MIXTURES OF NEGATIVE BINOMIAL

Table 1: Negative Binomial mixtures with [0,1] domain distribution priors based on Classical Beta

DISTRIBUTIONS BASED ON CLASSICAL BETA AND [0, 1] DOMAIN GENERATED BETA DISTRIBUTIONS

Mixing Distribution Methods Mixture
of mixing
Classical beta Explicit FQ) = rr+x)B(r+a,x+pB)
~ r(mMx! B(a,p)
(1 -p)f! Method x
P i i ! oy = LOEDG ) Bt f)
B(a'ﬁ) 0 F(T)x' k B(aiﬁ) '
for0<p<l;a,B>0 moments k=0
forx=012,..;r,a >0
Recursive a. Using ratio of the conditional distribution
relation _r+x-—1 r
pr(x) = T[pr(x -1 _r_l_x—_lpr+1(x - 1)]
b. Using ration of the mixed distribution
) = (r +x—1)? 1)
flx Tx(r+x+a+p) flx
forr,a,f>0,x=123..;
c. Using a dummy function
r+x—-Dkxx+-1)
= = -1
F@) =f@) =y —yy S~ D
forr,f,a>0and x =1,2,3, ...
Truncated Beta distribution Explicit
) (r+x—1)Bﬁ(a+r,b+x)—Ba(a+r,b+x)
X =
Bg(a,b) — B, (a, b)
fora,b; 1<a<p<f<L;x=012..>0;
( ) pa—l(l _ p)b—l
IWw) =5~
Bg(a, b)~B,(a, b) Method o - I(r+x) % () -1y Bgy(a+71+kb)—By(a+7+kb)
forl<a<p<pf<l;ab>0 of f(x) = r()x! k Bﬁ(a,b)—Ba(a,b)
moments k=
forr>0;1<a<p<pf<1l;a,b>0;x=012,..
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Arcsine distribution Explicit rdx—I\NBr+2,x+9)
1 flx) = < )#
91(p) = —F—— x T
Jp(l — 11
P P) forr>0;x=0,1,2,..;and nzB(E,E)

for0<p<1;a,b>0and ©

11 Method x 11
=B(—,—> [(r+x B(r+k+:,>
2'2 of f(x)zz_%___jl (’;)(—1)k——£———————2—22
moments (r)x! k=0 T
11
forr,a>0;x=0,1,2,..,;and T =B (E'E)
Recursive | 1% form
relation r+x-1D@2x-1)
= -1
fO =y @D
forr>0;x=1.2,..;
2" form
()_r(l—Zx) ( 1)
fe) = x(2r+1)f x
forr>0;x=1,.2,..;
Power function distribution Explicit
r+x—1
f(x)=( N )aB(r+a,x+1)
forx=012... ;ar>0
gp)=ap*! for 0<p<1,a>0
Method
of I'(r+x) - x a
_ Nk
moments fx) = T 2 (k)( 1) PR

forr,a>0;x=0,1,2,..

. t
Recursive | 1 form
relation r+x—1

f(x)=mf(x—1)

forr>0;x=1,2,..;
2" form
_ r+x—Dr+x-2)

f& = e =0
forr>0;x=1,.2,..;

fx-1)
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Uniform distri2bution Explicit
T
=012,..r—1;r>0
()_{1 0<p<i1 f(x)={(r+x+1)(r+x) x 4 4
9'p) = 0 elsewhere 0 elsewhere
r(r+ x) k
fe = I(r)x! £ ( )(_ ) r+k+1
forr > O;x =0,12,..
Recursive | 1% form
relation
d FO) = -
2" form
) = ——f(x— 1)
flx T r+ 1f x
forr>0;x=1.2,..;
Explicit
Confluent Hypergeometric distribution £ B(r+ax+b)Fia+r,a+b+r+x; —u) (r +x - 1)
_ _ x) =
) = p* (1 —-p)bt -~ B(a,b){F,(a,a + b; —p) x
9%P) = Bla, b) Fi(a,a + b; —p) forr,ab>0; —o<u<o; x=01.2,..
for0<p<1lab>0; —c0o<u<oc | Method ()_I‘(r+x) - (x)( 1)kB(r+k+a,b)1F1(a+r+k,a+r+k+b;—u)
of 0= T 2\ B(a,b)Fy(aat b —)
moments forx=0,12,...;a,b>0;r>0
Gauss Hypergeometric distribution Explicit
g _ (r+x— 1)B(a+r,b +x),F(a+rga+b+r+x—2)
_ t* (1 —t)P! f) = x B(a,b),F,(a,&,a + b; —z2)
B(a,b)(1 + zt)¢,F,(a,&,a + b; —2) forx=012..;r=012...;a,b>0; —0 < €< ©
for0<t<1l;a,b>0; —0<e< o
Method _T(r+x) Sy WBU+ab)Fi(r+k+aea+b+r+k—z)
of fe) = T(r)x! £ ( )(_1) B(a,b),F,(a, s, a+ b;—2)
moments
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Table 2: Negative Binomial mixtures with [0,1] domain Beyond Beta distribution priors

DISTRIBUTIONS BEYOND BETA

Mixing Distribution Methods Mixture
of mixing
N . . .. r4+x—1
Kumaraswamy (I) Distribution Explicit Fx) = < i )bB(r +1,x4b) forx=012,..; br>0
gw)
_ {b(l —w)’ for0O<u<1,b>0 Method T'(r+x) k
0 elsewhere of Prob(X = x) = oo bZ( D* () BG +k +1,b)
moments
forrb>0 x—0123
'(I';lg;(c;t;d) Exponential Distribution Explicit . bF, (r FlLr+x+2: _%) -
) x — b
g A[l—e‘f] r+x+ 1@ +x)
b g=bp/a
e forx=0,12,..;b,r,4>0
}. Lt ) ) ) )
— 0<p<1 bA1>0
[1—eb/] P
0 elsewhere
Explicit _r+x=1\a" F(r+br+b+x+1-a)B(r+bx+1)
Truncated Gamma Distribution fl) = ( x ) y(a, b)
g forx=20,12,..;r,a,b >0
a’p’ e 0<p<1lab
— ) 14 ;a,
=1 v(ab) Method T +x) Z( )k (a b+r+k)
0 elsewher( of fx) = T(r)x! a(r+")y(a, b)
moments
forx—012 5rab>0
Minus Log Distribution Explicit r+x—1\ w (x) . 1
_(—logp 0<p<1 fo = ( ) () s
9@) = { elsewhere x k=0 k rtk+1)
forx=2012,..r>0
Method () = I(r+ x)Z( 1
of 1) =ty (r r+k+1)?
moments
for x = 0,1,2, W1 >0
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Standard Two — Sided Power Distribution Explicit
( p k-1 ()_(r+x—1)k By(r+k,x+1) [B(r+1,x+k)—By(r+1,x+k)
k (5) 0<p<8 o= gk—1 (1—6)F1
9(p) = i 1— pykt for x=012,..7>0
k(—) f<p<i1
1-6 P
ive Distributi ici +x—1\(m+1 2r+m—1
Ogive DISt;ITt;Lu(:’I);)l D oma 1om? Explicit o) = (r ’; )(3’; — 1){2mB (7r I R 1) +(1-mBr+m+1,x+ 1)} (4.27)
g(P)zm T+3m+1pmi forx=01.2,.;r>0m>0
0<p>1;,m>0
Standard Two - Sided Ogive Distribution Explicit r+x—1\(m+1) 2Zr+m—1 -m
9 f(x)=< ) n 9( +1,x+1)+ By(r—m+1x+1)
I{ 2mim+ 1) pr 1—m? pym 0 0 X 3m+1 01z 2
_ 3m+1 [5] +3m+1[§] <P <0 N 2m [B( +12x+m—1+1) By +12x+m—1
T " Y e AL - — — Bp(r+1,————
2m(m+ 1)1 — ] p] 0<p< 1-65 2 2
3m+1 3m+1l1-0 1—m
+1)]m[3(r+ 1,x+m+ 1)—B,,(r+1,x+m+1)]}
forx=012,... ;m>0;r>0
Triangular distribution Explicit
[ 2p _ 2r(r+x) (Bo(r+2,x+1) Br+1,x+2)— Bo(r+1,x+2)
| & 0<p<§6 f® == 9 * 1-06
=421_ forx=20,12,.... ;0<0<1,r>0
9() (1_013) b<p<i
0 elsewhere Methods | 1" Form ;
of _ I'(r+x) o 2(1 - 9r+x—k+1)
moments f6) = r(r)! (x)!k=0 (k) 1) r+x—k+Dr+x—-k+2)(1-0)
2" Form
T +x) . 1 — g+t
@) = r(r)!(x)lz( D ( 9) CIki DG kT2)
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This is the framework applied in the project. The mixing distributions are classified into two
categories, namely, the continuous and the discrete mixing distributions. Constructions of
these mixing distributions were first carried out before being incorporated in the mixture with
the Negative Binomial distribution. Some of the properties, estimations and applications of the
new distributions were highlighted.

Recommendations
Negative Binomial mixtures can take other dimensions that were not actually covered in this
project. More work can be done on these other scopes. They include:

a. Developing negative Binomial mixtures from the second definition of the
Negative Binomial distribution such that

1

f(x) =f(::i)pr(1—p)x_rg(p)dp x=rr+1r+2..
0

b. Transforming the parameterp = e *so that the new distribution take the format

f(x) = jooo (r + ); - 1) e (1-e*) g()da

x=0123...;1,4>0

1

flx) = J (5 }) e (1—e2)" g(N)da

0

for x=r,r+1,r+2,..1>0

c. Transforming the parameter p =1 — e *such that the new distribution takes
the form

fx) = JOOO (r + J; B 1) e M (1 - e"l)rg(/l)dl

x=0123...;r,A>0
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1

fo = (7 ])er =) g

0

for x=r,r+1,r+2,..1>0

We can generate the properties, estimate parameters and verify the identities of the new
distributions.
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