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SPECTRAL METHODS IN ECONOMICS: 
A DISCUSSION 

by 

Tichaendepi R. Masaya 

Abstract 

The role of spectral and cross spectral analysis of 
time series is emphasized and the mathematical presentation 
pursued step by step in a simplified fashion. The relationship 
between this method and econometric methods is pointed out 
where appropriate. 

Problems of non-period phenomena take a large share of the 
content of the paper. 
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S F S C T V X ?IFTFODS IN TiCC-^JCg: 

X DISCUSSION 

1 INTRODUCTION 

Spectral methods are associated with the analysis of data 
observed over a period of time. Such data is dependent on time t 
and a series of readings at each epoch t-̂  < t2 ,. <tn is called 
time series. 

Traditionally the variable Xt is decomposed into trend, 
cycle, seasonal and iregular components for the purpose of 
studying one or more of these after isolating the rest by using 
the well known additive or multiplicative models. 

The purpose-of this paper is to attempt to simplify and clarify 
the mathematical presentation, to show where certain aspects of-spectral 
analysis are related to regression analysis and to introduce the 
subject to the interested public. 

2. TIME DOMAIN 

We may be interested in studying how values of at epoch 
t are related to future or past epochs (t+f),or (t-r) respectively,, 
where T = 0 - 1 - 2 ... and duration T is called the lag of the 
function. For a single series such information is conveyed by the 
auto-covariance function. 

(2'1} CXX(T) == I J J txt -x) (xt + x -x) 

n 
vihere x = 1- Z x.. Clearly C, . is the variance of the sample, 

n t=l 1 

When C ̂  is normalized by dividing each covariance by C ^ the 
result is-auto-correlation function and a plot of 

Jfc 
(2 21 C fx"1 v»>t," ' = R 
1 * } XK J FP X(T) "(T- = 0,1, .. < M) against T is known 
as the correlograii?-' M is the maximal lag or the truncation point. 

The correlogram-s tar is with a value of 1 at t = 0 and 
axi 1 sh&s to _a_ zercrvalue as we move into distant past or unforeseeable^ • 
future. This is in line with historical or natural facts, namely 
that memory is lost as we detatch ourselves more and more from the 
past. Figure 1 is a typical, example. 
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a half 

Fig 1 correlogram 
(Auto-correlation function) 

Taking x as one of one year spacing the interpretation of Fig.l 
would be that the variation of the series about its long term, trend 
has a strong positive association between values observed fefr one 
year and three years apart and negative association at two and three and 
years apart. There is negligeable correlation after four years. 

On studying two (or more) series X^ and Y a similar procedure 
is employed except that 

- • H rei-x 1X--L f-,-

v-v V f e = Vn rh K - ^ t + T -Y) and 

n-t 
(2.4) ^xy(t) 1 ^Yt ~Y^xt+x " a r e n o w c a l l e d c r o s s 

covariances between Xt and Yt while the normalized 

.(2.5) yx(x) ^xy(x) 

0 W : { c y C o ) ^ = V T ) o r I W ^ m j 1 

=R (x) xyv 1 

is now known as the cross correlogram, R , , is not usually the same 
as Rxy(x) s^nce former implies that 
X^ causes Yt and the latter case Yt causes X^. 

When the above method is used we say a time series is 
described in the time domain. The usual procedure is to detrend the 
data before subjecting the residuals to the method just described. 

./3... 
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3. FREQUENCY DOMAIN 

If Xt is a periodic series depending on time with a period 
P = 271 /to it can be--expanded , as series of quantities varying 
Jjannmk^llxJLn. the form 

(5.1) f(xt) = a0y + ? (â Cosutt +• bt sin wt) 

or ignoring the mean value (and the phase) as 

jtf 
(3.2) f(x.) = "E (a Cosiit + b. Sin u/t) where 

r t-1 r z 

X 
to = 2jt• for P = T, Thus the function is completely 

T 
defined by its Fourier coefficients a and b^ and its angular 
frequency UK 

i 

If Xt is a stationary zero mean Gaussian stochastic process 
the probability law [governing this random process is time invariant. 
This means, among other things, that the auto-correlation function 
depends only on lag'x and not on epoch t. This is confirmed as 
follows; using (3.2) we assume 

(3.3) (a) E(a>alc) = E1>jbk) =6Z. if j - k 

= 0 i f j / k 

(b) E(ajbj) = E ^ . ) = E(ajbk) = 0. 

The auto-covariance of Xt is 

(3.3) (c) C(T) = E (xtxt + t ) 
m m f l r "> 

â Cosa j,t + b̂  Sin oj^tWa^Cos^ (t+x)+bk Sino^(t+r)V = E I E 
j-mk" -m 

= E 
m mm p 
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It is sh~wn by (3.4) that at zero frequency the spectrum is 
cotal variance. This indicates that, essentially, studying the 
spectrum of a time series is an attempt to investigate the contrib-
ution to total variation by different frequencies. 

Formulae (3.4) and (3.5) bring out the fact that the auto-
covariance function and the spectrum form a Fourier transform 
pair and one gets as much information from the former as from the 
latter. However spectral analysis in a wider sense has more 
advantages than its counter part. 

For the actual estimates of the spectral densities one would 
re-write (3*5) in the form 

m 
( 3' 6 ) *XX (WJ > 4 : X =-M 

e~ l u jT 

TT 

"IT 

M 
I 
v=l 

E C (x) Cosu . T+ C(x)| = 
T=-M 3 

M i 

Sinw . x+C (o). 
=-M 

+C (T) Z Cosu x — E C (x) Sinrn . x 
x=l 3 

M 
= 1 I C (Q) «+2 EC (x ) COSOJ.X 

x=l 

= cto) •*—IT ^C (x)Cosuj . x 
2 n x=l- 3 

Since Cosuj. T 3 

is an even function and Sinw . is odd while SinII= Oj o>. = 2nj «• 3 D OM 2M 
n j t j , X = o , l , . . » o M 
M * 

M is the number of covariances computed. 
Looking at (3.6) we observe that when the observations are not 

correlated th§ second term on the right will vanish and the spectrum. 
becomes (3.7) f (w. )= Co XX J :o/ 

r 2n 
•n = d̂ v at all frequencies. 

We call (3.7) white noise^-because of its similarity to background 
noise when listening to a programme on a radio. 

The picture is as in figure 3« 
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Fig. 3 

White Noise spectrum. 

""Ty/ )i Frequency. 

4. AVERAGING THE SPECTRUM 

The spectral density function just define is only applicable 
to strictly periodic functions. Hardly do we experience any 
repetition of economic phenomena lasting for a long time. Unemployment, 
for instance, is usually corrected by public policy instruments before 
it is allowed to pursue its own course. Even in the realm of natural 
setting do events repeat themselves indefinitely. It is true that 
bccations do arise . when the outcome of events may 
well be represented by a sine-cosine model during the period of the 
experiment (and possibly for sufficiently long periods before and 
after this experiment) before the forces causing the phenomena are 
qualitatively transformed into another physical being governed by 
different laws of behavior. 

Suppose that xt represents the pressure on a commodity due 
to random arrival (and decisions) of the public at a market place, 

will vary in a random fashion overtime. We are therefore unable 
to predict in advance (except for the trend) the quantity assumed 
by at any epoch. It is also true that any relationship 
between the magnitude of the quantity and time, measured during a 
certain duration, will never recur in any other. However, a large 
class of stochastic processes can be described as completely as 
possible if they possess stationary properties. 

This calls for an adjustment of (3.6). The formula as it stands 
is equivalent to the famous chuster's periodogram^ which when used 
under the assumption that Xt is periodic, sometimes showspeaks even 
for processes known to be of white Noise form. Thus if we used the _ 

A,Schuster: "The Periodogram of the Magnetic Declination as obtain 
from the Records of the Greenwich Observatory during the year 
1811-1895." Transactions of the Cambridge Philosophical Society. 
Vol. 18 (1899). 



p̂ -rir̂ og-rajn - to-eefr, i runrii ngJf~"Vpectr.a,'l ,_den s i ties -such 
as the one as-sociated"with the—data-^the—economist is accustomed to, 
•it will turn out that although the estimates are unbiased asymptot— 
ically, they are not consistent. It Vas been shown by research 
workers in this field that as sample size approaches infinity the 
variance of the ordinates of the perioaogram tend to o4f2 (to.). .1 XX J 
It is this behavior that partially accounts for the existence of i 
peaks to what otherwise would have been a flat spectrum. 

V 
G.M. Jenkins (19-63-) has given an example j.r. which it is 

always found that when estimating a probability density function 
using grouped data "the, estimated density function becomes very 
erratic if the group interval for the histogram is too small". 
Since on the average the periodogram is the same as the power spec-
trum, improvements can ŝe made by choosing the correct group 
interval with the frequency of interest as the mid-doint. This 
is equivalent to averaging power within each frequeiK^r-barui-jcLttu, 
more weight given to therpower with frequencies near the central 
frequency. These aims arer realized either iri'the realm of time or 
that of frequency. A weighting scheme related to the former is . 
known as the LAG WINDOW jind its inverse transfprm-jcelated 
to the latter case SPECTIAL WINDOW. 

Many windows have b̂ jen suggested but one by Parzen has 
certain statistical advantages. These are (in tbe- ti^--domain) : 

(4.7) X = f1-6 I 1 A - T \ for 0< x < M T I I \ ^ ~ — .V 

"V 

<T < M' 

' ' t • 
and (4.8) A(co).=^i73 Sin (Mui/4 in the ^ ^ 

•V 

S' 
^i-J. S . . A V 1 — » 4 I l - ^ A J l A M L ^ U U ^ A I U . V-' frequency domain^M is the truncations point. 

Formula (3,6) now becomes 

(4.9) f (u.) (ok^ZJH- 1 E XrC (x } Cos^ . z f xx D : t - • 3 * ' % 

with as defined in (4.7 and Ao-=l. 
The' estimates ar^ now both unbiased and , consistent. % 
.It may be asked how_jiiany^iags should be used in the estimation, 
the spectrum. The answer is there is no prescribed nuflijesr. It 
has been suggested that the number should be about 20 to 3CT" . 
percent of the samplp size. This indeed is a rule of thumb. 
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One would do well by observing the manner in which the auto-or 
cross covariance function dies out with time Jenkins (1961) 
p. 159 . It should be rembered, however, that the more the number 
of lags used the better is the forecasting power of the estimates. 
These contradictions have to be compromised. 

5 CROSS SPECTRUM 
AND RELATED TOPICS 

The above discussion confines itself to spectral analysis 
of one series. This is helpful if one is interested in just 
building an econometric model of the type commonly known as 
auto-regressive scheme. 

In most cases it is known before hand that two series 
Xt and Yt are related. When this is true it would be inadequate 
tp treat them separately using spectral methods as formulated 
above. The method used to study the relationship between two 
series is known as CROSS SPECTRAL analysis. 

As a starting point we follow Nerlove (1964). The problem 
is as follows: a time series Xt is governed by the trend, cyclical, 
seasonal and irregular components. The presents of the trend 
"destroys" the assumption of stationarity. Further, the long 
term component introduces excessive power in the lower frequency 
area which leaks into the neighbouring frequencies and thereby 
distort spectral estimates. The thing to do is to eliminate the 
trend using one of theavailable time-invariant linear filters 
so that the residual series can be treated as a second order 
stationary stochastic process. Further, it pays to compute the 
mean of the residuals and deduct it from each observation. The 
whole procedure is known as filtering or pre - whitening of the 
original series X^. 

The pre-whitened series may now be considered as a new 
series Y^, the output series, related to the input series. 
Cross spectral analysis investigates this relationship. 
Before we go into this it is necessary to define the meaning 
of a time invariant linear filter. A filter is considered linear 
if when applied to an input x l t results in an output 
and a second input x ^ has a corresponding output y 2 t and 
for arbitrary constants and x^t+Bx?1_ has an output 
ocylt + BY2t* I n addition the same filter is time invariant 
if we have the input (-« , +0°)̂  corresponding to the output 

•ĵ ts te ,+ 00)y- and another observed output -^t+x • te (-» + 

has the output jY t + T, t e whereTis a fixed time delay. 
Verbally this means that the probability structure of x- ren«ine 
stable over a sufficient l^n^th of ti~-



We now wish to see how the input function is related to the 
output function Let k (x) be the kernel of the filter then 
(5.10) Y = S k(x) x dx. Expressing the input function as L 00 L 
a complex harmonic amplitude A, zero phase and angular frequency 
U)= 2TT where p is the period of the sinusoid, we have 

P 
(5.11) x, i/w(t-x)+x=o7 . ia)(t-T). t-x-Ae — — =Ae 
Substitution (5.11) into (5.10) the result is 
(5.12) Y = r k(x) Ae i u ( t" T ) dx r— 00 

= T k(x)^iwt dx. 
C00 1 / \a iwt -icox , =; k(x)Ae e dx CO 

. iwtC °°k(x)e "iaJT dx = Ae 
, , \ a iwt = <j)(co) Ae 

(5.13) <J> (oj)S^ k(x)e 1 W T is the frequency response function of 
the filter which is a Fourier transform of the kernel of the 
filter and is a complex val.ued function of frequency w. Hence, 
the effect of a filter in producing the output function is to 
amplify or attinuate the amplitude of the input function by a 
Fourier transform of the kernel of the filter. This fact is 
brought out more clearly by combining (5.11) and (5.12) into 
(5.14) A<j>(u))elart: = A<j> (co)X =A<f>(oo)X̂  t-x=o t 
which is the input series at epoch t„ For a descrete series (3.13) 

is (5.15) <}>U) = ^k (x)e"1U)T 
x=-M 

The square of the frequency response function is the transfer 
function associated with the filter; namely 

12 (5.16) T(u>) = !<{>(w); This becomes useful once the method of pre-| ! 
whitening has been specified. One of the methods used is of the form. 
( T 7 ) A X :y -Rv 
W.J./, x t DX. a n d 0 < B < cieariy3 (5.17) is a first diffe-
rence equation if B=l. When B is as defined in (5.17) it becomes a 
first quasi-differcnce Nerlove (19 61). 

However the order and the value of B within the specified limits 
are to be chosen by the user. 
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We now proceed to re-write (5.17) as 
H5u-18) xt-Bxt_1=xt-BL"1xt=(l-BL~1)xt where L_1is.. 

(5.19) xt-Bxt_1=ytfrom (5.19) and therefore (5.20) (1-BlT1)x 

where (1-BL 1) is the kernel of the filter at x=o and A=l. 
This is a result of the first order quasi-differencing. For the K 
order quasi-difference -we have 

vk 
(5.21, ( i - B L - ^ ^ ^ - B . ^ r ^ ^ ^ - B , ^ ^ 

T=0^ x / : 
iwt -iu)T e e 

This may further be written as 

(5.22) ( l - B L - ^ V 1 " ^ ^ ) (-B)
Te~luT 

The right hand side of this formula looks more like (5.13) 
with the intergral sign replaced by the summation sign. 
We now formerly write the ̂ frequency response function of (5.13) 

th for the K order quasi-difference filter as 
,5.23) * < „ > = f = 0 ( * ) < - B ) ^ ^ V - B ^ - J ^ j W 1 " : ! k 

By (5.16) the transfer function associated with this kind of filter 
is 
(5.24) T(u) = 

ik 

: -rk 1 I 

i (o>) J 2 = [l-Be-iw]k [ i.Beiw]3 

E; rĵ iw -iui „2 -iui i 
1-Be -Be +B e e , 
_ , „ , io), -iu. , _2 

= [l-B (e +e )+B J 
= fl-B (Cos^+isiniiH-Costd-iSijiu)+B2 I 

r 2 i k J = | l-B(2Coso,)+B J 
= [jL-2BCoso)+B2_J . 

One may ask whether or not the hard road along which we 
have travelled to get to (5.24) is worth the effort. The 
is in the affirmative for it can be shown that at the ^th 
frequency the spectrum of the output series f ^ (tô ) is related 
to . that.-of the 3-Qj>ut • series—f^i to .) by 



(5.25) fyy(uj)= T ^ j - ^ ^ a c ^ ' "Th'~i B -shows- that when.-the spectrum 
of the-^prewh .i ten ad series has been estimated it is possible to 
recover the spectrum of the original series by dividing the former 
by the transfer function. The spectra.! estimates are said to 
have_ been recol oared. The -spectrum of x, is thus found by 

i-l (5.26) f^-U)^).- |jFU>..fj~ ^ tr.ans-fe.-r function -is 
fortiicomiag from C5û 24) if -that.,method of . .filtering 'has been-usecL_. 

"Extending- our' knowiedge -of a- -single 'series spectrum- -to ' 
two s t o c h a f i t . j r f — e s .x. a»d yt^we present, their cross,;,! 
s p e c t n a s : . a s - — _ 

= - f X I * ™ ^i+r) e-^f C 

M 
. , ^r^f^'^-w^r.lW* 2n j U 

-i-2 T . ^ V C , v-C , v \ Sinju-.T ' T-1 y x(X) x y ( x ) > j I 

1 1 r c 
4n I yx 

l __ « n X 2n T—1 X 

xy 
H 

2n t=I Xx 
+ l C , C , . I COSW,X 

y x ( x ) x y (T ) J 3 

- f=i \ [ Cyx(Tr Cxy(x) Sin^x, where C y x ( x ) and C x y ( T ) 
i 

are as defined in (2.3) and (-2.4) respectively, while remembering 
that if__past^values—of xt cause future values, of yt it may 
not follow that the reverse^is- the same. Thus the di 
.between pairs of these two will not all assume _zero values. 

The power~~spectrum in (5.27) is divided into two parts: 

(5.28) S^taj) - x . / « £ c ^ a ^ C d j + r C x y < T ) + 
V x=l L 

- -- - yx ( x ) J c o s « j -

and 
(5+29) - 1 A [c , C , Sinu)a-T where 

y — t = 1 x^xyfT) yx(x) J 3 ^ 
(5.28) is caliad'-the cospectrum of x^ and 

yr and measures^the^~spectnim -of the in.phase-spectrum of. the- •< 
two random variables, (3.29) is the quadrature' spectrum-measuring 
the spectrum of the same random" variables 90 degree out of phase. 
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In the analysis of two time series it is of great interest 
to know: 
(1) to what extent are the two variables related at each 

•N 

frequency'? 
(2) What share does take of y^ at a given frequency? 
(3) By how many units does one variable lag behind the other? 

The answers to these questions are important for policy-making, 
The measure used for (1) is the coherency and is equivalent 

to the coefficient of determination in regression analysis, (2) 
is the gain equivalent to regression coefficient and (3) is the 
phase angle-. 

The coherency is given by 

(5.30) k (u>.) = C , . 2 " , ,2 xy J yx(gji) + qyx(^j) 

To show that the gain is similar to the regression coefficient 
we multiply (5.25) by f (w ) on both sides to get AA 

(5.31) fyyUjlf^ <Uj)= T( U j) (03 . ) XX j and 

(5.32) T(u.) = f ,, ,f , , 

(jxx (. >f This looks much like the 
regression coefficient in which is the independent variable. 
The square root of the transfer function is the gain namely 

(S-33) q(w.) = rT(®.)l^ |f (w.)f , x j 3 [_ j J L 3 y y ^ j ' nh 

fxx <»j> 

A A 

C (u.)^ +q(u>.) yxv y ^ y 

f (w.) xx j 

The phase angle is computed from the estimates of the cospectrum 
and the quadrature spectrumj 
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6. CONCLUSION 

This discussion has attempted to show that time series may 
be analyzed both in the time domain and frequency domain. It became 
clear that the latter has more advantages than the former 
although the advantages are more appreciated during concrete 
application. Spectral analysis is of further help to the 
econometrician interested in model building. 

An attempt was also made to show where certain aspects 
of spectral analysis were related to regression analysis and 
at the same time trying to simplify the mathematical presentation. i 
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