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Abstract

Medicinal herbs constitute an important source of raw materials for both the tradi-

tional and the conventional medicine. Due to their availability all over the world,

they play a key role in world health as complement if not substitute to conventional

medicine mainly due to lack of suitable, effective, cheap and reliable drugs at the

time they are required and in many cases in the remotest places of the world.

Over reliance on herbal drugs whose active ingredients have not been quantified

resulting to different herbalist prescribing different concoctions depending on the

flora availability, may lead to resistance development, overdose or under dose

which may lead to negative repercussion.

For these reasons there is need to standardize commonly used herbal drugs,

by formulating a mathematical model that can be used to determine the best com-

bination of herbs and best preparation practices in order to achieve the optimal

response. By so doing, useful results and conclusions can be drawn by planned

and designed experiment.

Response surface methodology as a statistical technique is useful in modeling

and analysis of problems in which response of interest is influenced by several

variables where the objective is to optimize the response. This is equivalent to

locating feasible treatment combinations for which the mean response is optimized.

This excursion yields interesting patterns of the response surface where ridges

are mapped with a view to identifying combinations which give optimal response.

It is of interest to note how to discriminate amongst the various points on the

response surface which the yield is the same for different combinations of the

predictor variables and to isolate the ones which are identified as parsimoniously

feasible.

This research employs response surface methodology to investigate effective-

ness of herbal medicine in reducing the blood sugar level of a diabetic to a level

that is acceptable. In this setup, observations are made to investigate effectiveness

for particular dosage at reducing the blood sugar level with time.

The variance function comes in handy as a tool for discrimination between two

points on the identified response surface. The most feasible of all the identified

points of equal yield is the one in which the variance function is minimal. In this
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research we use the variance function of the difference as well as the difference of

the variance functions between two points to provide reliable advice on the range

around which the dosage is desirable and time required to effectively reduce the

blood sugar level to acceptable range.

Key words: Response surface; Rotatable design; Variance function ; diabetic;

Herbal-Medicine; treatment.
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Chapter 1

Introduction

1.1 Herbal Medicine

Herbal practice is a comprehensive term that is used to referto both the traditional

method and systems such as traditional Chinese medicine, Indian ayurveda, Ara-

bian unani-medicine and other forms of indigenous medicine. This is inclusive of

diverse health practices, approaches, knowledge and beliefs incorporating plant,

animal and or mineral based medicine, spiritual therapies,manual techniques and

exercises that are applied on their own or in combination to maintain the well

being, of an individual or to treat, manage, diagnose or prevent illness.

Medicinal plants have been used to treat various diseases since time immemorial

and have propelled the field of traditional herbal medicineand herbal drugs today,

Evans et al (2007). In the last decades, the use of herbal medicine in treatment

has increased in popularity round the globe and it is still estimated to increase in

future to 80 percent of the world’s population , Mosihuzzanman et al (2008). All

modern medicine was derived originally from ancient herbaltraditions (Heinrich

et al., 2004).

To some extent the term complementary and alternative Medicine is used to

describe a group of diverse medical and health care systems,practices and products

that are not generally considered part of the convention medicine

The traditional, complementary and alternative medicinesattract the full spec-

trum of criticism as well as reactions and skepticism. In many countries the health

professionals and to some extent, the public are critical ofthe efficacy, safety,
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quality availability, preservation and further development of these products and

the health care they ought to provide.

Herbalist uses the leaves, flowers, stems, berries, and roots of plants to prevent,

relieve, and treat illness. From a scientific perspective,many herbal treatments are

considered experimental. The reality is, however, that herbal medicine has a long

and respected history. Many familiar medications of the twentieth century were

developed from ancient healing traditions that treated health problems with spe-

cific plants. Today, science has isolated the medicinal properties of a large number

of botanicals, where their healing components have been extracted and analyzed.

Many plant components are now synthesized in large laboratories for use in phar-

maceutical preparations. Some of these plant components give rise to vincristine

(an antitumor drug), digitalis (a heart regulator), and ephedrine (a bronchodilator

used to decrease respiratory congestion) just to mention a few.

Knowledge of the extraction, usage and preservation of medicinal herbs was

passed from one generation to the other by traditional practitioners by family lin-

eage and therefore, traditional medicine is as old as mankind. People in pre-historic

times used selected plants in many ways; for food, shelter and for curative aspect

for identified ailments and certain disorders. It is believed that the later usage may

be attributed to greater life span that the older generations can be proud of to this

day. When used as food and prepared according to the traditional ways, some of

these plants can be attributed to maturing the traditional man through the nutri-

tional value that is extracted from these foods during digestion. However there is

no genesis as to when and how the herbs were identified as far as their medicinal

value are concerned. By trial and error, ancient people learned that eating various

fruits-berries, roots, leaves and use of other parts of plants, there was either dis-

comfort or death or safe ingested. In this way they were able to identify with parts

of plant that could also be used not only as food but to arrest or treat an ailment.

Gradually a body of knowledge built that was diverse among different culture and

thereafter passed through generations to create the rich cultural heritage that we

are proud of today.
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The history of usage of plants depends on the culture that is considered. In

China, medicinal properties and nutritional value of plants were known around

4500 BC, while the use of medicinal plants in India, Greece and the Arab countries

dates back to many thousands years. Hippocrates (460-337 BC) wrote important

works on the value of herbal medicine.

The world health Organization encourages and supports member states to inte-

grate traditional and complementary medicine into their national health care system

and to ensure that they are used or utilized in a rational manner. Traditional medi-

cine started being incorporated in Kenya’s national healthpolicy framework in the

late 1970’s. Kenya’s 1989-1993 development plan recognized traditional medicine

and made commitment to promoting the welfare of traditionalmedicine praction-

ers. The ministry of health and provincial authorities require the registration of

traditional medicine practitioners. In 1999, Kenya’s patent law was revised to

include protection for traditional medicine.

There has been a widespread and growing use of traditional medicine in the

health system and the economic importance is appreciated. It is noted that upto 80

percent of the population uses Traditional medicine to helpmeet their health care

need. In Asia and Latin America, people continue to use traditional medicine as a

result of historical circumstances and cultural beliefs. In China 40 percent of all

the health care needs are accounted for by traditional medicine.

According to Cable News Network (CNN), 50 percent of all medical schools

in the US ( among them Harvard,Yale, Johns Hospkins and Georgetown Univer-

sities) now offer courses in alternative medicine. The World Health Organization

estimates that between 65 and 80 percent of the world’s population (about 3 Bil-

lions) rely on alternative medicine (traditional) as theirprimary form of health care.

Approximately 22 million US dollars have been spent on alternative medicine re-

search in USA since 1992. Traditional Chinese medicine has been chosen by

World Health Organization (WHO) for worldwide propagationto meet the health

care needs for the twenty-first century. It is in record thatin Germany out of three

drugs prescribed, one is a herb.
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1.2 Diabetes

In the simplest terms, diabetes mellitus (commonly referred to as ”diabetes”) is

a blood sugar disease, a disease in which the body either doesnot produce or

does not properly utilize insulin. Insulin is a hormone thatis needed to convert

sugar, starches and other food into energy needed for daily life. Due to the fact

that diabetes patients have problem with insulin, which cannot use glucose (blood

sugar) for energy, which results into elevated blood glucose levels (hyperglycaemia)

and the eventual reduction of sugar level through urine. There are three main types

of diabetes:

1. Type 1 (insulin-dependent, previously called ”juvenile diabetes”). This

type of diabetes is associated with a malfunctioning pancreas which does

not produce adequate amounts of insulin. It develops most often in children

and young adults. It is traditionally treated with insulin.

2. Type 2 (non insulin-dependent, sometimes called ”adult-onset diabetes”).

This type diabetes is known to develop commonly in older adults, however

it is now being found to affect younger ages including children.

3. Gestational (pregnancy-related).Some women develop diabetes during

pregnancy, usually toward the end of pregnancy. It affects approximately 3

to 5 percent of all pregnant women. Although it naturally cures itself after

pregnancy, these women have a higher risk for developing type 2 diabetes

later in life.

1.2.1 Causes of Diabetes

1.2.1.1 Type 1

There is an early interspersed tissue throughout the pancreas which contain cells

that make and secrete hormones. This tissue, called the ”Islets of Langerhans”

is named after the German pathologist Paul Langerhans, who discovered them

in 1869. Through a microscope, Langerhans observed that these cells cluster in

groups, which he likened to little islands in the pancreas.
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One such group of cells, the beta cells, produce insulin in response to blood

glucose. These beta cells are tiny insulin pockets that sense the level of glucose in

the blood stream, and produce insulin in precise proportionto that level. Therefore,

following a meal, blood sugar levels will rise significantly, and the beta cells will

release a large amount of insulin. This insulin will cause body cells to take up

the sugar, causing blood sugar to quickly return to its normal range. Once blood

sugar is in the normal range, the beta cells will reduce the output of insulin to an

idling state. In this way, the beta cells adjust their production of insulin as per

demand, always producing just enough insulin to deal with the amount of blood

sugar presently in the blood stream.

In type 1 diabetes, the islets are destroyed by the person’s own immune system,

which mistakenly identifies these essential cells as foreign invaders. This self-

destructive mechanism is the basis of many so-called auto-immune diseases. Once

the islets are killed, the ability to produce insulin is lost, and the overt symptoms

and consequences of diabetes begin.

1.2.1.2 Type 2

The most common causes of type 2 diabetes are poor diet and/orlack of exercise,

both of which can result in insulin resistance. This is a condition where the cells

in our bodies are not sensitive enough to react to the insulinproduced by our

pancreas.

Insulin is a chemical messenger that signals proteins called GLUT-4 trans-

porters (residing within the cell) to rise up to the cell’s membrane, where they can

grab on to glucose and take it inside the cell. For patients with insulin resistance,

the cells do not get the message. They simply cannot hear insulin ”knocking” on

the door, which results in elevated blood levels of both insulin and glucose.

In the early stages of insulin resistance, the pancreas compensates by produc-

ing more and more insulin, and so the ”knocking” becomes louder and louder.

The message is eventually ”heard”, enabling glucose transportation into the cells,

resulting in the eventual normalization of blood glucose levels. This is known as

”compensated insulin resistance”.

Over time, the stress of excessive insulin production wearsout the pancreas
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and it cannot keep up this accelerated output. As a result, glucose levels remain

elevated for prolonged periods. This is called ”uncompensated insulin resistance”

and is the essence of advanced type 2 diabetes. Type 2 diabetes is characterized

by a series of chain reactions as follows:

1. The ingestion of too many carbohydrates leads to a rise in blood sugar levels.

2. This is followed by a corresponding rise in insulin.

3. This in turn causes blood sugar to drop.

4. Eventually, this drastic up-and-down activity begins totake its toll on the

body’s ability to use insulin and thus metabolize sugar.

5. Over time, the pancreas ”wears out” and can no longer pump out enough

insulin to overcome this insulin resistance.

6. This results in a decreased insulin production and/or increased insulin resis-

tance which propagates the cycle and leads to the onset of diabetes.

In medical world it is known that insulin resistance and obesity are correlated,

particularly the type where the weight seems to collect around the middle (like an

apple). It is also known that physical inactivity contributes to insulin resistance,

as excessive feeding on too much of carbohydrate.

1.2.2 Symptoms of Diabetes

Diabetes symptoms vary somewhat, depending on the type of diabetes a patient

has. A patient might experience some or all of the symptoms oftype 1 and type

2 diabetes generally listed as:

1. Increased thirst.

2. Frequent urination.

3. Extreme hunger.

4. Unexplained weight loss.
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5. Fatigue.

6. Blurred vision.

7. Slow-healing sores.

8. Frequent infections, such as gum or skin infections and vaginal or bladder

infections.

1.2.3 Risk Factors of Diabetes

The two major factors contributing to today’s alarming risein diabetes are: poor

diet and lack of exercise. In today’s fast paced culture, with its emphasis on ”fast

foods” and its silence on exercise, more people are eating unhealthy diets and

choosing poor lifestyles.

Our typical diet has become way out of balance. We eat too manysimple

sugars too often. Most people consume candy, French fries, potato chips, ice

cream, pasta etc on a regular basis. We eat twice the calorieswe need, twice the

protein we need and each year an average person consumes over160 pounds of

sugar and sweeteners which is not needed at all.

When we consider that so many of us are overfed and so few get regular

exercise and the fact that many of us overuse alcohol and nicotine which increase

oxidative stress, it’s no wonder that millions of us suffer from diabetes, or are at

great risk of developing diabetes in the near future.

The ever-increasing number of overweight, out of shape, oxidatively stressed

people in today’s societies around the world, is directly proportional to the epidemic

rise of diabetes.

The following is a list of risk factors for getting diabetes:

1. Being more than 20 percent overweight.

2. Physical inactivity.

3. Having a first degree relative with diabetes (parents or siblings) .

4. Having an ”Impaired Fasting Glucose” (IFG) or ”Impaired Glucose Toler-

ance” (IGT) on previous blood tests.
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5. Having Triglycerides (blood fats) which are more than 250mg/dl.

6. Having HDL cholesterol (”good” cholesterol ) which is less than 35 mg/dl.

7. Having a history of hypertension (high blood pressure) .

8. Having a history of gestational (pregnancy-related) diabetes or giving birth

to a baby which weighed more than 9 pounds .

1.2.4 Complications of Diabetes

The most important health impacts of diabetes are the long-term complications it

can cause. Most of these long-term complications are related to the adverse effects

diabetes has on arteries and nerves.

1.2.4.1 Complications related to artery damage

Diabetes causes damage to both large and small arteries. This artery damage

results to medical problems that are both common and serious. The most common

of complications resulting from artery damage includes;

1. Cardiovascular disease. The burden of Cardiovascular risks is high in the

diabetic population, Otieno et al (1974). Diabetics have upto a 400 percent

greater chance of heart attack or stroke. Heart disease and stroke cause

about 65 percent of deaths among people with diabetes. Thesedeaths could

be reduced by 30 percent with improved care to control blood pressure and

blood glucose and lipid levels.

2. Amputations. Diabetic foot ulcers and diabetic foot with peripheral vascular

disease also contribute significantly to lower limb amputation, Awali (2007).

Over 60 percent of non-traumatic lower limb amputation are diabetes related.

Foot care programs that include regular examinations and patient education

could prevent up to 85 percent of these amputation.

3. Kidney disease. About 38,000 people with diabetes develop kidney failure

each year. Treatment to better control blood pressure and blood glucose

levels could reduce diabetes-related kidney failure by about 50 percent.
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4. Eye disease and blindness. Each year, 12,000-24,000 people become blind

because of diabetic eye disease, including diabetic retinopathy. Diabetes

is the leading cause of new cases of blindness among adults 20-74 years

old. Screening and care could prevent up to 90 percent of diabetes-related

blindness.

5. Sexual Dysfunction. Approximately 70 percent of all adult males with

diabetes suffer or experience sexual dysfunction or impotence.

1.2.4.2 Complications related to nerve damage

Between 60 to 70 percent of people with diabetes have mild to severe forms

of nervous system damage. This diabetic neuropathy may result in numbness,

tingling, and paresthesia in the extremities. Some examples of diabetic neuropathy

are as follows.

1. Peripheral neuropathy. The feet and legs can develop tingling, pain or

some numbness. This problem makes foot ulcers and foot infections more

common, adding to the possibility that an amputation may be needed.

2. Stomach and bowel problems. The nerves that trigger normal movements

of the stomach and intestines can become less active or less predictable.

This can result in nausea, constipation or diarrhoea. A stomach that is slow

to empty its content has a diabetes condition called gastroparesis.

3. Dizziness when standing. Blood circulation has to make some adjustments

to move blood from toes to the torso when one is standing up, since it is

moving against gravity. When the body is working correctly,this adjustment

includes tightening of blood vessels to prevent pooling of blood in the lower

body. The circulation relies on nerve signals to know when tomake this

adjustment. These signals can fail in diabetes, leaving onewith low blood

pressure and lightheadedness when one is standing.

4. Sexual-function problems. Impotence is especially common in people with

nerve damage from diabetes. Artery damage also contributesto impotence.
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5. Localized nerve failures. A nerve that controls a single muscle can lose

its function. Examples of problems that might result are eyemovement

problems with double vision, or drooping of the cheek on one side of the

head (commonly known as Bell’s palsy).

Many of these potential complications can significantly interfere with the qual-

ity of life and to some extent, shorten the life of a person with diabetes. Diabetes

complications are primarily caused by two factors. These are:

1. Excessive Glycosylation.

Glycosylation is the process by which the sugar molecule binds irreversibly to a

protein molecule. This process takes place in all humans, but because diabetics

have higher levels of glucose in their blood and for longer durations than non

diabetics, they have a much higher degree of glycosylation occurring

Excessive glycosylation results in abnormal protein structures which lead to a

host of cellular dysfunction such as: inactivation of enzymes, inhibition of regu-

latory molecule binding, decreased susceptibility to proteolysis, abnormalities of

nucleic acid function, altered macromolecular recognitions and increased immuno-

genicity.

In diabetics, glucose binds to proteins in the blood, nervesand the eyes. This

pathological process causes much of the damage in the complications of diabetes.

2. Sorbitol Accumulation

Sorbitol is the by-product of glucose metabolism and is produced through the

action of the enzyme aldose reductase. In non-diabetics, sorbitol is converted to

fructose and is easily excreted from the cell. However, inside the cells of diabetics,

when glucose levels become elevated (even after glucose levels outside of the cell

return to normal), sorbitol is produced faster than it can bebroken down. Since it

cannot permeate the cell membrane, it builds up to a toxic level inside the cells,

creating an imbalance and causing a loss of electrolytes andother minerals. This

accumulated sorbitol draws water in to the cell, by the process known as osmosis,

10



and ultimately leads to the collapse of its formulation and loss of its function.

Sorbitol-induced osmotic swelling is believed to be one of the main causes of

tissue damage in diabetics. This condition seems to target organs and tissues that

are not dependent on insulin for their absorption of glucose. Elevations of sorbitol

levels are a major problem in peripheral nerves, blood vessels, the cells of the

retinal blood vessels, the lens of the eye, the pancreas, kidneys and other organs

due to their lack of insulin dependence.

1.2.5 Diabetes: Preventive Measures

Diabetes and it’s complications can be treated and/or prevented safely without

prescription drugs (contemporary medicine) from the herbalist point of view. If

one has diabetes or any of the risk factors for diabetes or is just concerned about

diabetes, the herbalists recommend that one start with a natural treatment plan to

reduce the risk. There are three components to a natural diabetes cure for which

most herbalists are in agreement about. These are:

1. Diet: The single most important change any diabetic or person at risk can

make is to improve the diet. A proper diet for a diabetic should have a

low glycemic index (that is containing low simple carbohydrates), moderate

protein and high fibre. This diet reduces blood sugar, reduces insulin levels,

and reduce the need for medications. It will also help to reduce weight,

reduce blood pressure and support overall health and energy.

2. Exercise: Studies have shown that exercise is of great benefit to diabetics

and can significantly reduce the risk of developing type 2 diabetes. Regular

physical activity helps reduce weight, lower blood sugar, improve insulin

sensitivity, strengthen the immune system, improve circulation, lower blood

pressure, lower LDL (”bad”) cholesterol, raise HDL (”good”) cholesterol,

and reduce risk of heart disease.

3. Nutritional Supplements: There are a number of nutritional supplements

that every diabetic should be taking on a daily basis. These supplements

are very effective in helping to lower blood sugar and insulin levels, reduce
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cholesterol levels, reduce triglyceride levels, reduce blood pressure, improve

energy, and reduce the risk of heart disease. These supplements can also

protect body tissues (eyes, kidneys, blood vessels) from the damage diabetes

often causes. They can also support body immune system, protect the heart,

and improve circulation.

1.2.6 Commonly used Diabetic Herbs

1.2.6.1 Cinnamon

Cinnamon is the brown bark of the cinnamon tree, which, when dried, rolls into

a tubular form known as a quill. It is available in either its whole quill form

(cinnamon sticks) or as ground powder. It is one of the oldestspices known but is

much more than just a spice. Cinnamon has demonstrated greatmedical application

in preventing and combating diabetes, Anderson et al (2010). According to cellular

and molecular studies conducted at the University of California, Santa Barbara,

Iowa State University and the U.S. Department of Agriculture, Cinnamon plays

the role of an insulin substitute in type 2 diabetes. This initial discovery was

made quite accidentally, by Richard Anderson. He investigated the effects of

common foods on blood sugar, one was the American favourite,apple pie, which

is usually spiced with cinnamon. With his team they found that people who eat

apple pie had a significantly lower probability of getting Type II diabetes. Upon

further examination, he isolated cinnamon as the substancein the apple pies that

was preventing the diabetes. They recently completed a study with associates in

Pakistan using cinnamon on human beings. Their study included 60 Pakistani

volunteers (30 men and 30 women ranging in age from 44 to 58 years) with type

2 diabetes, who were not taking insulin. Subjects were divided into six groups.

For 40 days, groups 1, 2 and 3 were given 1, 3 or 6 grams of cinnamon per day,

while groups 4, 5 and 6 received placebo capsules. All the three groups given

cinnamon showed reduced blood sugar levels. When daily cinnamon was stopped,

blood sugar levels began to increase. No significant changes were seen in those

groups receiving placebo.

Their conclusion was that including cinnamon in the diet of people with type 2
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diabetes reduces risk factors associated with diabetes andcardiovascular diseases.

Anderson cautioned that the most important thing is to add cinnamon to what

one would eat normally, since cinnamon triples insulin’s efficiency and at least

a half teaspoon is critical to ”soften” the cell membranes. Further studies by the

Anderson team have collaborated cinnamon’s ability to improve insulin activity.

Their study has led to the discovery of cinnamon’s active ingredient, as well

as an understanding of its structure and the mechanism by which it enhances

insulin activity. Using nuclear magnetic resonance and mass spectroscopy, the

Anderson team was able to describe the chemical structure ofa molecule with

”insulin-like” activity in cinnamon as a water-soluble polyphenol compound called

methylhydroxychalcone polymer (MHCP).

Anderson (2003) discovered that MHCP not only stimulates glucose uptake by

the cells, but it can even help in the synthesis of glycogen, apolymer of glucose

that our bodies produce as a means of storing energy for lateruse when it is

depolymerized back to glucose. Producing adequate amountsof glycogen is a

principal function of blood sugar metabolism and MHCP can help.

Anderson, concluded that MHCP mimics insulin, has effects similar to that of

insulin and works almost as well as insulin. He asserts that both of these substances

work by chemically modifying our cells’ insulin receptors in a manner that activates

them to do their job, which is to allow glucose molecules to pass through the cell

wall into the insulin cascade. He also discovered that when MHCP and insulin

act together, the effect is synergistic, i.e., the total effect is greater than the sum

of its parts.” They characterize the insulin-enhancing complexes in cinnamon as

a collection of catechin/epicatechin oligomers that increase the body’s insulin-

dependent ability to use glucose roughly 20-fold.

However some scientists have been concerned about potentially toxic effects of

regularly consuming cinnamon. Ongoing (no publications) research suggest that

the potentially toxic compounds in cinnamon bark are found primarily in the lipid

(fat) soluble fractions and are present only at very low levels in water soluble

cinnamon extracts, which are the ones with the insulin-enhancing compounds.
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1.2.6.2 Alpha Lipoic Acid (ALA)

Alpha Lipoic Acid (also known as thioctic acid or lipoic acid) is a very powerful

natural antioxidant and is the single most important supplement one can take to

treat diabetes.

ALA was first isolated in 1953 and was quickly discovered to be a very im-

portant cofactor in the Krebs cycle (the body’s main processfor converting car-

bohydrates into energy). ALA and its ’cousin’ DHLA are oftenreferred to as

the ”ultimate universal antioxidants”. They (referred to collectively as LA) are

the only antioxidants that are both fat and water soluble. Both can actually cross

the blood/brain barrier to enter the brain. These unique qualities are important,

because it means that LA can access all parts of all cells, giving it tremendous

ability to scavenge free radicals wherever they may be. Additionally, LA can also

recharge other antioxidants that have been used up. In the body, LA helps regener-

ate other antioxidants such as vitamin C, vitamin E and glutathione. And, because

LA functions much like a B-vitamin, it also helps convert food into energy.

Though the body makes some alpha lipoic acid, it is not enoughfor optimal

nutrition. Likewise, there are only very small amounts of ALA found in some of

our daily foods such as broccoli, potatoes, and liver. In these foods, it actually

occurs as lipolylysine though, and not actual lipoic acid itself. One can never get

any useful amount of ALA from a broccoli diet alone. This means one would

have to eat over two pounds of broccoli to get one single milligram of lipolylysine

to convert into alpha lipoic acid.

Eberhard-Karls University (1999), in their study that was an advancement of

studies carried out before them, (Diabetologica 1995 and Arzneimittelorschung

1995), real adult human diabetics were given various doses of ALA. The doctors

found that in just 10 days, ALA helped cure insulin resistance, normalize blood

sugar levels and cure diabetes. The researchers pointed outthat Thioctic acid is

a co-factor of key mitochondrial enzymes, involved in the regulation of glucose

oxidation, such as the pyruvate dehydrogenase and the alpha-ketoglutatarate dehy-

drogenase, both enzyme complexes which are known to be diminished in diabetes.

This means ALA works with our bodies’ enzymes to prevent glucose from being

oxidized. They concluded tha the clinical and experimentaldata indicate that this
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compound has beneficial effects on insulin sensitivity, correcting several metabolic

pathways known to be altered in type 2 diabetes, such as insulin stimulated glucose

uptake, glucose oxidation and glycogen synthesis.

Other studies have shown that ALA Increases glucose effectiveness. When

ingested, ALA decreases serum lactate and pyruvate concentrations improving

glucose effectiveness in both lean and obese patients with type 2 diabetes. Addi-

tionally, because ALA inhibits glycosylation and peroxidation of nervous tissues

and increases the levels of intra-cellular glutathione, ithas been used to improve

diabetic nerve damage and reduce pain associated with that nerve damage. Nerve

damage or neuropathy affects over 50 percent of diabetics and is one of its most

damaging complications.

In 2001, a study which was conducted at the University of Southern California

on Molecular Aspects of Lipoic Acid in the Prevention of Diabetes Complications

availed data that strongly suggest that ALA, because of its antioxidant properties,

is particularly suited to the prevention and/or treatment of diabetic complications.

In addition, ALA increases glucose uptake, increases glucose disposal in type 2

diabetics and remarkedly reduces the symptoms of diabetic pathologies, including

cataract formation, vascular damage and polyneurpathy. These are rather powerful

statements coming from very well respected research groups.

1.2.6.3 Banaba Leaf

Banaba (Lagerstroemia speciosa) is a plant native to India,Southeast Asia and

the Philippines and has several medicinal uses. In many cultures the banaba leaf

is brewed into a tea and used as a treatment for diabetes and asa weight loss

aid. Banaba Leaf Extract provides a blood sugar lowering effect similar to that of

insulin in that it induces glucose transport from the blood into body cells.

Recently, researchers have isolated an active ingredient in the banaba leaf called

corosolic acid which was originally thought to be ”the” blood sugar regulating

substance in the leaf. Other researchers have found that corosolic acid may not be

the only active ingredient in banaba leaves. A study in 2001 compared a whole-

leaf extract of banaba with insulin in cell cultures. The researchers concluded that

the whole herb has a glucose lowering effect. Another study reported that banaba
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leaf extract contains at least three active ingredients that affect blood sugar.

In animal studies, administration of banaba leaf extract resulted in a signifi-

cant decrease of blood glucose. The same studies suggest that corosolic acid may

stimulate glucose transport into tissue. In other animal studies, administration of

banaba leaf extract resulted in reduced weight gain, reduced triglyceride accumula-

tion and reduced adipose tissue, with no changes in diet. In non insulin-dependent

animals, administration of banaba leaf extract resulted insuppressed blood plasma

glucose, lower serum insulin and lower urinary excretion ofglucose.

In clinical studies conducted by William Judy and associates at the South-

eastern Institute of Biomedical Research in Bradenton, Florida, a one per cent

corosolic acid extract of banaba leaf reportedly reduced serum glucose 20-30 per-

cent in people with type 2 diabetes, but did not reduce serum glucose in healthy

individuals. In a prior study, some of the same researchers observed that individ-

uals receiving the corosolic acid extract also had an increased tendency toward

weight loss with an average of about 3.2 pounds.

1.2.6.4 Momordica

Bitter melon is the common name for Momordica charantia, also known as African

cucumber, balsam pear and bitter gourd. The plant is aptly named, as all parts

of the plant, including the fruit, taste bitter. Widely soldin Asian groceries as a

vegetable, bitter melon is employed as a folk remedy primarily for regulating blood

sugar in cases of diabetes, as well as for colitis and dysentery, intestinal worms,

jaundice and fevers. Current understanding of the phytochemicals in bitter melon

suggests that these multiple uses are well founded.

Among the constituents in bitter melon, charantin is identified as a primary

agent for blood-sugar regulation. Charantin demonstrateshypoglycemic (blood

sugar lowering) or other actions of potential benefit in diabetes. The fruits also

contain insulin-like peptides, including one known as polypeptide P, and alkaloids.

It is likely that several substances in bitter melon contribute to its blood sugar-

modifying effects. In human studies, bitter melon demonstrates significant blood-

sugar control after food intake and overall blood sugar-lowering effects.

Bitter melon has potent anti-diabetes effects melon known as cucurbitane triter-
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penoids. Harvard University Medical School (2003) established their effects on

glucose (sugar) and fat metabolism in cells and in mice. Whentested in muscle

and fat cells, the researchers found, the compounds stimulated the glucose receptor

GLUT4 to move from the cell interior to the cell surface, thuspromoting more

effective glucose metabolism. Several of the tested compounds had effects com-

parable to those of insulin. Tests in mice of two of the compounds found that

they promoted both glucose tolerance and fat burning, and one was particularly

effective in promoting glucose tolerance in animals consuming high fat diets. The

researchers note that there may be as many as 70 active compounds in bitter melon,

this is an important basis for further analysis of structure-activity relationship to

develop optimized leads from (bitter melon) for the treatment of insulin resistance

and obesity.

Research at the Harvard University Medical School (2003) established that,

Momordica is just as effective as glibenclamide in reducingblood sugar levels. In

fact, a large study at Harvard University Medical School concluded that mormodica

is one of the best natural remedies for diabetes . It appears that mormodica contains

compounds similar in structure to insulin, which have the same effects in regulating

blood sugar levels. There is also evidence that mormodica can prevent the release

of excess glucose into the bloodstream from the liver.

1.2.6.5 Gymnema Sylvestre

Gymnema Sylvestre is another herb, whose traditional use intreating diabetes,

has been backed up by recent medical research. Originating from India, Gymnema

Sylvestre is known as gur-mar, or ”sugar destroyer.” When gymnema leaf is placed

directly on the tongue, it eliminates the sensation of sweetness, even if sugar is put

in the mouth immediately. When taken internally, it helps tocontrol blood-sugar

levels in diabetes.

The leaves of Gymnema sylvestre perform two significant functions relative to

diabetes. First, they suppress blood glucose, especially after eating. Secondly, they

are insulinotropic and promote insulin secretion. By this two-pronged approach,

Gymnema sylvestre proves a valuable aid in diabetes control. Scientists believe

that its active ingredients (gymnemic acids) protect the cells of the pancreas from
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free radical damage, so allowing them to regenerate and produce insulin more

effectively.

Studies have shown that gymnema can also reduce glucose absorption from

the intestine, so helping to regulate blood sugar levels. A recent Harvard study

indicates that the Gymnema lowers blood sugar levels in Type1 and Type 2

diabetics. A recent King’s College, London, study states that Gymnema acts by

increasing cell permatibility, therefore reducing insulin resistance.

1.2.7 Diagnose for Diabetes

Diabetes is diagnosed by evaluating both symptoms and laboratory test results.

There are two commonly used laboratory tests:

1. Fasting Plasma Glucose test (FPG): With the FPG test, the blood glucose

level is measured after an 8 hour fast. If glucose is higher than normal

(100 mg/dl),a person is said to have ”Impaired Fasting Glucose” (IFG),

which suggests pre-diabetes. A diagnosis of Diabetes is made when an FPG

level of greater than 125 mg/dl is measured in two different occasions, for

confirmation.

2. Oral Glucose Tolerance Test (OGTT): An OGTT may be helpful in di-

agnosing type 2 Diabetes in patients whose FPG is between 115and 125

mg/dl. During an OGTT test, the blood sugar is measured aftera fast and

then again 2 hours after drinking a beverage containing a large amount of

glucose. If the glucose is higher than normal (140 mg/dl), two hours after the

drink, a person is said to have ”Impaired Glucose Tolerance”(IGF), which

suggests pre-diabetes. A diagnosis of Diabetes is made whenan OGTT level

is greater than 200 mg/dl

1.3 Response surface

Experimentation plays an important role in Science, Engineering, and Industry,

this is an application of treatments to experimental units and then measurement

of one or more responses. It requires observing and gathering information about
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how a process or a system works. In an experiment, some inputsx1, x2, ..., xk

transform into an output that has one or more observable response variablesy.

Therefore, useful results and conclusions can be drawn fromthe analysis of data

in the experiment. In order to obtain an objective conclusion an experimenter

needs to plan and design an experiment and analyze the results.

As an important subject in the statistical design of experiments is the Response

Surface Methodology (RSM) which is a collection of mathematical and statistical

techniques useful for the modeling and analysis of problemsin which a response

of interest is influenced by several variables and the objective is to optimize this

response (Montgomery 2005). For example, the growth of a plant is affected by

a certain amount of waterx1 and sunshinex2. The plant can grow under any

combination of treatmentx1 andx2 among other variables. Therefore, water and

sunshine can vary continuously. When treatments are from a continuous range of

values, then a Response Surface Methodology is useful for developing, improving,

and optimizing the response variable. In this case, the plant growth y is the

response variable, and it is a function of water and sunshine. It can be expressed

as

y = f(x1, x2) + ǫ (1.1)

The variablesx1 andx2 are independent variables where the responsey de-

pends on them. The dependent variabley is a function ofx1, x2, and the exper-

imental error term, denoted asǫ. The error termǫ represents any measurement

error on the response, as well as other types of variations not counted inf . It

is a statistical error that is assumed to distribute normally with zero mean and

varianceσ2. In most RSM problems, the true response functionf is unknown.

In order to develop a proper approximation forf , the experimenter usually starts

with a low-order polynomial in some small region. If the response can be defined

by a linear function of independent variables, then the approximating function is

a first-order model.

In general all RSM problems use either one or a combination ofRSM models.

In each model, the levels of each factor are independent of the levels of other
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factors. In order to get the most efficient result in the approximation of polyno-

mials, the proper experimental design must be used to collect data. Once the data

are collected, the Method of Least Squares is used to estimate the parameters in

the polynomials. The response surface analysis is performed by using the fitted

response surface. The Response surface designs are types ofdesigns for fitting

response surface. Thus, the objective of studying RSM can beaccomplished by;

Understanding the topography of the response surface (local maximum, local

minimum, ridge lines),

Finding the region where the optimal response occurs. The goal is to move

rapidly and efficiently along a path to get to a maximum or a minimum

response so that the response is optimized,

Estimation of the optimum conditions, and

Verification of the optimum conditions.

Some notable features will emerge, where the objective of the experiment is

not to investigate the functional relationshipf(x1, x2, · · · , xk) over the whole

factor space but to locate the region in which the response isat its highest and map

it. Regarding the response surface as a mountain, the objective of an excursionist

is to find the peak of the mountain and explore the area in which the peak is

found. Analogously, this is equivalent to locating feasible treatment combinations

for which the mean response is optimized (maximized/minimized or equal to a

specific target value) and to estimate the response surfacein the vicinity of this

good location to better understand the local effects of the factors on the mean

response.

This excursion will yield interesting patterns of the response surface where we

might map peaks and ridges (series of contours of equal measure) in which we may

identify with optimal yield. Of interest to note then is how to discriminate amongst

these various points at which the yield is the same for different combinations of

the predictor variables and isolate that one which we identify as parsimoniously

feasible. The variance function comes in handy as a tool for this aforementioned

discrimination. The most feasible of all the identified point (peaks or ridges) of

equal yield is one in which the variance function is minimal.
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A special case of interest is when the design is rotatable forwhich the variance

function of the estimated response will remain constant on the sphere about the

centre of the design.

1.3.1 Response surface

By application of the same line of thought on the growth of a plant, one can model

or optimize any response that is affected by the levels of oneor more quantitative

factors. Generally the response is a quantitative continuous variable (e.g. yield,

growth, purity, cost, e.t.c) and the mean response is a smooth but unknown function

of the one or more factors sayk, whereas the levels of a factor are real valued and

controllable.

Suppose we wish to investigate the plant growth where two factors, say, amount

of waterx1 and sunshinex2 are involved. The experimental procedure will be

to make several trials (runs) on the pilot plant at differentlevels of waterx1 and

sunshinex2 and to make observations, on each run a response say the plantgrowth

y is the response variable. Here we have a two-dimensional factor space of the

qualitative factors (i.e. measurable on a continuous scale). We can think therefore

of the expected responseE(y) as a function of the levels of the factors. Letx1

andx2 denote the levels of the factors, we have,

y = f(x1, x2) + ǫ (1.2)

where, ǫ ∼ N(0, σ2)

The function is single valued and the expected value of (1.2)is

E(y) = f(x1, x2) (1.3)

which is called aResponse Surface.

The reason why we call it a response surface is that though we haveE(y) =

f(x1, x2) if the x1 andx2 axes are taken in their usual way and they axis is

drawn perpendicular to the plane of the paper, the response can be represented

on the surface of the paper just like altitude is representedon a map using lines

of equal response (height) as contours. In general therefore for k factors, mean

response plotted as a function of the treatment combinations will yield a surface

in k + 1 dimensions called the response surface.
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Prior knowledge of the process involved will enable us know the form of

f(x1, x2, . . . , xk) for k factors. However with lack of this knowledge, we

consider a situation in whichf(x1, x2, . . . , xk) is approximated by a polynomial

of degree sayd for which the model will be referred to as thedth order model.

The set of points(x1, x2, . . . , xk) at which trials are made is referred to as the

V ariable Factor Space.

With reference to adth order design (model) the general design is represented

as;

yi = f(xi)β + ǫi (1.4)

whose matrix equivalent is,

Y = Xβ + ε (1.5)

where,

Y is ann× 1 vector of observations,

X is ann× k matrix,

β is ak × 1 vector of unknown parameters, and

ε is an× 1 vector of independently identically distributed random

variables with mean zero and varianceσ2.

Consider a second order model written as,

y = β0 +
k�

i=1

βixi +
k�

i=1

βiix
2
i +

k�

i=1

k�

j=1

βijxixj + ε, (1.6)

where, β0, β1, β2, ..., βk, β11, ..., βkk, β12, ..., βk−1,k are constants andε is

normal with mean zero and varianceσ2 andx1, x2..., xk are the levels of the

predictor (independent) variables.

Let x′a and x′b be the transpose of two vectors of the matrixX but which

arises from two distinct points in the predictor variable space. Then,

ŷ(x′a) = x′aβ̂ (1.7)

and

ŷ(x′b) = x′bβ̂ (1.8)

where, the vector̂β is the Least Square Estimate ofβ, describe two points on the

response surface. If for examplek = 2,
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then the response surface in three dimensions is presented as,

The rotation of the two points through any angle will be such that their distance

from the centre as well as between them is maintained to be constant for an evenly

shaped response surface from the centre.

Likewise for a third order design

yu = β0x0u +
k�

i=1

βixiu +
k�

i=1

βiix
2
iu +

k�

i=1

k�

j=1

βijxiuxju +
k�

i=1

k�

j=1

k�

l=1

βijxiuxjuxlu + εu,

(1.9)

where

x0u, x1u, ..., xku, , x
2
1u, ..., x

2
ku, x1ux2u, ..., xk−1,uxku, xk−2,uxk−1,uxku are

variables or input levels,and

β0, β1, β2, ..., βk, β11, ..., βkk, β12, ..., βk−1,k, β123, ..., βk−2,k−1,k are para-

meters to be estimated, withE(εu) = 0, V ar(εu) = σ2 (unknown constant),

Cov(εuε
′
u) = 0, u �= u′ = 1, 2, ..., N

1.3.2 Rotatability

The property of rotatability as a desirable quality of an experimental design was

first introduced by Box and Hunter (1957). This property states that;The vari-

ance of the estimated response is constant on circles spheres or hyper-spheres

about the centre of the design. Thus a rotatable arrangement which achieves this

property could be rotated through an angle around the centreand the variance of

the estimated response would remain invariant. That is, there is same amount of

information about the response surface at the same distancesayρ in any direc-

tion from the centre of the design. This is a reasonable requirement of a design

since the data are generally collected without knowing in which direction from the

design centre the stationary points of the fitted surface will be located.
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1.3.3 Moment Conditions and Rotatability

1.3.3.1 First-Order Model

The moment conditions which are necessary for a set ofN points(x1u, x2u, . . . , xku),

u = 1, 2, ..., N to form a first order rotatable design are;

1. The sum of the powers or sum of product of powers of thexiu’s with at

least one power odd is zero, that is;

(i)
�N
u=1 xiu = 0

(ii)
�N
u=1 xiuxju = 0

2. the sum of product of powers of thexiu’s with even powers is constant

(iii)
�N
u=1 x

2
iu = Nλ2

this condition is just but the orthogonality condition.

1.3.3.2 Second-Order Model

The moment conditions which are necessary for a set ofN points(x1u, x2u, . . . , xku),

u = 1, 2, ..., N to form a second order rotatable design are;

1. The sum of the powers or sum of product of powers of thexiu’s with at

least one power odd is zero, that is;

(i)
�N
u=1 xiu = 0

(ii)
�N
u=1 xiuxju = 0

(iii)
�N
u=1 xiux

2
ju = 0

(iv)
�N
u=1 x

3
iu = 0

(v)
�N
u=1 xiuxjuxlu = 0

(vi)
�N
u=1 xiuxjux

2
lu = 0, i �= j �= l

2. the sum of the powers or sum of product of powers of thexiu’s with even

powers are constant
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(i)
�N
u=1 x

2
iu = Nλ2

(ii)
�N
u=1 x

4
iu = 3

�N
u=1 x

2
iux

2
ju = 3Nλ4 i �= j �= l

In addition to these conditions we must ensure thatX ′X is non singular for

which the non-singularity condition for a second order design is thatλ4 andλ2

must satisfy;

λ4

λ22
>

k

k + 2
(1.10)

1.3.3.3 Third-Order Model

The moment conditions which are necessary for a set ofN points(x1u, x2u, . . . , xku),

u = 1, 2, ..., N to form a third order rotatable design are;

1. The sum of the powers or sum of product of powers of thexiu’s with at

least one power odd is zero, and

2. the sum of the powers or sum of product of powers of thexiu’s with even

powers are constant, that is;

(i)
�N
u=1 x

2
iu = Nλ2

(ii)
�N
u=1 x

4
iu = 3

�N
u=1 x

2
iux

2
ju = 3Nλ4

(iii)
�N
u=1 x

6
iu = 5

�N
u=1 x

2
iux

4
ju = 15

�N
u=1 x

2
iux

2
jux

2
lu

= 15Nλ6 i �= j �= l

Further to these two conditions we must also ensure thatX ′X is non singular

for which the non-singularity condition for a third order design is thatλ6,λ4 and

λ2 must satisfy;
λ4

λ22
>

k

k + 2
(1.11)

λ6λ4

λ24
>

k + 2

k + 4
(1.12)

for which in this case if they are not satisfied, then the addition of N0 central

points (0,0,...,0) can make condition 1.10 satisfied. However addition of centre

points does not make or satisfy 1.11. This can be satisfied bycombining at least

two spherical set of points with different radii.
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1.3.3.4 Fourth-Order Model

The moment conditions which are necessary for a set ofN points(x1u, x2u, . . . , xku),

u = 1, 2, ..., N to form a fourth order rotatable design are;

1. The sum of the powers or sum of product of powers of thexiu’s with at

least one power odd is zero, and

2. the sum of the powers or sum of product of powers of thexiu’s with even

powers are constant, that is;

(i)
�N
u=1 x

2
iu = Nλ2

(ii)
�N
u=1 x

4
iu = 3

�N
u=1 x

2
iux

2
ju = 3Nλ4

(iii)
�N
u=1 x

6
iu = 5

�N
u=1 x

2
iux

4
ju = 15

�N
u=1 x

2
iux

2
jux

2
lu = 15Nλ6

(iv)
�N
u=1 x

8
iu = 7

�N
u=1 x

2
iux

6
ju =

35
3
15

�N
u=1 x

4
iux

4
ju

= 105
�N
u=1 x

2
iux

2
jux

2
lux

2
ru = 105Nλ8

while the necessary and sufficient conditions for which a set of points to form a

rotatable design of order four are,

ω1 > ω2 − ω3 (1.13)

λ4λ8

λ26
>

k + 4

k + 6
(1.14)

λ2λ6

λ24
>

k + 2

k + 4
(1.15)

Where,

ω1 = (k + 2)(k + 4)[(k + 6)λ4λ8 − (k + 4)λ26]

ω2 = k(k + 4)λ2[(k + 6)λ2λ8 − (k + 2)λ4λ6]

ω3 = k(k + 2)λ4[(k + 4)λ2λ6 − (k + 2)λ24]

these three later conditions (1.13), (1.14) and (1.15) ensures that the moment matrix

X ′X is non singular.
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1.4 Variance Function in Response surface Designs

Consider a general modelf(x1, x2, ..., xk) and its matrix equivalent as presented

in (1.4). Assuming that the least square estimates ofβ are to be obtained by use

of the normal equation,

β̂ = (X ′X)−1X ′y (1.16)

the variance of̂β, is the variance-covariance matrix and is given as

V ar(β̂) = (X ′X)−1X ′ V ar(y)X(X ′X)−1 = (X ′X)−1σ2 (1.17)

Thus the variance of estimated response(ŷ) at a point on the sphere of radiusρ

where,ŷ = X ′β̂ is

V ar(ŷ) = X ′ V ar(β̂)X

= X ′(X ′X)−1σ2X

= σ2f ′(x)(X ′X)−1f(x)

(1.18)

hereσ2 is assumed to be unknown constant andxi, i = 1, 2, ..., k are taken to

be non-stochastic.

The variance function of the fitted model in a general case can be used to

evaluate competing designs whereby the best design is one which has the smallest

possible variance. The prediction variance of the estimated response at a point say

x is given by,

V ar(ŷ(x)) = N−1x′
(m)
(X ′X)−1x(m)σ2 (1.19)

wherex(m) is the vector of co-ordinates of a point in the design space expanded

to model form. Mostly, experimenters opt to use scaled predicted variance (SPV)

arrived at by multiplying (1.18) by the design size and then dividing through by

the process varianceσ2, that is

N V ar(ŷ(x))

σ2
= x′

(m)
(X ′X)−1x(m) (1.20)

This scaling is widely used to facilitate comparisons amongdesigns of various

sizes and eliminates the need to know the value ofσ2.
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Chapter 2

Literature Review

2.1 Herbal Medicine

2.1.1 General Herbal Medicine

Herbal medicine, which is sometimes referred to as botanical medicine or herbal-

ism, is the use of plants, or parts of plants, to treat injuries or illnesses. The

field also covers the use of herbs or botanicals to improve overall health. Seeds,

leaves, stems, bark, roots, flowers, and extracts of all of these have been used

in herbal treatment. These supplemental treatments have been delivered raw, in

tea and tinctures, as topical applications, in liquid form and in pills and capsules.

In the beginning the plants were consumed raw or combined with hot water as

soup or tea. Later, the plants were dried and crushed for other uses. The plants

were found in the wild and uses were often based on superstitious or visual clues.

Plants were often used to treat body systems because they were shaped like that

body part or because they grew in a particular area. As science began to take a

closer look at herbal remedies, their use became more refined. Herbs, and other

plants, are actually the precursors to many of today’s medicinal drugs. Some of the

pharmaceutical medications on the market are extracts of some of these traditional

herbs.
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2.1.2 History of Herbal Medicine

It is not known, for sure, when humans began using herbs for medicinal purposes.

The first written record of herbal medicine use showed up in 2800 B.C. (Titled

the Pen Ts’ao by Shen Nung). The Greeks (400 B.C.) joined the field of herbal

medicine where Hippocrates stressed the ideas that diet, exercise and overall hap-

piness formed the foundation of wellness. In 50 A.D. the Roman Empire spread

herbal medicine around the Empire, and with it the commerce of cultivating herbs,

whereas in 200 A.D the first classification system that paired common illnesses

with their herbal remedy appeared. This was prepared by the herbal practitioner

Galen.

In 600 A.D Herbs were used in treating the poor, while extracts of plant,

minerals, and animals ”the drugs”, were used for the rich.The English Physician

and Herbal medicine, explaining the practice of herbal medicine was written during

this time. In 800 A.D. Monks took over the herbal field with herbal gardens at most

monasteries and infirmaries for the sick and injured while in 1100 A.D, the Arab

world became a centre of medicinal influence during which time the Physician

Avicenna wrote the Canon of Medicine, which gave mention to herbal medicines.

In 1500 A.D., herbal medicine and herbalists were promoted and supported by King

Henry VII and the Parliament, due to the large number of untrained apothecaries

giving substandard care.

By the seventeenth century, the knowledge of herbal medicine was widely

disseminated throughout Europe. In 1649, Nicholas Culpeper wrote A Physical

Directory, and a few years later produced The English Physician. This respected

herbal pharmacopoeia was one of the first manuals that the layperson could use

for health care, and it is still widely referred to and quotedtoday. Culpeper had

studied at Cambridge University and was meant to become a great doctor, in the

academic sense of the word. Instead, he chose to apprentice to an apothecary

and eventually set up his own shop. He served the poor people of London and

became known as their neighbourhood doctor, the herbal he created was meant for

the layperson. It was not until 1700 A.D. that Herbal medicine got high profile

endorsement from Preacher Charles Wesley who advocated forsensible eating,

good hygiene and herbal treatments for healthy living.
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In 1800 A.D. Pharmaceuticals emerged and herbal treatmentstook a back seat,

but as side effects from the drugs began to be documented, herbal remedies came

into favour again. This led to the formation of The National Association of Medical

Herbalists , later renamed the National Institute of Medical Herbalists (NIMH.)

The first United States of America Pharmacopoeia was published in 1820.

This volume included an authoritative listing of herbal drugs, with descriptions of

their properties, uses, dosages, and tests of purity. It wasperiodically revised and

became the legal standard for medical compounds in 1906. As Western medicine

evolved from an art to a science in the nineteenth century, information that had at

one time been widely available became the domain of comparatively few. Once

scientific methods were developed to extract and synthesize the active ingredients

in plants, pharmaceutical laboratories took over from providers of medicinal herbs

as the producers of drugs. The use of herbs, which for most of history had

been mainstream medical practice, began to be considered unscientific, or at least

unconventional and to fall into relative obscurity.

During World War One, lack of drugs increased the use of herbal medicine

again. However after the war pharmaceutical production increased and penicillin

was discovered. Herbal practitioners had their rights to dispense their medications

taken away and then reinstated.

Thus Herbal medicines have been documented for almost 4000 years. These

medicines have survived real world testing and thousands ofyears of human testing.

Some medicines have been discontinued due to their toxicity, while others have

been modified or combined with additional herbs to offset side effects. Many

herbs have undergone changes in their uses. Studies conducted on the herbs and

their effects keep changing their potential uses.

Herbal medicines are still in use today, in some respects they have gained a

new momentum in the medical field. As many people seek alternative treatments

and begin to check out traditional medicine, herbs are becoming more popular. As

physicians seek new treatments for many common illnesses they are beginning to

revisit the traditional remedies, using herbal medicines.

Pharmaceutical medications, with their potential for harmful side effects and

addiction, are becoming less popular. People are seeking alternatives to the modern
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medical interventions. Improving and maintaining health naturally is a very popular

approach to overall health of an individual.

The herbs used today are generally cultivated for those purposes. Very few

herbs are harvested from the wild, with the exception of a fewstill found in the

rainforest and higher elevation. The cultivation of herbs for medicinal uses is a

large field and more people are beginning to have their own herb gardens.

Herbal medicine has enjoyed a long, and colourful, history.From the early

Chinese Empires to modern physicians’ offices, herbal medicine has continued to

be a part of the medical field. Herbal treatments have matured throughout history,

along with the methods of delivering them. In the beginning,the herbs were used

in a hit or miss method and required major events to change their use. Research

and clinical trials have helped to shape the field of medicine, and the future for

herbal medicine looks bright.

In the local setting (Kenya) the herbalists information is not that well orga-

nized, however there is indication of treatment of diabetesby use of herbs, wide

spread and mostly concentrated in the rural setup. The only shortcoming from

the Kenyan case is that the herbalists are suspicious of any scientific investigation

into their work and due to this reserved view, there is not so much in published or

documented therapy on common herbs.

2.2 Response surface

Response Surface Methodology is a common framework for manyindustrial ex-

periments which is useful in aiding statistical analysis ofexperimental work in

the yield of a product that depends on some functional relationship with one or

more predictor variables. This was a concept outlined by chemical engineers and

statisticians in the Imperial chemical industries in GreatBritain with the first ma-

jor paper published by Box and Wilson (1951). However beforethe data analysis

can be carried out, experiments must be carried out at predetermined levels of the

predictor factors. This requires that an experimental design should be selected

before experimentation, Bose and Draper (1959).

Box and Wilson (1951) described the experimental attainment of optimum con-
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ditions (in their answers to problems of determining optimum conditions) in chem-

ical investigations, but they believed that the method would also be useful in other

fields where experimentation is sequential and the error fairly small. Grandage

and Harder (1959), considered the problem arising in the design of experiments of

empirically investigating the relationship between a response and several predictor

variables, when all variables are continuous. They made theassumption that the

form of the functional relationship is unknown but within the range of interest,

the function may be approximated by a Taylor series expansion of moderately low

order.

Box and Hunter (1957), introduced the concept of rotatability as a desirable

property of an experimental design and gave the necessary and sufficient conditions

for a set of points to form a second order rotatable design. Gardiner, Grandage

and Harder (1959), derived out the necessary and sufficientconditions for a set

of points to form a third order rotatable design. Patel and Koske (1985), gave

the necessary and sufficient conditions for a set of points to form a fourth order

rotatable design. Njui and Patel (1988), with illustrations and examples, gave the

estimates of coefficients and their variance covariance matrix together with the

variance function for an estimated response of the fifth order response surface

design.

Rotatability is one of the desirable characteristics of a response-surface design.

Draper and Guttman (1988) and also Khuri (1988) provided ways to measure

”how rotatable” a design may be when it is not perfectly rotatable. This had

previously been assessed by the viewing of tediously obtained contour diagrams

for a 3-dimension design. Their paper provides a criterion that is easy to compute

and is invariant under design rotation. It can also be extended to higher dimension

models.

In selecting on an experimental design, Box and Hunter (1957) discussed the

use of the variance function and in particular, the spherical variance function which

leads to rotatable designs. They commented that the problemof choosing a best

design has usually been interpreted as being equivalent to choosing a design matrix

D so that the coefficients in the model are estimated with minimum variance.

Herzberg (1967 b), argued that in some cases the variance of the difference between
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two estimated responses at two different points is of more interest than the simple

variance function. She outlined the variance function of the difference between two

estimated responses for first and second order rotatable designs in two dimensions.

Atkinson (1970 b), in a slightly different context, remarksthat experimenters often

wish to consider not the absolute response in the factor space but the difference in

responses. He observed that the difference in response at points close together in

the factor space can be used to estimate the local slope of theresponse function.

In fitting a parameter-based regression model, there arises several objectives

which require to be addressed by the design of the experiment. One of the con-

cerns is the adequacy of a model, Box and Draper (1959). Usually, designs are

desirable if on one hand they are efficient for discriminating between several com-

peting models and on the other hand they portray good properties for enabling the

estimation of the parameters that are in the identified model.

Box and Draper (1980), reviewed Herzberg’s work and discussed some addi-

tional features of the variance function of the difference between two estimated

responses, for first, second and third order rotatable designs. Huda and Mukerjee

(1984) gave an overview on minimizing the maximum variance of the difference

between two estimated responses over all pairs of points in the design space being

taken as a criterion for selecting optimal designs. They derived optimal designs

for second order polynomial models when the design spaces are spherical.

Meyers, Vinning, and Giovanniti-Jansen (1992) presented an extensive study

of the prediction variance property of second order designs. Their work focused

on spherical regions of interest and evaluated the rotatable and spherical Central

Composite Designs (CCD), the Box-Behnken designs, small composite designs

(SCD) and hybrid designs. Recent surveys of response surface methodology by

Meyers, Montgomery, Borris and Kowalski (2004) show that second order models

and designs play a central role in design of experiments. A second order response

surface design is often chosen based on consideration of several criterion. Among

the most important of these is the stability of the prediction variance over the

region of interest.

Njui et al (2008), considered the difference of the variancefunctions between

two estimated responses for a fourth order design at any two points in the factor
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space. In particular, they considered variance function intwo dimensions when

the design used is rotatable. The variance function in this situation is a function of

the distances of the points from the origin of the design and the angle subtending

the points at the origin. In particular the variance function of this approach is

discussed in detail when the two points are equidistant fromthe origin of the

design. They also gave criterion for the choice of an optimaldesign. Karanjah

et al (2008), extensively looked at the variance function ofthe difference between

two estimated responses for a fourth order rotatable designat any two points in

the factor space and specifically detailed their work in consideration of the main

effects when the number of factors arek = 2.

With the growth of computing software’s, the graphical techniques that are

useful in evaluating experimental designs for any region ofinterest have been put to

use. These are the Variance Dispersion Graphs (VDG) and the Fraction of Design

Space (FDS) plot. the VDG was developed by Giovannitti-Jabsen and Meyers

(1989) and displays the minimum, maximum and average prediction variance for

specific designs through the region of interest. The plots concentrate on examining

prediction variance for spheres moving from the overall centroid of the design

space. The VDG’s illustrate how well the design can predict response throughout

the design space.

The field of response surface methodology is enormously dynamic with research

and publications being made as a contribution to the increasing demand of the

subject in our everyday life.

2.3 Statement of the Problem

It has been recognized in recent years that even in response surface designs the

response at individual locations on the response surface may not always be the

main interest. Often the difference between estimated responses at two points may

be of greater interest. Often, the response at a range of points (ridge) may be the

same but resulting from different factors level combinations. Minimization of the

variance of the difference between estimated responses at two points over all pairs

of points in the design space taken as a criterion will help inselecting optimal
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designs.

This research uses the variance function of the difference as well as the dif-

ference of the variance functions between estimated responses at various points

with a view to identify the points that will yield an optimal design. Response

surface design is used to identify the range within which thefactors can be varied

to effectively manage the blood sugar level in a diabetic patient using identified

herbal medicine.

2.4 Aims and Objectives

The work of Herzberg, (1967 b) outlined the variance function of the difference

between two estimated responses for a first order and a second order rotatable

design. Box and draper, (1980) reviewed Herzberg’s work andalso worked out

the variance function of the difference between two estimated responses for a third

order rotatable design.

To demonstrate the use of these two functions in application, we shall consider

their role in selecting an appropriate herbal treatment combination for treating

diabetes using a second order rotatable design.

To achieve this stated aim we have the following specific objectives;

(i) Identify and fit the appropriate model for the test in order to get the best

estimated response

(ii) Identify the variance function of the estimated responses

(iii) Find the variance of the difference between two estimated responses

(iv) Find the difference of the variances of two estimated responses

(v) Compare (iii) and (iv) and conclude

2.5 Significance of the Study

In any treatment arrangement, we seek a treatment or treatment combination that

can be used to either reverse a condition, eradicate or arrest a condition in order
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to minimize suffering or to help the patient bear a conditionwith less pain. In

this research we highlight that the investigation is not about to eradicate diabetes

via this treatment. We seek to reduce the blood sugar level ofa patient at that

particular time to a level that is acceptable according to medical standards. Again

the treatment as suggested here is based on a one dosage treatment model, then

observations are made so as to note how effective the particular amount is at

reducing the blood sugar level with time. This study will therefore be used to

determine;

(i). The best possible level of the identified herbal medicine to reduce the blood

sugar level in diabetics, and

(ii). Time taken to achieve (i)

This study will be used to provide the most reliable advice ( on the basis of the

findings) on the range around which the dosage is desirable so as to make use of

the information in maintenance of the desired level of glucose in a diabetic patient.
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Chapter 3

Experimental Setup and Data

Collection

3.1 Experimental -Study Design

Prior to any test being carried out on the Albino rats, the rats was grouped into

six equal groups. Group sizes depended on the total number ofrats available and

also the consumables. The rats were subjected to treatment as follows:

Group A: The rats in this group were not induced with Diabetes, this group of rats

served as control group for rats in the blood sugar test.

Group B: The rats were induced with diabetes but were not subjected to any drug

as a treatment therefore served as a negative control for rats induced with

diabetes.

Group C: The rats were induced with diabetes and subjected totreatment using con-

ventional drug Metformin. This group served as a positive control group for

rats induced with diabetes.

Group D: The rats were induced with diabetes and treated withthe herbal drugs under

the test at a dose rate of 500 mg/Kg

Group E: The rats were induced with diabetes and treated withthe same herbal drug

under the test at a dose rate of 1000 mg/Kg.
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Group F: The rats were induced with Diabetes and treated withthe same herbal drug

at a dose rate of 1750 mg/Kg.

In any clinical analysis some of the cases (animals) may be lost due to factors

such as death, failing to be diabetic after inducement, thusresulting from their

exclusion from the test or they may be replaced if time and other necessary con-

ditions do allow. Therefore there may be some variation in the number of animals

per grouping and hence the total in the specific test run. However this is not likely

to affect the test results since procedure of the test is doneper animal in a group.

3.2 Inducement of Diabetes

Animals were made to fast by depriving food for 18 hours before treatment but

allowed access to water. The concentration of blood glucosewas also recorded

before treatment. A single dose (150 mg/Kg) of 5 percent alloxan monohydrate dis-

solved in normal saline was administered using insulin needles to induce diabetes

to the rats. The induction of diabetes mellitus was confirmed after the following

day of alloxan treatment by estimation of elevated random blood glucose (RBG)

level as described by Trivedi et al. (2004).

3.3 Treatment arrangement

The groups that did not receive treatment were given 2 ml of distilled water

which was to act as a negative control group. Those that received treatment with

conventional diabetic medicine were subjected to 2 ml of 10 mg/Kg of a diabetic

drug (Glucophage) crushed into a fine powder, weighed and then dissolved in

distilled water. The group receiving herbal drug treatmentwere given 500 mg/Kg,

1000 mg/Kg and 1750 mg/Kg of the herbal drug extract as per thegrouping.

3.4 Herbal Drug Dosage

The various concentrations of herbal drugs were made by dissolving 10 g of the

solid plant extracts in 250 ml distilled water and warmed to 40 C with addition
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of 5 percent Dimethyl Sulfoxide (DMSO) to form a standard solution of 40 g/ l

from which various concentrations were derived. The volumeof the dosage as per

clinical trial guideline,is calculated taking into account the weight of the animal,

dose rate and concentration of the crude herbal drug using the following equation

V olume of Dose =
Body weight (Kg) X Dose rate mg/Kg

Concentration mg/ml
(3.1)

Reagan et al (2007),

3.5 Analysis of glucose Level

Blood was withdrawn from the retro-orbital sinus under restricted movement in a

cage using a clinical glucometer and glucose oxidase - peroxidase reactive strips.

Xylene was used to dilate the veins of the rats’ tails to collect the blood effi-

ciently. After treatment, 2 g/Kg of glucose was given to the rats and readings were

taken in intervals of 30 minutes and recorded to monitor the changes of glucose

concentration in the blood of the Rats.

3.6 Experimental Data

3.6.1 First Test run (Pilot Test Run)

3.6.1.1 Treatment arrangement

The Pilot test was carried out on a set of 12 Albino rats. The rats were grouped

into six groups of two each. They were then subjected to treatment as earlier

described in section 3.1, with treatment effected as follows:

Group 1: The rats in this group were not induced with Diabetes(NID). This group

served as control group for rats in the blood sugar test.

Group 2: The rats were induced with diabetes but were not subjected to any drug as a

treatment therefore served as a negative control (NC) for rats induced with

diabetes.
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Group 3: The rats were induced with diabetes and subjected totreatment using con-

ventional drug Metformin. This group served as a positive control (PC)

group for rats induced with diabetes.

Group 4: The rats were induced with diabetes and treated withthe herbal drugs under

the test at a dose rate of 500 mg/Kg

Group 5: The rats were induced with diabetes and treated withthe same herbal drug

under the test at a dose rate of 1000 mg/Kg.

Group 6: The rats were induced with Diabetes and treated withthe same herbal drug

at a dose rate of 1750 mg/Kg.

In this Pilot test run the variables of interest were time in minutes after the

animals were subjected to the prescribed treatment dependent on the group, that

is (t = 0, t = 30, t = 60, t = 90, t = 120, t = 150, t = 180) the dosage

amount for the herbal drug in the respective test groups (500mg/Kg, 1000 mg/Kg

and 1500 mg/Kg) and at every time interval the blood sugar level was ascertained

to monitor the progress and effectiveness.
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3.6.1.2 Pilot Data

Using the observations time as indicated above the data resulting from the inves-

tigation depicts the blood sugar level after the administration of the treatment as

per the procedures laid down was as follows:

FBG Oral Glucose Tolerance Test versus Time

Group Rat label t = 0 t = 30 t = 90 t = 120 t = 150 t = 180

Group 1 Y 5.0 6.4 7.3 9.1 3.3 4.5

Z 6 6.6 7.0 6.0 6.4 6.3

Group 2 AF 10.6 23.8 19.3 10.4 5.4 9.0

J 9.7 17.8 23.1 20.3 21.7 17.6

Group 3 AA 11.7 19.6 17.4 15.0 13.0 11.1

AB 11.8 18.7 16.8 15.1 7.6 4.9

Group 4 AD 11.9 25.1 19.8 18.2 11.9 7.3

AG 6.2 7.2 3.8 4.5 5.9 5.0

Group 5 AE 17.3 23.7 22.4 21.8 13.1 9.9

AL 11.7 31.9 31.9 29.7 17.3 13.8

Group 6 AI 22.1 26.1 17.6 10.8 17.3 13.8

L 27.9 15.4 .8 6.1 4.3 4.8

The rats were labelled to facilitate the identification during the entire procedure.

However the assignment into the particular group was on random selection.

The measurements as per the glucometer reading are in minimolar per litre

which can be converted to the international standard in milligrams per deciliter by

use of the following equation:

18 Minimolar per litre = 1 Milligram per Deciliter (3.2)

3.6.1.3 Excursion for Pilot Data

By first computing the average blood sugar levels at every time interval for the

animals in the same group, the various treatments are compared as shown in the

following graphs:
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Graph 3.6.1.1

The curve shows the Blood Sugar for rat induced with diabetes(ID) and the

non induced (NID). From the Graph it is evident that the animals that were induced

with diabetes exhibit blood sugar level that is higher than those not induced with

diabetes.

Graph 3.6.1.2

The curve shows the Blood Sugar for rats in the positive control (PC) and neg-

ative control (NC). From the Graph we find out that even though all the animals

in the two groups are diabetic, the sugar level for those in the positive control
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group decreases as a result of treatment using conventionalmedicine as compared

to those in negative control that received no treatment. This is an indication that

the treatment is effective in the reduction of sugar level.

Graph 3.6.1.3

The curve shows the Blood Sugar for rats in positive control (PC) and 500

mg/Kg of herbal drug. From the Graph we find that even though all the animals in

the two groups are diabetic, the sugar level for those in the positive control group

decreases as a result of treatment using conventional medicine and the sugar level

for those treated with herbal medicine 500 mg/Kg also decreased. The graphs are

almost replica of each other apart from the fact that the graph of PC is below

the one for 500 mg/Kg. This is an indication that both the treatment are almost

effective in the reduction of sugar level.
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Graph 3.6.1.4

The curve shows the Blood Sugar for rats in positive control and 1000 mg/Kg

of herbal drug. At timet = 0 the blood sugar level for animals treated with herbal

medicine 1000 mg/Kg is higher than that of the animals in PC, but towards time

t = 30 there is a rise of blood sugar level for both the groups with that of PC

being more steady. After 30 minutes the sugar level in both groups is decreasing

but the decrease of that in herbal treatment is steady towards time t = 90. At

time t = 120 the sugar level for those treated with herbal medicine is lower than

the PC and at timet = 150 they have the same sugar level after which those

treated with herbal medicine slightly increase compared tothat of PC. However

we recognize that both the treatments have worked towards reduction of the sugar

level.
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Graph 3.6.1.5

The curve shows the Blood Sugar for rats in positive control and 1750 mg/Kg

of herbal drug. At timet = 0 the blood sugar level for animals in the two groups

is the same, but towards timet = 30 there is a rise of blood sugar level for both

the groups with that of Herbal treatment being higher. After30 minutes the sugar

level in both groups is decreasing but the decrease of that inherbal treatment is

steady towards timet = 90. At time t = 150 the sugar level for those treated

with herbal medicine is slightly higher than the PC and at time t = 180 they have

the same sugar level. We conclude that both the treatments have worked towards

reduction of the sugar level with a variation at the times of measurements.

Graph 3.6.1.6
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The curve shows the Blood Sugar for rats treated with 500 mg/Kg of herbal

drug and those treated with 1000 mg/Kg of herbal drug. At timet = 0 the

average blood sugar level for animals treated with 1000 mg/kg is higher than for

those treated with 500 mg/kg. However the later is increasing and at timet = 30,

they exhibit the same average blood sugar level after which that of treatment of

1000 mg/kg starts to decrease at a fixed rate tillt = 120 while that of 500 mg/kg

remains on a very slow decreasing path tillt = 120 after which there is a drastic

decrease towardst = 150 after which the decrease is relatively lower compared

to the other group. The average blood sugar level for animalstreated with herbal

drug of 1000 mg/kg decreases aftert = 120 and is lower than that of 500 mg/kg

which is also decreasing.

Graph 3.6.1.7

The curve shows the average Blood Sugar for rats treated with500 mg/Kg

of herbal drug and those treated with 1750 mg/Kg of herbal drug. Between time

t = 0 and t = 30 the blood sugar level for animals in the two groups increase

at almost same rate. Aftert = 30 there is a decrease in both curves throughout

the observation times but the animals treated with 1750 mg/kg of herbal medicine

shows a better response in decreasing the average blood sugar level compared to

the treatment of 500 mg/kg of the herbal medicine.
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Graph 3.6.1.8

The curve exhibits the trend of the herbal treatments at two levels and the

corresponding average blood sugar level, 1000 mg/Kg and 1750 mg/Kg of herbal

drug. At timet = 0 the blood sugar level for animals treated with 1750 mg/kg of

the herbal drug is lower but increases faster than that of animals treated with 1000

mg/kg. The curves reaches a maximum at timet = 30 and decrease thereafter but

those treated with 1000 mg/kg falls faster than that of 1750 mg/kg and remains

below uptot = 150 after which the decrease trend slows with that of 1750 mg/kg

falling below. The trends suggest that both the treatments have worked towards

reduction of the sugar level with a variation at the times of measurements.
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3.6.2 Second Test Run

The test run was based on Herbal medicine extracted from Medicinal Mushrooms

referred to as Aqueous extract of Ganotech. There was a totalof 28 test animals

divided into four groups all induced with diabetes as per inducement procedures

outlined in section3.2. The number of rats were 7 per each as seven were lost

at the initial stages. The loss was occasioned by the inducement to diabetes after

which the rats succumbed to the effect of the inducement while others failed to be

diabetic. The remaining rats were subjected to treatment asfollows:

3.6.2.1 Treatment arrangement

Group 1: The rats were induced with diabetes and treated withthe herbal drugs under

the test at a dose rate of 25 mg/Kg

Group 2: The rats were induced with diabetes and treated withthe same herbal drug

under the test at a dose rate of 50 mg/Kg.

Group 3: The rats were induced with Diabetes and treated withthe same herbal drug

at a dose rate of 75 mg/Kg.

Group 4: The rats were induced with diabetes and subjected totreatment using con-

ventional drug Metformin 500mg/Kg. This group served as a positive control

group for rats induced with diabetes.

Using this test arrangement our desire was to ascertain the effect of herbal drug

at different concentration levels and the time taken to control the blood sugar level

to within the acceptable range.

3.6.2.2 Collected Data

After the recording of the Fasting Blood glucose the treatments were carried on

the animals as per grouping and dosage levels. The readings of the Oral Glucose

Tolerance Test was undertaken att = 30, t = 90 and t = 150 minutes. From

this test arrangement the following data was realised.
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FBG Oral Glucose Tolerance Test/Time

Group Rat t = 0 t = 30 t = 90 t = 120 t = 150

Group 1 1 H 16.1 15.7 13.8 5.3

2 H 15.1 12.3 16.0 11.3

3 H 16.7 11.9 11.8 4.6

4 H 15.7 21.6 13.6 3.3

5 H 17.5 14.2 14.0 13.9

6 H 14.2 13.6 13.4 13.0

7 H 12.8 11.4 12.8 13.4

Grup 2 2 10.3 17.9 16.7 12.1 3.3

5 6.3 10.7 13.8 9.9 5.0

3 4.8 18.8 14.1 10.2 2.4

4 4.9 21.2 15.6 11.1 8.3

Group 3 2 4.2 12.4 5.1 9.8 7.2

3 7.1 17.4 23.9 8.1 5.1

4 4.0 12.6 13.4 11.8 7.3

5 3.0 17.6 17.1 10.7 3.7

1 19.7 17.5 14.2 14.0 13.9

6 14.5 14.2 13.6 13.7 13.0

Grup 4 1 5.7 15.7 6.7 2.7 2.5

2 4.8 13.4 10.1 5.7 3.1

3 18.3 19.4 19.1 17.2 15.5

4 8.4 17.3 15.2 13.4 11.2

3.6.2.3 Excursion for Data

Using group average blood sugar levels at every time interval for the animals in the

same group, various treatments are compared against the control. In this set up we

note that the results of group indicates readings that were high at FBG (H- in the

data at firsting), attributed to the concentration of the glucose dosage. However,

these readings do not affect the experimental outcome as evidence in the ability

of the animals to regulate the sugar level to within the rangeof the other groups.

49



The results obtained are presented graphically as follows:

Graph 3.6.2.1

The curve shows the average Blood Sugar levels for rats subjected to herbal

medicine 25 mg/kg against rats subjected to herbal medicine50 mg/kg. At time

t = 30 the sugar level for 50 mg/kg is above that of 25 mg/kg after which the two

curves depict a declining trend to almost being equal att = 60 after which that of

50 mg/kg decreases faster than that of 25 mg/kg throughout the other observation

times. At timet = 120 both the two groups average sugar levels are within the

required limits.

Graph 3.6.2.2
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The curve shows the average Blood Sugar levels for rats subjected to herbal

medicine 25 mg/kg against rats subjected to herbal medicine75 mg/kg. From the

trend of the two curves it is evident that on average the 75 mg/kg of the herbal

drug is performing better in reduction of the blood sugar level compared to the 25

mg/kg since after timet = 30 the two curves depict a declining trend with 75 mg

below that of 25 mg/kg through the entire observation times.However both the

herbal drugs effectively reduces the average sugar levels to within acceptable limits.

Graph 3.6.2.3

The curve depicts the comparison of the trends of the averageblood sugar

levels for the positive control group against those treatedwith the herbal medicine

at dosage of 25 mg/kg. From the graph we find out that the bloodsugar levels

on average are the same at timet = 0 after which the PC curve decreases faster

than that of 25 mg/kg of herbal medicine. However at the last observation point

t = 120 the curve for 25 mg/kg is below that of PC. The two treatments effec-

tively lowered the sugar levels to within acceptable limits.
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Graph 3.6.2.4

The curve shows the Blood Sugar for rats treated with the herbal medicine 50

mg/kg along side that of those treated with the same herbal medicine but dosage

of 75 mg/kg. From the graph we find out that even though all theanimals in

the two groups are diabetic, the sugar level for those in 50 mg/kg group and 75

mg/kg group responds almost identically to herbal medicine. The graphs are almost

replica to each other apart from the fact that that of 75 mg/kgis slightly below the

one for 50 mg/kg. This is an indication that both the treatment are almost equally

significant in the reduction of average blood sugar levels.

Graph 3.6.2.5
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The curve shows the Blood Sugar for rats treated with the herbal medicine 50

mg/kg against those in the positive control group . The average sugar levels start

at different point at timet = 0 but increases towards timet = 30 to almost the

same level after which both curves portrays declining trendwith the PC below

the herbal medicine . At timet = 120 the herbal drug indicates the dosage of

50 mg/kg to be more effective in comparison to the PC with the curve remaining

below that of PC. The two treatments effectively reduces theaverage blood sugar

level to within acceptable limits.

Graph 3.6.2.6

The curve shows the comparison of the trends of the average blood sugar lev-

els for the positive control group against those treated with the herbal medicine at

dosage of 75 mg/kg. The herbal drugs starts at a lower averagein comparison to

the PC att = 0 with both increasing to their different maximums at timet = 30

after which the two curves are on the decline with that of PC falling faster than

that of herbal medicine. Att = 60 the PC curve is below that of herbal medicine

but att = 90 the herbal medicine curve falls below that of PC till the end of ob-

servation time. Both treatments on average have reduced theaverage blood sugar

level to the acceptable limits.
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3.6.3 Third Test Run

3.6.3.1 Treatment arrangement

This test run was based on herbal drug (referred as Herbal Formula) extract sourced

from a leading herbalist in Kenya. The herbal formula used, is a mix of six herbs,

whose botanical name are:

1. Momodica foetida,

2. Utica Masaica,

3. Cinamon species,

4. Azandracta indica,

5. Moringa Oliefera and

6. gymnema sylvestre.

In this test run 25, albino rats were involved at the start, but one animal in

group four was lost before commencement of actual treatment. This loss was

insignificant. The treatment procedure was as follows:

Group 1: The rats were induced with diabetes but were not subjected to any drug as

a treatment . They served as a Negative Control (NC) for rats induced with

diabetes.

Group 2: The rats were induced with diabetes and subjected totreatment using conven-

tional drug Metformin 500 mg/kg. This group served as a Positive Control

(PC) group for rats induced with diabetes.

Group 3: The rats were induced with diabetes and treated withthe herbal drugs under

the test at a dose rate of 125 mg/Kg.

Group 4: The rats were induced with diabetes and treated withthe same herbal drug

under the test at a dose rate of 250 mg/Kg.

Group 5: The rats were induced with Diabetes and treated withthe same herbal drug

at a dose rate of 500 mg/Kg.
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3.6.3.2 Collected Data

Fasting Blood Glucose level was recorded, following which the treatments were

effected as per the schedule of treatment arrangement in subsection 3.6.3.1. The

readings of the OGTT was at time interval of 30 minutes resulting in the following

data:

Oral Glucose Tolerance Test/Time

Group Rat FBG t = 0 t = 30 t = 60 T = 90 t = 120

Group 1 1 10.9 26.8 18.7 18.0 17.2

2 7.4 24.6 24.1 23.0 23.2

3 9.6 33.0 30.6 27.7 24.4

4 8.7 13.4 13.2 23.4 12.2

5 10.8 18.3 17.2 16.7 14.4

Grup 2 1 6.7 13.7 11.2 8.4 9.9 8.9

2 9.8 22.7 16.2 15.1 12.7 7.6

3 7.8 17.4 16.4 12.4 11.9 6.7

4 8.9 18.3 14.5 13.3 12.8 9.4

5 9.5 23.4 20.4 19.2 14.4 10.8

Grup 3 1 7.2 24.5 24.2 23.6 20.8 19.2

2 7.6 21.7 22.4 21.8 21.2 21.2

3 6.4 25.5 24.2 21.4 12.4 10.1

4 4.6 13.5 11.8 13.6 14.9 9.7

5 5.4 23.4 21.6 19.5 10.5 8.1

Grup 4 1 17.3 15.8 22.1 19.9 16.7 13.6

2 9.3 20.4 22.7 10.9 9.8 7.9

3 7.5 17.3 16.6 9.7 9.4 4.3

4 8.6 12.8 5.2 3.1 3.1 3.1

Group 5 1 5.8 17.8 15.6 21.6 22.7 20.4

2 8.2 33 31.4 28.0 23.0 6.3

3 11.8 25.5 12.4 9.6 8.9 6.9

4 6.6 15.3 14.9 12.4 8.7 5.9

5 13.2 22.4 18.9 13.4 10.9 8.9
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3.6.3.3 Excursion for the Data

Computing averages in the groups for blood sugar levels at the observation time

points for the animals in the same group, we compare the various treatment results

and represent this information with following graphs.

Graph 3.6.3.1

The curve depicts the comparison of the trends of the averages for the negative

control group and the positive control group. The trend shows that the animals in

the negative control who were not treated hand an increase inthe average blood

sugar level fromt = 0 to t = 30 and for the positive control which starts at time

of fasting also had an increase uptot = 0. Both groups exhibit a decrease of

the average blood sugar level thereafter, the negative control remains higher than

the positive control. The trend portrays a fairly similar trend with the Negative

control remaining at a higher level to the end of the observations.
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Graph 3.6.3.2

The curves shows the blood sugar for rats treated with the herbal medicine

125 mg/kg compared to those treated with the conventional medicine (PC). At

time of fasting the PC has a higher average blood sugar level but at timet = 0

the average blood sugar level for the group treated with the herbal medicine is

higher. However both groups exhibit a decreasing trend after t = 0.

Graph 3.6.3.3
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The curves shows the Blood Sugar for rats in positive control(PC) and 250

mg/kg of herbal drug. From the Graph we find out that the sugarlevel for two

groups start at different points with PC below 250 mg/kg and increase, at time

t = 0 the average blood sugar level is higher for PC compared to theherbal

medicine and they both depict a decreasing trend. Att = 30 the PC is lower

than the herbal medicine however the herbal medicine curve decreases faster than

that of PC and at timet = 60 PC remains higher upto the end suggesting a better

average performance of the 250 mg/kg Herbal medicine compared to PC.

Graph 3.6.3.4

The curves shows the Blood Sugar for rats treated with the herbal medicine 500

mg/kg against and those treated with the Conventional medicine (PC).The average

blood sugar level the time of fasting starts almost at the same point and increases

until t = 0 with that of PC being lower. Thereafter both curves are decreasing at

an almost similar pattern untilt = 90 after which the decrease almost converges

to the same point att = 120.
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Graph 3.6.3.5

The curves shows the Blood Sugar for rats treated with the herbal medicine

125 mg/kg against those treated with the same herbal medicine but dosage of 250

mg/kg. The two curves start at different averages with the group treated with 250

mg/kg being higher. The one treated with 125 mg/kg is higher after 30 minutes

after which they start to fall but that of 250 mg/kg remains below that of the 125

mg/kg treatment, suggesting a better performance in lowering the average blood

sugar level.

Graph 3.6.3.6
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The curves show the Blood Sugar for the group treated with theherbal medi-

cine 125 mg/kg against those treated with the same herbal medicine but dosage of

500 mg/kg. From the Graph it is evident that for the two groups, average blood

sugar level rises on fasting after taking glucose att = 0, the sugar levels reach

their maximum with that of 500 mg/kg being higher but both areon a declining

path with that of 125 mg/kg being higher but at the timet = 90 they almost

converge. Thereafter that of 500 mg/kg decrease faster.

Graph 3.6.3.7

The curves show the Blood Sugar for the group of rats treated with the herbal

medicine 250 mg/kg against those treated with the same herbal medicine but dosage

of 500 mg/kg. The curve depicts a rise in the blood sugar levelafter fasting blood

glucose, with that of 500mg/kg being higher. After timet = 0 they both start to

decrease throughout the observation times with a better trend and performance of

those treatment of 250 mg/kg.
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Chapter 4

Data Analysis and Discussions

The desire of any pharmaceutical process is to develop a formulation which is

acceptable or effective in the shortest time possible and atthe same time using

minimum number of man-hours and raw materials. Traditionally, pharmaceutical

formulations are developed by changing one variable at a time by trial and error

method which is time consuming. Further it requires a lot of imaginative efforts

Saeed etal(2013). Moreover, it may be difficult to develop an ideal formulation

using this classical techniques, since the joint effects ofindependent variables

are not considered. It is therefore very essential to understand the complexity of

pharmaceutical formulations by using a collection of mathematical and statisti-

cal technique which quantifies the functional relationship between a number of

measured response variables and several explanatory factors to obtain an optimal

response by using a series of tests. The main advantage is to reduce the required

experimental runs and to optimize formulation design in pharmaceutics studies.

4.1 Designs for Fitting the First-Order Model

In this research work and in most RSM problems, the true response functionf

is unknown we therefore need to approximate the function. Inorder to develop a

approprate approximation forf , we model the data by starting with a low-order

polynomial in some small region. If the response can be defined by a linear

function of independent variables, then the approximatingfunction is a first-order

model. With reference to anydth order polynomial regression model (design) the
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general design for givenn observations is given as

yi = f(xi)β + ǫi i = 1, 2, 3, ...n (4.1)

In general, a multiple linear regression model withk independent variable takes

the form

yi = β0 + β1xi1 + β2xi2 + ...+ βkxik + εi (i = 1, 2, 3, ..., n)

= β0 +
k�

j=1

βjxij + εi (4.2)

The parameterβj measures the expected change in responsey per unit increase

in xi when the other independent variables are held constant. Theith observation

andjth level of independent variable is denoted byxij.

The data structure for the general multiple regression model where there arek

explanatory variables and one response is as shown in the table below,

Table 4.1 Data for Multiple Linear Regression Model

The model in equation4.2 can be represented in matrix form for the data of table

4.1 as

Y = Xβ + ε (4.3)
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in which

Y =






y1

y2

.

.

.

yn






, β =






β1

β2

.

.

.

βp






X =






1 x11 x12 ... x1k

1 x21 x22 ... x2k

. . . ... .

. . . ... .

. . . ... .

1 xn1 xn2 ... xnk






and ε =






ε1

ε2

.

.

.

εn






where,

Y is an(n× 1) vector of observations,

X is an(n× k) design matrix,

β is a (k × 1) vector of unknown parameters, and

ε is a (n× 1) vector of independently identically distributed

random variables with mean zero and varianceσ2, (Montgomery 2005).

If X ′X has a determinant which is different from zero, then the linear system

of 4.3 has a unique least squares solution given by

β̂ = (X ′X)−1X ′y (4.4)

The estimated regression equation is

ŷ = X ′β̂ (4.5)
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which can also be represented as,

ŷi = β̂0 +
k�

j=1

β̂jxij (i = 1, 2, 3, ..., n; j = 1, 2, 3, ..., k) (4.6)

for particular observationsxij.

4.1.1 First-Order Model Analysis for Test run 2

A first-order model with two independent variables is expressed as:

Yi = β0 + β1X1 + β2X2 + εi (4.7)

which can be written in coded form as,

yi = β0x0i + βixi1 + βiixi2 + εi (4.8)

where:

yi represents the response where, in this research, is the amount

of blood sugar level in milligrams per decilitre.

β0 is the mean response, that is the amount of blood sugar

level when all the explanatory factors are zero.

βi is the parameter associated with the time taken after the

herbal medicine has been used.

βii is the parameter associated with the amount of concentration

of the herbal medicine.

x0i = 1 represent a vector of one’s.

xi1 represent the observation times on the blood sugar level

of the animals in minutes at three intervals.

xi2 is the concentration of the herbal medicine in mg/kg

which has been controlled at three levels.

If there is a curvature in the response surface, then a higherdegree polynomial

will be used. In any model, the levels of each factor are independent of the levels

of other factors. The Method of Least Square is used to estimate the parameters

in the polynomials using Design of Experiments software (DoE) in which the

response surface analysis is performed by using the fitted surface.
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In order to simplify the calculations, we use appropriatelycoded variables

for describing the explanatory variables. The explanatoryvariables are centred

(rescaled) such that0 is in the middle of the centre of the design, and+1 and−1

are the distances from the centre. The variables time (X1) and Concentration (X2)

are called natural variables, because they are expressed inthe natural units of mea-

surement. We however note that a considerable improvement in representational

capabilities can often be obtained by allowing the possibility of transformations

in the response variable. The transformation of these natural variables to coded

variables is as follows:

xi1 = (Xi1 − 90)/60

xi2 = (Xi2 − 50)/25

yi =
1

(y+k)0.5

where the constantk = −3.

By employing the above transformations for the data in section 3.6.2.2 the follow-

ing data is generated from test run two.
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4.1.2 Data run from Test 2 in coded form
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Data run from Test 2 in coded form continued
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4.1.3 Parameter Estimation

On fitting the model in equation(4.1) to the data of section 4.1.2, we derive the

parameter estimates, as indicated below.

The design matrix is given as,

X ′X =






51 0 −15

0 34 0

−15 0 39






(4.9)

whose inverse is

(X ′X)−1 =
1

59976






1326 0 510

0 1764 0

510 0 1734






(4.10)

Further

X ′y =






20.0764

4.7222

−4.0504






(4.11)

From equation(4.4) we get the parameter estimates as,

β̂ =
1

59976






1326 0 510

0 1764 0

510 0 1734











20.0764

4.7222

−4.0504





=






0.4094

0.1389

0.0536






(4.12)
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Therefore the regression equation is given as

ŷ = 0.4094 + 0.1389x1 + 0.0536x2. (4.13)

The interpretation of these parameter estimates are as follows:

β̂0 = 0.4094, is the mean response. This is the amount of blood sugar

level when all the explanatory factors are zero.

β̂1 = 0.1389, shows that when time changes from one observation point

to another, the blood sugar level increases by0.1389 units.

β̂2 = 0.0536, indicates that when the concentration of herbal medicine

is varied from one level to the other, the blood sugar level increases

by 0.0536

The sum of squares due to total is given as

SST = y′y − nȳ2

= 9.9051− 51(0.3937)2

= 2.0019 (4.14)

and the sum of squares due to regression is give as

SSR = β̂′X ′y − nȳ2

= 8.6585− 51(0.3937)2

= 0.7553 (4.15)

The sum of squares due to error is

SSE = y′y − β̂′X ′y

= 9.9051− 8.6585
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= 1.2466 (4.16)

which verifies that

SST = SSR+ SSE. (4.17)

Using the result of the equations(4.14), (4.15) and(4.16) the analysis of vari-

ance table generated for this model is as follows:

Table 4.2 Analysis of Variance Table

Source Degrees of freedom Sum of Squares Mean SS F-ratio

Regression 2 0.7553 0.3777 14.5413

Error 48 1.2466 0.0260

Total 50 2.0019

4.1.4 The Test for Significance in Regression

We expect a good estimated regression model to explain the variation of the depen-

dent variable in the sample. However there are certain testsof hypotheses about

the model parameters that can help the experimenter in measuring the effectiveness

of the model. The first of all these tests require the error term ei’s to be normally

and independently distributed with mean zero and varianceσ2. In order to check

this assumption, we graph the normal probability of residuals for the described

model as shown in Figure 4.1.
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Figure 4.1 Normal Probability Plot of the Residuals

The residuals plot is approximately along a straight line, thus the normality

assumption is satisfied. It is important to note that the error term is the difference

between the observed valueyi and the corresponding fitted valuêyi , that is,

ei = yi − ŷi .

4.1.4.1 The Test for Significance of the model

As a result of the normality assumption being satisfied, observationsyi are also

normally and independently distributed. Therefore, the test for the significance of

the regression can be applied to determine if the relationship between the depen-

dent variabley and independent variablesx1, x2, exists. The hypotheses are,

H0 : β1 = β2 = 0, against

H1 : βj �= 0 for at least onej.

From the analysis of variance tableFc = 14.5413. Comparing this with the table

valueF0.05,2,48 = 3.23, we find that there is a significant statistical evidence to

reject the null hypothesis. It implies that at least one of the independent variables,
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time or concentration, contributes significantly to the model, therefore the model

is adequate.

We now carry out further tests on the parametersβ1 andβ2 in order to identify

the variable that significantly contributes to the model.

4.1.4.2 The Test for Significance of parameter Estimates

In order to determine whether given variables are justifiedto be included or ex-

cluded from the model, we undertake the test of hypotheses for the individual

regression coefficients as follows:

4.1.4.2.1 Test for β1

Hypothesis

H0 : β1 = 0, against

H1 : β1 �= 0 .

The standard error for̂β1, S.Eβ̂1, is found by use of the fact that

Cov(β̂) =MSE(X ′X)−1

Thus, using the results in table 4.2 and the diagonal elementof (X ′X)−1 cor-

respondint to this parameter estimate in equation (4.10), the standard error will

be,

S.Eβ̂1 = [
1764× 0.0260

59976
]1/2 = 0.0277. (4.18)

The test statistic will betc =
0.1389
0.0277

= 5.0144,

while t0.025,48 = 2.011.

Since−tα/2 < tc < tα/2, we reject the null hypothesis, thus the parameter

is significant and the predictor variable-time (x1) is required in explaining the

variation of the blood sugar level atα = 0.05.
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4.1.4.2.2 Test for β2

Hypothesis

H0 : β2 = 0, against

H1 : β2 �= 0 .

Following the same procedure as forβ1 the corresponding standard error for the

parameter estimate,̂β2 will be,

S.Eβ̂2 = [
1734× 0.0260

59976
]1/2 = 0.0274, (4.19)

but the test statistic istc =
0.0536
0.1898

= 1.95620.

Since−tα/2 < tc < tα/2, we accept the null hypothesis. The parameter is not

significant and therefore predictor variable-concentration (x2)is not individually

important in explaining the variation of the blood sugar level atα = 0.05.

The coefficient of multiple determination is given as;

R2 = SSR
SST

= 0.7553
2.0019

= 0.3773

which indicates that 37.73 % in the variation of the blood sugar level is accounted

for by the model, which is a rather low value to justify the correct relationship

between the predictors and the response.

The test of hypotheses have led to the non significance of theparameter as-

sociated with the variable concentration which is a key variable for this research.

We explore the possibility of fitting a second order model toevaluate whether it

is better placed than the first order model in relating the response to the predictor

variables.
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4.2 Designs for Fitting the Second-Order Model

4.2.1 Justification for the Second-Order Model

By plotting a three dimensional plot for the variablestime andconcentrationfor

the model fitted in section4.1 for test run 2 we have;

Figure 4.2 Three dimensional surface plot

The contour plot for this graph is as follows:

Figure 4.3 Contour plot
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From these two plots, it is evident that the sugar levels are decreasing with respect

to time for the albino rats that were used. These are the flat beds that slope

downwards or are tilted to portray the sugar level decrease with a slight concave

part in figure 4.2.

4.2.2 Fitting of the Second-Order Model

We explore the second order model fit to verify and explore the curvature if it

exists. The second-order model includes all the terms in thefirst-order model plus

all quadratic terms and all cross product terms. The model isexpressed as;

yi = β0 +
q�

j=1

βjxj +
q�

i=1

βjjx
2
jj +

�

i

�

j<i

βijxixj + ε (4.20)

= β0 + x′iβi + x′iβixi + εij (4.21)

Specifically for this investigation equation(4.21) will have two predictor variables

which gives the model as,

yi = β0 + β1xi1 + β2xi2 + β11x
2
i1 + β22x

2
i2

+ β12xi1xi2 + ε (4.22)

4.2.3 Parameter estimation

The method of least squares can be used to estimate the regression coefficients

in (4.22) as described in Section 4.1.3. Using the Design of Experiment (DoE)

software for the regression analysis, the same results as those obtained in section

4.1.3 are obtained.

In this case (for a second order model) the parameter estimates, the degrees of

freedom, the corresponding standard error of the estimatesas well as the 95%

confidence interval of the parameters generated by the design of experiment soft-

ware are as in the following table.
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Table 4.3 Parameter Estimates for the Quadratic model

The regression equation generated is

ŷ∗ = 0.3371 + 0.1591x1 + 0.0535x2 + 0.1102x21 − 0.00144x22

+0.0687x1x2,

(4.23)

where the variablesx1 as time represented by A and thex2 asconcentrationrep-

resented by B in the table 4.3 respectively. The corresponding analysis of variance

table generated from this data is as follows:
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Table 4.4 ANOVA for Response Surface Quadratic model

Other statistics computed from the above data are as follows:

Table 4.5 Summaries

4.2.4 Tests of hypotheses

4.2.4.1 Test of hypothesis for the model

Using the results of table 4.4 for the second order modelobtained in (4.22), the test

of hypothesis can be carried out for this model as well as the parameter estimates.
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The hypothesis for the model is stated as:

H0 : β1 = β2 = β11 = β22 = β12 = 0, against

H1 : βj �= 0 for at least onej.

The calculated value of the test statisticFc = 9.02 > F0.05(5,45) = 2.45 We

thus reject the null hypothesis. Therefore model is significant. Alternatively using

the generatedp-value we confidently state that the Model F-value of 9.02 implies

the model is significant and there is less tha 0.01% chance that an F-value which

is this large could occur due to error (noise).

The coefficient of determination isR2 = 0.5006, indicates that 50.06 % of

the variation in the sugar level is accounted for by the model(or is due to the

variation in the explanatory variables), which is an improvement from the first

order model fitted from equation(4.7) that gaveR2 = 0.3773.

4.2.4.2 Test of hypothesis on individual parameter estimates

The test for individual parameters can be performed as was the case in section

4.1.4.2. We compute the test statistic for each parameter estimate and compare

the resulting values with the table values at the desired level of significance (α)

and accompanying degrees of freedom from the model used. However this can

equivalently be achieved by using the(1−α)100% confidence interval in which

we find that provided that the confidence interval does not include zero then the

parameter estimate is significant otherwise it is not.

The test of hypothesis for individual parameter estimates is stated as

H0 : βj = 0, against

H1 : βj �= 0 for j = 1, 2, 11, 22, 12

Using the confidence interval approach we find that the parameter estimates that are

significant are the ones corresponding to the variables,x1, x2, x21 andx1x2. That

is to imply that the variables which contribute to the reduction of blood sugar level

are time, concentration, time squared and interaction of concentration with time.

The parameter estimate corresponding to concentration squared is not significant,

which implies that the accompanying variables do not explain the variation of
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blood sugar level individually.

4.3 Analysis of the Stationary Point of the Second-

Order Model

When there is a curvature in the response surface the first-order model is insuf-

ficient. Thus a second-order model becomes useful in approximating a portion

of the true response surface with parabolic curvature. Using a statistical software

(Design of Experiments-DoE) in analysis of a quadratic response, we get the fol-

lowing three dimension plots for the two continuous factorstimeandconcentration;

Figure 4.4 Three d-surface plot View 1
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Figure 4.5 Three d-surface plot View 2

Figure 4.6 Three d-surface plot View 3

The accompanying contour plot for these three dimension views at different ori-

entation is as follows:
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Figure 4.7 Contour plot3

All the three dimension plots suggest that curvature existsand hence justifica-

tion for having fitted the second order model. The second-order model is flexible,

as it takes a variety of functional forms and approximates the response surface

locally which is a good estimation of the true response surface.

From the above results we conclude that response surface is explained by the

second-order model. We now determine the optimum setting and recommed it for

the effective management of average sugar level in a diabetic patient. Graphical

visualization of contour plots helps in understanding the second-order response

surface. Specifically, three dimensional surface plot andtheir accompanying con-

tour plots help characterize the shape of the surface, and through these we will be

able to approximately locate the optimum response.

Using the fit of the second-order models we illustrate quadratic response sur-

faces such as minimum, maximum, ridge, and saddle point. In the case that an

optimum exits, then this point is a stationary point which can result in any of the

aforementioned four possibilities. The stationary point in response surface models

is the combination of design variables where the surface is at either a maximum

or a minimum in all directions. If the stationary point is a maximum in some

direction and minimum in another direction, then the stationary point is a saddle
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point. When the surface is curved in one direction but is fairly constant in another

direction, then this type of surface is called ridge system (Oehlert 2000).

The stationary point is evaluated by use of matrix algebra for which the fitted

second order model (4.22) in matrix form is as below:

ŷ = β̂0 + x′b+ x′Bx (4.24)

The derivative ofŷi with respect to the elements of the vectorx is

δŷ

δx
= b+ 2Bx (4.25)

Therefore, the solution to stationary point is

xs = −
1

2
B′b (4.26)

where

B =






β̂11 β̂12/2 ... β̂1q/2

β̂21/2 β̂22 ... β̂2q/2

. . ... .

. . ... .

. . ... .

β̂q1/2 β̂q2/2 ... β̂qq






and b =






β̂1

β̂2

.

.

.

β̂q






b is a(q× 1) vector of the first-order regression coefficients andB is a (q× q)

symmetric matrix whose main diagonal elements are the quadratic coefficients

(β̂ii) and whose off diagonal elements are one-half the mixed quadratic coefficients

(βij(i �=j)), Montgomery (2005). As a result, the estimated response value for the

fitted model at the identified stationary point is obtainedas:

B =




β̂11 β̂12/2

β̂12/2 β̂22



 =




0.1102 0.0345

0.0345 −0.0015





(4.27)
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while

b =




0.1591

0.0535





(4.28)

One of the points of interest in this research is the minimum condition for the

explanatory variables. The results used above are for a maximum condition. Mod-

ifying equation (4.26) for a minimum condition by negating it so as to achieve our

desired results, the stationary point solution with this modification is found to be

as follows:

xs2 =
1

2




0.1102 0.0315

0.0345 −0.0015




−1 


−0.1591

0.0535



 =




0.76883922

−0.15003135





(4.29)

We now find the stationary point in terms of the natural variables, time andcon-

centrationfrom the coding concept adopted earlier in subsection 4.1.1. For time

as a variable, we have

x1 =
X1 − 90

60

X1 = x1 × 60 + 90

= 0.76884× 60 + 90

= 136.1304 (4.30)

this implies that the time taken to reduce the blood sugar level to within acceptable

range is 136.1304 minutes. With respect toconcentrationwe have,

x2 =
X2 − 50

25

X2 = x2 × 25 + 50

= −0.150031× 25 + 50
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= 46.24923. (4.31)

Thus 46.2492 mg/dl of the herbal formula is to be used to regulate the blood sugar

level to within the acceptable range.

As a result, the estimated response value at the stationary point is given as

ŷ = β̂0 +
1

2
x′sb (4.32)

which gives us

ŷ = 0.3371×
1

2
( 0.76883922 −0.15003135 )




0.1591

0.0535



 = ( 0.3942 )

(4.33)

where β̂0 is the mean response given in equation(4.32), x′s is as in equation

(4.29) andb is provided in equation(4.28). The reversed transformation for the

amount of blood sugar level coded in subsection 4.1.1 gives us

y∗ = (Y − k)−0.5

Ŷ =
1

y∗2
+ k

= 6.4353 + 3

= 9.4353 (4.34)

This is the estimated minimum blood sugar level for the givenpredictor variables.

4.4 Analysis for Test run 3

4.4.1 First-Order Model Analysis for Test run 3

Adopting the following transformation (coding) for the data provided in section

3.6.3.2
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xi1 = (X1 − 60)/30

xi2 = (X2 − 250)/125

we generate the data for the test run three as below.

4.4.2 Data from Test run 3 in coded form
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Data run from Test 3 Continued
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4.4.3 Parameter Estimates

Employing equation (4.8) in coded form we regress the data for a first order model

using the Design of Experiment (DoE) software.The results generated for the pa-

rameter estimates are as follows:

Table 4.6 Parameter Estimates for first order model

The corresponding regression equation is obtained as

ŷ = 16.1667− 1.8877x1 − 1.0621x2. (4.35)

The analysis of variance table generated from the regression equation is as follows,

Table 4.7 ANOVA for first order model
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other summary statistics are;

Table 4.8 Summaries

4.4.4 Test of hypothesis on regression

4.4.4.1 The Test for Significance of the model

Before undertaking a test of hypothesis we require the errorterm ei’s to be nor-

mally and independently distributed with mean zero and varianceσ2. In order to

check this assumption, we draw the normal probability distribution of residuals

for the described model as follows:

Figure 4.8 Normal Probability Plot of the Residuals
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The residuals plot is approximately along a straight line, which implies that

the normality assumption is satisfied. The hypothesis for this test is stated as

H0 : β1 = β2 = 0, against

H1 : βj �= 0 for at least onej.

The computedFc = 2.91 is less thanF0.05,(2,39) = 3.32, we accept the null

hypothesis. Thus the model is not significant, with only a 6.69% chance that an

F-value this large could occur due to error (noise).

The coefficient of multiple determinationR2 = 0.1360, implies that 13.60

% of the variation in the blood sugar level is accounted for bythe model. This

is a rather low percentage. While the ’Adequate Precision’ measures the signal

to noise ratio, a ratio greater than 4 is desirable. Our ratioof 4.628 indicates an

adequate signal, which gives us reason to use this model as a basis to navigate the

design space.

4.4.4.2 The Test for Significance of the parameter estimates

The hypotheses to be tested for the two parameters is stated as follows;

H0 : βj = 0, against

H1 : βj �= 0 , for j=1, 2

If we were to use the values provided in the ANOVA table 4.7 we find that

p− value less than 0.0500 indicate model terms are significant, in this casex1

and x2 are not significant model terms. Due to the fact that the model is not

significant as well as the parameter estimates, we explore the possibility of fitting

a second order model as below.
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4.5 Second-Order Model Analysis

4.5.1 Justification for Second-Order Model

We first plot three-dimensional graphs for the variablestime, concentrationand

blood sugar levels

Figure 4.9 Three d-surface plot for blood sugar level

From this plane, we conclude that sugar levels are decreasing with respect to

time for the albino rats that were used as earlier described in section 4.2.

However to explore whether there is any curvature, we use thethree dimension

plots from a quadratic perspective to get the following plotfor the two continuous

factors, time and concentration and their corresponding response;
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Figure 4.10 Three d-surface plot for quadratic response

The three dimensional plots suggest that curvature exist with a downward slop-

ing concaved curvature, showing decrease of sugar level with time and at varied

concentrations of the herbal medicine. This also is evidentfrom the contour plot

provided below.

Figure 4.11 Contour plot

Both the three dimension plot and its accompanying contour plot above reveals

a trough that suggests minimum function throughout this region described by the
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factor combinations. Hence there is need to explore the design space by use of a

higher order model for the data.

4.5.2 Parameter Estimates

On fitting the model described in equation(4.23) using the design of experiment

software the following parameter estimates are realised.

Table 4.8 Parameter Estimates for second order model

The corresponding regression equation is given as

ŷ = 13.0718− 2.2593x1 − 3.6393x2 − 0.1326x21 + 2.3041x22

+ 0.8157x1x2. (4.36)
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The ANOVA table generated from the regression equation is asfollows:

Table 4.9 ANOVA for second order model

other summary statistics are

Table 4.10 Summaries

4.5.3 Test of hypothesis of the regression model

4.5.3.1 The Test for Significance of the model

The hypothesis for the overall performance of the model is stated as follows

H0 : β1 = β2 = β3 = β11 = β22 = β12 = 0, against

H1 : βj �= 0 for at least onej.

The computedFc value of 2.74 in the above ANOVA table compared to
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F0.05,(5,34) implies that the model is significant, with only a 3.50% chance that

an F-value this large could occur due to error (noise).

Further, considering coefficient of multiple determination from table 4.10 we

find that 28.70 % of the variation in the blood sugar level is accounted for by the

model, which is a better improvement from the first order model value of 13.60

%. The ’Adequate Precision’ measure the signal to noise ratio, of 5.439 indicates

an adequate signal.

4.5.3.2 The Test for Significance of the parameter estimates

The hypotheses to be tested for the three parameters can be stated in general as;

H0 : βj = 0, against

H1 : βj �= 0 , for j = 1, 2, 3, 11, 22, 12

Using the values provided in the ANOVA table, we find thatp−value values

which are less than 0.0500 imply that model terms are significant. In this casex1,

x2 andx22 are significant model terms. This is an indication that the linear terms

in the second order model are all significant and the quadratic term associated

with concentration is significant. This is an improvement when compared to the

first order model. The Lack of Fit F-value of 0.30 implies theLack of Fit is not

significant relative to the pure error. This indicates thatthere is a 82.41% chance

that a ’Lack of Fit F-value’ this large could occur due to noise.

4.6 Analysis of the Stationary Point of the Second-

Order Model

The stationary point for the second order model is to be evaluated by use of

matrix algebra, as described under section 4.3, using equations(4.24) and(4.25).

Therefore, the solution to stationary point is,

xs3 = −
1

2
B−1b, (4.37)
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where

B =




β̂11 β̂12/2

β̂12/2 β̂22








−0.1376 0.4079

0.4079 2.3040





(4.38)

and

b =




−2.2593

−3.6393





(4.39)

Modifying the equation (4.37) for a minimum condition by negating it, the sta-

tionary point solution is,

xs3 =
1

2




−0.1376 0.4079

0.4079 2.3040




−1 


−2.2593

−3.6393



 =




3.8486

−1.4711



 .

(4.40)

We now can find the stationary point in terms of the natural variables, time and

concentration from the coding concept adopted earlier in section 4.4.1. Fortime

as a variable, we have

x1 =
X1 − 60

30

X1 = x1 × 30 + 60

= 3.8486× 30 + 60

= 175.4580. (4.41)

This implies that the time taken to reduce the blood sugar to within acceptable

range will be 175.4580 minutes. With respect toconcentrationwe have
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x2 =
X2 − 250

125

X2 = x2 × 125 + 250

= −1.4711× 125 + 250

= 66.1125. (4.42)

This indicates that 66.1125 mg/dl of the herbal formula is tobe used to regulate

the blood sugar level in a diabetic. As a result the estimatedresponse value at the

stationary point is calculated as

ŷ = 13.0718×
1

2
( 3.8486 −1.4711 )




−2.2593

−3.6393



 = ( 11.3898 )

(4.43)

This is the estimated minimum blood sugar level for the givenpredictor variables.
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Chapter 5

The Variance Function

We have outlined that when a response is fitted to data, the experimenter is more

focused in the difference between the estimated responses at two points rather than

in the actual responses at a particular location. As a consequence, the variance

function is called into play for the achievement of this desire. However there are

two approaches to the use of the variance function on the difference between two

estimated responses. One of the approaches is to find the variance function of

each of the two estimated responses and then find their difference. The second

approach is to work out the difference of the two estimated responses and then

find the variance function of that difference. In this research work we look at

the two approaches after which we compare their results as applied to the herbal

medicine data on the treatment of diabetes.

5.1 The Variance function of the Estimated Response

The variance function of the estimated response (ŷ) is given in general as described

in section 1.4. In particular equation (1.18) indicates that the estimated response

(ŷ) at a point on the predictor variable space can be computed for k- predictor

variables. With reference to a vector of predictor variables, we use equation (1.20)

to compute the scaled predictor variance (SPV) that is to be used to discriminate

between competing designs of various sizes. This eliminates the requirement of

the knowledge of the value ofσ2.

In this research work the interest is the variance function for the fitted second
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order model for the test runs considered. The first order model in both the test

runs were found to be inadequate as evidenced by the test of hypothesis procedures

carried out on each respectively.

However for us to evaluate the variance function of the estimated response

function for the test runs, we call into play the moment conditions for a rotatable

design from first order and second order as cited in section 1.33.

For the vectorxs2 that was used to generate the estimated response, we have the

estimated response identified on the two response surfaceswhich is given as

ŷ(x′s) = x′sβ̂ (5.1)

where β̂ is the Least Square Estimate ofβ. The standardized variance of this

estimated responses is

Vs =
Nŷ(x′s)

σ2
= x′s(X

′X)−1xs (5.2)

5.1.1 Variance of the Estimated Response for test run 2

In test run two we have the observations vector for the stationary point given in

equation (4.29) as

xs2 =




0.768839

−0.150031





The corresponding observation vector constructed fromxs2 for the quadratic model

is

xr =






1

0.768839

−0.150031

0.591113

0.022509

−0.115350






.

(5.3)

From (5.2), the variance is computed using
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X ′X =






51 0 −15 34 39 0

0 34 0 0 0 −10

−15 0 39 −10 −15 0

34 0 −10 34 26 0

39 0 −15 26 39 0

0 −10 0 0 0 26






Thus,

Vr = ( 1 0.768839 −0.150031 0.591113 0.0225093 −0.115350 )

×






51 0 −15 34 39 0

0 34 0 0 0 −10

−15 0 39 −10 −15 0

34 0 −10 34 26 0

39 0 −15 26 39 0

0 −10 0 0 0 26






−1 




1

0.768839

−0.150031

0.591113

0.022509

−0.115350






= 0.0987. (5.4)

We now show thatVr is minimum by comparing it with variance of another

point on the same response surface. We take pointxq which is different from the

stationary point, but in the neighbourhood of this stationary point, where,

x′q = ( 1 0.9000 −0.2000 0.8100 0.0400 −0.1800 )

(5.5)

The variance for this estimated response using this vectorxq is found to be,
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Vxq = ( 1 0.9000 −0.2000 0.8100 0.0400 −0.1800 )

×






51 0 −15 34 39 0

0 34 0 0 0 −10

−15 0 39 −10 −15 0

34 0 −10 34 26 0

39 0 −15 26 39 0

0 −10 0 0 0 26






−1 




1

0.9000

−0.2000

0.8100

0.0400

−0.1800






= 0.1038. (5.6)

Comparing the results of equation (5.4) and (5.6), it clearly shows that the variance

of the estimated response arising from the vector in equation (5.3) that is generated

from the estimated response in (4.46) is a minimum as compared to that generated

by the vector of (5.5) on the same response surface. ThusVr is minimum.

5.1.2 Variance of the Estimated Response for run 3

Using the observations vector for the stationary point given in equation (4.42)

xs3 =




3.8486

−1.4711





for which we construct the observation vector for the quadratic arrangement as

xt =






1

3.8486

−1.4711

14.8117

2.1641

−5.6617






(5.7)
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The variance is then computed using equation (5.2) where

X ′X =






40 1 11 27 67 2

1 27 2 1 4 8

11 2 67 8 89 4

27 1 8 27 46 2

67 4 89 46 223 8

2 8 4 2 8 46






With this matrix, we get the varianceVt as,

Vt = ( 1 3.8486 −1.4711 14.8117 2.1641 −5.6617 )

×






40 1 11 27 67 2

1 27 2 1 4 8

11 2 67 8 89 4

27 1 8 27 46 2

67 4 89 46 223 8

2 8 4 2 8 46






−1 




1

3.8486

−1.4711

14.8117

2.1641

−5.6617






= 24.8193, (5.8)

which is the variance of the estimated response in coded variables.

If we select any other point different from the stationary point in the neighbourhood

of this stationary point, sayxh where

x′h = ( 1 4 −2 16 4 −8 ) .

(5.9)

We then compute the variance function for this estimated response using this vector

xh and get,
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Vxh = ( 1 4 −2 16 4 −8 )

×






40 1 11 27 67 2

1 27 2 1 4 8

11 2 67 8 89 4

27 1 8 27 46 2

67 4 89 46 223 8

2 8 4 2 8 46






−1 




1

4

−2

16

4

−8






= 30.3998. (5.10)

This result (5.10) compared to the result in (5.8) clearly shows that the variance for

the estimated response given by the stationary point is a minimum in comparison

to the variance using a vector generated from the same response surface. ThusVt

is minimum.

5.2 The Variance functions of the Difference between

two Estimated Responses

Suppose thatz andx are two row vectors of the form of a row ofX but which

arise from two distinct points identified on two estimated response surfaces of

different radii. Then

ŷ(z) = zβ̂ (5.11)

which is equivalent to

ŷ(z) = z
′[p]β̂ (5.12)

Similarly

ŷ(x) = x′β̂ (5.13)

which is equivalent to

ŷ(x) = x
′[p]β̂ (5.14)
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where β̂ is the Least Square Estimate ofβ. Using theSchlafflian Vectorsand

Matrices with x′ = (x1, x2, · · · , xk) for which we define the vectorx[p] such

that

x[p]
′

x[p] = [x′x]
p

= [x20 + x21 + x22 + · · ·+ x2k]
p

=
� p!

p0!p1!p2!...pk!
(x20)

p0(x21)
p1(x22)

p2
· · · (x2k)

pk

(5.15)

p is the order of the polynomial and the summations are taken overp0, p1, p2, ..., pk

where

p0 + p1 + p2 + · · ·+ pk = p andx0 = 1.

Let

V [ŷ(z)− ŷ(x)] (5.16)

denote the variance of the difference between the two estimated responses(5.11)

and(5.13) at the pointsz andx. This variance simplifies to

Vd = [z− x]′(X ′X)−1[z− x]σ2. (5.17)

Further, let

z = AMx (5.18)

whereA = diag(1, a, a..., a) is (k + 1)by (k + 1) diagonal matrix and the

rotation matrixM = ((mij)) in which m11 = 1, m1j = mi1 = 0;

i, j = 2, 3, ..., k + 1. With this substitution (5.18) becomes

z[d] = (AM)[d]x[d]. (5.19)

Using (5.19) in (5.17), we get

Vd = [z
′[d] − x

′[d]](X ′X)−1[z[d] − x[d]]σ2 (5.20)

where(X ′X)−1σ2 is the variance covariance matrix of equation (4.3).

With reference to section1.3, the design is rotatable, which implies thatX ′X

has a special form (Box and Hunter (1957). Herzberg (1967) pointed out that the
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variance as stated in equation (5.13) is invariant under orthogonal rotations in the

predictor space. Thus

(X ′X)−1 = N
′[d](X ′X)−1N [d]. (5.21)

With this result, we rewrite (5.20) as

Vd = x
′[d](A

′[d](X′X)−1A[d] + (I− 2A
′[d]M

′[d])(X′X)−1)x[d]]σ2 (5.22)

sinceAM =MA.

Since equation (5.13) holds true for rotatable designs, (5.14) is invariant under

orthogonal rotation of the pointsz andx. The coordinate axes can be rotated in

such a manner thatz will be on the first coordinate axis andx will be in the plane

of the first two coordinates axes Herzberg (1967). With thatin mind we write,

x′ = (1, ρ, 0, 0, 0, ..., 0) (5.23)

whereρ is the distance ofx′= (x1, x2, ..., xk) from the design origin. Matrix

M is given as

M =






1 0 0 0 0 ... 0

0 cosθ −sinθ 0 0 ... 0

0 sinθ cosθ 0 0 ... 0

0 0 0 1 0 ... 0

. . . . . ... .

0 0 0 0 0 ... 1





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In this case we can assert that the variance function in (5.13) will depend only

on the lengthsρ21 andρ22 of the straight lines joining these selected points to the

origin and on the angleθ that is between the two lines.

In the special case whereA = I then (5.22) is expressed as,

Vd = 2x
′[d](I−M

′[d](X′X)−1)x[d]]σ2 (5.24)

Now for a second order response surface model (5.22) reducesto

Vd = 2x
′[2](I−M

′[d](X′X)−1)x[2]]σ2 (5.25)

and thus using the equations(5.23) in (5.24), the appropriate variance function for

the difference between two estimated responses becomes

Vd = 2(
sin2θ

2Nλ4
ρ4 +

1− cosθ

Nλ2
ρ2)σ2 (5.26)

The standardized variance of the difference between the twoestimated responses

will be

Vd = 2(
sin2θ

2λ4
ρ4 +

1− cosθ

λ2
ρ2) (5.27)

whereρ is a constant, and is symmetric about angleθ = 1800.

With regard to rotatability we only need to evaluateθ for values lying in the

first quadrant, since by rotating the points around the sphere the angle remains

invariant as well as first quadrant can be used to give valuesin other quadrants,

Karanjah et al (2008). The variance function in this case reaches a minimum value

if ρ2 < λ4/λ2 at θ = 1800. Therefore, for us to minimize the variance function

in (5.27) a second order rotatable design should be employedwith large values of

λ4/λ2.

We now can work out the variance function of the difference between two estimated

responses for the data used in this discussion. However we bear in mind the

excursions above can be called into play if our interest is tominimizing the value

of this variance.
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5.2.1 Variance function of the Difference for run 2

Taking the expression of (5.11) and that of (5.13) to be the points described in

z = xr andx = xq of (5.3) and (5.5) respectively, then the variance in (5.17)

for this specific test run is computed ford = z − x as follows;

d = ( 0 −0.1312 0.0500 −0.2189 −0.0175 0.0647 )

(5.28)

Vd = ( 0 −0.1312 0.0500 −0.2189 −0.0175 0.0647 )

×






51 0 −15 34 39 0

0 34 0 0 0 −10

−15 0 39 −10 −15 0

34 0 −10 34 26 0

39 0 −15 26 39 0

0 −10 0 0 0 26






−1 




0

−0.1312

0.0500

−0.2189

−0.0175

0.0647






= 0.0049. (5.29)

This is the variance of the difference between two estimatedresponses for a second

order model from the test run involving a herbal medicine extracted from medicinal

mushrooms.

5.2.2 Variance function of the Difference for run 3

Using the same approach as used in subsection 5.2.1 above, wehave the two points

described inxt andxh of (5.7) and (5.9) to take the expressions of (5.11) and that

of (5.13) respectively, whose difference can be expressed as c = z − x. With

these replacements, the variance function of the difference for run 3 is determined

as follows:
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c = ( 0 −0.1514 0.5289 −1.1883 −1.8359 2.3383 )

(5.30)

Vc = ( 0 −0.1514 0.5289 −1.1883 −1.8359 2.3383 )

×






40 1 11 27 67 2

1 27 2 1 4 8

11 2 67 8 89 4

27 1 8 27 46 2

67 4 89 46 223 8

2 8 4 2 8 46






−1 




0

−0.1541

0.5289

−1.1883

−1.8359

2.3383






= 0.4840. (5.31)

This is the variance of the difference between two estimatedresponses from the

test involving the herbal medicine extracted from the herbal formula.

5.3 The Difference of the Variance functions of two

Estimated Responses

In this case we worked out the variance function of the estimated responses for

two points in subsection 5.1.1 and 5.1.2 for which we can now find the difference

of these variances for the two test in this research work.

5.3.1 The Difference of the Variance function for run 2

Let Ve = Vq − Vr be the difference in the variance functions computed for two

points with conditions on their individual computations asoutlined there above.

With Vq and Vr as given in (5.4) and (5.6) for the points in (5.3) and (5.5)

respectively, the difference of the variancesVe is given for the test run 2 as,

Ve = 0.1038−0.0987 = 0.0051 (5.32)
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5.3.2 The Difference of the Variance function for run 3

Let Vf = Vh − Vt be the difference in the variance withVt andVh as given in

(5.9) and (5.10) for the points in (5.7) and (5.9) respectively, thenVf for the test

run 3 is computed to be,

Vf = 30.3998−24.8193 = 5.5805 (5.33)

5.4 Comparison of results in sections 5.2 and 5.3

Equation (5.32) shows the variance of the difference, while(5.33) shows the dif-

ference of the variance between two estimated responses fora second order model

for the herbal extract drug from medicinal mushrooms and from six different herbs

respectively. These results can be used as a basis of identifying the operation region

within which the factors⁀time andconcentrationare more effect by considering the

minimum value from a the stationary point and other points onthe same response

surface.

The desire of every experimental setting in response surface is that of minimizing

the variance function be it of the difference between two estimated response or the

difference of the variance functions.

With this regard we find that equation (5.29) and (5.32) are the variance function

of the difference between two estimated responses and the difference of the vari-

ance functions between two estimated responses for the herbal drug extract from

medicinal mushrooms respectively. However by selecting the one that provides a

minimum we emphasize that the variance function of the difference between two

estimated responses should be used in selecting an optimal model in the effective

management of diabetes using herbal drug extract from medicinal mushrooms.

These results also hold true for the herbal formula extract from six herbs, in which

equation (5.31) is a minimum compared to equation (5.33).
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

The desire of any experimenter is that of describing how the response varies as a

function of the various treatments combinations as well as determining treatment

leves that give optimal responses. Generally factorial experiments (factorial -

treatment structures) can be utilized. However when treatment factors are subject

to variation across a continuous range of values of the variables, other treatment

designs may be more efficient and effective of which Response surface method is

considered suitable when finding optimum or describing theresponse function.

In this research, response surface designs have been used tomap the response

surface within which the effectiveness of ascertained herbal drug is optimum in

regulating the blood sugar level for a diabetic. The tests run using albino rats

have successfully provided evidence of the effectiveness of the herbal drug to the

treatment of type 2 diabetes. The research has considered two factors of interest,

time taken to reduce blood sugar level andconcentrationof the herbal drug used.

Using the two factors we have been able to map the response surface as the area

of operation in management of a diabetic.

This research has successfully undertaken the analysis of stationary points by

providing a method of finding the stationary point relatingto a minimum. The

values generated for the two test runs can be used to give a setting for the utilization

by herbalists as a starting point in working the concentration of herbal medicine and

with which they have the knowledge of the time it takes to reduce the blood sugar
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level for a diabetic patient in the course of treatment. Thisgives the predictive

aspect by the herbalists to be able to ascertain the concentration to use as well as

the time it takes to achieve desired results.

In this research work we have been able to successfully utilize response surface

methodology to come up with a clear model of the relationshipinvolving time and

concentration as factors of a herbal medicine to the blood sugar level of a diabetic

by setting up a clinical trial for the arrangement of the variables using albino rats

that were carefully considered at the ages of six to eight weeks.

In the test run 2, we have successfully shown that the herbal medicine extracted

from medicinal mushrooms should be used at a concentration of 46.2492 mg/dl to

maintain the blood sugar level at 9.4353 mMol/L, within 136.1304 minutes from

the time of administering the drug to a diabetic.

From the test run 3 the herbal formula extract from a mix of sixherbs have been

shown in this research to have successfully regulated the blood sugar level in a

diabetic to11.3898 mMol/L. This is possible by effecting a treatment of herbal for-

mula at a concentration of 66.1125 mg/dl and the effectiveness is within 175.4580

minutes upon treatment.

Graphics and visualization techniques are some of our best tools for understand-

ing response surfaces, for which this research work has utilized in the expounding

of the nature and shape of the response surface generated from fitting a first and

a second order model for the two test trials. We thus worked with models for

the response and visualize the blood sugar level as a surfaceof heights over the

time x1, herbal concentrationx2 plane, like a relief map showing mountains and

valleys. There are different perspective plots showing thesurface when viewed

from different orientations especially for the second order model in both the trials.

Contour plots showing the contours of the surface, that is, curves ofx1, x2 pairs

that have the same response value were generated which depicts the pattern and

nature of the combination of the predictive factors, time and concentration of the

herbal drug.

The research has been used to find the variance function for the estimated

response at a stationary point as well as other points on the response surface. The

research has shown that any other point picked that is higherthan the stationary
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point but on the surface generated by the factors space and the response, yielded

a higher variance value for which we verify that the stationary point yields the

best possible value of combination of the factorstimeandconcentrationof herbal

medicine to give the desired response in terms of the blood sugar level. Thus we

are able to discriminate between points on the variable space that we can assert

gives the best response thus a way of identifying the best model via the variance

function has been utilized and found valid.

The variance function of the difference between two estimated responses was

computed, as well as the difference of the variance functionfor two estimated

responses for the two test runs. The comparison of the results of the variance

function of the difference between two estimated responsesand the difference

of the variance function between two estimated responses shows that the first

is smaller than the second. Therefore we can use the variancefunction of the

difference between two estimated response to be able to map the range over which

we can vary the factors of interest,time andconcentrationof herbal medicine to

achieve blood sugar level that is within the acceptable range.

6.2 Recommendations

Drug as a relief from an identified condition affect different people differently,

especially with regard to gender or age of a recipient. The current work has con-

centrated on two explanatory variables,timeand herbal drugconcentration. There

is need to investigate other variables using response surface. New variables may

be obtained which may help herbal medicine practionners. This challenge can be

an investigation that can yield patterns that might be considered important in the

effective treatment and management of diabetes whenever the different sexes are

concerned.

Herbalists extract the herbal drug from the different partsof the plant basically

by boiling. However the boiling time as well as the temperature at which this boil-

ing is done is undefined in most cases. The current work undertook the extraction

of the herbal medicine by following laid out laboratory procedures which might
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not be readily available to most if not all herbalists. We therefore recommend a

consideration of the exploration into the traditional methods of extraction of the

herbal drugs to map the temperature at which the boiling willeffectively provide

a concentration that is within the range of managing the diabetic condition as well

as recommend the amount of time it should take.

Use of a drug may sometimes result to reaction by the body chemical com-

position. This reaction would be positive if the desired goal is achieved. In the

event that we have been able to arrest or eradicate a condition, then the treatment

exercise is considered successful. However, the treatmentmay result in changes

in the chemical composition of the body and sometimes the side effects might be

more serious to treat than the original ailment. Therefore there is need to inves-

tigate the side effects that may arise in the treatment of diabetes by use of these

herbs. This way there might be a possibility of investigating the extent to which the

concentration may be varied in order to achieve desired results with safety in mind.

In any mix of components our interest to come up with an optimum from

the different ingredients used. On the basis of test run 3, wedo recommend an

investigation into the possible variation of the mix of the six her herbs to evaluate

by use of the response surface methodology the best possiblemix that is efficient in

the treatment and management of diabetes. This will go a longway in setting the

standards and procedures of the herbal formula extract for cooperating herbalist.
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The difference of the variance functions between two

estimated responses for a fourth order rotatable

design in two dimensions

F. Njui, G.P. Pokhariyal. and A. Karanjah

Abstract. In this paper the difference of the variance functions between
two estimated responses for a fourth order design at any two points in the
factor space is developed. In particular, the variance function is considered
in two dimensions when the design used is rotatable. The variance function
in this situation is a function of the distances of the points from the origin
of the design and the angle subtending the points at the origin. The
variance function of this approach is discussed in detail when the two
points are equidistant from the origin of the design. The criterion for the
choice of an optimal design is given.

M.S.C. 2000: 62K15, 62K20.
Key words: variance functions, estimated responses, rotatable design.

1 Introduction

It is often seen that the difference between estimated responses at two points for a
phenomena is a greater interest as compared to the actual response. The variance
function and the difference of variances of two estimated responses assist in providing
further insight about the criterion under investigation. Herzberg (1967) described
the variance function depending on the length of the straight line joining the selected
points to the origin and the angle between these two lines. The assumption of ro-
tatability in design helps in determining the appropriate form for the product of the
design matrix and its transpose (Box and Draper, 1980).

Huda and Mukerjee (1984) derived optimal design under the criterion for second
order polynomial models when the design space is spherical in nature.

Gilmour (2006) provided the summary of use of response surface methodology
(RSM) in various biological inductions and discussed in details the applications of
RSM to experiments on biotechnological processes. The utility of subset designs is
highlighted. In this paper the difference of variance functions between two estimated
responses for a fourth order rotatable design has been studied. The extent to which
the angle between the lines can be varied is determined.

Applied Sciences, Vol.10, 2008, pp. 184-192.
c© Balkan Society of Geometers, Geometry Balkan Press 2008.
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2 Fourth order rotatable model

Consider the problem in response surface designs for investigating the relationship
between a responce y and two explanatory factors, say x1 and x2. Assuming all factors
to be continuous in nature and the form of the functional relationship between them as
unknown but within the range of interest, such that the function may be represented
by a polynomial of moderately low order. In particular, we chose the combinations
of levels of independent factors which will:

(i) enable an experimenter to approximate a functional relationship by fitting a
polynomial through the terms of order four, and

(ii) have the property of rotatability.

Such a choice of combination of the various levels of the independent factors will
provide a fourth order rotatable design.
Let us consider a general model

(2.1) yi = f ′(xi)β + εi

whose matrix equivalent is,

(2.2) Y = X ′β + ε

where, Y is an (n× 1) vector of observations,
X is an (n× k) design matrix,
β is a (k × 1) vector of unknown parameters, and
ε is a (n× 1) vector of independently identically distributed

random variables with mean zero and variance σ2.
Specifically, for N observations let yu be the response at the uth run, for a polynomial
equation of order four this maybe written as

yu = β0x0u +
k∑

i=1

βixiu +
k∑

i=1

βiix
2
iu +

k∑

i=1

k∑

j=1

βijxiuxju

+
k∑

i=1

k∑

j=1

k∑

l=1

βijlxiuxjuxlu +
k∑

i=1

k∑

j=1

k∑

l=1

k∑
r=1

βijlrxiuxjuxluxru + εu

where, εu ∼ N(0, σ2), Cov(εuε′u) = 0, u 6= u′ = 1, 2, · · · , N . The expectation of the
response at the uth run is given by E[yu] = x′uβ. The estimated response is given by
ŷ = X ′β̂, with matrix X = (x1, x2, · · · , xN )′ of order N ×L∗ (see appendix) and β̂ is
the least square estimate of β.

The algebra of estimating β is involving and tedious, therefore we make use of
Schlafflian Vectors and Matrices to estimate β (([1]). For k = 2, x′ = (x1, x2), and
defining the vector x[4], we use the expanded results with,

x[4]′x[4] = x8
0 + x8

1 + x8
2 + 4[x6

0x
2
1 + x6

0x
2
2 + x6

1x
2
2 + x2

0x
6
1 + x2

0x
6
2 + x2

1x
6
2]

+ 6[x4
0x

4
1 + x4

0x
4
2 + x4

1x
4
2] + 12[x4

0x
2
1x

2
2 + x2

0x
4
1x

2
2 + x2

0x
2
1x

4
2],
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(2.3)

which implies that

x[4]′ = [x8
0, x

8
1, x

8
2, 2(x3

0x1, x
3
0x2, x

3
1x2, x0x

3
1, x0x

3
2, x1x

3
2),√

6(x2
0x

2
1, x

2
0x

2
2, x

2
1x

2
2), 2

√
3(x2

0x1x2, x0x
2
1x2, x0x1x

2
2)],

(2.4)

and the parameter β is expressed as

(2.5)
β′ = [β0, β1, β2, β11, β22, β12, β111, β222, β112,

β122, β1111, β2222, β1122, β1112, β1222].

Applying the model given in (2.1), and Schlafflian vectors approach, the least square
estimate is given by

(2.6) β̂ = (
N∑

u=1

x[4]′x[4])−1x[4]′y.

The estimated response ŷu at any point is given by ŷu = x
[4]′
u β̂, and the variance of

the estimated response will be given by

(2.7) V ar(ŷu) = x[4]′
u V ar(β̂) x[4]

u = x[4]′
u (X ′X)−1 x[4]

u σ2 .

We generate vectors D1, D2 and D3, to workout the moment matrix with two predictor
variables ([1]). For the design with two predictor variables we write,

N−1(X ′X) = N−1
N∑

u=1

x[4]x[4]′ = N−1
N∑
=1




D1

D2

D3


[D′

1, D
′
2, D

′
3]

(2.8)

Therefore the moment matrix is given by

N−1(X ′X) =
N∑

u=1




D1D
′
1 D1D

′
2 D1D

′
3

D2D
′
1 D2D

′
2 D2D

′
3

D3D
′
1 D3D

′
2 D3D

′
3




(2.9)

Our focus lies on the main diagonal of (2.9) since the off diagonals elements will be 0
with regard to conditions of rotability. That is to say

(2.10) N−1(X ′X) = diag

N∑
u=1

[D1D
′
1 D2D

′
2 D3D

′
3]

The final form of the moment matrix obtained will be ([1]),

(2.11) N−1(X ′X) = diag[ B M L ].
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3 Parameter estimates

In order to obtain the paramenter estimate (β̂) we consider the expression for the
inverse of the matrix X ′X, by rewriting (2.11) as

(3.1) (X ′X) = N diag[ B M L ]

whose inverse will be of the form

(3.2) (X ′X)−1 = N−1diag [B−1 M−1 L−1],

obtained by working out the inverses of B, M and L ([1]). Using (2.11) in (2.6) we
have

(3.3) β̂ = N−1 diag [B−1 M−1 L−1] X ′y

using x[4]′ of (4) in (14) we get

β̂ = N−1 diag [B−1 M−1 L−1]




D1

D2

D3


y =




β̂∗1
β̂∗2
β̂∗3




(3.4)

where

(3.5) β̂∗1 = [β̂0,
1√
6
β̂11,

1√
6
β̂22, β̂1111, β̂2222,

1√
6
β̂1122]′

(3.6) β̂∗2 = [
1
2
β̂1,

1
2
β̂2,

1√
12

β̂122,
1√
12

β̂112,
1
2
β̂111,

1
2
β̂222]′

(3.7) β̂∗3 = [
1
2
β̂1112,

1
2
β̂1222,

1√
12

β̂12]′ .

The main interest is that of finding the estimates of the coefficients of the general
mean and the linear factors β0, β1 and β2 ([1]).

4 The estimated response

The estimated response ŷu at a point (x0u, x1u, x2u) from a general situation will be

(4.1) ŷu = x[4]′
u µ̂,

our focus being that of the coefficients of the main effects only where x
[4]′
u is as provided

in (2.4) and µ giving our parameter system of interest given as µ = J ′β [for µ and J
see paper1].
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Using equation (4.1) we get

(4.2) ŷu = x[4]′
u J ′β̂ = [D′

1 D′
2 D′

3]diag[ R S T ]β̂ = [D′
1R D′

2S D′
3T ]β̂

we get the expression for the estimated response of a fourth order rotatable design in
two dimensions as,

(4.3) ŷu = β̂0

N∑
u=1

x4
0u + β̂1

N∑
u=1

x4
1u + β̂2

N∑
u=1

x4
2u,

with the variance of estimated response being constant ([1]).

5 Difference of the variance functions of two esti-
mated responses

Suppose that x′a and x′b are two distinct points identified on the two response surface
of different radii. The two points are given as

(5.1) ŷ(x′a) = x′aβ̂ , ŷ(x′b) = x′bβ̂

where β̂ is the Least Square Estimate of β. The standardized variance of these two
estimated responses will be

(5.2) Va = x′a(X ′X)−1xa , Vb = x′b(X
′X)−1xb

With reference to a rotatable design, X ′X has a special form, Box and Hunter (1957).
Taking into consideration equation (2.4) where now x′a = (ρ1, 0, 0, ..., 0) is taken as a
vector of order (15 × 1) of a row of the design matrix X arising from a point in the
predictor variable space. If we express the vector as;

(5.3) x′a = [d′1 d′2 d′3]

where
d′1 = (ρ1, 0, 0, 0, 0, 0) , d′2 = (0, 0, 0, 0, 0, 0) and d′3 = (0, 0, 0)

then the standardized variance function of the estimated response at x′a will be given
as

Va = x′a J ′(X ′X)−1J xa

= d′1 R′ B−1R d1 + d′2 S′ M−1 S d2 + d3 T ′ L−1T d3

= ρ2
14−1 S0 =

24ρ2
1β
∗
1

µ∗

(5.4)

which on substituting the values of β∗1 , µ∗ and k gives
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(5.5) Va =
24ρ2

1[8λ4λ8 − 6λ2
6]

24[8λ4λ8 − 6λ2
6]− 12λ2[8λ2λ8 − 4λ4λ6] + 8λ4[6λ2λ6 − 4λ2

4]

Let

(5.6) x′b = [d∗
′

1 d∗
′

2 d∗
′

3 ]

be a vector of order (15×1) of a row of the design matrix X arising from a point in the
predictor variable space. We observe that this is a particular point on the response
surface which must not be along the axes of the predictor variable space. However
the vector makes an angle θ with the axis x1 where
d∗
′

1 = (ρ2 cos θ, 0, 0, 0, 0, 0), d∗
′

2 = (ρ2 sin θ, 0, 0, 0, 0, 0), and d∗
′

3 = (0, 0, 0)
then the standardized variance of the estimated response at xb will be expressed as

Vb = x′b J ′(X ′X)−1J xb

= d∗
′

1 R′ B−1R d∗1 + d∗
′

2 S′ M−1 S d∗2

=
ρ2
2 cos2 θβ∗1

µ∗
+ ρ2

2 sin2 θβ∗
−1

3 α

(5.7)

which on substituting the values of β∗1 , β∗3 , µ∗, α and k we have

(5.8)

Vb =
24ρ2

2 cos2 θ[8λ4λ8 − 6λ2
6]

24[8λ4λ8 − 6λ2
6]− 12λ2[8λ2λ8 − 4λ4λ6] + 8λ4[6λ2λ6 − 4λ2

4]
+

3
2λ6ρ

2
2 sin2 θ

6λ2λ6 − 4λ2
4

With reference to conditions of rotatability we have
ω1 = 24[8λ4λ8 − 6λ2

6]
ω2 = 12λ2[8λ2λ8 − 4λ4λ6]
ω3 = 8λ4[6λ2λ6 − 4λ2

4]
then

(5.9) Va =
ω1ρ

2
1

ω1 − ω2 + ω3

and

(5.10) Vb =
ω1ρ

2
1 cos2 θ

ω1 − ω2 + ω3
+

3
2λ6ρ

2
2 sin2 θ

[6λ2λ6 − 4λ2
4]

The difference of the variance functions of the two estimated responses will be

(5.11) Vc = Va − Vb =
ω1(ρ2

1 − ρ2
1 cos2 θ)

ω1 − ω2 + ω3
−

3
2ρ2

2 sin2 θ

[6λ2λ6 − 4λ2
4]

,

which is a function of θ.
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6 Discussion

The results in (5.11) can optimized by finding the first order condition and solving
for θ. After which we explore the second order condition to evaluate the nature of
the function.

Suppose we let

ω1

ω1 − ω2 + ω3
= h1

and
3
2λ6

[6λ2λ6 − 4λ2
4]

=
12λ4λ6

ω3
= h2,

which we use to re-expressed (5.11) as,

(6.1) Vc = h1(ρ2
1 − ρ2

1 cos2 θ)− h2ρ
2
2 sin2 θ.

The first order of condition of (6.1) will be

f ′1(θ) =
∂Vc

∂θ
= 2h1ρ

2
2 cos θ sin θ − 2h2ρ

2
2 cos θ sin θ = 0,

on solving we get

(6.2) θ = {0, 90}.

With regard to rotatability we only need to evaluate θ for values of 0o ≤ θ ≤ 90o

since by rotating the points around the sphere the angle remains invariant as well as
first quadrant can be used to give values in other quadrants. The second derivative
of (6.1) will be

(6.3) f ′′c (θ) =
∂2Vc

∂θ2
= 2[h1 − h2]ρ2

2[1− 2 sin2 θ]

On substitution for values of θ from the set in (6.2) we have two conditions;

(i) for θ = 0o

f ′′c (θ) = 2[h1 − h2]ρ2
2[1− 0] = 2[h1 − h2]ρ2

2

By letting λ2 < 1
k and λ4 ≤ λ2

k+2 from the results of Huda and Mukerjee (1984),
while evaluating the values of λ6 and λ8 with regard to conditions and same
procedures we have, λ2 < 1

2 , λ4 = λ2
4 ;on considering the equality, λ2λ6 = λ4

k+4 ;
therefore λ6 = λ4

6λ2
and λ4λ8 = λ6

k+6 thus λ8 = λ6
8λ4

We therefore need only
evaluate the values of λ2 say λ∗2 in order to compute h1 and h2. For λ∗2 = 0.4396
from the results of Huda and Mukerjee we find that

(6.4) h1 = 34.76694889, h2 = 1.014808732
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hence if the vectors are equidistant and the distance is unitary then,

(6.5) f ′′c (θ) = 2[h1 − h2]ρ2
2 = 67.5042805 > 0o

which implies that the difference of the variance functions for two estimated
responses is minimized when θ = 0o.

(ii) for θ = 90o we have

(6.6) f ′′c (θ) = 2[h1 − h2]ρ2
2[1− 2 sin 90o] = −67.50572314 < 0o

which implies that the difference of the variance functions for two estimated responses
is maximized when θ = 90o.
We now evaluate the extent to which the angle θ can be varied while still minimizing
the functions in Vc of (6.1). We tabulate the results as follows;

Table of Values

θ f ′′c (θ) θ f ′′c (θ)
0 67.5042805 44 2.355865415
5 66.4787388 45 0
10 63.43327426 46 -2.355865415
15 58.46042178 47 -4.70886057
20 51.71127896 48 -7.056118705
25 43.39091511 49 -9.394780045
30 33.75214025 50 -11.72199529
35 23.08782369 55 -23.08782369
40 11.72199529 60 -33.75214025
41 9.394780045 70 -51.71127896
42 7.056118705 80 -63.43327426
43 4.70886057 90 -67.5042805

Where, f ′′c (θ) is the second derivative of the function Vc, that is the difference of the
variance functions of two estimated responses.

7 Conclusions

The aim of every experimenter is to minimize the variance function, therefore we
conclude that for the difference of the variance functions for two estimated responses
we may achieve a global minimum while others exogenous factors assumed constant
by letting the angle between the two vectors θ to be as close as possible to 45o.

If differences of points close together in the factor space are involved, based on
our results, an optimal design for a fourth order rotatable design in two dimensions
from the this approaches will be chosen on the basis of minimum variance function
criterion as emphasized by Herzberg (1967), Box and Draper (1980), Huda (1985)
and Huda and Mukerjee (1984).
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