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Summary: Methods that reduce the cost and time involved in detecting defective or nonconfor-
mal members of a large population have been explored extensively in the quality control literature.
These methods have also found extensive application in insect-vector, rodent-bacterium and blood
screening. Group-screening designs are plans that identity defect factors in a large population by
initially pooling factors together and then classifying each pool as nonconformal (NC) or conformal
(C). Individual testing is then carried only amongst individual factors in pool that are found to be
nonconformal. A modifications of this strategy, suggested by Sterrett (1957), proposes a reversion to
a group test, in a group declared defective, upon detection of the first nonconformal factor and then
carrying out individuals testing only if the new group is nonconformal. This procedure is referred to
as the Dorfman-Sterrett procedure in the literature.

The statistical properties of the restricted Dorfman-Sterrett procedure, where the number of re-
version to a group test is predetermined, has found little discussion in the literature. This study uses
a testing of hypothesis approach to compare the performance of the Dorfman-Sterrett procedure with
the Dorfman procedure assuming that factors or groups can be misclassified. Under the testing of
hypothesis approach, using a 2g fractional factorial design, cost functions which are linear functions
of expected total number of incorrect decisions and the expected number of tests, are derived and
used as a basis for comparing the procedures of interest

1. Introduction

Inspection of factors in quality control can be split into two complementary areas: the acceptance
sampling plans and plans that classify factors as conformal (non-defective) or nonconformal (defec-
tive). The fundamental difference between the two approaches is essentially the form of decision
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to be reached. In the first case, the decisions to accept or reject a whole population are based on
a sample or samples. In the second case, the decisions are based on individual factors, each factor
being classified as nonconformal (NC) or conformal (C). It is the second category that is of interest
to us.

Instead of testing each factor individually, Dorfman (1943) proposed putting the factors into
groups at the first stage and testing only those factors in nonconfromal groups at the second stage of
analysis. If the group test has a negative result, indicating that the group is C, then all the factors in
that group are declared C and the group undergoes no further investigation. This two-stage procedure
shall herein be referred to as the Dorfman procedure.

A modification to the Dorfman procedure where factors in an NC group are tested individually
until an NC factor is found has also been proposed in the literature (Sterrett, 1957). Once this NC
factor has been identified, the remaining factors are pooled together to form a new sub-group. If the
sub-group is C, there is no further investigation. Otherwise, individual testing is restarted amongst
the untested factors, until another NC factor is found. On detecting such an NC factor, the remaining
factors are tested as a sub-group, and so on until a decision is reached regarding to each factor.
This procedure consists of testing individual factors in an NC group till a first NC is found and then
reverting to a Dorfman procedure. This reversion takes place until a final C sub-group is identified.
This modification has been referred to in the literature as the Step-wise group-screening procedure
(Patel and Manene, 1987) and elsewhere as the Dorfman-Sterrett procedure (Huang, Johnson and
Kotz, 1989; Johnson, Kotz and Rodriguez, 1989).

The original Sterrett plan does not pre-assign the number of times we shall revert to a Dorfman
procedure. It seems therefore, that we are faced with a plan that may stop after tests and that may not
adequately reduce the number of tests, and hence cost of inspection. A modification to Sterrett plan,
referred to in the literature as the (Restricted) Dorfman-Sterrett procedure, extends Sterrett’s plan to
include a stopping rule (Johnson et al., 1989). Under this plan, the number of reversions to a Dorfman
procedure is pre-assigned. If, for instance, only one reversion to a Dorfman procedure is allowed, the
procedure is referred to as a single-step Dorfman-Sterrett procedure. If two reversions are allowed,
we have a two-step Dorfman-Sterrett procedure; and in general, if γ-reversions are allowed, we have
an γ-step (or multi-step) Dorfman-Sterrett procedure (γ ≤ k− 2), where k denotes group size. The
Dorfman procedure can be viewed as a zero-step restricted Dorfman-Sterrett procedure as there is
no reversion to a group testing upon detecting a first NC factor.

The group-screening procedure has been used by various researchers to estimate the proportion
of NCs or infected individuals in a given population. The approach has been used to test for presence
of the aster-yellows virus (Thompson, 1962), bacteria (Sobel and Elashoff, 1975), HIV (Gastwirth
and Hammick, 1989; Kline, Brothers, Brookmeyer, Zeger and Quinn, 1989) and post-transfusion
hepatitis (Davis, Grizzle and Bryan, 1973).

In this study we focus on the statistical properties of the restricted Dorfman-Sterrett procedure.
Some aspects of this plan have been discussed elsewhere (Johnson et al., 1989) assuming, however,
that probabilities of misclassification were constant and not functions of either group size or the
number of NC factors in a group. Expected Proportional Reduction (EPR) in testing, along with
probabilities of correctly classifying factors, formed the basis of discussing the efficiency of the
procedure. In this paper, we use orthogonal fractional factorial plans of the type given by Plackett
and Burman (1946) to interrogate properties of the procedure. We refer to this approach as the testing
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of hypothesis approach, in line with assumptions presented in Watson (1961). Cost functions, which
are linear functions of expected number of tests and expected number of incorrect decisions, shall
form the basis for comparing procedures of interest.

In Section 2, we present the assumptions and notation used in this study. Section 3 and Section
4 present derivations of expected number of tests, and expected number of incorrect decisions, for
the Dorfman procedure and the γ-step Dorfman-Sterrett procedures, respectively. In Section 5, we
discuss the performance of the Dorfman-Sterrett procedure in terms of relative costs in testing and
present examples of optimal designs for illustration. Section 6 presents a summary of our findings
within the context of existing literature.

2. Notations and Assumptions

In this section we present the assumptions based on which expressions for the expected number of
tests and the expected number of incorrect decisions shall be derived.

2.1. Notation

Assume that we have a population of f factors divided into g groups of size k. That is, f = kg. Each
of these groups has two levels: 1 if they are NC and 0, otherwise.

Let Di be a dichotomous random variable taking a value 1 if the i-th group is truly NC and 0,
otherwise, i = 1, . . . ,g,. To address the possibility of misclassification, we shall further let Ti be
a dichotomous random variable taking a value 1 if during screening the i-th group is declared NC
(correctly or incorrectly) and 0 otherwise.

The symbol r denotes the total number of groups declared NC. This number can be expressed
as the sum r = ∑

g
i=1 Ti. It is these r groups that shall be subject to individual testing. Items in the

remaining g− r groups shall be declared C without being tested.
We shall let Si denote the number of NC factors in the i-th group of size k and assume that

Si ∼Binomial(n, p), where p denotes the a-priori probability of a factor being truly NC, i = 1, . . . ,g.
Let δi j be a dichotomous random variable taking a value 1 if the j-th individual or factor in the

i-th group is truly NC and 0, otherwise, j = 1, . . . ,k; i = 1, . . . ,g. Clearly, δi j ∼Binomial(1, p). Also
let τi j be a dichotomous random variable taking a value 1 if the j-th individual or factor in the i-th
group is declared NC (correctly or incorrectly) and 0 otherwise, j = 1, . . . ,k; i = 1, . . . ,g.

Further, for each group declared NC, M shall denote the trial at which the first factor declared NC
is found and X shall denote the number of truly NC factors among these M factors. We shall further
let J be a dichotomus random variable taking value 1 if the m-th tested factor is truly defective and
0, otherwise.

To compute the expected number of incorrect decisions in an r-step Dorfman-Sterrett procedure,
we shall let rGik be random variables that denote the number of factors correctly classified NC in
the i-th group of size k and rG′ik be random variables that denote the number of factors incorrectly
classified NC the i-th group of size k.

In subsequent discussion, rEI(NC)k shall denote the expected number of incorrectly classified
NC factors, rEI(NC)k|s shall denote the expected number of incorrectly classified NC factors con-
ditional on s, the number of NC factors in the group, and rEI(NC)k|m,x, j,t,s the expected number
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of incorrectly classified NC factors conditioned on the variables M, X , J, Ti, and Si. The expected
number of correctly classified C factors shall be denoted by rEI(C)k, with its conditional variants
expressed as rEI(C)k|s and rEI(C)k|m,x, j,t,s.

2.2. Group-screening assumptions

In this study we shall employ the same two-stage group-screening assumptions made be Watson
(1961). These assumptions are:

• all factors have, independently, the same prior probability of being NC, p;

• NC factors have the same effect, ∆ > 0;

• there are no interactions present;

• the required designs exist;

• the directions of possible effects are known; and

• the errors of all observations are independently normal with a constant known variance σ2.

2.2.1. Screening with errors at stage one

Each of the g groups under consideration are tested at the initial stage. We assume that any of these
groups can be misclassified as NC or C. These groups are then tested for significance using a 2g

factorial design of type given by Plackett and Burman (1946).
Under Plackett and Burman (1946) designs, assuming interactions to be absent, 4

[ g
4

]
runs are re-

quired to test the significance of the main effects of the g groups orthogonally. That is,

4
[g

4

]
= g+h

where h = 1, 2, 3 and 4, and by definition
[ g

4

]
is the least integer greater than g

4 except that [ g
4 ] = 0

when g = 0.
If Â is the estimate of the main effect of any group with s NC factors, each with effect ∆ > 0
for s = 0, 1, . . . , k and σ is the error in observation then E

(
Â
)
= s∆ and Var

(
Â
)
= σ2

4[ g
4 ]

= σ2

g+h

for h = 1, 2, 3, and 4.
Assuming normality in observations, it then follows that

Z =
Â−E

(
Â
)√

Var
(
Â
) = Â− s∆√

σ2

(g+h)

= y− sφ1,

where y = Â√
σ2

(g+h)

and φ1 =
∆√
σ2

(g+h)

, is standard normal.

Testing the hypothesis that a group is C is equivalent to testing the null hypothesis H0 : sφ1 = 0
against the alternative Ha : sφ1 6= 0.
The normal deviation test can be used if σ2 is known. If however, σ2 is unknown, the test will
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reduce to a t-test.
The power of the test is thus given by

π1 (sφ1, α1) =
∫

∞

Aα1

1√
2π

exp

[
− (y− sφ1)

2

2

]
dy (1)

where α1 is defined as

α1 =
∫

∞

Aα1

1√
2π

exp
[
−Z2

2

]
dZ

which is the level of significance of the test.
In terms of the random variables proposed in Section 2.1, π1 (sφ1, α1) = P(Ti = 1|Si = s) and α1 =

P(Ti = 1|Si = 0).

2.2.2. Screening with errors in observation at the second stage

At the second stage of the group screening plan, we focus on the classification of individual factors
amongst the groups declared NC. To capture the possibility of misclassifying items, we shall let α2

denote the probability of classifying a C as NC.
If there are r groups each of size k declared NC, then we have rk factors to observe.
If B̂ is the estimate of the main effect of a factor, with effect ∆ > 0, then E(B̂) = ∆ and Var(B̂) = σ2

rk .
Now define

V =
B̂−∆√
σ2/rk

=
B̂√

σ2/rk
− ∆√

σ2/rk
=U−φ2,

where U = B̂√
σ2/rk

and φ2 =
∆√

σ2/rk
.

So testing the hypothesis of significant factor effects at the second stage is equivalent to testing the
hypothesis H0 : φ2 = 0 against H1 : φ2 6= 0.
Assuming normality, the power of the test in the second stage, denoted by π2 (φ2, α2) according to
(Watson, 1961), is given by

π2 (φ2, α2) =
∫

∞

ωα2

1√
2π

exp

[
−(U−φ2)

2

2

]
dU ,

where α2 =
∫

∞

Bα2
exp
[
−Z2

2

]
dZ is the size of the critical region for testing the factors in the group

declared NC.
In terms of the random variable proposed in Section 2.1, π2 (φ2, α2) = P(τi j = 1|δi j = 1) and α2 =

P(τi j = 1|δi j = 0).

2.3. Key probabilities

The computation of expected number of runs and the expected number of incorrect decisions in
this study are generalisations of the results by Johnson, S. and Rodriguez (1988) and Johnson et al.
(1989) to the hypothesis testing paradygm used by Watson (1961), Curnow (1965) and Patel and
Ottieno (1984).
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In line with the results of Watson (1961), the probability that a group of size k is declared NC is
given by

π
∗
1 =

k

∑
s=0

π1 (sφ1, α1)

(
k
s

)
psqk−s. (2)

The probability that a group of size k is declared NC given that a factor within the group is NC shall
take the form presented in Curnow (1965), which is

π
+
1 =

k

∑
s=1

π1 (sφ1, α1)

(
k−1
s−1

)
ps−1qk−s. (3)

In terms of the random variables described in Section 2.1, the expressions in equation (2) and
equation (3) are simply π∗1 = P(Ti = 1) and π

+
1 = P(Ti = 1|δi j = 1), respectively.

Taking into account the fact that the iterative reversion to group testing after a first NC factor is
identified, whether correctly or incorrectly, Johnson et al. (1989) derived the following two probabil-
ity distributions which we now present under the testing of hypothesis framework by (Watson, 1961).
The first is the probability that the m-th factor is the first (correctly) classified NC factor while there
are x truly NC factors among the first m tested factors in the group of size k containing s NC factors
is

pNC(m,x|k,s) =


(m−1

x−1)(
k−m
s−x)

(k
s)

π2[1−π2]
x−1[1−α2]

m−x if x≥ 1,

0 if x = 0,
(4)

and the second is the probability that the m-th factor is the first (incorrectly) classified NC factor
while there are x truly NC factors among the first m tested factors in the group of size k containing s
NC factors is

pC(m,x|k,s) =


(m−1

x )(k−m
s−x)

(k
s)

α2[1−π2]
x[1−α2]

m−x−1 if x≤ m−1

0 if x = m,
. (5)

The sum of equation (4) and equation (5) leads to the probability of finding a first NC factor at
the mth trial in a group of size k containing s NC factors while there are x NC factors among the first
m tested factors which is given by

p(m,x|k,s) = pNC(m,x|k,s)+ pC(m,x|k,s). (6)

The probabilities mentioned in equation (4), equation (5) and equation (6) are the conditional
probabilities pNC(m,x|k,s) = P(M = m,X = x,J = 1|Si = s), pC(m,x|k,s) = P(M = m,X = x,J =

0|Si = s), and p(m,x|k,s) = P(M = m,X = x|Si = s), respectively.

3. The Dorfman (or zero-step Dorfman-Sterrett) procedure

In this section we present expressions for the expected number of tests and expected number of
incorrect decisions for a Dorfman procedure.
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3.1. The expected number of runs

Let 0Rik be a random variable that denotes the number of tests required to classify all factors in the
i-th group, i = 1, . . . ,g, of size k in a Dorfman procedure. This variable takes a value 1+ k if the
group is declared NC and 1 otherwise. Thus

0Rik = 1+ kTi. (7)

Lemma 1 The expected number of tests needed to classify all the factors in the i-th group of size k
given that it contains s NC factors using a zero-step Dorfman-Sterrett procedure is given by

0Ek|s = 1+ kπ1 (sφ1,α1) .

Proof. The desired results follows immediately as the conditional expectation

0Ek|s = E(0Rik|Si = s) = 1+ kE(Ti|Si = s) = 1+ kP(Ti = 1|Si = s).

�

Lemma 2 The expected number of tests needed to classify all the factors in the i-th group of size k
using a zero-step Dorfman-Sterrett procedure is given by

0Ek = 1+ kπ
∗
1 .

Proof. This result is the expected value of the random variable given in equation (7) and follows
immediately on substituting equation (2). That is, 0Ek = E(0Rik) = 1+ kE(Ti). �

3.2. Expected number of correct (and incorrect) decisions

Having discussed the expected number of runs, we now derive expressions for the expected number
of incorrect decisios. We let 0Gik denote the number of correctly classified NC factors, 0G′ik be the
number of C factors incorrectly declared NC, and S∗i be the number of factors declared NC.

The conditional density of 0Gik given that the group of size k is declared NC, Ti = 1, and that it
contains s NC factors, Si = s, is Binomial(s,π2). Similarly, the conditional density of 0G′ik given that
Ti = 1 and Si = s is Binomial(k− s,α2). Since S∗i =

0 Gik +
0 G′ik, the conditional density of S∗i given

Ti = 1 and Si = s is a convolution of the conditional densities of Gi and G′i given Ti = 1 and Si = s
and can therefore be expressed as

Pk [S∗i = z|Si = s,Ti = 1] = ∑
m

(
s
m

)
π

m
2 (1−π2)

s−m
(

k− s
z−m

)
α

µ

2 (1−α2)
k−s−µ . (8)

Lemma 3 The expected number of factors declared NC in a group of size k that contains s NC
factors is given by

E [S∗i |Si = s] = π1 (sφ1,α1) [(k− s)α2 + sπ2(φ2,α2)] .

Proof. This results is simply the conditional expectation E(S∗i |Si = s) = EE(S∗i |Ti = t,Si = s) and
is a consequence of equation (8). �
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Corollary 1 The expected number of incorrectly classified NC factors given that the group of size
k contains s NC factors can be expressed as

0EI(NC)k|s =

{
(k− s)π1 (sφ1,α1)α2 if s > 0,

kα1α2 if s = 0.

Proof. This result follows from the fact that the expected value in Lemma 3 is a sum of the expected
number of correctly and incorrectly classified NC factors. Clearly, (k− s)π1 (sφ1,α1)α2 = kα1α2

when s = 0. �

Corollary 2 The expected number of incorrectly classified C factors is

0EI(C)k|s =

{
s− sπ1 (sφ1,α1)π2(φ2,α2) if s > 0,

0 if s = 0.

Proof. This result also stems from the fact that the expected value in Lemma 3 is a sum of the
expected number of correctly and incorrectly classified NC factors. �

Similar results are given in Johnson et al. (1988), Patel and Ottieno (1984) and Odhiambo and
Manene (1987).

The result we have presented in this section are similar to those of Watson (1961), Patel and
Ottieno (1984) and Johnson et al. (1988). These results shall be used in the subsequent discussion
as the iterative nature of the multistep Dorfman-Sterrett uses these results at the final step.

4. The multi-step Dorfman-Sterrett procedure

In this section we present expressions for the expected number of tests and the expected number of
incorrect decisions that arise when using a multi-step Dorfman-Sterrett procedure.

4.1. The expected number of runs

Let γ Rik be a random variable that denotes the number of tests required to classify all the factors in
the i-th group, i = 1, . . . ,g, of size k using a γ-step Dorfman-Sterrett procedure.

The expected value of this random variable given that the group has been declared defective
(Ti = 1) and contains s defective factors (Si = s) is given by

E[γ Rik|Si = s,Ti = 1] =
k

∑
m=1

(s)

∑
x

1

∑
j=0

E[γ Rik|M = m,Si = s,X = x,J = j,Ti = 1]

×Pk[M = m,X = x,J = j|Si = s,Ti = 1],

=
k

∑
m=1

(s)

∑
x

1

∑
j=0

γ Ek|m,s,x, j,1 p(m,x, j|k,s),

(9)

where p(m,x, j|k,s) is defined in equation (6) and γ Ek|m,s,x, j,1 can be defined as

γ Ek|m,s,x, j,1 =


1+m+γ−1 Ek−m|s−x if m≤ k−2, j = 0,1,s > 0,

1+m+γ−1 Ek−m|0 if m≤ k−2; j = 0,1;s = 0;x = 0,

1+ k if m = k−1,k; j = 0,1;∀ x.

(10)
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The expression in equation (10) arises from the following considerations: 1+m+γ−1 Ek−m|s−x

tests are required if a first NC factor is found at the m-th trial and the remaining factors are subjected
to a (γ − 1)-step Dorfman-Sterrett procedure in a group of size k−m containing s− x NC factors;
1+m+γ−1 Ek−m|0 tests are required if the group contains no defective factor, a first NC factor is
found at the m-th trial and the remaining factors are subjected to a (γ − 1)-step Dorfman-Sterrett
procedure in a group of size k−m containing no NC factors; and 1+ k tests are required if the first
factor declared NC in the group is not found on or before the (k−1)-st trial.

Lemma 4 The expected number of tests on a group of size k in a γ-step Dorfman-Sterrett procedure
given that the group contains s NC factors is

γ Ek|s = 1+ kπ1(sφ1,α1)−π1(sφ1,α1)
k−2

∑
m=1

(s)

∑
x

{
k−m−γ−1 Ek−m|s−x

}
p(m,x|k,s).

Proof. This expected value is defined as

γ Ek|s = E[γ Rik|Si = s] =
1

∑
t=0

E[γ Rik|Ti = t,Si = s]P(Ti = t|Si = s),

where E[γ Rik|Ti = 1,Si = s] is given in equation (9). The desired result follows upon substituting
equation (1). �

Corollary 3 The expected number of tests on a group of size k in a γ-step Dorfman-Sterrett proce-
dure given that the group contains no NC factor is

γ Ek|0 = 1+ kα1−α1

[ kα2−1+[k(1−α2)−1](1−α2)
k−2− (k−2)(1−α2)

k−1

α2

]
+α1α2

k−2

∑
m=1

γ−1Ek−m|0(1−α2)
m−1.

Proof. This expected value follows on substituting s = 0 in Lemma 4. �

Corollary 4 The expected number of tests required to test all the factors in a group of size k in a
γ-step Dorfman-Sterrett procedure is given by

γ Ek = 1+ kπ
∗
1 −α1

k−2

∑
m=1

(1−α2)
m−1

α2
{

k−m−γ−1 Ek−m|0
}

qk

−
k

∑
s=1

π1 (sφ1,α1)
k−2

∑
m=1

(s)

∑
x

(
k−m−γ−1 Ek−m|s−x

)
p(m,x|k,s)

(
k
s

)
psqk−s.

Proof. This expectation is simply the sum

γ Ek =
γ Ek|oqk +

k

∑
s=1

γ Ek|s

(
k
s

)
psqk−s,

where γ Ek|0 and γ Ek|s are given by Corollary 3 and Lemma 4, respectively.
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Theorem 1 The expected number of tests required to analyse all the f factors in a γ-step Dorfman-
Sterrett procedure is given by

E[γ R] = h+
f
k
+ f π

∗
1 −

f α1

k

k−2

∑
m=1

(1−α2)
m−1

α2
{

k−m−γ−1 Ek−m|0
}

qk

− f
k

k

∑
s=1

π1 (sφ1,α1)
k−2

∑
m=1

(s)

∑
x

(
k−m−γ−1 Ek−m|s−x

)
p(m,x|k,s)

(
k
s

)
psqk−s.

Proof. The number of tests on a group of size k in a γ-step Dorfman-Sterrett procedure is given by

γ R = h+
g

∑
i=1

γ Rik,

where h = 1 or 2 or 3 or 4 is the control. The desired result will follow immediately from E(γ R) =
h+gγ Ek.

4.2. The expected number of incorrect decisions

We now present expressions for the expected number of incorrect decisions in a γ-step Dorfman-
Sterrett procedure. This expectation is the sum of the number of NC factors declared C and the
number of C factors declared NC.

4.2.1. Expected number of incorrectly classified Cs

We start by deriving an expression for the expected number of incorrectly classified C factors in a
group of size k. This expected value is the difference between the actual number of NCs in the group
and those that are correctly classified as NC.

Letting γ Gik be a random variable that denotes the number of factors correctly declared NC in
the i-th group, i = 1, . . . ,g of size k, we determine rEC(NC)k = E(γ Gik), the expected number of
correctly classified NC factors in the group.

In a γ-step Dorfman-Sterret procedure there are six ways in which we may correctly classify NC
factors in a group of size k. There can be 1+γ−1 E(NC)k−m|s−x correctly classified NC factors if the
first correctly classified NC factor is found at the m-th trial while there are x truly NC factors among
these m factors. The remaining (k−m) factors are then pooled together to form a group, containing
(s− x) NC factors, that is subjected to a (γ−1)-step Dorfman-Sterrett procedure. It is also possible
to have γ−1E(NC)k−m|s−x correctly classified NC factors if the m-th tested factor, (m ≤ k− 2), is
the first incorrectly classified NC factor while there are x truly NC factors among these m factors.
The remaining (k−m) factors are pooled together to form a group containing (s− x) NC factors
and subjected to a (γ − 1)-step Dorfman-Sterrett procedure. There may also be 1 + π2 (φ2, α2)

correctly classified NCs if the (k−1)-st tested factor is the first correctly classified NC factor while
in fact there are (s− 1) truly NC factors among the first (k− 1) factors tested. We could also have
π2 (φ2, α2) correctly classified NCs if the (k− 1)-st factor is incorrectly classified NC and the k-th
factor are correctly classified as NC, or have a single correctly classified NC factors if the (k−1)-st
tested factor is the first correctly classified NC factor while in fact there are s truly NC factors among
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the first (k− 1) factors tested. Finally, we could have a single correctly classified NC factor if the
k-th tested factor is the first correctly classified NC factor while in fact there are s truly NC factors
among the first k factors tested. With these assumptions, the conditional expectation

γ E(NC)k|m,x, j,s,t = EEEEE(rGik|M = m,X = x,J = j,Ti = t,Si = s)

can be expressed as

γ E(NC)k|m,x, j,s,t =



1+γ−1 E(NC)k−m|s−x if 1≤ m≤ k−2, max(0,s− k+m)≤ x≤ min(m,s)

j = 0, t = 1 and s > 0,
γ−1E(NC)k−m|s−x if 1≤ m≤ k−2, max(0,s− k+m)≤ x≤ min(m,s)

j = 1, t = 1 and s > 0,

1+π2 (φ2, α2) if m = k−1, x = s−1, j = 0, t = 1 and s > 0,

π2 (φ2, α2) if m = k−1, x = s−1, j = 1, t = 1 and s > 0,

1 if m = k−1, k, x = s, j = 1, t = 1 and s > 0,

0 otherwise.

(11)

Lemma 5 The expected number of correctly classified NC factors given that the group of size k
contains s NC factors is given by

γ EC(NC)k|s = π1 (sφ1, α1)
[ k−2

∑
m=1

s

∑
x

{
pNC(m,x|k,s)+ p(m,x|k,s)γ−1EC(NC)k−m|s−x

}
+ pNC(k−1,s−1|k,s)+ pNC(k−1,s|k,s)

+ p(k−1,s−1|k,s)π2(φ2, α2)+ pNC(k,s|k,s)
]
.

Proof. This expected value is simply
rEC(NC)k|s = E(rGik|Si = s),

= ∑
m

∑
x

∑
j
∑
t

r

∑
s

EC(NC)k|m,x, j,t,sP(M = m,X = x,J = j|Ti = t,Si = s)P(Ti = t|Si = s),

where P(M = m,X = x,J = j|Ti = t,Si = s) can be obtained from equation (4) if j = 1 or equation
(5) if j = 0 and further, from P(Ti = t|Si = s) which can be obtained directly from equation (1). �

Corollary 5 The expected number of incorrectly classified C factors in a γ-step Dorfman-Sterrett
procedure given that the group under consideration has s NC factors is given by

γ EI(C)k|s = s−π1 (sφ1, α1)

[
k−2

∑
m=1

s

∑
x

{
pNC(m,x|k,s)+ p(m,x|k,s)γ−1EC(NC)k−m|s−x

}
+ pNC(k−1,s−1|k,s)+ pNC(k−1,s|k,s)

+ p(k−1,s−1|k,s)π2(φ2, α2)+ pNC(k,s|k,s).

Proof. This expected value is the difference between the total number of NCs in the group and the
number of factors declared NC in that group. That is, γ EI(C)k|s = s−γ EC(NC)k|s. �

Theorem 2 The expected number of incorrectly classifying a C factor in a group of size k in a γ-step
Dorfman-Sterrett procedure is

γ EI(C)k = kp−
k

∑
s=1

π1 (sφ1, α1)

[
k−2

∑
m=1

s

∑
x

{
pNC(m,x|k,s)+ p(m,x|k,s)γ−1EC(NC)k−m|s−x

}
+ pNC(k−1,s−1|k,s)+ pNC(k−1,s|k,s)

+ p(k−1,s−1|k,s)π2(φ2, α2)+ pNC(k,s|k,s)
](k

s

)
psqk−s.
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Proof. This results follows from Corollary 5 and the fact that

rEI(C)k =
k

∑
s=0

rEI(C)k|sP(Si = s) =
k

∑
s=0

rEI(C)k|s

(
k
s

)
ps(1− p)k−s.

�

4.2.2. Expected number of incorrectly classified NCs

Let γ G′ik be a random variable that denotes the number of factors incorrectly declared NC in the i-th
group, i = 1, . . . ,g of size k.

In a γ-step Dorfman-Sterret procedure there are several ways in which we may incorrectly clas-
sify NC factors in a group of size k. There can be γ−1EI(NC)k−m|s−x incorrectly classified NC
factors if the first correctly classified NC factor is the m-th tested while in fact there are x truly NC
factors among the first m tested factors and that all the (s− x) NC factors in the subsequent Dorf-
man procedure are incorrectly classified, where max(0,s− k+m) ≤ t ≤ min(m,s). We would have
1+γ−1 EI(NC)k−m|s−x incorrectly classified NC factors given that the m-th tested factor, (m≤ k−2),
is the first incorrectly classified NC factor,where max(0,s− k+m)≤ t ≤min(m,s). There could be
α incorrectly classified NC factors if the (k− 1)-st tested factor is the first correctly classified NC
factor while in fact there are s truly NC factors among the first (k−1) factors tested. We could have
a single incorrectly classified NC factors given that the k-th tested factor is the first incorrectly clas-
sified NC factor while in fact there are s truly NC factors among the first k factors tested; We could
have α2 incorrectly classified NC factors given that the (k−1)-st tested factor is the first incorrectly
classified NC factor while in fact there are x truly NC factors among the first (k−1) factors tested.
It is also possible that we can have (1+α2) incorrectly classified NC factors given that the (k−1)-st
tested factor is the first incorrectly classified NC factor while in fact there are s truly NC factors
among the first (k−1) factors tested. There will a single incorrectly classified NC factors given that
the (k−1)-st tested factor is the first incorrectly classified NC factor while in fact there are (s−1)
truly NC factors among the first (k−1) factors tested. We will also have a single incorrectly classi-
fied NC factors given that the k-th tested factor is the first incorrectly classified NC factor while in
fact there are s truly NC factors among the first k factors tested.

With these assumptions, the conditional expectation

γ EI(NC)k|m,x, j,s,t = EEEEE(rG′ik|M = m,X = x,J = j,Ti = t,Si = s)

can be expressed as

γ EI(NC)k|m,x, j,s,1 =



γ−1EI(NC)k−m|s−x if 1≤ m≤ k−2 max(0,s− k+m)≤ x≤ min(m,s)

j = 0 and s > 0,

1+γ−1 EI(NC)k−m|s−x if 1≤ m≤ k−2 max(0,s− k+m)≤ x≤ min(m,s)

j = 1 and s > 0,

1+α2 if m = k−1, x = s, j = 1 and s > 0,

α2 if m = k−1, x = s, j = 0 and s > 0,

1 if m = k, x = s, j = 1 and s > 0

0 otherwise.



THE DORFMAN-STERRETT GROUP SCREENING PROCEDURE 13

Lemma 6 It also follows that the expected number of incorrectly classified NC factors given that
the group of size k contains s NC factors is given by

γ EI(NC)k|s = π1 (sφ1,α1)

{
k−2

∑
m=1

{ (s−1)

∑
x

[
pC(m,x|k,s)+γ−1 EI(NC)k−m|s−x p(m,x|k,s)

]}
+ pC(k−1,s−1|k,s)+ pC(k−1,s|k,s)

+α2 p(k−1,s|k,s)+ pC(k,s|k,s)

}
.

Proof. This expected value is follows from where equation (4), equation (5), equation (1) and the
fact that

rEC(NC)k|s = E(rG′ik|Si = s),

= ∑
m

∑
x

∑
j
∑
t

∑
s

rEI(NC)k|m,x, j,t,sP(M = m,X = x,J = j|Ti = t,Si = s)P(Ti = t|Si = s).

�

The following result is a consequence of substituting s = 0 in Lemma 6.

Corollary 6 The expected number of incorrectly classified NC factors given that the group of size
k contains no NC factors is also given by

γ EI(NC)k|0 = α1

[
k−2

∑
m=1

[
1+γ−1 EI(NC)k−m|0

]
α2(1−α2)

m−1 +2α2(1−α2)
k−2

]
.

Theorem 3 The expected number of incorrectly classified NC factors in a γ-step Dorfman-Sterrett
procedure is

γ EI(NC)k = α1

[
k−2

∑
m=1

[
1+γ−1 EI(NC)k−m|0

]
α2(1−α2)

m−1 +2α2(1−α2)
k−2

]
qk

+
k−1

∑
s=1

π1 (sφ1,α1)

[
k−2

∑
m=1

{(s−1)

∑
x=1

[
pC(m,x|k,s)+γ−1 EI(NC)k−m|s−x p(m,x|k,s)

]}
+ pC(k−1,s−1|k,s)+ pC(k−1,s|k,s)

+α2 p(k−1,s|k,s)+ pC(k,s|k,s)

](
k
s

)
psqk−s.

Proof. This results follows from Lemma 6, Corollary 6 and the fact that

rEI(NC)k =
k

∑
s=0

rEI(NC)k|sP(Si = s) =
k

∑
s=0

rEI(NC)k|s

(
k
s

)
ps(1− p)k−s.

�
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4.2.3. Total number of incorrect decisions

Lemma 7 The expected total number of incorrect decisions made on a group of size k in a γ-step
Dorfman-Sterrett procedure is

γ EIk = α1

[
k−2

∑
m=1

[
1+(k−m)γ−1PI(NC)k−m|0

]
α2(1−α2)

m−1 +2α2(1−α2)
k−2

]
qk

+
k−1

∑
s=1

π1 (sφ1,α1)

[
k−2

∑
m=1

{(s−1)

∑
x=1

[
pC(m,x|k,s)+γ−1 EI(NC)k−m|s−x p(m,x|k,s)

]}
+ pC(k−1,s−1|k,s)+ pC(k−1,s|k,s)

+α2 p(k−1,s|k,s)+ pC(k,s|k,s)

](
k
s

)
psqk−s

+ kp−
k

∑
s=1

π1 (sφ1, α1)

[
k−2

∑
m=1

s

∑
x

{
pNC(m,x|k,s)+(s− x)p(m,x|k,s)γ−1PC(NC)k−m|s−x

}
+ pNC(k−1,s−1|k,s)+ pNC(k−1,s|k,s)

+ p(k−1,s−1|k,s)π2(φ2, α2)+ pNC(k,s|k,s)
](k

s

)
psqk−s

Proof. This result is a sum of the expected number of incorrectly classified C factors in the group
of size k and the expected number of incorrectly classified NC factors in the group of size k as given
in Theorems 2 and 3, respectively. �

Corollary 7 The expected total number of incorrect decisions made on the population of size f , that
is divided into g groups of size k each, under the γ-step Dorfman-Sterrett procedure, assuming p is
small and that ∆

σ
→ ∞, is

γ Ik ≈ f p− f p
kα2

[
1− (1−2α2)(1−α2)

k−2
]
− f pα2

k

k−2

∑
m=1

(k−m)γ−1EC(NC)k−m|1(1−α2)
m−1

+
f α1

k
(1− kp)+

f
k
(1− kp)(2α2−α1)(1−α2)

k−2 +
f α1α2

k
(1− kp)

k−2

∑
m=1

γ−1EI(NC)k−m|0 (1−α2)
m−1

+
f p
k

[
kα2−1+[k(1−α2)−1](1−α2)

k−2− (k−2)(1−α2)
k−1

α2
2

]
+

2 f pα2

k
(1−α2)

k−2 +
f p
k

k−2

∑
m=1

(k−m)γ−1EI(NC)k−m|1(1−α2)
m−1.

(12)

Proof. The result follows by multiplying the result of Lemma 7 by g and assuming that p is small
and ∆

σ
→ ∞. �

4.3. Cost functions

In Sections 4.1 and 4.2, we extended the results given in Johnson et al. (1989) to include the group
screening assumptions of Watson (1961) to derive our results. With these results, we now present
an expression for cost function based on which the performance of the γ-step Dorfman-Sterrett
procedure shall be evaluated.

Let c1 be the cost of inspection per run and c2 be the loss incurred per incorrect decision.
The expected total cost in a γ-step Dorfman-Sterrett procedure is given by

C = c1 E(γ R)+ c2
γ I, (13)

where E(γ R) is given in Theorem 1 and γ I is given in Lemma 7.
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Table 1: The minimum cost C relative to c1 assuming that ∆

σ
→ ∞ and p is small with c1

c2
= 0.1 and

α1 = α2 = 0.01 for γ-step Dorfman-Sterrett procedure with f = 100 .
γ = 0 γ = 1 γ = 2

p k(min) RCopt k(min) RCopt k(min) RCopt

0.001 32 8.299663 43 8.934004 45 7.182395
0.002 22 10.908135 31 10.933457 32 9.192659
0.005 14 16.079304 19 14.958687 20 13.285924
0.008 11 19.809261 15 17.946076 16 16.337235
0.010 10 21.906204 14 19.659005 14 18.093743
0.020 7 30.151702 10 26.657969 10 25.252122
0.050 5 46.754948 6 41.703213 6 40.632172
0.080 4 58.684548 5 53.433659 5 52.590277
0.100 3 65.038037 4 60.326312 4 59.624490
0.120 3 70.977644 4 66.676220 4 66.076869
0.150 3 79.887055 3 75.720358 3 75.323974
0.180 2 87.641436 3 83.571563 3 83.275509
0.200 2 91.601040 3 88.805700 3 88.576533
0.220 2 95.560644 3 94.039837 3 93.877557
0.250 2 101.500050 3 101.891042 3 101.829092

5. Optimum screening procedures

The ultimate purpose of this study was to provide a theoretic basis for computing optimum group
size, k(min), for given prevalence rate p. The relative efficiency of any two designs can then be
assessed on the basis of the relative cost in testing corresponding to the value k(min) obtained in each
procedure. The relative cost in testing shall be defined as the ratio of C to c1. That is,

RC = E(γ R)+
c2

c1

γ I.

We shall let RCopt denote the optimum relative cost in testing that corresponds to the k(min) obtained
for a given prevalence rate. There being no explicit expression for RC, the values k(min) and RCopt

cannot be obtained analytically and are computed using a computer search algorithm.
For selected prevalence rates in the interval (0.001,0.22), Table 1 presents minimum relative

costs in testing, RCopt , and the corresponding minimum group size, k(min), for 0, 1 and 2-step
Dorfman-Sterrett procedures assuming that significance levels at stage 1 and 2 of testing are both
0.01. The results indicate that the two-step Dorfman-Sterrett procedure performs better than both
the Dorfman procedure and the single-step Dorfman-Sterrett procedure for all the prevalence rates
considered.

Similarly, Table 2 presents minimum relative costs in testing, RCopt , and the corresponding min-
imum group size, k(min), for 0, 1 and 2-step Dorfman-Sterrett assuming that the level of significance
at stage 1 is smaller than that at stage 2. In this case, the two-step procedure performs better than the
zero- and single-step procedure for prevalence rates lower than 15%. For prevalence rates greater
than 15%, the single-step procedure performs best.

In Table 3, the minimum relative costs in testing, RCopt , and the corresponding minimum group
size, k(min), for 0, 1 and 2-step Dorfman-Sterrett are presented assuming that the level of significance
at stage 1 is greater than that at stage 2. The single-step Dorfman-Sterrett procedure performs better
than the zero- and two-step procedure for all prevalence rates considered.
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Table 2: The minimum cost C relative to c1 assuming that ∆

σ
→ ∞ and p is small with c1

c2
= 0.1,

α1 = 0.01 and α2 = 0.05 for γ-step Dorfman-Sterrett procedure with f = 100 .
γ = 0 γ = 1 γ = 2

p k(min) RCopt k(min) RCopt k(min) RCopt

0.001 32 8.32980 36 9.192741 37 7.494578
0.002 23 10.93669 27 11.279743 28 9.441341
0.005 14 16.10659 18 15.467835 19 13.528757
0.008 11 19.83578 14 18.530043 15 16.607432
0.010 10 21.93203 13 20.284007 14 18.390383
0.020 7 30.17625 9 27.360293 10 25.643953
0.050 5 46.77519 6 42.440443 6 41.197337
0.080 4 58.70306 5 54.246021 5 53.345213
0.100 3 65.05698 4 60.968410 4 60.407058
0.120 3 70.99505 4 67.435733 4 67.008607
0.150 3 79.90214 3 76.220792 3 76.292861
0.180 2 87.64718 3 84.156617 3 84.429016
0.200 2 91.60520 3 89.447167 3 89.853119
0.220 2 95.56322 3 94.737717 3 95.277222
0.250 2 101.50025 3 102.673542 3 103.413377

Table 3: The minimum cost C relative to c1 assuming that ∆

σ
→ ∞ and p is small with c1

c2
= 0.1,

α1 = 0.05 and α2 = 0.01 for γ-step Dorfman-Sterrett procedure with f = 100.
γ = 0 γ = 1 γ = 2

p k(min) RCopt k(min) RCopt k(min) RCopt

0.001 32 12.17168 33 8.024422 47 10.92051
0.002 23 14.72428 25 10.010886 33 12.93920
0.005 15 19.79775 17 14.116281 21 17.01488
0.008 11 23.45730 14 17.177988 16 20.03053
0.010 10 25.50624 12 18.944068 14 21.76975
0.020 7 33.59176 9 26.080625 10 28.80597
0.050 5 49.75505 6 41.391025 6 43.91881
0.080 4 61.40468 5 53.382764 5 55.58896
0.100 3 67.83816 4 60.174282 4 62.55073
0.120 3 73.53779 4 66.739667 4 68.78262
0.150 3 82.08723 3 75.638158 3 77.95574
0.180 2 90.20158 3 83.648123 3 85.62793
0.200 2 94.00120 3 88.988100 3 90.74273
0.220 2 97.80082 3 94.328077 3 95.85752
0.250 2 103.50025 3 102.338042 3 103.52971
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6. Conclusion

This paper has discussed statistical properties of the restricted Dorfman-Sterrett designs assuming
that the power of the test at the initial stage of screening is a function of group size and the number
of NC factors in the group. We have used orthogonal fractional factorial plans of the type given by
Plackett and Burman (1946) to study the procedure. Cost functions, which are linear functions of
expected total number of incorrect decisions and the expected number of tests, have been derived
giving a basis for comparing procedures of interest.

The Dorfman-Sterrett procedure introduces a stopping rule to the plan suggested by Sterrett
(1957) and implemented by others in the literature (Manene, 2007; Manene, Rotich and Simwa,
2002; Manene and Simwa, 2004; Odhiambo and Manene, 1987; O’Geran and Wynn, 1992; Patel
and Manene, 1987; Patel and Manene, 1992). Other studies, unlike Johnson et al. (1989), have in-
terrogated the performance of these designs using the orthogonal fractional factorial plans assuming
equal group sizes and with error in observations. We have in this study generalized the results of
Johnson et al. (1989) and discussed the performance of their plan under the testing of hypothesis
paradygm. Our results can also be viewed as extensions to the results of Achia, Manene and Ot-
tieno (2010), allowing for misclassification of factors or groups. Our findings support the use of the
single-step Dorfman-Sterrett procedure when assuming error in observation. This finding may be
important in practical situations where numerous reversions to the Dorfman screening may not be
very appealing.
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