
Case study 3: Exploratory analysis of factors affecting weaning weight of Dorper 
and Red Maasai lambs 

Damaris Yoberaa, James Audhob and Eric Adudab 
aCrop Science Department, University of Nairobi, P.O. Box 30197, Nairobi, Kenya.  

bInternational Livestock Research Institute, P.O. Box 30709, Nairobi, Kenya. 

Contents 

Summary 

Glossary 

Background 

Study design 

Objectives 

Questions to be addressed 

Source material 

Data management 

Exploration & description  

Statistical modelling  

Findings, implications and lessons learned 

Reporting 

Study questions 

Related reading 

 

Summary 

This case study explores the patterns in relationships of various factors with weaning 

weights of Red Maasai and Dorper lambs and their crosses, such as year of birth, sex, age 

at weaning and age of dam. In particular, different formulations of the relationship between 

age of dam and weaning weight are compared. Ways of subdividing the sums of squares in 

an analysis of variance to evaluate alternative parameterisations of the statistical model are  

described. Parameters describing the patterns with these various factors are then included 

in a model to compare the weaning weights of the different genotypes when adjusted for 

these factors. Finally, alternative forms of presentation of results from general least squares 
analyses of variance are discussed. 

This case study is part of a larger investigation to compare the performance of these 

different genotypes when exposed to helminthiasis. Case Study 4 evaluates the genetic 

components of variation associated with a lamb's dam or sire. 
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Glossary 

A number of 'scientific' terms used in this case study, perhaps not familiar to the reader, are 

listed here. 

 

Anthelmintic 

treatment: 
a chemical treatment used to treat gastro-intestinal parasites. 

Dam: the female parent of an animal, especially of domestic livestock.  

Diallel design: a two-way factorial design involving sire breed and dam breed in an 

animal experiment. 

Faecal egg count: a count of the number of parasite eggs found in a sample of faeces 

from an animal. 

Genotype: the genetic constitution of an animal.  

Helminth: a parasite found in the intestines of livestock. 

Helminthiasis: the disease caused by the presence of helminths. 

Offspring: the immediate descendant of an animal. 

Packed cell volume: the percentage of blood cells in an animal's blood (measurement 

obtained by spinning a sample in a centrifuge to separate blood cells 

from serum - the watery liquid component). 

Sire: the male parent of an animal, especially of domestic livestock. 

 

 



Background 

Helminths (parasites that reside in an animal's intestines) constitute one of the most 

important constraints to small ruminant livestock production in the tropics resulting in 

widespread infection in grazing animals, associated production losses, high costs of 

treatment and death. Current control methods in the tropics focus on reducing 

contamination of pastures through anthelmintic treatment of animals and/or controlled 

grazing. But there are problems with increasing frequencies of drug resistance. 

An attractive, alternative and sustainable solution is the breeding for disease resistance. 

Indeed, anecdotal evidence suggests that, among the large and diverse range of indigenous 

breeds of sheep and goats in the tropics, there are some that appear to have the genetic 

ability to resist or tolerate helminthiasis. One of these is the Red Maasai breed found in East 

Africa and perceived to be resistant to helminthiasis. The Red Maasai is a fat-tailed sheep 

associated with the Maasai tribe found in northern Tanzania and south-central Kenya. 

  

In 1990 ILRI decided to investigate the degree of resistance exhibited by this breed and initiated 

a study at Diani Estate of the Baobab Farms, 20 km south of Mombasa in the sub-humid coastal 
region of Kenya.,  ,  

 



To do so, a susceptible breed, the Dorper, originally from South Africa, was chosen to provide a 
direct comparison with the Red Maasai. The Dorper breed was developed in South Africa in the 

1940s by interbreeding the Dorset Horn and Black Head Persian breeds. The Dorper is 
particularly well adapted to harsh, arid conditions and was imported into Kenya in the 1960s. 

This breed is also larger than the Red Maasai, and this makes these sheep attractive to farmers. 
 
 

 

Study design 

The purpose of the experiment was to compare the genetic resistance to helminthiasis of the two 
indigenous breeds of sheep - Dorper and Red Maasai, together with their crosses. Throughout six 
years from 1991 to 1996 Dorper (D), Red Maasai (R) and Red Maasai - Dorper crossed ewes 

were mated to Red Maasai and Dorper rams to produce a number of different lamb genotypes. 
 

In the first year 12 Dorper and 12 Red Maasai rams were mated to Dorper and Red Maasai x 
Dorper ewes (Red Maasai genes coming from the sire (ram) and Dorper genes coming from the 
dam (ewe)). Red Maasai ewes were not available in this year and the study formed what is 

known in the discipline of genetics as a partial diallel design. 
 

 
The numbers of offspring, when summed over years, were estimated as being sufficient to 
determine genetic parameters with the required precision, and provided the number of lambs that 

could be accommodated and raised at the farm each year. By replicating over six years a range in 
different weather patterns was covered. 



For the purposes of this example, only the following four offspring genotypes are considered: D 
x D, D x R, R x D and R x R. For shorthand we shall use the abbreviation DD, DR, RD and RR, 

respectively, with the first letter referring to the breed of the sire and the second to the breed of 
the dam. Eight hundred and eighty two lambs within these genotypes were born during the six 

years to 74 rams and 367 ewes. Thus, each ewe gave birth on average to approximately two to 
three lambs, one each in a different year, before being replaced. A few twins were born but these 
were not included in the experiment. 

 
Lambs were weighed and blood and faecal samples were taken periodically over a period of 

about a year for each of the six batches of lambs born annually during the study. Measurements 
were made of blood packed cell volume (PCV), which reduces in volume when an animal 
becomes anaemic due to disease, and faecal egg count (FEC) which estimates the numbers of 

helminths present in the intestines. These measurements were made monthly up to weaning at 
about three months of age, and on average every two to three months thereafter to about 12 

months of age. The periods from birth to weaning and from weaning to 12 months are distinct 
periods of growth and thus required separate analysis. Further details of the experimental design 
are given in Baker et al. (1999 ) and Baker et al. (2003). 

 

Objectives 

The objectives of the study were primarily: 

 to compare the performance of the Red Maasai and Dorper breeds and their various 

crosses in terms of productivity under high disease risk 
 to study genetic sources of variation among lambs within the two breeds and their crosses 

 

In this example we shall consider the first 
objective but just look at weaning weight 

as the performance variable. We shall 
determine the effect of breed and other 

factors or covariates on weaning weight. 
Weaning of lambs took place on a single 
day each year when the average age of the 

lambs was 3 months. However, dates of 
birth varied and so weaning weight will, to 

some extent, have been influenced by the 
age of the lamb on that day. 

In Case Study 4 we shall study the 
genetic variation expressed among 

offspring from different rams and ewes. 

  

 
Source: Isaac Kosgey 

 

 

 

file://172.27.1.9/kmis/WebDevelopmentServices/Projects/Biometrics/Publication/Abstract/Baker.htm
file://172.27.1.9/kmis/WebDevelopmentServices/Projects/Biometrics/Publication/Abstract/Baker76_119_136.htm
javascript:popUp('../case%20study%204/case%20study%204.1.htm')


Questions to be addressed 

The questions to be addressed herein are: 

 Are there differences in weaning weight among the four genotypes? 

 Are there other factors or covariates that can be included in the analysis to improve the 
precision with which weaning weight comparisons can be made among genotypes? 

 One such covariate might be age of dam (ewe). How best can the association between age 
of dam and weaning weight be parameterised? Another possible covariate is age at 

weaning? How can this also be best incorporated in the model? 
o In answering these questions we shall first produce some summary statistics and 

graphs to understand how the data are distributed in relation to the different 

covariates. 
o Having decided how best to define our statistical model we shall, using weaning 

weight as the response variable, fit a least squares analysis of variance 
incorporating the various factors and covariates to reflect the patterns we have 
observed. 

Source material 

The complete data set used in this example is stored in the Excel file CS3Data. The fields are 

described in the associated word file CS3Doc but the same information is also included at the top 
of the data file. These cover both data originally collected in the study and others derived for the 

statistical analysis. A number of variables (both original and derived) have already been defined 
as factors. 

 

Data management 

The CS3Data data file has already been read by GenStat and a number of factors and levels 
defined. 
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Notice how, after exporting this file to Excel, the uppermost rows in the Excel file have been 
used to describe the variables that are stored below. This provides a useful method for 

documenting the data. This would normally be done once all statistical analysis had been 
completed and the data are ready for archiving. 

Of course, the documented file may need to be read again. When opening the file in GenStat, the 

user must request that the first four non-empty rows to be skipped and state that the column 
names must appear in row 5 (i.e. click 'Next', then 'Specified Range' and type 5 in box 
alongside). 

 

 

Exploration & description 

Before undertaking a final statistical analysis it is useful to first explore the relationships between 

weaning weight and its covariates to see how best to define how these relationships might be 
included in the statistical model. In this example we hypothesise that, in addition to year of birth 

and sex, age of dam and age of lamb at weaning may also influence weaning weight. But how? 
The following pages show how we might do this. 

 



Firstly, let us look at some of the patterns in the data. The tabular output results from the 
steps Stats → Summary Statistics → Summaries by Groups (Tabulation...) and the production of 

the dialog box shown alongside. 

The output includes the frequency distribution of recorded weaning weight by genotype. 
Animals that died before weaning or a few whose weaning weights were not recorded are 

excluded from 'Nobserved'. The total number of lambs born can be obtained withStats → 
Summary → Statistics Frequency Tables... Note that there are half the numbers of lambs at 
weaning for the RD genotype compared with the others. 

Note that there are half the numbers of 
lambs at weaning for the RD genotype 
compared with the others; also that the 

largest proportion of losses ((310-
220)/310)=0.29 is for pure Dorper lambs 

compared with ((215-181)/215)=0.16 for 
pure Red Maasai lambs. 

 

 

The data exploration that follows disregards the cases for which the response variable weaning 
weight was not recorded. This can be achieved by first using the GenStat Spread → 

Restrict/Filter command to exclude missing values for weaning weight. Two-way frequency 
tables can then be produced by Stats → Summary Statistics → Frequency Tables … and then 
completing the dialog box that appears to give counts of the numbers of lambs recorded with 

weaning weights each year and for each lamb genotype. 

The numbers of lambs (DD and RD) born to Dorper ewes were more during the former three 
than the latter three years. 

YEAR 91 92 93 94 95 96 Count 
GENOTYPE               



DD 71 49 49 15 23 13 220 
DR 0 6 34 15 22 24 101 
RD 73 47 54 9 9 6 198 
RR 0 7 31 40 53 50 181 
Count 144 109 168 79 107 93 700 
        

The data exploration that follows disregards the cases for which the response variable weaning 
weight was not recorded. This can be achieved by first using the GenStat Spread → 
Restrict/Filter command to exclude missing values for weaning weight. Two-way frequency 

tables can then be produced by Stats → Summary Statistics → Frequency Tables… and then 
completing the dialog box that appears to give counts of the numbers of lambs recorded with 

weaning weights each year and for each lamb genotype. 

In contrast, mating to the Red Maasai ewes did not start until 1992, and more lambs were born to 
Red Maasai than Dorper ewes during the latter years of the study. 

YEAR 91 92 93 94 95 96 Count 
GENOTYPE               
DD 71 49 49 15 23 13 220 
DR 0 6 34 15 22 24 101 
RD 73 47 54 9 9 6 198 
RR 0 7 31 40 53 50 181 
Count 144 109 168 79 107 93 700 

By weaning there were approximately half the number of DR lambs in the study compared with 
the DD lambs. These observations reveal an imbalance in the data. In particular, there were no 

RR and DR lambs in 1991 and the RD lambs were few in number during the last three years of 
the study. Since there were different numbers of lambs born for the different breeds in the 
different years, it is important to take year of birth into account in the analysis, since it is clear 

that the effect of genotype on weaning weight is partially confounded with year. 

 
YEAR 91 92 93 94 95 96 Count 
GENOTYPE               
DD 71 49 49 15 23 13 220 
DR 0 6 34 15 22 24 101 
RD 73 47 54 9 9 6 198 
RR 0 7 31 40 53 50 181 
Count 144 109 168 79 107 93 700 

The number of lambs characterised by age of dam also reveals a frequency imbalance. The oldest 
Red Maasai ewes were aged 6 years whereas one Dorper ewe was as old as 10 years. From the 

numbers of lambs for each age category it can be seen that dams between the ages of 2 and 6 
years were most common. Extreme age classes of 1, 9 and 10 years had only one lamb each. 

Since age of dam is a factor to be considered in the analysis of weaning weight of lambs, it 
would not be sensible to keep these classes separate. One can either omit these three records or 
pool them with existing ones. We have chosen to put age 1 year and 2 years together to form one 

class (2 years and below) and to put ages 9 and 10 years together into the age 8 year category to 
form an '8 years and above' class. The column DAMAGE7 inCS3Data has been created using the 

GenStat command Spread → Factor → Change levels… to put the extreme values into the 
neighbouring categories. 
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DAMAGE 1 2 3 4 5 6 7 8 9 10 Count 
GENOTYPE                      

DD 0 24 49 38 47 32 22 8 0 0 220 
DR 0 15 40 21 14 11 0 0 0 0 101 
RD 0 16 28 47 61 19 19 6 1 1 198 
RR 1 17 41 51 40 31 0 0 0 0 181 
Count 1 72 158 157 162 93 41 14 1 1 700 

When fitting a classification factor in a statistical model it is always important to check that there 
are reasonable numbers of observations within each category level; attempts to fit parameter 

terms to sparse data often leads to spurious estimates. 

A box plot by genotype (Graphics → Boxplot...) and completing the dialog box reveals that the 
lambs born to Dorper dams (the first and third boxes) appear to have a generally higher weaning 

weight than those born to Red Maasai dams (the second and fourth boxes). However, weaning 
weights within genotypes appear to be fairly normally distributed, as indicated by the relative 
positions of the medians within the respective boxes that contain half the data. The numbers 763, 

531, 296, 661 and 736 indicated beyond the extremities of the vertical lines point to the record 
numbers in CS3Data that are 'outliers'. 
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This box plot by age of dam illustrates 
the association between weaning weight 

and the age of a lamb's dam. There are 
more 'outliers' shown in this diagram 

than the one for genotype. This is 
probably because the variation among 
genotypes is not accounted for in this 

series of boxplots. The plot shows that 
an offspring's weaning weight appears 

to increase as a dam increases in age 
from 2 to 5 years and to decrease from 6 
years onwards. We can fit age as a 

factor with seven levels. 

   
 

 

 

This box plot illustrates the association 
between weaning weight and the age of 
a lamb's dam. There are more `outliers' 

shown in this diagram than the one for 
genotype. This is probably because the 

variation among genotypes is not 
accounted for in this series of boxplots. 
The plot shows that an offspring's 

weaning weight appears to increase as a 
dam increases in age from 2 to 5 years 

and to decrease from 6 years onwards. 
We can fit age as a factor with seven 
levels. 

Alternatively, we may be able to 

represent the relationship, either by a 
polynomial curve, possibly up to order 3 

(cubic), or by amalgamating some of the 
ages by using fewer discrete subclasses 
(e.g. 2, 3-4, 5-6, 7-8 years). These 

alternatives are considered later. 

For each age the distributions of lamb 

   
 

 



weaning weights are also fairly normal 
as revealed by the box plot. The spread 

of the weights is similar for all age of a 
dam except possibly that for lambs born 

to dams aged 6 years. 

 

By restricting the data to 1991 and then 
fitting a regression 
line Stats  Regression 

Analysis  Linear Models... and 
completing the dialog box, a regression 

analysis of weaning weight on weaning 
age can be obtained. By clicking Further 

Output, then, clickingFitted Model in the 

next dialog box, the scatter plot plus the 
fitted regression line, as shown for 

weaning weight versus age at weaning is 
produced. 

Lambs were born over a short period 
spanning a few weeks but were all weaned 

together on the same day. There is a 
general pattern indicating a linear 

relationship of weaning weight with age. 

   
 

 
By similarly restricting the data to 1992 a 

second scatter plot is produced. This can 
be repeated for 1993, and so on. It can 

similarly be shown that there are similar 
patterns for the other four years. Age at 
weaning is therefore proposed for 

inclusion in the model as a continuous 
covariate in order to correct for its effect 

on weaning weight. 

   

 

 



In summary, we can deduce that the statistical model to be fitted needs to include terms for year, 
age of dam (either as fixed effects or as a polynomial regression) and a linear term for age at 

weaning. We have not compared weaning weights of male and female lambs but it is well known 
that male lambs grow faster than females. Thus, sex will invariably be included in a model such 

as this. 

Statistical modelling 

Least squares analysis of variance 

Following our exploratory analysis, a full least squares analysis is now undertaken for a 
combined model to investigate the influence of each of the fixed effects on weaning weight. The 

full model to be investigated includes term for: 

 

Factor Levels 
 

GENOTYPE DD, RD, DR, RR 

YEAR 1991, ..., 1996 
SEX female, male 
WEANAGE linear regression 

DAMAGE7 ≤ 2, 3, 4, 5, 6, 7, ≥ 8 
 

 

We can fit the model by using the dialog box shown 

below obtained by Stats → Regression Analysis → 
Generalized Linear Models... Then by clicking 

the Optionsbutton, then ticking Accumulated, an analysis 
of variance is shown which gives the sums of squares 
accounted for by each parameter in the model. 

   

***** Regression Analysis ***** 
   Response variate: WEANWT 
         Fitted terms: Constant + GENOTYPE + YEAR + 
                          SEX + AGEWEAN + DAMAGE7 

*** Estimates of parameters *** 

Parameter   estimate s.e.               t 
Constant 4.327 0.883 4.90 
GENOTYPE DR -0.493 0.306 -1.61 
GENOTYPE RD -0.408 0.222 -1.84 
GENOTYPE RR -1.008 0.272 -3.71 
YEAR 92 -1.551 0.308 -5.03 
YEAR 93 -1.228 0.291 -4.22 
YEAR 94 -2.983 0.388 -7.69 
YEAR 95 -3.258 0.346 -9.40 
YEAR 96 -2.333 0.423 -5.51 
SEX M 0.482 0.170 2.84 
AGEWEAN 0.07058 0.00886 7.97 
DAMAGE7 3 1.833 0.319 5.75 
DAMAGE7 4 2.741 0.331 8.28 
DAMAGE7 5 2.742 0.322 8.52 
DAMAGE7 6 2.322 0.382 6.07 
DAMAGE7 7 1.754 0.462 3.79 
DAMAGE7 >=8 1.405 0.647 2.17 

*** Accumulated analysis of variance *** 

Change d.f. s.s. m.s. v.r. 
+GENOTYPE 3 570.427 190.142 38.68 



 

+YEAR 5 735.646 147.129 29.93 
+SEX 1 59.013 59.013 12.00 
+AGEWEAN 1 336.792 336.792 68.51 
+DAMAGE7 6 445.076 74.179 15.09 
Residual 683 3357.495 4.916   
          
Total 699 5504.450 7.875   
 

 

 

Notice first that the first level for each factor (i.e. those 
with discrete levels) is omitted. Each parameter estimate 

represents the deviation of the level of the factor it 
represents from the first. Thus, breed DR lambs have an 

average weaning weight 0.493 kg less than breed DD 
lambs, when adjusted for other fixed effects in the model. 
This difference in weaning weight has a standard error of 

0.306 kg. The absolute Student's t-value of 1.61 is less 
than 2, the approximate value that t needs to exceed to be 

significant (P<0.05). In contrast the parameter estimate 
for RR lambs is statistically significant (absolute t ≥ 2). 

   

***** Regression Analysis ***** 

   Response variate: WEANWT 
         Fitted terms: Constant + GENOTYPE + YEAR + 
                          SEX + AGEWEAN + DAMAGE7 

*** Estimates of parameters *** 

Parameter   estimate s.e.               t 
Constant 4.327 0.883 4.90 
GENOTYPE DR -0.493 0.306 -1.61 
GENOTYPE RD -0.408 0.222 -1.84 
GENOTYPE RR -1.008 0.272 -3.71 
YEAR 92 -1.551 0.308 -5.03 
YEAR 93 -1.228 0.291 -4.22 
YEAR 94 -2.983 0.388 -7.69 
YEAR 95 -3.258 0.346 -9.40 
YEAR 96 -2.333 0.423 -5.51 
SEX M 0.482 0.170 2.84 
AGEWEAN 0.07058 0.00886 7.97 
DAMAGE7 3 1.833 0.319 5.75 
DAMAGE7 4 2.741 0.331 8.28 
DAMAGE7 5 2.742 0.322 8.52 
DAMAGE7 6 2.322 0.382 6.07 
DAMAGE7 7 1.754 0.462 3.79 
DAMAGE7 >=8 1.405 0.647 2.17 

*** Accumulated analysis of variance *** 

Change d.f. s.s. m.s. v.r. 
+GENOTYPE 3 570.427 190.142 38.68 
+YEAR 5 735.646 147.129 29.93 
+SEX 1 59.013 59.013 12.00 
+AGEWEAN 1 336.792 336.792 68.51 
+DAMAGE7 6 445.076 74.179 15.09 
Residual 683 3357.495 4.916   
          
Total 699 5504.450 7.875   
 

 

 



In addition, the output contains 
parameter estimates adjusted for other 

effects in the model, and an accumulated 
analysis of variance indicating the sums 

of squares accounted for as each term is 
added. Thus, each sum of squares in the 
analysis of variance is adjusted for 

preceding terms. This does not apply, 
however, to parameter estimates. For 

each factor, parameter estimates are 
adjusted for all other factors regardless 
of the order in which they are included in 

the model. 

   

***** Regression Analysis ***** 

   Response variate: WEANWT 
         Fitted terms: Constant + GENOTYPE + YEAR + 
                          SEX + AGEWEAN + DAMAGE7 

*** Estimates of parameters *** 

Parameter   estimate s.e.             t 
Constant 4.327 0.883 4.90 
GENOTYPE DR -0.493 0.306 -1.61 
GENOTYPE RD -0.408 0.222 -1.84 
GENOTYPE RR -1.008 0.272 -3.71 
YEAR 92 -1.551 0.308 -5.03 
YEAR 93 -1.228 0.291 -4.22 
YEAR 94 -2.983 0.388 -7.69 
YEAR 95 -3.258 0.346 -9.40 
YEAR 96 -2.333 0.423 -5.51 
SEX M 0.482 0.170 2.84 
AGEWEAN 0.07058 0.00886 7.97 
DAMAGE7 3 1.833 0.319 5.75 
DAMAGE7 4 2.741 0.331 8.28 
DAMAGE7 5 2.742 0.322 8.52 
DAMAGE7 6 2.322 0.382 6.07 
DAMAGE7 7 1.754 0.462 3.79 
DAMAGE7 >=8 1.405 0.647 2.17 

*** Accumulated analysis of variance *** 

Change d.f. s.s. m.s. v.r. 
+GENOTYPE 3 570.427 190.142 38.68 
+YEAR 5 735.646 147.129 29.93 
+SEX 1 59.013 59.013 12.00 
+AGEWEAN 1 336.792 336.792 68.51 
+DAMAGE7 6 445.076 74.179 15.09 
Residual 683 3357.495 4.916   
          
Total 699 5504.450 7.875   
 

 

The interpretation of the AGEWEAN 
term is simpler than that for a factor with 

discrete levels such as DAMAGE7. This 
is a continuous covariate and so the 

value of 0.07058 (± 0.00886) kg/day 
represents the slope (± s.e.) of the linear 
regression of WEANWT on AGEWEAN 

adjusted for all other factors. 

   

***** Regression Analysis ***** 

   Response variate: WEANWT 
         Fitted terms: Constant + GENOTYPE + YEAR + 
                          SEX + AGEWEAN + DAMAGE7 

*** Estimates of parameters *** 

Parameter   estimate s.e.               t 
Constant 4.327 0.883 4.90 
GENOTYPE DR -0.493 0.306 -1.61 
GENOTYPE RD -0.408 0.222 -1.84 
GENOTYPE RR -1.008 0.272 -3.71 
YEAR 92 -1.551 0.308 -5.03 
YEAR 93 -1.228 0.291 -4.22 
YEAR 94 -2.983 0.388 -7.69 
YEAR 95 -3.258 0.346 -9.40 
YEAR 96 -2.333 0.423 -5.51 
SEX M 0.482 0.170 2.84 
AGEWEAN 0.07058 0.00886 7.97 
DAMAGE7 3 1.833 0.319 5.75 
DAMAGE7 4 2.741 0.331 8.28 
DAMAGE7 5 2.742 0.322 8.52 
DAMAGE7 6 2.322 0.382 6.07 
DAMAGE7 7 1.754 0.462 3.79 



DAMAGE7 >=8 1.405 0.647 2.17 

*** Accumulated analysis of variance *** 

Change d.f. s.s. m.s. v.r. 
+GENOTYPE 3 570.427 190.142 38.68 
+YEAR 5 735.646 147.129 29.93 
+SEX 1 59.013 59.013 12.00 
+AGEWEAN 1 336.792 336.792 68.51 
+DAMAGE7 6 445.076 74.179 15.09 
Residual 683 3357.495 4.916   
          
Total 699 5504.450 7.875   
 

 

We shall now explore, a little more closely, different representations of the effect of age of dam 
on weaning weight. The DAMAGE and residual lines in the analysis of variance (see previous 

screen view) read: 

 

Source of variation d.f s.s. m.s. v.r. 
 

+DAMAGE7 6 445.076 74.179 15.09 
Residual 683 3357.495 4.916   

 

 

First, let us replace the seven factor levels for DAMAGE7 by a quadratic function. We can do 

this by inserting the following two lines into the GenStat Input Window obtained via File → 
New... and submitting them for execution. 

CALCULATE DL=DAMAGE7 

CALCULATE DQ=DL*DL 

Alternatively we can use Spread → Calculate → Column... and insert the appropriate 
calculations there. 

With the codes DL and DQ 

representing the linear and quadratic 

   



terms for age of dam, respectively, 
the output, as shown, can be obtained. 

We see that the residual mean square 

is slightly increased from the value of 
4.916 kg2 in the previous model to 

4.939 kg2 here, implying a slightly 
poorer fit. 

Note, however, that the sum of 

squares accounted for by each of the 
other factors is unchanged as they 
occupy the same positions in this 

analysis as they did in the previous 
one and are fitted before DL and DQ. 

However, let us look at the analysis a 

little more closely. 

***** Regression Analysis ***** 
    Response variate: WEANWT 
          Fitted terms: Constant + GENOTYPE + YEAR +  
                                       SEX + AGEWEAN + DL + DQ 
*** Estimates of parameters *** 

Parameter estimate s.e. t(687) 
Constant 2.702 0.929 2.91 
GENOTYPE RD -0.389 0.220 -1.77 
GENOTYPE RR -1.040 0.271 -3.84 
GENOTYPE DR -0.511 0.304 -1.68 
YEAR 92 -1.565 0.293 -5.34 
YEAR 93 -1.099 0.276 -3.99 
YEAR 94 -2.820 0.359 -7.85 
YEAR 95 -3.215 0.346 -9.30 
YEAR 96 -2.342 0.391 -5.99 
SEX M 0.476 0.170 2.81 
AGEWEAN 0.07026 0.00886 7.93 
DL 2.188 0.249 8.79 
DQ -0.2688 0.0340 -7.90 

Change d.f. s.s. m.s. v.r. 
+ GENOTYPE 3 570.427 190.142 38.50 
+ YEAR 5 735.646 147.129 29.79 
+ SEX 1 59.013 59.013 11.95 
+ AGEWEAN 1 336.792 336.792 68.19 
+ DL 1 101.581 101.581 20.57 
+ DQ 1 308.044 308.044 62.37 
Residual 687 3392.947 4.939   
Total 699 5504.450 7.875   
 

 

From the results of the two analyses we can break down the sum of squares of 445.076 for 
DAMAGE7 in the first analysis into components for DL and DQ (101.581 and 308.044 in the 
second analysis - see previous screen ) and a remainder (445.076 - 101.581 - 308.044 = 35.451). 

Presenting these values together with the residual line we get: 

 

Source of variation d.f s.s m.s. v.r. 
 

DAMAGE7 6 445.076 74.179   
DL 1 101.581 101.581   
DQ 1 308.044 308.044   
Remainder 4 35.451 8.863 1.80 
Residual 683 3357.495 4.916   

 

The 'Remainder' term, which represents the DAMAGE7 variation not accounted for by the 
quadratic function, is not significant (VR = 1.80). Since the size of this remaining variation is not 

statistically significant it can be deduced that the quadratic fit is a good one. We can also argue 
that it is not necessary to add a cubic term to the polynomial equation and decide not to do so. 

An alternative approach to the 
statistical analysis is to try the 

same model again but with the age 
of dam grouped into fewer 

discrete categories. DAMAGE7 
has been recoded as DAMAGE4 

   

***** Regression Analysis ***** 

   Response variate: WEANWT 
          Fitted terms: Constant + GENOTYPE + YEAR +  
                           SEX + AGEWEAN + DAMAGE4 



with four instead of seven age 
categories. The four levels chosen 

for the new categories are, as 
suggested earlier, namely 2, 3-4, 

5-6 and 7-8 years. 

This analysis gives a slightly 
higher residual mean square than 
that originally obtained, i.e. an 

increase from 4.916 to 4.991 kg2. 

*** Estimates of parameters *** 

  Parameter s.e. t(686) 
Constant 4.170 0.887 4.70 
GENOTYPE RD -0.297 0.221 -1.34 
GENOTYPE RR -1.022 0.270 -3.79 
GENOTYPE DR -0.573 0.302 -1.90 
YEAR 92 -1.606 0.296 -5.42 
YEAR 93 -1.363 0.281 -4.85 
YEAR 94 -2.734 0.363 -7.54 
YEAR 95 -3.155 0.345 -9.14 
YEAR 96 -2.415 0.378 -6.39 
SEX M 0.493 0.171 2.89 
AGEWEAN 0.07242 0.00890 8.13 
DAMAGE4 3-4 2.260 0.297 7.62 
DAMAGE4 5-6 2.549 0.305 8.36 
DAMAGE4 >=7 1.642 0.425 3.86 
 
*** Accumulated analysis of variance *** 
 
Change 

 
d.f. 

 
s.s. 

 
m.s. 

 
v.r. 

+ GENOTYPE 3 570.427 190.142 38.10 
+ YEAR 5 735.646 147.129 29.48 
+ SEX 1 59.013 59.013 11.82 
+ AGEWEAN 1 336.792 336.792 67.48 
+ DAMAGE4 3 378.859 126.286 25.30 
Residual 686 3423.713 4.991   
          
Total 699 5504.450 7.875   
 

 

Doing the same steps as for fitting the quadratic function we obtain: 

 

Source of variation d.f s.s m.s. v.r. 
 

DAMAGE7 6 445.076 74.179   
DAMAGE4 3 378.859 126.286   
Remainder 3 66.217 22.072 4.49 
Residual 683 3357.495 4.916   

 

Here the remainder mean square is significantly greater than the residual mean square 
(F3,683 = 4.49; P<0.01), so, the reduced number of categories is not as good a 

representation of the association with age as that with seven categories. 

We decide to use the quadratic relationship with DL and DQ in our final analysis. 

We now change the order in 
which the effects are fitted 
so that GENOTYPE is 

added last. For the purposes 
of this output GenStat has 

also provided the predicted 
least squares means for each 
genotype (obtained by 

clicking the Predict button 

  Response variate: WEANWT 
    Fitted terms: Constant + YEAR + SEX + AGEWEAN + DL 
                           + DQ + GENOTYPE 
*** Estimates of parameters *** 
 estimate s.e. t(687) 
Constant 0.25 1.07 0.23 
YEAR 92 -1.565 0.293 -5.34 
YEAR 93 -1.099 0.276 -3.99 
YEAR 94 -2.820 0.359 -7.85 
YEAR 95 -3.215 0.346 -9.30 
YEAR 96 -2.342 0.391 -5.99 
SEX M 0.476 0.170 2.81 
AGEWEAN 0.07026 0.00886 7.93 
DL 2.725 0.315 8.65 



that appears after the model 
has been fitted ) together 

with their standard errors. 

Note that the parameter 
estimates remain the same 

regardless of the order in 
which the terms are added to 
the model. However, 

compairing this output with 
the one given earlier in 

which the term GENOTYPE 
was fitted first, the mean 
square accounted for by 

GENOTYPE, after 
correcting for all the other 

terms in the model, is 
reduced from 190.142 to 
25.286 kg2. This 

demonstrates the impact of 
the partial confounding of 

other factors, particularly 
year, on the variation that 
can be attributed uniquely to 

genotype. Genotype 
differences, nevertheless, 

remain significant (P < 0.01) 

 

DQ -0.269 0.034 -7.90 
GENOTYPE RD -0.389 0.220 -1.77 
GENOTYPE RR -1.040 0.271 -3.84 
GENOTYPE DR -0.511 0.304 -1.68 
*** Accumulated analysis of variance *** 
Change d.f. s.s. m.s. v.r. 
+YEAR 5 1208.149 241.630 48.92 
+SEX 1 55.983 55.983 11.34 
+AGEWEAN 1 344.206 344.206 69.69 
+DL 1 151.513 151.513 30.68 
+DQ 1 275.795 275.795 55.84 
+GENOTYPE 3 75.857 25.286 5.12 
Residual 687 3392.947 4.939   
Total 699 5504.450 7.875   
GENOTYPE Prediction s.e. 
DD 11.552 0.159 
DR 11.041 0.240 
RD 11.163 0.176 
RR 10.512 0.193 
 

 

 

No parameter estimate is 

shown for the pure breed 
DD, which is used as a 
reference level against 

which the estimate for each 
of the other genotypes is 

compared. The least squares 
'predicted' means, however, 
are calculated for all four 

genotypes. They indicate 
that the purebred RR lambs 

had the lowest mean 
weaning weight of 10.512 ± 
0.193 kg, whilst the 

purebred DD lambs had the 

  Response variate: WEANWT 
    Fitted terms: Constant + YEAR + SEX + AGEWEAN + DL 
                           + DQ + GENOTYPE 
*** Estimates of parameters *** 
 estimate s.e. t(687) 
Constant 0.25 1.07 0.23 
YEAR 92 -1.565 0.293 -5.34 
YEAR 93 -1.099 0.276 -3.99 
YEAR 94 -2.820 0.359 -7.85 
YEAR 95 -3.215 0.346 -9.30 
YEAR 96 -2.342 0.391 -5.99 
SEX M 0.476 0.170 2.81 
AGEWEAN 0.07026 0.00886 7.93 
DL 2.725 0.315 8.65 
DQ -0.269 0.034 -7.90 
GENOTYPE RD -0.389 0.220 -1.77 
GENOTYPE RR -1.040 0.271 -3.84 
GENOTYPE DR -0.511 0.304 -1.68 
*** Accumulated analysis of variance *** 
Change d.f. s.s. m.s. v.r. 
+YEAR 5 1208.149 241.630 48.92 
+SEX 1 55.983 55.983 11.34 
+AGEWEAN 1 344.206 344.206 69.69 
+DL 1 151.513 151.513 30.68 
+DQ 1 275.795 275.795 55.84 



highest mean weaning 
weight of 11.552 ± 0.159 kg. 

+GENOTYPE 3 75.857 25.286 5.12 
Residual 687 3392.947 4.939   
Total 699 5504.450 7.875   
GENOTYPE Prediction s.e. 
DD 11.552 0.159 
DR 11.041 0.240 
RD 11.163 0.176 
RR 10.512 0.193 
 

 

 

rom the corresponding 

parameter estimates it can 
be seen that the RR 
parameter estimate of -1.04 

is highly significant (t=-
3.84, P < 0.001). In other 

words, the mean weaning 
weight of RR lambs was 
significantly lower, by 1.04 

kg, than that of DD lambs (P 
< 0.001). The parameter 

estimates also suggest that 
the crossbred RD and DR 
lambs have a similar mean 

weaning weight lying 
between those for the pure 

breeds. 

  Response variate: WEANWT 
    Fitted terms: Constant + YEAR + SEX + AGEWEAN + DL 

                           + DQ + GENOTYPE 
*** Estimates of parameters *** 
 estimate s.e. t(687) 
Constant 2.702 0.929 2.91 
YEAR 92 -1.565 0.293 -5.34 
YEAR 93 -1.099 0.276 -3.99 
YEAR 94 -2.820 0.359 -7.85 
YEAR 95 -3.215 0.346 -9.30 
YEAR 96 -2.342 0.391 -5.99 
SEX M 0.476 0.170 2.81 
AGEWEAN 0.07026 0.00886 7.93 
DL 2.725 0.315 8.65 
DQ -0.269 0.034 -7.90 
GENOTYPE RD -0.389 0.220 -1.77 
GENOTYPE RR -1.040 0.271 -3.84 
GENOTYPE DR -0.511 0.304 -1.68 
*** Accumulated analysis of variance *** 
Change d.f. s.s. m.s. v.r. 
+YEAR 5 1208.149 241.630 48.92 
+SEX 1 55.983 55.983 11.34 
+AGEWEAN 1 344.206 344.206 69.69 
+DL 1 151.513 151.513 30.68 
+DQ 1 275.795 275.795 55.84 
+GENOTYPE 3 75.857 25.286 5.12 
Residual 687 3392.947 4.939   
Total 699 5504.450 7.875   
GENOTYPE Prediction s.e. 
DD 11.552 0.159 
DR 11.041 0.240 
RD 11.163 0.176 
RR 10.512 0.193 
 

 

Findings, implications and lessons learned 

1. This case study has shown methods for evaluating the contributions of different 

explanatory variables to a statistical model. Different representations of one of the 
explanatory variables, namely the age of the dam, are investigated to determine the most 

suitable way to express the relationship. The appropriate formulations of the terms for 
inclusion in the model are determined by first exploring the patterns of the associations of 
weaning weight with these factors and covariates. 

2. There were major variations in mean weaning weights among years. Because of the 
imbalance across years in the distribution of lambs belonging to the different genotypes, 

it would have been clearly wrong to ignore year of birth when making comparisons 
across genotypes. It is thus important to make sure that all potentially important factors 
and covariates are accommodated in the model. 

 



3. The example also shows how to calculate the sums of squares remaining when fewer 
degrees of freedom are used to represent an alternative parameterisation for a variable in 

the model. It was shown, for example, that age of dam was best fitted using a quadratic 
relationship term and that this accounted for most of the variation among the individual 

age categories. 
4. Sometimes reparameterisation results in the remainder mean square falling to a value 

below that of the residual mean square. Had it happened here (it did not) then it is 

possible that the curve might have been over fitting the data and that the quadratic term 
was probably not necessary. To find out whether this might have been the case the DL 

term could have been tried on its own. 
5. A common mistake (when individual values are known, as here) is to fit a regression 

model to mean values and then to calculate standard errors and draw conclusions based 

on the residual variation among the means alone. By doing so the precision with which 
the mean values have themselves been calculated is ignored. The correct approach is the 

one described here. 

Reporting 

Here we illustrate how the results of this statistical analysis can be presented in a table. 

Tables demonstrating parameter estimates and their standard errors can be presented, either as 
parameter estimates with one parameter level for each parameter set to zero and often referred to 

as the 'reference' or 'baseline' level, or as least squares mean estimates. 

 

Consider first a suitable table based on 

the parameter estimates provided in the 
GenStat output. Note that a suitable 
number of decimal places has been used 

that allows a reasonable number of 
significant figures to be presented in a 

way that enhances readability but at the 
same time allows estimates to be 

   

 

Parameter Estimate s.e 
Genotype     

 

       Dorper (D) reference   - 
       Red Maasai (R) -1.04 0.27 
       R x D -0.39 0.22 
       D x R -0.51 0.30 



compared. Thus, the numbers of decimal 
places printed in the output have been 

reduced in most cases to two. An extra 
decimal place has been included for the 

regression coefficients for weaning age 
and the quadratic component for dam 
age to allow two significant figures to be 

presented. 

 

Year     
       1991 reference   - 
       1992 -1.56 0.29 
       1993 -1.10 0.28 
       1994 -2.82 0.36 
       1995 -3.22 0.35 
       1996 -2.34 0.39 
 Sex     
       Female Reference   - 
       Male 0.48 0.17 
 

Age at weaning (day) 0.070 0.009 
 Age of dam (year)     
      Linear  2.19 0.25 
      Quadratic -0.269 0.034 
 

 

 

 

 

Note that neither t-values nor 
probability levels are given. The 

approximate statistical significance of a 
parameter estimate can be easily derived 

by eye by dividing the estimate by its 
standard error and comparing the result 
with t-values of 2, 2.6 or 3.3. These are 

the approximate t-values for P = 0.05, P 
= 0.01 and P = 0.001 levels of 

significance, respectively. Divide each 
parameter estimate in this table by its 
standard error and see what you 

conclude. 

 

   

 

Parameter 
Genotype 

Estimate s.e. 

 

       Dorper (D) reference   - 
       Red Maasai (R) -1.04 0.27 
       R x D -0.39 0.22 
       D x R -0.51 0.30 
Year     
      1991 reference   - 
      1992 -1.56 0.29 
      1993 -1.10 0.28 
      1994 -2.82 0.36 
      1995 -3.22 0.35 
      1996 -2.34 0.39 
Sex     
      Female Reference   - 
      Male 0.48 0.17 
Age at weaning (day) 0.070 0.009 
Age of dam (year)     
     Linear  2.19 0.25 
     Quadratic -0.269 0.034 

 

 



 

Another way to present the results is to 

use the GenStat Predict command to 
produce least squares estimates of 

means for each factor. This command 
becomes available within the Genstat 
dialog box once the model has been 

fitted. Note that this needs to be done 
for each factor one at a time; when all 

three factors are predicted 
simultaneously a 3-way table of least 
squares means is produced. 

It is helpful to include the numbers of 

observations for each level of each 
parameter, both in this table and 

sometimes in the previous one too. 
These can be produced using the Stats 

→ Summary Statistics → Frequency 

Tables... command. It can be seen from 
the table that the number of 

observations influences the magnitudes 
of the standard error, the larger the 
number of observations generally the 

smaller the standard errors. 
Regression coefficients have also been 

included at the foot of the table. This is 
optional. 

   

 

Parameter 
Genotype 

No. Mean S.E. 

 

       Dorper (D) 220 11.56 0.16 
       Red Maasai (R) 181 10.51 0.19 
       R x D 198 11.16 0.18 
       D x R 101 11.04 0.24 
Year       
      1991 144 12.73 0.22 
      1992 109 11.16 0.22 
      1993 168 11.63 0.18 
      1994 79 9.91 0.26 
      1995 107 9.53 0.24 
      1996 93 10.39 0.28 
Sex       

      Female 323 10.84 0.12 
      Male 377 11.32 0.12 
    Regression coefficient S.E. 
Age at weaning (day)   0.070 0.010 
Age of dam (year)       
     Linear      2.19 0.25 
     Quadratic   -0.269 0.034 

 

 

It is generally more helpful to replace the individual standard errors for each factor level by a 
single value that represents the approximate standard error of the differences between pairs of 

means. The validity of doing so depends on the distribution of numbers of observations across 
the different levels of a parameter. There is some disparity in numbers of lambs across the four 

levels for genotype and the six levels for year in the previous table. Even with the variation in 
frequencies here, however, it is reasonable to calculate average standard errors. It is best to 
calculate the average standard error as the square root of the average of the sum of the squares of 

the individual standard errors. The average S.E.D. is then this figure multiplied by the square 
root of 2. 

Thus, for genotype (see last GenStat output) 

average standard error of difference (S.E.D) = square root [2(0.162 + 0.182 + 0.192 + 

0.242)/4] = 0.28 



In general this can be considered to be a fairly satisfactory estimate provided there is no 
covariance between the different levels of the parameter. To get the exact average value one 

would, for genotype for instance, need to rerun the model three times, changing the reference 
level each time. One gets a series of standard errors of differences from the reference levels. By 

picking out the six values that correspond to the standard errors of the differences between the 
six different pairs of means, and calculating the average, one gets the correct average. In practice 
this is usually unnecessary. 

By applying this formula to each factor the table can be written as shown. Here it is particularly 

important to give the numbers of lambs for each factor level so as to be able to gauge how 
approximate the S.E.D. is when applied to each level of a factor. 

Same table of means but with standard errors of differences between means 

 

Parameter No. Mean 
 

Genotype     
       Dorper (D) 220 11.56 
       Red Maasai (R) 181 10.51 
       RXD 198 11.16 
       DXR 101 11.04 
Average S.E.D   0.28 
Year     
       1991 144 12.73 
       1992 109 11.16 
       1993 168 11.63 
       1994 79 9.91 
       1995 107 9.53 
       1996 93 10.39 
Average S.E.D.   0.33 
Sex     
       Female 323 10.84 
       Male 377 11.32 
Average S.E.D.   0.17 

 

Study questions 

1. Write a summary of the results given in this case study in about 100 -150 words 
describing the difference in weaning weight among genotypes and the effects of the 
various covariates on weaning weight. 

2. Fit the final statistical model again and save the residuals. Produce the boxplots by 
genotype and age of dam, as done earlier in this case study. How many outliers are now 

shown? What will you do about them? 
3. Fit an additional cubic term (DC) for DAMAGE7 to the model and examine its statistical 

significance. Based on what you find would you include a cubic term or not? 

4. We have observed the partial confounding between genotype and year. Run the model 
again without year and comment on the parameter estimates and their standard errors that 

you now find for genotype. Calculate the new value for the average standard error of 
difference between pairs of genotype means and compare with the earlier value. 

5. Include BIRTHWT as a covariate in the model. What effect does this have on the 

analysis? Why? Using Genstat to calculate an analysis of variance to compare birth 
weights among genotypes may help to explain what has happened. Based on this do you 



think it appropriate to include BIRTHWT in the model and, if so, what interpretation do 
you put on the results? 

6. We have assumed that regression lines between weaning weight and age at weaning are 
parallel for each year. Fit a statistical model to include an overall regression line and an 

interaction with year and comment on your findings. 
7. The data analysis has been done on lambs that survived to weaning. You will note from 

an earlier table that survival rate was greater in the Red Maasai than the Dorper lambs. 

On the basis of an average of 100 Dorper and 100 Red Maasai lambs that might be born 
in a flock, and assuming the growth rates and survival rates given in this study, calculate 

the total weight of the lambs that reach weaning for each breed. Compare the results with 
those given for weaning weight in this case study. Comment. 

8. A few weights for lambs that were still alive at weaning were missing in the data sheet at 

weaning. Is there any way that these weights might be estimated from other weights 
recorded for the lambs? If so, explain how you might do so. Comment on whether this 

would be necessary for this data set. 
9. Use the GenStat Spread  Sheet  Title… facility as an alternative method of 

documenting the data. Comment on the advantages/disadvantages of this method 

compared with that used in the case study. 
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