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Abstract

Meteorological parameters are believed to play a role in the influenza seasonality;
influenza activities occurs sporadically all year round in the tropical regions with
some peaks coinciding with rainy season and cold months. In this study, Influenza
is modelled as a 5-dimensional deterministic system of ODEs with a variable trans-
mission rate expressed as an exponential function of the meteorological parameters.

We analysed the model and established local and global stability of disease free and
endemic equilibrium points, the equations are solved numerically in matlab using
ODE23 solver

The findings show that an increase in rainfall leads to an increase in influenza in-
fections in the following month and a decrease in temperature leads to an increase
in the influenza infections. The transmission rate was approximated from the data
and we found that the peaks in the reproduction number and influenza infections
occurs almost simultaneously and similarly when the reproduction number decreases,
influenza infections also decreases.
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CHAPTER 1

Introduction

1.1 Influenza

1.1.1 Classification and causes of influenza

Influenza is a major cause of acute respiratory disease among humans and is associ-
ated with global pandemics and annual epidemics, it is commonly referred to as ’flu’.
It is highly infectious and is caused by the influenza viruses. These are the RNA
viruses that make up three of the five viruses of the family orthomyxoviridae[1].

The disease causes mild to severe illness, those at high risk being the elderly peo-
ple, children and people with other health complications[2]. Epidemics kills approxi-
mately 250,000-500,000 people around the world annually[2], while millions are killed
during the pandemic years when the genetic reassortment of influenza virus results
in the new novel strain. This disrupts global economic, social and public health
systems.

Influenza virus is divided into three types: Influenza A, B and C. Of these types,
Influenza A is the most virulent and has greatest potential to cause pandemic[3].

Influenza A has several subtypes, which are identified by the copies of hemagglu-
tinin and neuraminidase glycoproteins found on the surface of the virus membrane.
Hemagglutinin acts to recognise target cells by binding to the cell’s receptors and
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then allows entry to the target cells by fusion of the cell membrane with the viral
membrane. Neuraminidase helps viruses to be released by the host cell[4].

There are 16 known subtypes of hemagglutinin and 9 known subtypes of neuraminidase
and the strain of influenza A is determined by their combinations, examples of the
subtypes of influenza A are: H1N1, H2N2, H3N2, H5N1, H7N7,H1N2, H9N2, H7N2,
H7N3, H7N9, H10N9[5]. In Kenya, the predominant influenza strain circulating is
the seasonal H3N2 virus.

Human-to-human transmission is only possible for H1, H2 and H3 subtypes but it is
no yet clear if the other subtypes of influenza virus A have the ability for transmis-
sion as well. Natural hosts for large variety of influenza A are wild aquatic birds[11].
Influenza B virus is less common and less virulent than Influenza A and it almost
exclusively infects human beings[5]; the seal and the ferret are the other animals
known to be susceptible to influenza B[6]. Influenza C virus is the less common of
the subtypes and it infects humans, dogs and pigs. Sometimes it can cause severe
illness and local epidemics[7].

Figure ?? shows an example of influenza virus with distinct parts shown

1.1.2 Strains

Subtypes of influenza A virus and Influenza B viruses are further subdivided into
strains. There are many vast strains of influenza A subtypes and influenza B. These
new strains appear and replace the existing strains. This occurs through antigenic
drift. When a new strain of human influenza virus emerges, antibody protection that
may have developed after infection or vaccination with an older strain may sometimes
not provide protection against the new emerged strain. This is the reason influenza
vaccine is updated on a yearly basis to keep up with the changes in influenza viruses.

1.1.3 Signs and symptoms of influenza

An influenza infection is initiated due the inhalation of droplets from an infected per-
son. The droplets containing the virus particles first land on the mucus blanket lining
the respiratory tract[8, 9]. In this case many virons are destroyed by non-specific
clearance mechanism like mucus binding but the remaining virons escape the mucus
and attach to the receptors of the surface of the target epithelial cells. Its infection
results in the desquamation of the epithelial cells lining the nasal mucosa, larynx and
the tracheobronchial tree. For uncomplicated influenza in human, infection involves
only the upper respiratory tract and the upper division of the bronchi[10]. In severe
cases, influenza spreads and affects the lungs.

Incubation period of influenza is approximately 48 hours but may vary from 24-96
hours[8]. The symptoms start appearing after the incubation period and they vary
from mild to severe and those commonly observed are:
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• High fever,

• Runny nose,

• Sore throat,

• Muscle pains,

• Head ache and

• Coughing

These symptoms appear two days after exposure to the virus particles(incubation
period of influenza) and last for less than a week but the cough may last for more
than two weeks.

Sometimes influenza infection may bring about other complications like:

X Viral pneumonia,

X Bacterial pneumonia, and

X Sinus infections.

In addition the disease also worsens previous health problems like Asthma and may
lead to heart failure, hence modeling of influenza is crucial as its control may help
control some worse diseases as mentioned above.

The disease can be controlled by several ways. i.e.

a) Frequent hand washing with soap, this is because the influenza viruses are inac-
tivated by soap,

b) Wearing surgical masks when attending to the infected groups; this reduces con-
tact to the viruses

c) Yearly vaccination against influenza among the risk groups as recommended by
World Health Organisation (WHO)

d) Influenza may be treated by using the antiviral drugs such as the Neuraminidase
inhibitors oseltamivir

1.1.4 Influenza pandemic

A disease pandemic is a world wide disease outbreak; it is determined by how the
disease spreads and not the number of people it affects. An influenza pandemic
occurs when strain of influenza subtype spreads in the human population from other
animals.i.e pigs, chicken and ducks.

Influenza A virus can be transmitted from wild birds to other species. This causes
outbreaks in domestic poultry and results into human influenza pandemic[11].
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Four main influenza pandemic have already occurred throughout the history, they
are: Spanish flu, Asian flu, Hong Kong flu and 2009 flu pandemic(Swine flu)

Spanish flu(1918-1920)

The Spanish flu which occurred between January 1918 and December 1920 is also
called the 1918 flu pandemic. it was the first pandemic involving H1N1 the second
one being the 2009 influenza pandemic[12].

The papers were only free to report the effects of the pandemic in the neutral Spain
hence its nickname Spanish flu. This pandemic affected between 20% to 40% of
the world population and caused close to 50 million deaths worldwide and nearly
675,000 deaths occurred in the United states. The pandemic also caused economic
burden to the countries.

In Kenya during the Spanish flu pandemic, the principal cause of death was bacterial
pneumonia after influenza infections[14].

Asian flu

Asian flu also called the 1957 flu pandemic was caused by by the H2N2 influenza
type A. The pandemic originated in China in early 1956 and it lasted until 1958[13].
The death toll varied between 1-4 million depending on different sources but it was
estimated by World Health Organisation(WHO) to be 2 million and the elderly
people were the most highly affected.

Hong Kong Flu

The Hong Kong flu pandemic that occurred between 1968-1970 was a category two
flu pandemic caused by H3N2 influenza A. The virus descended from H2N2 that
caused the Asian flu pandemic via antigenic shift[15].

The pandemic killed approximately one million people world wide and it affected
mainly the elderly people[16].

2009 flu (swine flu) pandemic

The 2009 flu pandemic is the most recent and the second pandemic involving H1N1
influenza A virus. On June 11, 2009, WHO announced that the world was at the start
of 2009 influenza pandemic. The pandemic lasted between 2009 and 2010. At that
time almost 30,000 confirmed cases had been reported in 74 Countries globally[17].
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On August 10, 2010, WHO declared an end to the H1N1 pandemic[17]. In Kenya the
first recognised case was reported on June 29, 2009 and by September of the same
year, majority of influenza cases were caused by H1N1[18].

In the year 2012, there was a decline of pandemic H1N1 cases observed among
surveillance sites in Kenya.

1.1.5 Antigenic Drift and Shift

Influenza Viruses are capable of evolving rapidly and they jump between distinct
species such that the immune system of the host does not detect the new species.
There are two processes involved in this evolution namely; The antigenic drift and
shift, drift occurs more often than shift.

Antigenic Drift

An influenza virus which is an RNA virus is prone to errors every time a copy of its
genome is made. If the changes are sufficient enough on its surface protein, then the
reinfection is possible as the immunity produced against the older strain fails to act
against the new strain. This process is called the Antigenic drift, it occurs in both
influenza A and B viruses[19]. This process is best characterised by the influenza A
virus and the new strain due to antigenic drift can cause an influenza pandemic[20].
The process of antigenic drift depends on the host immunity and the duration of the
epidemic, antigenic drift is also known to occur in the HIV viruses.

Antigenic shift

An antigenic shift also called reassortment occurs when two influenza strains mix
to form a new strain that has the capabilities of both the mothers strains. This
process only occurs in influenza A virus because it infects many different species like
mammals and birds[21]. For example the H3N2 influenza A that caused the Hong
Kong pandemic in 1968 descended from H2N2 that caused Asian pandemic via an
antigenic shift[13, 22].

1.2 Problem statement

Influenza is believed to be a winter disease in the temperate countries due to its per-
sistent appearing during the winter months in the temperate countries. In tropical
countries this occurs all year round with most activity happening during the cold



6

months and rainy season hence influenza seasonality may depend on the meteorologi-
cal parameters since the influenza virus’ survival depends on these factors. Therefore
this study is of importance as it aims to model the influenza incidence in Kenya with
relation to meteorological parameters.

1.3 Objectives of the study

The main objective of this study is to explore the connection between meteorological
parameters and influenza seasonality in Kenya.

1.3.1 Specific objectives

The specific objectives are:

(i) Examine the deterministic model and analyse the stability of the equilibrium
points,

(ii) Express the reproduction number in terms of the meteorological parameters and
compute it based on climatic data,

(iii) Approximate the influenza transmission rate from the influenza data,

(iv) Determine the correlation between rainfall and temperature with the observed
data on influenza,

(v) Determine the correlation between the reproduction number and the observed
data on influenza,

(vi) Obtain the numerical solution of the deterministic model and compare results
with the observed data.
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CHAPTER 2

Literature review

2.1 Influenza seasonality

Influenza is a viral infectious disease that causes epidemics and pandemics[23]. In
order to develop the effective preventive and control strategies, it is essential to un-
derstand the seasonal patterns of influenza.

In temperate regions, the seasonality of influenza is well documented[24]. In these
regions, influenza activity occurs constantly during winter or early spring months
i.e. In the Northern hemisphere, the influenza activity peaks between the months of
November and March while it peaks between the months of May and September in
the southern hemisphere[25].

Contrary to the temperate regions, influenza seasonality in the tropical and subtrop-
ical areas is not well studied and documented, in these regions the influenza activity
occurs sporadically with influenza activity all year round with some peaks being
observed during certain seasons of the year. Some tropical regions experience more
than one peak per year.

Kenya is among the few developing countries with elaborate national epidemio-
surveillance networks on influenza but it still remains a major cause of hospitalisation
and deaths every year[26].

For example Kenya is a tropical country with influenza activity present all year
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round with the activity being highest during a broad wave mostly corresponding
to the southern hemisphere winter. It experiences influenza peaks the rainy season
(March-April and October- November) and the cold month of July[27].

Several studies have been conducted to determine the causes of seasonality in in-
fluenza activities. Its seasonality has been associated with several factors like mete-
orological determinants, changes in the susceptibility of the population, changes in
vitamin D and melatonin due to changes in the number of days with sunlight.

It has been shown that meteorological factors affect the virus survivorship, host
susceptibility and the transmission efficiency:

♣ Virus survivorship: It is affected by temperature, humidity and solar radiation;
all these factors vary inversely with the virus survivorship.

♣ Transmission efficiency: It is affected by: humidity, vapour pressure, rain-
fall, air travels/holidays and temperature. Temperature, vapour pressure and
humidity vary inversely with the transmission efficiency while rainfall and air
travels/holidays are proportional to the transmission.

♣ Host susceptibility: It varies inversely with sunlight.

The studies presented here illustrate the relationship between influenza activities and
the meteorological factors:

Zhou[28] suggested that the seasonality of influenza could depend on several factors:
internal dynamic resonance and variation of meteorological elements (solar radiation,
precipitation and dew point). In his study, he found the following:

• Influenza activity is proportional to the exponential of the number of days with
precipitation and to the negative exponential of quarter power of sunny hours
in all climate regions,

• Influenza activity is a negative exponential function of dew point in temperate
and arctic regions,

• In tropical region, influenza activity is an exponential function of an absolute
deviation of dew point from its annual mean.

He suggested that understanding the roles of meteorological factors on the influenza
activity would be crucial for early intervention such as; social distancing and op-
portune vaccination. In his study of the factors affecting the influenza activity, he
used general reproduction (GR) model and found out that transmission follows the

exponential law(e
¯α(t).t).

Vam Noort et al.[29] fitted an influenza transmission model to a time series data of
influenza-like illness (ILI) monitored from 2003 to 2010 in the three European cities;
Netherlands, Belgium and Portugal. They found a significant correlation between
temperature and absolute humidity with influenza activities at the time of infection
and the proportion of the infected persons fulfilling the ILI factor.
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Mahamat et al.[30] used a time series analysis to investigate the relationship between
the ILI and climatic parameters in the tropical French Guiana which lies between
the latitude 20N and 60N . They observed a marked seasonality in the circulation
of influenza virus in the pre-pandemic period and then year round activity in the
post-pandemic period with peaks coinciding with the rainy season. They concluded
that influenza activity in the tropical regions is country specific. i.e. The factors
affecting influenza seasonality in (sub)tropical regions is country specific.

Chong et al.[31] Fitted meteorological data and influenza mortality data in the SIR
model to identify the meteorological drivers of influenza seasonality in a subtropi-
cal city, Hong Kong. Air temperature and rainfall were found to be the significant
drivers of seasonal influenza though the results of rainfall was found to be less robust.

2.2 Mathematical modeling of influenza

The history of epidemiological modeling is traced back to the modeling framework de-
veloped by Kermack and Mckendrick[32] in the year 1927. They developed the stan-
dard SIR model where the population is divided into three compartments namely:
Susceptible(S); Infectious individuals(I) and those who recover from the disease(R).
Their model assumes a homogeneous mixing of the population with no births or
deaths. They assume that each individual has the same chance of infecting other
individuals in the population which is assumed to be constant at the outbreak of the
epidemic.

The model equations are:
dS
dt

= −βSI
dI
dt

= βSI − αI
dR
dt

= αI

(2.2.1)

Following the development of SIR model by Kermack and Mckendrick, other physi-
cians contributed to modern epidemiology by extending the basic SIR model with
more classes such as SIER model[33]. With reference to influenza and seasonality,
some models have been developed to explain seasonality by expressing the transmis-
sion rate as a sinusoidal function[34] while the model of Fergurson et al.[49] incorpo-
rates seasonality by assuming a harmonic forcing of the transmission rate.

Chowell et al.[41] applied a simple epidemic model to weekly indicators of influenza
mortality to estimate the reproduction numbers of seasonal influenza epidemics span-
ning three decades in the United States, France, and Australia. In the study they
found similar distributions of reproduction number estimates in the three countries,
with mean value 1.3 and important year-to-year variability in the interval 0.9-2.1.
They assumed that the population is completely susceptible at the beginning of each
influenza season prior to the first epidemic week, which is defined as the first week
with non-zero influenza-related deaths. Their model equations are:
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dS
dt

= −βSI/N
dE
dt

= βSI/N − κE
dI
dt

= κE − (γ + δ)I
dP
dt

= γI
dD
dt

= δI

(2.2.2)

Chowell et al.[36] developed a mathematical model to determine the reproduction
number of seasonal influenza epidemics in Brazil by dividing the population into:
Susceptible (S), Exposed (E), Infectious (I), recovered/ protected (P) and dead (D).
The model equations are:

dS
dt

= −βSI/N
dE
dt

= βSI/N − κE
dI
dt

= κE − (γ + δ)I
dP
dt

= γI
dD
dt

= δI

(2.2.3)

This model was extended by Chong et al. [31] in their research to describe the
dynamic system of seasonal influenza in a subtropical city-Hong Kong. Their model
comprise four compartments namely: Susceptible (S), Infectious (I), Recovered (R)
and Dead (D). They used a time varying transmission rate βt given by:

βt = b0 + b1Z
1
t + b2Z

2
t + ...+ bnZ

n
t where Zi

t , i = 1, 2, .....n

are the transformed meteorological variables. Their model equations are:

dS
dt

= −βtSI
dI
dt

= βtSI − (γ + δ)I

dR
dt

= γI

dD
dt

= δI

(2.2.4)
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CHAPTER 3

Model description and Analysis

3.1 Model formulation

In this project we use the exposed class from the model formulated by Chowell et
al.[36, 41] and use the idea of variable transmission rate from the model formulated
by Chong et al[31]. Here the population is divided into five compartments namely:
Susceptible (S), Exposed but not infectious (E), Infectious individuals(I), Recovered
individuals (R) and those who die from the disease (D). We assume a homogeneous
mixing in which each individual has the same probability of transmitting the disease
to other individuals who are susceptible to the disease. We also assume a constant
population with no natural births or deaths; this is because the influenza parameters
occurs in days while death and birth parameters occurs in years hence they have
little effect on the disease and can be ignored.
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The figure 3.1 shows the compartmental model
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Figure 3.1: Compartmental model



13

In our model we use a time varying transmission rate βt such that it depends on the
meteorological parameters as discussed in the literatures[28, 29, 30, 31]. The model
is described as a system of 5-dimensional system of ODE given by:

dS
dt

= −βtSI/N
dE
dt

= βtSI/N − κE
dI
dt

= κE − (γ + δ)I

dR
dt

= γI

dD
dt

= δ

(3.1.1)

Where
βt = β0 exp(α1T + α2R + α3S

1
4 + α4|Td|)

and the values:

T is the monthly mean temperature,

R is the number of days with precipitation,

S is the number of hours with sunlight and,

|Td| is the absolute deviation of the dew point from its annual mean.

S + E + I +R +D = N where N is the total population.
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Table 3.1 shows the state variables of influenza model and their definitions while
table 3.2 shows the definition of model parameters

Table 3.1: State variables for the influenza model
S Susceptible individuals
E Exposed individuals who are not infectious
I Infectious individuals
R Recovered individuals
D Individuals who die from the disease

Table 3.2: Model parameter definitions
βt The time varying transmission rate
κ The rate at which the exposed individuals

move to infectious class
γ The recovery rate
δ The death rate due to the disease
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3.2 Model Analysis

To analyse the system, we first normalise it by defining the new variables Sn =
S/N ,En = E/N ,In = I/N ,Rn = R/N and Dn = D/N so that

Sn + En + In +Rn +Dn =
S + E + I +R +D

N
= 1

since S +E + I +R+D = N and so here the total population is taken to be 1 after
the system has been normalised.
The normalised system becomes:

dSn
dt

= −βtSnIn (3.2.2)

dEn
dt

= βtSnIn − κEn (3.2.3)

dIn
dt

= κEn − (γ + δ)In (3.2.4)

dRn

dt
= γIn (3.2.5)

dDn

dt
= δIn (3.2.6)

With βt = β0e
(α1R+α2S1/4+α3N+α4|T |) and

Sn + En + In +Rn +Dn = 1

Hence we can now carry out the stability analysis from the normalised system of
equations by computing the steady/equilibrium points and the reproduction number
R0.

3.3 A compact positively invariant set

Theorem 3.3.1. The set

D = {(Sn, En, In, Rn) ∈ R4
+ : Sn ≥ 0, En ≥ 0, In ≥ 0, Rn ≥ 0,

Sn + En + In +Rn +Dn ≤ 1}

is compact positively invariant with respect to the model.
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Proof. By using Barriers theorem, Since the system is Lipschitz, it is sufficient to
check that the vector field induced by the system is either tangent or entering D on
the boundary D[42]. Clearly we have:

1) By using equation(3.2.2) Sn = 0 ⇒ Ṡn = 0 and if we assume Sn ≥ 1 ⇒ Ṡn ≤
0,

2) En = 0⇒ Ėn ≥ 0 from equation(3.2.3)

3) In = 0⇒ İn ≥ 0 from equation(3.2.4)

4) Rn = 0⇒ Ṙn ≥ 0 from equation(3.2.5)

5) Since Sn + En + In +Rn ≤ 1, we have that Ėn ≤ 0, İn ≤ 0 and Ṙn ≤ 0

Hence the above relations prove that all the trajectories tends to D hence the set D
is positively invariant with respect to the model

3.4 Basic reproduction number

The basic reproduction number is defined as the mean number of secondary infections
produced by a typical infective individual into a completely susceptible (naive) host
population[33, 37, 38]. This is a measure of the potential for the disease spread
within the population. If R0 < 1 then the infected individuals introduced into the
susceptible population will on average fail to replace themselves hence the disease
will not spread into the population, but on the other hand if R0 > 1 then the number
of infected individuals will increase in each generation hence the disease will spread
into the population.

The basic reproduction number is a threshold parameter for the invasion of the
disease organism into a completely naive population. Once the disease has spread
into the population, this number may no longer be a good measure of the disease
transmission. To obtain the reproduction number we use the next generation matrix.
The system has a unique disease free equilibrium (1, 0, 0, 0, 0). Here the infected
compartments are En and In hence the infectious class is given by the vector(

En
In

)
The new infections are given by the matrix:

F =

(
βtSnIn

0

)
(3.4.7)
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And the transition vector is given by

V =

(
κEn

(γ + δ)In − κEN

)
(3.4.8)

Finding the Jacobian of F we obtain

F =

[
0 βtSn
0 0

]
(3.4.9)

At the disease free equilibrium i.e at the point (1, 0, 0, 0, 0) we have

F =

[
0 βt
0 0

]
(3.4.10)

Also the Jacobian of V is given by:

V =

[
κ 0
−κ γ + δ

]
(3.4.11)

and at the disease free equilibrium we obtain

V =

[
κ 0
−κ γ + δ

]
(3.4.12)

The next generation matrix K is given by K = FV −1 and the reproduction number
by ρ(FV−1)

Here

V−1 =
1

κ(γ + δ)

[
γ + δ 0
κ κ

]
=

[
1
κ

0
1

γ+δ
1

γ+δ

]
(3.4.13)

Therefore

K = FV−1 =

[ βt
γ+δ

βt
γ+δ

0 0

]
(3.4.14)

The basic reproduction number denoted byR0 is given by the spectral radius(eigenvalue
of the largest magnitude) of the next generation matrix, K i.e. R0 = ρ(FV−1)

The eigenvalues of K are 0 and βt
γ+δ

.

The entries of K represent the expected number of secondary infections produced by
the infection hence R0 is given by

R0 =
βt

γ + δ
(3.4.15)
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The basic reproduction number provides the necessary condition for the eradication
of an epidemic. If R0 < 1, then the disease dies out but if R0 > 1, the disease
remains in the population.

Since R0 is a function of βt, it also depends on the meteorological parameters for the
seasonal epidemic, hence any measures put in place to control the disease has to put
into consideration these meteorological factors. Now since

βt = β0 exp(α1T + α2R + α3S
1
4 + α4|Td|).

R0 may be expressed as:

R0 =
β0 exp(α1T + α2R + α3S

1
4 + α4|Td|)

γ + δ
(3.4.16)

3.5 Stability Analysis

3.5.1 Equilibrium states

To obtain the equilibrium states, the derivatives with respect to time are equated to
zero. Here the unknowns are SN EN IN and RN . The equations are given as

−βtSNIN = 0 (3.5.1)

βtSNIN − κEN = 0 (3.5.2)

κEN − (γ + δ)IN = 0 (3.5.3)

γIN = 0 (3.5.4)

From the equation (3.5.1), either SN = 0 or IN = 0 hence the system has two
equilibrium points; i.e. IN = 0 for the disease free equilibrium and SN = 0 for the
endemic equilibrium.

Here we want to establish both local and global stability of the disease free and
endemic equilibria points.

3.5.2 Disease free equilibrium (DFE)

The disease free equilibrium point is obtained by setting IN = 0 from equation (3.5.1)
hence we also obtain EN = 0 from equation (3.5.2)and RN = c by equation (3.2.5)
hence we take the initial value R(0) = 0 therefore RN = 0. Now since the total
population is 1, we obtain that SN = 1 for the disease free equilibrium, thus the
disease free equilibrium is E0 = (1, 0, 0, 0)
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Local stability analysis of DFE

To analyse the local stability of the DFE equilibrium, we linearise the system at the
equilibrium point. The Jacobian of the system is given by:

J0 =


−βtIN 0 −βtSN 0
βtIN −κ βtSN 0

0 κ −(γ + δ) 0
0 0 δ 0

 (3.5.1)

At the disease free equilibrium, the Jacobian simplifies to:

J(E0) =


0 0 −βt 0
0 −κ βt 0
0 κ −(γ + δ) 0
0 0 δ 0

 (3.5.2)

The eigenvalues of J(E0) are:
λ1,2 = 0

and
λ3,4 = −(γ + δ + κ)±

√
(γ + δ + κ)2 − 4κ(γ + δ − βt)

or
λ3,4 = −(γ + δ + κ)±

√
(γ + δ + κ)2 − 4κ(1−R0)

If R0 < 1 then the eigenvalues have none positive real parts and if R0 > 1, there
is an eigenvalue with positive real part, hence we conclude that the DFE is locally
stable if R0 < 1 and and unstable if R0 > 1.

Global stability analysis of DFE

Theorem 3.5.1. The disease free equilibrium is globally asymptotically stable if R0 ≤
1 and unstable if R0 > 1

Proof. Here we consider the following Lyapunov function

L = IN + EN (3.5.3)
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Its derivative along the trajectories of the solution to the system is,

V ′ = I ′N + E ′N (3.5.4)

= [κEN − (γ + δ)IN ] + [βtSNIN − κEN ] (3.5.5)

= βtSNIN − (γ + δ)IN (3.5.6)

= (γ + δ)

[
β

(γ + δ)
SNIN − IN

]
(3.5.7)

= (γ + δ)IN [SNR0 − 1] (3.5.8)

Now since SN ≤ 1, then we have that V ′ ≤ 0 if R0 ≤ 1 and the equality holds
when R0 = 0 and SN = 1 or IN = 0, therefore by using the Lasalle’s principle, all
paths in D approach the largest positive invariant subset of the set where V ′ = 0
i.e. the set {(SN , EN , IN , RN) ∈ D : V ′ = 0}. If EN = IN = RN = 0, we have that
dSN
dt

= 0 hence solving we get that SN = C, C a constant or precisely since the total

population is 1, we get SN = 1 therefore as t→∞ then SN = 1. Thus all solutions
in D approach the disease free equilibrium point. This completes the proof

3.5.3 Endemic equilibrium

For the endemic equilibrium E1, we have that S∗N = 0 hence implying that E∗N =
0, therefore we get that I∗N + R∗N = 1 therefore the endemic equilibrium is E1 =
(0, 0, I∗N , 1− I∗N).

Local stability analysis of the endemic equilibrium

The Jacobian of the system is:

J1 =


−βtIN 0 −βtSN 0
βtIN −κ βtSN 0

0 κ −(γ + δ) 0
0 0 δ 0

 (3.5.1)

At the equilibrium point it is given by:

J(E1) =


−βtI∗N 0 0 0
βtI
∗
N −κ 0 0

0 κ −(γ + δ) 0
0 0 δ 0

 (3.5.2)
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The eigenvalues are:
λ1 = 0

λ2 = −βtI∗N
λ3,4 = −(γ + δ + κ)±

√
(γ + δ + κ)2 − 4κ(γ + δ)

Here since the eigenvalues are not functions of R0, they have negative real parts for
any values of R0. Thus there exist a unique endemic equilibrium which is locally
asymptotically stable.
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CHAPTER 4

Numerical Analysis of the model

4.1 Numerical simulations

In this chapter we present the numerical analysis of the model. We run the numeri-
cal simulations to illustrate the relationship between the influenza activities and the
meteorological parameters and also its relation to the reproduction number.

We also determine the correlation coefficient between the influenza infections and
the rainfall, temperature and the reproduction number. The analysis are done using
Mat lab and Excel.

The influenza data was obtained from the Kenya Medical Research Institute (KEMRI)
while the meteorological data was obtained from the Kenya Meteorological Depart-
ment

4.2 R0 as a function of meteorological parameters

From equation (3.4.15), the reproduction number R0 is given by

R0 =
βt

γ + δ
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where βt is the daily transmission rate per individual, γ is the recovery rate and δ is
the death rate.

From equation (3.4.16) by assuming that the transmission rate depends on only
rainfall and temperature we get

βt = β0 exp(α1T + α2R). (4.2.1)

Substituting for βt we get

R0 =
β0 exp(α1T + α2R)

γ + δ
,

Hence R0 is a function of rainfall and temperature.

4.3 Parameter estimation

We assume a 0.2% average case fatality proportion(CFP)[39, 40], the parameters
β0, α0 and α1 are estimated by least squares fitting to the model. We used
monthly data therefore the time t is measured in months. Table 4.1 shows parameters
and their approximations

Table 4.1: Parameter definitions and their approximations
Parameter Definition estimate Source
1/κ latent period 1.9 days [40]
1/γ recovery period 4.1 days [40]
CFP Case Fatality proportion 0.2% [40]
δ mortality rate γ[CFP/(1− CFP)] [41]

Table 4.2: Definition of terms
ZONE REGION
Zone 1 Lake region and its en-

virons
Zone 4 Nairobi region and its

environs
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Here we run some simulations to illustrate the dependency of influenza activities on
the meteorological parameters. We use data for the two regions, i.e. Zone 1 and Zone
4 from January, 2009 to October, 2011. Here we illustrate the results using only the
temperature and rainfall. We also approximate the transmission rate, βt by using
the averaged seasonal values in both Zone 1 and Zone 4 and hence estimated the
coefficients β0, α1 and α2 using the least squares method. Here since the values
doesn’t differ by far, we approximated the transmission rate by combining the values
in both zones so that we just come up with just one transmission rate function to
use rather than using different transmission rates for each zone.

4.3.1 Least squares method

Given the transmission rate:

βt = β0 exp(α1T + α2R) (4.3.1)

We linearise the equation (4.3.1). Finding ln on both sides of the equation we obtain

ln βt = ln β0 + α1T + α2R.

Letting y = ln βt and ln β0 = α0 we obtain a multiple linear regression equation

yi = α0 + α1Ti + α2Ri (4.3.2)

If we assume ȳi is the approximate value corresponding to the value yi and
if ei = yi − ȳi is the error Let

S =
n∑
i=1

e2
i (4.3.3)

=
n∑
i=1

(ȳi − yi)2 (4.3.4)

=
n∑
i=1

[α0 + α1Ti + α2Ri − yi]2 (4.3.5)

The objective is to determine α0, α1 and α2 so that the error is minimum

i.e.
∂S

∂α0

= 0,
∂S

∂α1

= 0,
∂S

∂α2

= 0

Therefore we obtain the normal equations:

α0 + α1

∑
Ti + α2

∑
Ri =

∑
yi

α0

∑
Ti + α1

∑
T 2
i + α2

∑
T − iRi =

∑
Tiyi

α0

∑
Ri + α1

∑
TiRi + α2

∑
R2
i =

∑
Riyi

(4.3.6)
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We substitute the meteorological data for each zone into the normal equations (4.3.6).
For zone 4 we obtain

α0 = 5.1745, α1 = −0.3233 and α2 = −0.1113

and hence obtain β0 = exp(α0) = 239.7. Substituting these values in equation (4.2.1)
we obtain the transmission rate as

βt = 176.7 exp(−0.3233T − 0.1113R)

Hence the reproduction number for Zone 4 is given by:

R0 =
176.7 exp(−0.3233T − 0.1113R)

γ + δ
(4.3.7)

Similarly for Zone 1 we obtain

α0 = 17.1162, α1 = −0.7445 and α2 = −0.5647

and hence obtain β0 = exp(α0) = 27.13× 106. Substituting these values in equation
(4.2.1) we obtain the transmission rate as

βt = 27.13× 106 exp(−0.7445T − 0.5647R)

Hence the reproduction number for Zone 1 is given by:

R0 =
27.13× 106 exp(−0.7445T − 0.5647R)

γ + δ
(4.3.8)

We also find the correlation coefficient between different meteorological parameters
with the positive number of influenza and also the correlation coefficient between the
reproduction number, R0 with the influenza positives.

In the numerical solution we use the initial infected people as the first season with
non-zero number of infected individuals, i.e the value in the second season of Zone
1 since in the first season we have zero infected individuals in Zone 4 and used the
same information for both zones so that solutions could be comparable in Zones 1
and 4. We assume that I(0) = E(0) and R(0) = 0

• D(0) = 0

• R(0) = D(0)/CFP −D(0)

• I(0)=E(0)=5%

• S(0)=1-I(0)-E(0)-R(0)-D(0)=90%
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4.4 Discussion and results

We normalised the equations by finding the proportions of individuals to the con-
stant total population, from the normalised system we reduced the system to a
4-dimensional system of ODEs from which we carried out the stability analysis, we
derived the reproduction number and expressed it as a function of the meteoro-
logical parameters: rainfall, temperature, sunlight and the absolute deviation. We
conducted the stability analysis and found that the DFE is locally asymptotically
stable when R0 < 1 and unstable when R0 > 1 and globally asymptotically sta-
ble when R0 ≤ 1, we also found that when R0 > 1, then there exist and endemic
equilibrium which is locally asymptotically stable, this result was also found by the
numerical solution of the model.

We simulated the values by using the data from Zone 1 and Zone 4 as provided by
the KEMRI institute and the meteorological department , the data represents two
zones 1 and 4.

Figures 4.1 and 4.2 represents a numerical simulation of the normalised Influenza
model equations (3.2.2) to (3.2.6) using the normalised system variables which was
conducted using Matlab’s ODE23. The solution represents the simulation of data in
Zone 4 and Zone 1 respectively.

ZONE 4

In the numerical solution of the model For Zone 4 we use annual average temperature
for the three years i.e. 19.8◦C and annual average rainfall of 2.1mm/day. In the figure
4.1 we observe that the Susceptible proportion decreases and reaches zero at around
the first month and remains zero throughout, exposed individuals start by increasing
and reaches its peak which is approximately 70% in the First month and finally
decrease to zero in the 10th month, similarly the infectious individuals increases and
attains its peak approximately 46% in the 4th month and finally decreases to zero
in 20th month. Finally the recovered and the dead proportions increase and attain
their maximum values 82% and 18% in the 20th and 15th months respectively.

ZONE 1

In Zone 1 we used average temperature 22.7◦C average rainfall 4.5mm/day, the sim-
ulation is as shown in figure 4.2. In this figure we observe that the Susceptible
proportion decreases and vanishes in the 3rd month, exposed individuals increases
up to the peaks value 53% in the 3rd month and and finally decreases and reaches
zero in the 10th month. Similarly the infectious individuals increases to a maximum
value 45% in the 5th month and finally decreases and vanish in the 20th month. Lastly
the recovered and the dead proportions increase and attains their peak values 82%
and 18% in the 20th and 15th months respectively
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In the two graphs 4.1 and 4.2, we notice some differences in different classes; for ex-
ample we observe that the Susceptible class vanishes after one month in Zone 4 while
it varnishes after three months in Zone 1, Exposed class also attains different peaks
in the two Zones 1 nd 4 and at different months, similar observations are made with
the infectious class. We notice that stability of all the classes except the Susceptible
in figure 4.1 are attained at the same point as in figure 4.2.

To understand better the effects of temperature and rainfall on influenza season-
ality, we plotted graphs of temperature and rainfall against influenza and also the
reproduction number against influenza time both seasonally and monthly. We also
determined the correlation coefficient between temperature, rainfall and the repro-
duction number number with influenza.

From figure 4.3 we observe that as rainfall peaks influenza also peaks and as rainfall
decreases influenza also decreases. The peaks of the influenza appears lagged after
the rainfall has peaked and the decrease influenza also appears after some time when
rainfall has decreased, this may be due to the fact that the effects of increase and
decrease in rainfall are felt after some time. Similar patterns are observed when we
plotted seasonal values as seen in figure 4.4. The graphs were plotted using values
from Zone 4

Similar patterns are observed when we plot values from Zone 1 as shown in graphs
4.9 and 4.10.

We also plotted influenza data and temperature from Zone 4 both monthly and sea-
sonal as shown in the figures 4.5 and 4.6. We observe that an increase in temperature
corresponds to a decrease in influenza while a decrease in temperature correspond to
an increase in influenza. We observe similar observations when we use values from
Zone 1 as shown in graphs 4.11 and 4.12.

We also graphed the reproduction number and influenza in both Zones 1 and 4 using
monthly and seasonal data. This is shown in the graphs 4.7, 4.8, 4.13 and 4.14.
The peaks in both flu and reproduction number peaks simultaneously and they also
decrease simultaneously.
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Figure 4.1: A numerical simulation of the influenza model for Zone 4
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Figure 4.2: A numerical simulation of the influenza model for Zone 1
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Figure 4.3: Graph of monthly Rainfall and Flu in Zone 4
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Figure 4.4: Graph of Seasonal Rainfall and Flu in Zone 4
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Figure 4.5: Graph Monthly Temperature and Flu in Zone 4
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Figure 4.6: Graph of Seasonal Temperature and Flu in Zone 4
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Figure 4.7: Graph of Monthly Reproduction number and Flu in Zone 4
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Figure 4.8: Graph of Seasonal Reproduction number and Flu in Zone 4
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Figure 4.9: Graph of monthly rainfall and Flu in Zone 1
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Figure 4.10: Graph of Seasonal rainfall and Flu in Zone 1
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Figure 4.11: Graph of monthly Temperature and Flu in Zone 1
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Figure 4.12: Graph of Seasonal Temperature and Flu in Zone 1
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Figure 4.13: Graph of monthly Reproduction number and Flu in Zone 1
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Figure 4.14: Graph of Seasonal Reproduction number and Flu in Zone 1
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CHAPTER 5

Conclusion and Recommendations

Recent studies have demonstrated that environmental factors account for a pro-
portion of seasonality, as well as infection oscillations of influenza in temperate
regions[43]. Here we used a mathematical model to asses the relation between mete-
orological parameters and influenza activities in Kenya. We modelled Influenza as a
5-dimensional system of differential equations, through expressing transmission rate
as a function of meteorological parameters, the seasonality of influenza incidences
could be depicted.

This study shows the dependency of influenza seasonality in Kenya to meteorologi-
cal parameters. Influenza infection was high in the cold seasons and and the season
succeeding the rainy season. An accurate results would enable officials to take appro-
priate control measures for influenza epidemics, such as vaccination activities prior
to the cold seasons and rainy seasons. Further laboratory and epidemiological stud-
ies are required to validate and justify the associations between influenza infections
with rainfall and temperature

In the numerical solution of the model, i.e. figures 4.1 and 4.2, the values stabilize
in the long run confirming that the endemic equilibrium is globally asymptotically
stable. Since we have taken same initial values, the difference in the two zones 1
and 4 come as a result of different meteorological parameters, that is different av-
erage temperature and rainfall values. Therefore under same initial conditions, the
influenza peak in the long run will depend on the temperature and rainfall under
consideration but this does not affect the point at which the endemic equilibrium is
attained.
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It is observed that reproduction number and influenza appear to peak or decrease si-
multaneously. Therefore we use this as a qualitative index for future climatic changes
where results which indicate an increase in the reproduction number during a given
period will imply likely increase in influenza in the same period and results which
indicate a decrease in reproduction number will imply likely decrease in influenza.
This is just a qualitative conclusion and does not indicate the percentage by which
a decrease or increase occurs.

In many laboratory tests and various studies on influenza seasonality, air temperature
is often found to be associated with influenza transmissions, i.e. low temperatures
increases influenza transmissions [44, 45, 47]. Lowen et al.[44] conducted an ex-
perimental study using a guinea pig model to demonstrate that cold temperature
favored to the spread of the influenza virus. I this study we found that a decrease in
temperature will likely indicate an increase in influenza in the same period while an
increase in temperature will indicate likely decrease in influenza. This may be due to
the fact that, a decrease in temperature could enhance crowding at indoor activities,
and would thus increase the contact, aerosol and droplet transmission intensity.

Previous studies have shown that rainfall could be used as a predictor for influenza
infection for sub-tropical regions, but not in all temperate regions [46]. Here we
have found that an increase in rainfall in a given period will most likely indicate an
increase in influenza in the following period while a decrease in rainfall will likely
indicate a decrease in influenza in the following period. However, there is no clear
and lucid explanation for the mechanism of rainfall driving the influenza seasonal-
ity. Although low temperature and dry air have been proven to be favorable for
survival of the influenza viral particles [47]. One possible mechanism is that rainfall
could affect human social behaviors, such as indoor activities, and therefore increase
the number of contacts and the risk of exposure to contaminated environments or
infected individuals.

5.1 Recommendations

In this study we only used the percentage of infected individuals to simulate the re-
sults, it is recommended that for future research more data should be made available
so that the mortality data is used to estimate the the recovered individuals and also
the least squares fitting of the influenza mortality data to the model approximates
the transmission rate as well as the initial number of infections, here we used the
influenza infection in the preceding month as the initial number of infection in the
current month.

One limitation of this study is that we only considered the meteorological parame-
ters as a cause of influenza seasonality in Kenya and in simulation we only used the
rainfall and the temperatures due to the availability of data, in future we recommend
the use of as many meteorological drivers of seasonality as possible in the simulation,
example: Sunlight, relative humidity, absolute humidity and absolute deviation of
dew point from annual maean . This could provide a better approximations than



44

only using temperature and rainfall.

We also recommend the use of other factors like social distancing and air travels to
model the influenza seasonality. According to some studies [43, 47], some seasonal
changes of host behavior (e.g., international travel [48] and school holidays) might
also affect the transmission dynamics of influenza. It has been shown that the closure
of kindergartens and primary schools was able to reduce the disease transmission rate
by around 25% for the 2009 influenza A/H1N1 pandemic.

We used a deterministic model to asses the influenza activity in relation to meteo-
rological parameters, we used the reproduction number to illustrates the qualitative
relationship with the influenza activities, We suggest that regression models should
be used to explain the influenza seasonality in Kenya, this brings the quantitative
relationship and is able to predict future incidences.
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