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ABSTRACT 

Malaria is one of the major causes of morbidity and mortality, especially in sub-Saharan Africa. In 

Kenya, it accounts for almost 35% of all outpatient consultations and is a major cause of infant and 

child mortality. The aim of the study was to fit appropriate time series models and compare and assess 

the accuracy of two different methods; Exponential Smoothing Method versus the Box Jenkins 

Method to forecast malaria case admissions for children under 15 years of age from different 

epidemiological zones in Kenya. The different methods were tested using data from three health 

facilities located in the “Coast Endemic”, “Lake Endemic” and “Highland Epidemic” regions of Kenya. 

The model performances were evaluated through data splitting using various error measures namely: 

mean error, mean percentage error and the mean absolute squared error. The statistical forecast 

accuracy of the models showed that the methods were effective in predicting malaria case admissions 

in Kenya. However, no particular model emerged superior to the other as the simpler decomposition 

and exponential smoothing method performed equally as well and in some instances even better than 

the more complex Box Jenkins model. The Box Jenkins method was more accurate in long term 

projections due to its statistical underlying theory while the exponential smoothing method 

performed better in short and medium term forecasts and in data which experienced recent abrupt 

level shifts. The study also showed the limitations of forecasting malaria case admissions only from 

historical patterns with the need to develop improved models by incorporating external predictor’s 

such as climate-related variables. In conclusion, although different methods can be applied to malaria 

forecasting, they should be tailored to the specific malaria transmission setting to avoid misleading 

results due to the underlying disease transmission dynamics. 
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CHAPTER 1: INTRODUCTION  

Malaria has been one of the major causes of morbidity and mortality globally, but by a bigger extend 

in the African Region. In 2013, 82% of the 198 million cases (uncertainty range 124–283 million) and 

90% of the 584 000 million malaria specific deaths (uncertainty range 367 000–755 000) were 

estimated to be from this region [1]. Even with renewed calls to eradicate the disease through 

increased international donor assistance, country-specific government involvement and adoption of 

varied malaria prevention, control and monitoring  interventions including; increased insecticide 

treated nets (ITN) and long lasting insecticide nets (LLIN) distribution and reported use, increased 

indoor residual spraying (IRS), campaigns on the use of first line antimalarial drugs (ACTs) and setting 

up of monitoring and evaluation systems, malaria still remains a cause of worry in malaria endemic 

regions and more so for the high risk populations comprising of children under 5 years and pregnant 

women [2].  

Since the World Health Organization (WHO) set a call in 1955 for malaria eradication in the world, 

various initiatives have been launched over time with an ambitious goal for a malaria free world and 

the reduction of malaria specific deaths to zero by 2015. These include: 

• The Roll Back Malaria (RBM) movement set up in October 1998, which led to the signing of 

the Abuja Declaration and Plan of Action in 2001 by African heads of State and Government 

with a goal to halve malaria mortality by 2010 by ensuring at least 60% (redefined later to 

80%) of the at-risk population was protected or treated with appropriate methods [3]. 

• The Millennium Development Goal (MDG) 6 of 2003 seeking to stop and reverse the 

incidence of malaria by 2015 [4, 5]. 

• The Global Malaria Action Plan (GMAP) of 2008 which called for universal coverage of at-risk 

populations with some form of vector control with a goal of a 75% decline in malaria 

morbidity between 2000 and 2015 [6, 7]. 

In the past decade, billions of dollars have been committed and directed to this fight to reduce the 

burden of malaria in Africa even after a slow start in 2003. In 2014 however, the evaluation of trends 

over time showed that only 12 countries in Africa with sufficient data, were projected by the WHO to 

observe a 50 - 75% reduction in malaria cases by 2015 given the 2000 baseline [1].  

The WHO and RBM have continuously advocated for development of forecasting and early warning 

systems to inform disease control and prevention measures, with additional use in diagnostics and 

drugs supply chain management [8]. As malaria is more rampant in tropical and sub-tropical regions 

especially in low and middle income settings with limited resources [9], appropriate early warning 
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signals and accurate disease predictions can inform policy, and provide public health services with 

information required for a targeted approach to the control and prevention of malaria through the 

effective use of the available resources [10].  

1.1 Background Information: Kenya 

1.1.1 Country Profile 

Kenya covers a total area of 582,646 km2, sprawls the Equator in eastern Africa and lies along 

longitudes 340 West to 420 East and latitudes 50 North to 50 South. Approximately, only 20% of Kenya’s 

land area is arable in the Lake Victoria and highlands regions while 80% is arid and semi-arid, mostly 

in the Northern and Northeast parts of the country. Merely 1.9% of the total surface area is occupied 

by stagnant water. The climate of Kenya ranges from very dry in the north and northeast, temperate 

in the interior, to hot and humid at the coastal shoreline. This heterogeneity of climate across the 

country is due to the variations in terrain and altitude. There are two rainy seasons; the short rains 

occurring from October to December and the long rains from April to June. On the other hand, the 

temperature remains relatively constant throughout the year with the coldest months from July to 

August and the hottest from February to March [11]. 

Kenya’s population stood at 38.6 million from the Population and Housing census conducted in 2009. 

Following the population growth rate estimated at 2.9% annually over the past 30 years, was projected 

to be around 45 million in 2015 [12]. The census reports Kenya’s population to be characterized by 

the “very young” with 43% of the population being under 15 years of age and only 4% aged 65 years 

and older. This might be explained by the high fertility rates and declining mortality observed in the 

last few decades due to improved health care awareness, access and delivery. In addition, overall 

declining trends for most diseases have been observed in the country [12-14].  

1.1.2 Epidemiology of Malaria in Kenya 

The epidemiology of malaria has been studied over many decades, but the complexities of the 

disease, for instance; the climatic suitability for transmission which is heterogeneous even within 

countries, the variations in vector distribution, human behavior that might hinder or promote 

infection, effects of control interventions at different levels on mortality and morbidity, 

governments policies and donor involvement, and the influence of past trends, have made it harder 

to control the disease leaving a number of regions still at risk while some other regions have 

successfully eradicated malaria [15-25]. 
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In Kenya, the major malaria vectors are from the Anopheles Gambiae and Anopheles funestus family, 

and disease transmission is by all four species of human Plasmodium: P. falciparum, P. malariae, P. 

ovale, and P. vivax. P. falciparum accounts for almost all malaria infections (>95%) with around 16% 

comprising of mixed infections with P. malariae, P. ovale or both [26]. The survival of the malaria 

vectors is largely depended on a number of factors such as the prevailing environmental conditions 

and human factors especially in the stable transmission regions. The main climate-related variables 

include rainfall, which has been shown to provide the breeding sites for vectors by increasing water 

availability, while warmer air due to a relative rise in temperature holds more moisture hastening the 

vector development and prolonging the risk of infection. In addition, human factors like rural to urban 

migration and other varied activities have also been linked to the malaria infection spectrum, with 

additional baseline demographics such as age and sex being able to explain some variations in disease 

transmission [17, 27-29]. 

The epidemiological zones in Kenya are mainly four;  

 The Endemic zones around the coastal and the Lake Victoria regions with stable malaria 

transmission occurring throughout the year. The Entomological Inoculation Rate (EIR) ranges 

from <10% to >100% while the parasite prevalence rate (PfPR) from community surveys has 

been reported to be between <5% and <40%. The suitability of the climate in these regions 

allows for the survival of malaria vectors as rainfall, humidity and temperature are the main 

determinants for malaria infection;  

 The Highland epidemic zone found mainly in the Western highlands which is prone to 

outbreaks but often characterized by seasonal malaria comprising of yearly cycles and 

variations. The increase in the minimum temperature to at least 180C during the long rains is 

optimal for vector development and survival which drastically increases the rates of malaria 

transmission and case fatality rates rising to even ten times higher than in areas of stable 

transmission;  

 The Seasonal malaria transmission zones which are composed of arid and semi-arid areas in 

the north, northeast, east and southeast parts of the country. Malaria transmission is highly 

seasonal and intense only during the rainy season due to lower temperatures, increased 

rainfall and vegetative cover for vector breeding. The PfPR is usually <1% in this areas;  

 The Low risk malaria zones in Nairobi and the central highlands of the country where 

temperatures are too low to support vector survival and malaria transmission. Most cases 

from these regions are usually imported from malaria-prone areas and this, together with the 

climatic changes are likely to widen areas suitable for disease transmission.  [Figure]. 



4 
 

In 2014, Noor [30] reported a transition in the malaria epidemiology and risk of infection in Africa over 

time, by making a comparison of maps on malaria prevalence between 2000 and 2010. Malaria 

epidemic zones were reported to have shrank over the 10 years with an increase in the number of 

people living in low transmission zones and malaria free areas. In Kenya, there was a >20% to 40% 

reduction in the Plasmodium falciparum parasite rate which had been standardized to the 2-10 years 

age group (PAPfPR2–10  ). In conclusion, it was estimated that more than 50% of the Kenyan population 

presently lives in low-transmission or malaria-free areas [30].  

1.1.3 Malaria Control in Kenya 

Malaria control in Kenya began during the colonial era, to protect the European settlers and later the 

government and farms labor force who needed protection in a bid to safeguard the economic viability 

of the Colony [31]. The initial activities included environmental control activities referred to as 

“mosquito brigades” such as cutting down bushes, filling of empty pits and stagnant water draining. 

By 1913, the Colony had begun the promotion of weekly doses of quinine prophylaxis and free bed 

nets distributed to European settlers, the police, Indians and railway workers. Continued efforts led 

to the establishment of the Division of Insect-Borne Diseases (DIBD) in 1944 to coordinate control 

efforts for all insect borne diseases such as malaria which had become a major cause worry following 

an epidemic in 1940 and the acceptance of the notion that all febrile patients in country were infected 

with malaria [2].  

IRS was adopted as the main form of protection for the mass populations with targeted approaches 

to highly endemic and epidemic regions of the country beginning in the early 1950’s. Over time, varied 

malaria control measures have been deployed including; use of traditional prevention methods, 

sleeping under bed nets, continued targeted indoor spraying and appropriate prophylaxis for disease 

management. Quinine (QN) was the first anti-malarial to be adopted in the early 1900 and in the mid-

1950’s was changed to chloroquine (CQ). CQ resistance escalated in the 1980’s, eventually leading to 

malaria epidemic’s in the country which occurred in the mid-1990’s. This lead to the adoption of 

sulphadoxine-pyrimethamine (SP) in 1998 which was abandoned in 2004 after emergence of 

resistance, and replaced with the more efficacious Artemether-Lumefanthrine (AL) implemented in 

2006 [32-34]. The scale up of these measures has been attributed to the observed reduction in the 

malaria burden but a direct causality link has not been established [18, 23, 25, 35, 36]. 

Kenya’s first ten year National Malaria Strategy was launched in 2001 following the formation of the 

RBM movement and a second strategy, the National Malaria Strategy (NMS) 2009 – 2017, was 

established in 2009 [37, 38]. In line with the MDG’s, RBM and WHO goals for malaria control, 
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prevention and case management, the strategy aimed at facilitating the reduction of the malaria 

burden by two-thirds given the 2007-2008 case and attributable deaths numbers in Kenya [38]. As of 

July 2013 the following milestones had been reported; approximately 80% of all households in malaria 

endemic regions owned at least an ITN obtained either through purchase at subsidized prices, free 

mass distributions, and targeted dissemination for children and pregnant women; capacity building 

efforts had been observed through training of health workers on malaria diagnostics and treatment; 

formulation of plans to implement community strategies for malaria control and case management; 

and targeted IRS activities being carried out in specific parts of the country.  Additionally, monitoring 

and evaluation systems for disease trends and intervention impacts have been developed with more 

than 30% of the 75 arid and semi-arid (ASAL) and 45 epidemic prone districts having functional sentinel 

sites for epidemic detection and response[39]. 

To maintain favorable malaria trends however, a need was identified during the development of the 

NMS to tailor make malaria interventions specific to a transmission intensity setting, target 

approaches towards particular sub-populations with higher risks of infection whilst strengthening the 

monitoring, evaluation and disease surveillance systems to achieve effective and sustainable malaria 

control [38].   

1.1.4 Malaria Trends in Kenya 

Researchers have utilized different methods in scientific studies, using different sources of data to 

model malaria trends worldwide [16, 19, 20, 40-43]. In Kenya, the easily available and accessible 

sources of data for malaria indicators which involve population-based surveys such as Demographic 

Health Surveys (DHS) and Malaria Indicator Surveys (MIS), are burdened with many limitations 

including data incompleteness, inaccuracies and are unavailable in actionable timeframes. Health 

facility-based data has been an alternative to these cross-sectional surveys due to its longitudinal 

nature and hence has been applied in many scenarios to determine short and long-term disease 

trends. However, health facility data should be utilized with the full recognition of its limitations [44, 

45]. The application of various mathematical and statistical methods on this data has been 

instrumental and has enabled the modelling of disease trends over time, with additional methods that 

account for the shortcomings of the available data. 

Malaria consultations, admissions and attributable deaths have been reported to be on a declining 

trend in most parts of Africa, beginning in the late 1990s when malaria was declared a disaster as it 

was one of the main causes of morbidity and mortality. The global community and country-specific 

efforts led to the adoption of various interventions to curb the disease burden, efforts which have 
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been sustained and improved over time [2, 22, 46-51]. This is evident in the transition that has been 

observed both in malaria transmission intensities and disease incidence which have shifted favorably 

in the last decade [30]. 

Studies from Kenya have generally reported declining trends of malaria cases and attributable deaths 

observed from community surveys and health facility records. However, some areas still report 

increasing trends while in others, trends have been stable over time. These variations could be due to 

the epidemiology of transmission dynamics and the level of coverage and application of control 

interventions. Between 1998 and 2010, malaria cases and deaths declined in the coastal region, the 

highland region and in some low-land regions, with more pronounced declines being observed in 

regions that have a historical low parasite prevalence rate. In the Western high transmission parts of 

the country however, malaria trends are reported to have increased over time often with yearly 

variations [20, 21, 30, 34, 36, 40, 52, 53].  

Overall, scaling up of malaria preventive and curative interventions has been seen to contribute to the 

declines in the malaria burden where according to the Malaria Indicator Survey carried out in 2010, 

clinical malaria accounted for 34% of all outpatient visits in Kenya with malaria prevalence being 

highest for children between 5-14 years of age at 13% [13]. However, a direct causality link between 

interventions and trends over time has not yet been established which could be due to the 

unavailability of consistent data to measure indicators, the possibility of intervention supply 

information redundancy from different stakeholders whilst in some regions a shift in trends was 

observed even before application of any control measure.  Moreover, most studies on disease trends 

have only been carried out in specific sites and regions making it impractical to aggregate results 

countrywide [21, 36, 40, 54]. 

1.2 Statement of the Problem 
 

Reliable, consistent and timely data is a prerequisite for effective planning and implementation of 

malaria prevention, control and case management interventions. The major shortcomings hindering 

this process in many low and middle income countries include; poor vital registration systems, lack of 

comprehensive Health Management Information Systems (HMIS) and disease surveillance systems, 

unavailability of longitudinal data over time and if available, of low quality, incomplete and/or 

inaccessible in actionable timeframes [44, 45, 55, 56]. For instance, in the World Malaria Report 

(WMR) 2014, Kenya was one of the malaria endemic countries in Sub-Saharan Africa (SSA) that lacked 

sufficient data reported to WHO to monitor malaria trends between 2000 and 2013 [1].  
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In addition to the shortcomings of the health systems, the insufficiency of the data on malaria 

indicators hinders the monitoring of temporal trends, be it in control of the disease or evaluation of 

intervention impacts. Furthermore, malaria cases are still treated presumptively in some regions even 

after changes in the global and national guidelines recommending confirmatory treatment of malaria, 

leading to overestimation of the malaria burden. Additionally, the only data that can be captured from 

routine health records is for people who have access and actually utilize the formal health system 

which might lead to underestimation of the disease burden [2, 22].  

To accommodate this, statistical modelling has been deployed often to create tools which are able to 

obtain more accurate estimates for the required data which are closer to the truth. The use of these 

methods has evolved over time, from merely studying underlying forces and structures that produced 

particular sets of observed data to modelling and forecasting into the future [42]. 

The ability to predict malaria incidence accurately is a major milestone in the control and 

management of the disease. The results obtained could facilitate optimal distribution of resources, 

enabling the adoption of appropriate control interventions tailor made to the county, region or 

transmission setting under consideration. This will in the long run lead to the reduction in the 

number of new and resurgence malaria cases and malaria-attributable deaths on the path to 

fulfilling the global and country-specific targets for the disease at large. 

1.3 Study Objectives  

General Objective 

1. Forecast malaria case admissions in Kenyan Health Facilities for children under 15 years of 

age. 

Specific Objectives 

1. Develop malaria forecasting models for three Kenyan health facilities located in different 

epidemiological settings with emphasis on the Box Jenkins Methodology. 

2. Compare the applicability and assess the accuracy of the different forecasting methods in 

predicting malaria case admissions in three Kenyan health facilities. 

1.4 Justification/Significance of the Study 

Malaria forecasting models have been developed in many malaria endemic countries, using mainly 

historical data with additional data on environmental risk factors like weather-related variables, to 

predict future malaria cases over certain periods of time. Different methods have been used in varied 

geographical and transmission settings, utilizing different approaches to identify the best 

mathematical or statistical models, and significant malaria case predictors. However, the variability in 
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the computational methods and lack of common forecast accuracy measures does not allow for 

straightforward comparisons across studies and sites [10].  

Kenya recently adopted the county system of governance, where policy making, health related 

decisions and the distribution of resources is at the county level [57]. Efforts towards malaria 

prevention, control and elimination require that resources are optimally distributed, to enable timely 

adoption and application of control interventions. Since malaria data availability, consistency and 

quality is questionable, there is need to establish functional and appropriate statistical models for 

validating existing data, monitoring disease trends over time and predicting malaria incidence in the 

Kenyan context, especially at the county or epidemiological zone level. This is due to the already 

documented health system shortcomings bundled with too many reports by health workers to 

different stakeholders all with one goal of reducing the malaria morbidity and mortality [38, 58].  

In this study, various time series methods will be compared using the same datasets, to determine 

their applicability and accuracy in the prediction of malaria case admissions. Models that are suitable 

and applicable to various local transmission settings will be established, enabling targeted 

approaches in regards to optimal resource distribution, implementation of appropriate control 

interventions and strengthening of disease surveillance, monitoring and evaluation systems. This 

data will be invaluable for malaria control and elimination efforts to the national and county 

governments, health facilities, policy makers, researchers’, the donor community and the population 

at large. 
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CHAPTER 2: LITERATURE REVIEW 

The first malaria early warning system was developed by Christopher’s in 1911 to predict malaria 

epidemics that were common in Punjab. Since then, more apt malaria foresting models have been 

developed over time, enabling the use of varied statistical, mathematical, machine learning and grey 

methods to estimate past, current and even forecast future disease burdens [59].  

There are three major categories of forecasting methods which include; qualitative/judgmental 

methods, quantitative methods and technological methods. Qualitative forecasting methods are 

generally subjective in nature and are based on expert opinions in formulating relationships. 

Conversely, quantitative forecasting methods involve statistical procedures in analysis of past values 

or historical data to establish true mathematical relationships or approximate associations which are 

reasonably closer to the truth [60, 61]. The three sub-categories of quantitative methods include; time 

series methods which seek to identify historical patterns using time as a reference point and then 

forecast future values using time-based extrapolation procedures; explanatory methods which seek 

to identify past relationships producing observed outcomes and forecasting by applying the 

established relationships in the future; and monitoring methods which seek to identify the changes in 

relationships and patterns. Technological methods address societal, economic, political or 

technological long-term issues using expert-based methods, or historical relationships, patterns and 

analogies to define and “forecast” pre-determined future values [62]. 

There are a number of factors to consider before selecting the appropriate technique to use in 

forecasting. Some of these factors include; the type of data being analyzed, the time horizon which 

can be classified as either short, medium or long term; the level of detail or frequency required which 

increases with need; the number of series’ and parameters involved and the historical patterns and 

constancy [61]. When data is presented with time as the reference point, time series models are often 

adopted. These are unique methods whose usage first involves the understanding of the structure of 

an observed set of data and the underlying forces producing it through estimation and fitting of 

appropriate models, and second, using these established relationships for forecasting, monitoring and 

evaluation, or even feedback and feedforward control. The time series approach has often been used 

to model disease patterns, explaining what will happen but not why [63].  

Appropriate mathematical and statistical methodologies have been developed to measure the malaria 

burden in many malaria endemic countries such as those in SSA, with malaria forecasting being a 

critical part of many malaria control programmes and research organizations worldwide.  Using 

malaria case numbers, and additional data on coverage of both preventive and curative interventions, 
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environmental factors and patient demographics as risk factors, various models have been used to 

predict future malaria cases over certain periods of time in different geographical settings [59, 64-70].   

In a scoping review published by Zinszer (2012), the history and future directions of malaria forecasting 

methods were reviewed. The authors included studies that forecasted malaria prevalence, incidence 

and epidemics over time with almost all studies using patient records in health facilities and the 

general population as the main data sources. While some studies used mathematical modelling and 

machine-learning methods as the forecasting approaches, majority of the studies used statistical 

methods including Autoregressive Integrated Moving Average (ARIMA) models, Generalized Linear 

Models (GLM’s) and Holt Winter’s methods. Most studies also included climate-related covariates like 

rainfall, temperature, relative humidity, evaporation rates and vegetation cover as covariates, 

applying lagging to account for the delayed effects of weather on malaria transmission and infection. 

To evaluate the models, different approaches were used where most authors divided the data into 

two parts, with one part for model building and the remaining bit for model validation. Conversely, 

some authors still used all available data for model building and made out-of-sample forecasts. The 

mean-squared error (MASE), mean percentage error (MAPE), mean absolute relative error (MARE), 

95% confidence intervals (CI), paired t-tests, correlation coefficients and data visualization techniques 

were the main methods used to evaluate model performance and forecast accuracy [10].  

In conclusion, the authors reported that the accuracy of the forecasting methods from different 

studies could not be compared due to the lack of common measures applied and gave 

recommendations on the same. The authors established that many researchers only incorporate one 

method of forecasting in any given data set and report results based on a single model. They also 

noted the availability and variability of various statistical models as one of the strengths of forecasting 

the malaria burden, but recommended that an effort should be put to tailor-make and adopt 

forecasting approaches that are applicable and appropriate to the local transmission settings to avoid 

misleading results. In addition, the use of common accuracy measures in forecasting is encouraged, 

to allow for comparisons between studies. Multiple methods could also be applied to the same data, 

giving attention to the assumptions, advantages and disadvantages of any given model, allowing the 

identification of the most parsimonious forecasting model, and establish which predictors would be 

significant for malaria forecasting [10]. 

In 2002, while comparing different forecasting approaches, Abeku [64] used five statistical methods 

to forecast malaria incidence in epidemic-prone areas of Ethiopia with unstable transmission, where 

a simple seasonal adjustment with three past observations method performed best. The authors first 

log-transformed the data due to the nature of its original distribution and applied different methods 

including; averaging methods some with adjustments of past values’ mean deviation from expected 
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values and ARIMA models where data was first differenced to obtain stationarity. Part of the data was 

used for model building and the last twelve (12) observations used for model validation. The 

forecasting accuracy was assessed by calculating errors using the differences between the forecasted 

and observed values. The accuracy of the methods, the forecasted values and their ability to 

accommodate seasonality and changes in the trend differed with respect to the length of the historical 

time series and the post-sample length of the forecasts [64].   

In Burundi, Gomez-Elipe (2007) used ARIMA models to model and predict malaria incidence rate by 

studying the association between weather-related variables and the malaria burden in an unstable 

transmission area of the country. The number of malaria cases in the preceding month, temperature, 

rainfall and the normalized vegetative index were used as explanatory variables, where they all were 

included in the best forecasting model which had a 93% forecasting accuracy. The differences between 

observed and forecasted values were assessed for normality, confirmed whether they fell within 5% 

of the 95% confidence interval, and whether the forecast precision depended on the magnitude of the 

incidence rate change over time, a process to check the reliability of the forecasting model. Malaria 

incidence was significantly associated with lagged rainfall, vegetative index data and maximum 

temperature while there was no association between malaria cases and minimum temperature [71].    

Briet [65] compared the exponentially weighted moving average models, ARIMA models with seasonal 

components, and seasonal multiplicative autoregressive integrated moving average (SARIMA) models 

on their ability to predict monthly malaria cases four months ahead in Sri Lanka. Rainfall (which was 

lagged) and the number of malaria cases in neighboring districts were used as additional covariates 

and assessed on their ability to improve the predictive power of the models. Data was first log-

transformed, pre-whitened and then segmented for model building and validation. The MARE was 

used to assess forecast accuracy of the models. The best models varied by district and forecasting 

horizon, suggesting that models should be tailored to specific settings, but overall, the SARIMA model 

followed by the ARIMA model that modelled seasonality through second order harmonics were often 

adopted, while the seasonal adjustment method performed worst. The inclusion of additional 

covariates did not always improve the model fit, but in many districts and horizons more accurate 

forecasts were obtained afterwards [65]. 

Malaria cases in Bhutan have been on a declining trend over time, and in 2010, Wangdi [68] carried 

out a study to develop prediction and forecasting models for malaria incidence in seven of the twenty 

malaria endemic districts in the country. A multiplicative SARIMA model (2, 1, 1) (0, 1, 1)12 was 

identified as the best model fit for the overall data with slight parameter variations for different 

districts. 85% of the data points were used for model building and the remaining 15% for model 

validation to forecast malaria incidence 2 years into the future. The transfer function method of the 
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ARIMAX models was used to determine significant predictors of malaria transmission for each district 

and overall while the MAPE was used to evaluate the forecast accuracy. Rainfall, mean maximum 

temperature and the number of malaria cases in the preceding month were the only factors that were 

associated with malaria cases, but the presence and strength of the predictive power varied within 

districts [68]. 

In 2014, Kumar [72] used climatic factors including; mean monthly rainfall, mean maximum 

temperature and relative humidity, as risk factors to predict monthly malaria slide positives in Delhi, 

India. Seasonal ARIMA models were used with an ARIMA (0, 1, 1) (0, 1, 0)12 being identified as the best 

fit model and a stationary R-squared statistic was employed to evaluate the model’s goodness of fit. 

Only rainfall and relative humidity lagged at one month were found to be significant predictors of 

malaria cases in the study region. To determine the peak seasonal variation, the seasonal adjusted 

factor (SAF) was used with the Ljung-Box statistics to evaluate model fit [72].  

Ezekie (2014) used SARIMA models to model and forecast malaria mortality rate in Nigeria. The data 

was first differenced to obtain stationarity with the model parameters being estimated through the 

maximum likelihood method (MLE). The AIC and BIC were used for model selection where the model 

with the lowest statistic being chosen as the best fit. Past malaria mortality data was used to forecast 

out of sample future values. Hence, other than fulfilling the model assumptions for selection of the 

best model fit, there was no way to assess the forecast accuracy as no observed values could be 

compared with those predicted by the model. A SARIMA (1, 1, 1) (0, 0, 1)12 was selected as the best 

model to predict malaria mortality given the data available in Nigeria [73]. 

Comparing four time series models for epidemiological surveillance, Zhang (2014) evaluated the 

performance of four time series methods including ARIMA models, support vector machine (SVM) 

models and two decomposition methods (exponential smoothing and regression) in forecasting future 

disease burdens. The MAE, MAPE and MSE error measures were used to evaluate the models’ forecast 

efficacy. In conclusion, the authors noted that no single method was superior to the others, as they 

all performed differently given different diseases. However, in the presence of a level shift (sudden 

changes in the time series) SARIMA models were observed to perform the worst in comparison with 

the simpler decomposition methods and the more complex SVM methods. Although none of the 

forecasting methods was “fully appropriate” for disease forecasting, the authors advice that care 

should be taken in selection of the forecasting model to use given the structure of the data and the 

underlying model assumptions [74]. 

According to a number of the studies reported above, variations in the best fit models were observed, 

in regards to the disease being forecasted, the study sites, and regions [65, 68, 74]. This phenomenon, 
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they concluded, could be due to the heterogeneity of malaria transmission, difference in the level of 

intervention adoption and impact, variations in human activities and health seeking behavior in 

different countries and transmission settings. Additionally, they emphasized on the need to select the 

most parsimonious model for the most accurate estimates. 
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CHAPTER 3: METHODOLOGY 

This chapter focuses in detail on the understanding of the Box-Jenkins Modelling Approach and the 

Time Series Methods used in the analysis and forecasting of malaria case admissions. Methodologies 

used in modelling, software specifications and features incorporated into each model will be some of 

the main aspects of the chapter. 

3.1 Data 

The study uses health facility-based data obtained from three county hospitals located in different 

epidemiological zones across the country which include; Siaya County Hospital (located in the Lake 

endemic region of Western Kenya bordering Lake Victoria), Kitale County Hospital (from the highland 

epidemic region where populations live 1500 meters above sea level) and Malindi County Hospital 

(along the endemic region of the Kenyan Coast). The primary data on case admissions for children 

aged 0 and <15 years was collected over time from health facility records for the period 1999 – 2011. 

A total of 156 possible monthly data points were obtained.  

3.2 The Concept of Time Series  

A time series is an ordered sequence of values of a variable at equally spaced time intervals, for 

instance, daily, weekly, monthly or yearly. Mathematically, it is a time dependent sequence 𝒀𝒕: where 

t denotes the time points/steps on a set of integers. A time series is said to be deterministic if it can 

be expressed as a known function 𝑌𝑡 = 𝑓(𝑡) ; while if it is expressed as 𝑌𝑡 = 𝑋(𝑡) where X is a random 

variable, then is a stochastic time series. The usage of time series analysis can either be description, 

prediction and/or even feedback for control measures [60]. 

3.2.1 Components of a Time Series 

A feature of most time series is that they can be decomposed into four components: 

Trend 

This is the general inclination the graph of a time series appears to be directed towards over a long 

interval of time.   

Seasonality 

This refers to the tendency of the series to vary, with regular periodic changes usually in the course of 

the year, following identical or almost identical patterns recurring consistently. It is important to 

investigate how the trend and the seasonal component interact to determine the appropriate 

smoothing and forecasting technique.  
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Cycle 

This refers to the long-term oscillations about a trend curve, are periodic but not necessarily at equal 

intervals of time. The length and magnitude of the cycle are not constant as in the seasonal component 

and vary from one cycle to the other 

Irregular/Idiosyncratic component  

This is the error component of the time series. It is the residual component of the series that accounts 

for the deviation of the time series from what would have been obtained had the trend, seasonal and 

cyclical components explained the series fully. It is mostly caused by external factors, is unpredictable 

and can be said to account for the random variability in the series. 

3.2.2 Types of time series models 

Time series models can generally be classified into two types: 

 The additive model assumes that the data is the sum of the time series components. If the 

data do not contain any of the components, the value for that missing value is assumed to be 

zero. It is appropriate if the magnitude of the seasonal fluctuation does not vary with the 

series. 

 𝑌𝑡 = 𝑙𝑡 + 𝑠𝑡 + 𝑐𝑡 + 𝑒𝑡;  the additive form (1) 

   

 The multiplicative model assumes that the data is the product of the various time series 

components, and if a component is missing, the value is assumed to be 1. 

 𝑌𝑡 = 𝑙𝑡𝑠𝑡𝑐𝑡𝑒𝑡 ;  the multiplicative form (2) 

Where 𝑙𝑡 = 𝑙(𝑡) is a function of time − the trend;  
              𝑠𝑡 = 𝑠(𝑡) is a periodical function of time − the seasonal component;  

              𝑐𝑡 = cyclic variations; 

              𝑒𝑡 = error term and, 

              𝑡 = 0,1, …,   
 

3.2.3 Decomposition of Time Series models 

Decomposition is the process of breaking down the underlying pattern of a time series to identify the 

component factors. The trend and seasonal components are the two main components of the basic 

underlying pattern. The decomposition model assumes the data has the following form: 

Data = Pattern + Error 

 = f (trend, cycle, seasonality, error) 
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Seasonal adjustment (deseasonalizing) is one of the main products of decomposition where for an 

additive model: 

𝑌𝑡 − 𝑠𝑡 = 𝑙𝑡 + 𝑐𝑡 + 𝑒𝑡 

And a multiplicative model: 

𝑌𝑡
𝑙𝑡
= 𝑠𝑡𝑐𝑡𝑒𝑡 

The seasonalized data allows us to better observe the underlying pattern of the series and provides 

measures of the magnitude of seasonality in the data. This process also allows reliable comparison of 

values at different time points. 

Let us assume we have an additive time series.  

𝑌𝑡 = 𝑙𝑡 + 𝑠𝑡 + 𝑒𝑡 

Classical Decomposition 

In classical decomposition, first the series is de-trended using smoothing techniques and the trend 

component is subtracted from the original data series to obtain: 

    𝑌𝑡 − 𝑙𝑡̂ = 𝑠𝑡 + 𝑒𝑡  

Since it is assumed that the seasonal component is constant from year to year, we obtain the seasonal 

index for each month by averaging the detrended values for each particular month and adjusting them 

to ensure that they add to zero. This gives 𝑠̂𝑡.  

However, the classical decomposition has its own shortcomings which include: unavailability of the 

trend estimates for the first few and last few observations, the assumption that the seasonal 

component is constant within year to year and the lack of method robustness in taking care of outlier 

values. We will thus utilize the STL method to decompose our series. 

Seasonal and Trend Decomposition using Loess (STL) 

The STL method was developed by Cleveland (1990) for time series decomposition with the Loess 

method which is used for estimating nonlinear relationships [75]. Loess, “locally weighted scatterplot 

smoothing” uses regression to remove the “bumpy” nature of the data by replacing values with a 

“locally weighted” robust regression estimate to estimate the trend and seasonal effects. First, we 

place a window of specified width over the data (smoother loess curves require wider windows); then 

we fit a regression curve to the observations that fall within the window with reducing weights as 

points move further from the line; the regression is re-run and the weighting is re-calculated. This 

process is repeated several times and the point at the center of the window is obtained. The loess 
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curve is obtained by moving the window across the data with each point on the resulting loess curve 

being the intersection of a regression line and a vertical line at the center of any such window. 

Unlike the classical decomposition method, STL is not limited in the frequency of data it can handle, 

the seasonality is allowed to vary over time and can be controlled by the user and the method is robust 

to outliers. The trend window and the seasonal window parameters control how rapidly the trend and 

seasonal components can change with small values allowing more rapid change. However, the STL 

method is only recommended for additive models. 

3.2.4 Lag 

The lag is a difference in time between an observation at time t and a previous observation at time 

(t-i). Therefore; 𝑌𝑡−𝑖 lags 𝑌𝑡  by i periods. 

The Backshift (Lag) Operator 

The backshift operator ß operating on 𝑌𝑡 has the effect of shifting the data back any i periods; 

For instance to shift the data back one period gives;   

ß𝑌𝑡 = 𝑌𝑡−1;while 

  ß𝑖𝑌𝑡 = 𝑌𝑡−𝑖;  shifts the data back i periods  (3) 

When the series is composed of monthly data, and we want to shift data to “the same month last 

year” we use ß12.  

 ß12𝑌𝑡 = 𝑌𝑡−12 

3.2.5 Stationarity and Non-stationarity 

A time series is said to be stationary if it satisfies the following conditions; 

 1. 𝐸(𝑌𝑡) =  𝜇𝑦; for all t (4) 

  2. 𝑉𝑎𝑟(𝑌𝑡) =  𝐸 [(𝑌𝑡 − 𝜇𝑦)
2
] =   𝜎2; for all t  (5) 

  3. 𝐶𝑜𝑣 (𝑌𝑡 , 𝑌𝑡+𝑖) =  𝜏𝑖;  for all t (6) 

In simple terms;  

1. If the mean of the plotted time series varies over time, the series is considered non-

stationary in mean. In such a case, the concept of “differencing” is used to make the series 

stationary. Only one or two orders of differences are suitable in most time series. 

2. If the variance of the plotted time series shows no obvious changes over time, then the 

series is considered stationary in variance. If not, there is need to transform (log or cubic or square 

root) the data to make it stationary in variance.  
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3. The autocorrelation structure is constant over time. 

The mean and/or variance of the non-stationary series changes with time unlike for the stationary 

series, and differencing the series once or more makes the series stationary removing the observed 

heterogeneity. The condition of stationarity ensures that the moving average parameters are 

invertible and the autoregressive parameters are stable within a particular range in the estimated 

model [Hamilton 1994].  

Consider a time-invariant and stable linear filter and a stationary input time series 𝑋𝑡 with 

𝜇𝑥 = 𝐸(𝑋𝑡 ) 𝑎𝑛𝑑 𝜏𝑥(𝑣) = 𝐶𝑜𝑣 (𝑋𝑡 , 𝑋𝑡+𝑣) the output time series (𝑌𝑡) is also a stationary time series 

with: 

𝐸(𝑌𝑡 ) =  𝜇𝑦 = ∑ 𝜓𝑖𝜇𝑥
∞
−∞                              

𝐶𝑜𝑣 (𝑌𝑡 , 𝑌𝑡+𝑖) =  𝜏𝑦(𝑖) =  ∑ ∑ 𝜓𝑖
∞
𝑗=−∞

∞
𝑣=−∞ 𝜓𝑗𝜏𝑥  (𝑣 − 𝑗 + 𝑖)                             

Thus, we can show that; 

 
𝑌𝑡 =  𝜇 + ∑𝜓𝑖

∞

𝑖 =0

𝑒𝑡−𝑖;    
(7) 

is also a stationary stable linear process with white noise  

Writing this in terms of the backshift operator; 

𝑌𝑡 =  𝜇 + 𝜓0𝑒𝑡 + 𝜓1𝑒𝑡−1 + 𝜓2𝑒𝑡−2 +⋯                 
𝑦𝑖𝑒𝑙𝑑𝑠
→                          𝑌𝑡 =  𝜇 + ∑𝜓𝑖

∞

𝑖 =0

ß𝑖𝑒𝑡   

Where Ψ(ß) =  ∑ 𝜓𝑖
∞
𝑖 =0 ß𝑖  

 𝑌𝑡 =  𝜇 + 𝛹(ß)𝑒𝑡 (8) 

This is called the infinite moving average which is a general class for any stationary time 

series. 

Testing for stationarity requires that we test for the existence or the inexistence of a unit root. The 

unit root test determines the presence of either a deterministic or stochastic trend in the time series 

and must be conducted for both the seasonal and non-seasonal parts of the series. Examples of unit 

root tests include ADF and the KPSS tests [76, 77].  

1. Unit Root Testing 

The equations for the stationary process and the unit root process are: 

 𝜑𝑡 = Ω1𝜌𝑡−1 + 𝑒𝑡  ;  unit process (9) 

 𝜑𝑡 = Ω0 + Ω1𝜌𝑡−1 + 𝑒𝑡  ; stationary process (10) 

 If the Ω1 = 1, then the series is said to have a unit root 
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In 1979, Dickey and Fuller (ADF) derived the unit root test which tests the presence of a unit root in a 

time series versus the stationary process [76]. The hypothesis was formulated as below: 

𝐻0: Ω1 = the time series has a unit root 

𝐻1 : Ω1 = the time series is stationary 

We reject the null hypothesis if the test statistic of the ADF is less than the critical value. 

To conduct the ADF test, fit a regression model; 

 𝑌̇𝑡 = 𝑎𝑌𝑡−1 + 𝑏1𝑌̇𝑡−1 + 𝑏2𝑌̇𝑡−2 +⋯+ 𝑏𝑝𝑌̇𝑡−𝑝 (11) 

Where ; Ẏt represents the differenced series Yt − Yt−1; and  
             ; the number of lagged terms p is usually set to 3  

The value of 𝑎 is estimated using ordinary least squares regressions (OLS). If the original series needs 

to be differenced, the estimated value of 𝑎 will be close to zero. If 𝑌𝑡 is stationary, the estimated value 

of 𝑎 will be negative. 

According to Kwiatkowski-Phillips-Schmidt-Shin (KPSS), the hypothesis for the unit root test [77]: 

𝐻0: Ω1 = the time series is stationary  
𝐻1 : Ω1 = the time series has a unit root  

We fail to reject the null hypothesis if the test statistic of the KPSS is less than the critical value.  

The KPSS test was developed to complement other unit root tests as they are assumed to have low 

power with respect to long-run trend and near unit-root processes. To conduct the KPSS test, we 

consider a three component time series representation 𝑌1, 𝑌2,… , 𝑌𝑛 as the sum of a random walk, a 

deterministic time trend and a stationary residual. 

 𝑌𝑡 =  𝑏𝑡 + (𝑟𝑡 + 𝛼) + 𝑒𝑡 (12) 

Where; 𝑟𝑡 = 𝑟𝑡−1 + 𝑢𝑡  is a random walk, and the initial value 𝑟0 =  𝛼 is the intercept 

             ; 𝑢𝑡 are 𝑖𝑖𝑑 ~ 𝑁(0, 𝜎𝑢
2)  

2.  Differencing 

This is process of making a non-stationary time series stationary. The order of differencing denoted by 

d is the number of times the original series must be differenced in order to achieve stationarity. For 

instance, after the first difference, the series now has (n-1) values since each value of the time series 

is subtracted from the immediate previous value and so on [78]. 

 𝜔𝑡 = ∆𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1 ; 

a new time series ωt having (n − 1)values 

(13) 

A difference of order two means that the first order differenced series is differenced again; 

𝜔𝑡
′ = 𝜔𝑡 − 𝜔𝑡−1 = (𝑌𝑡 − 𝑌𝑡−1) − (𝑌𝑡−1 − 𝑌𝑡−2) =  𝑌𝑡 − 2𝑌𝑡−1 + 𝑌𝑡−2 
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Which is a new time series 𝜔𝑡
′ 

The backward shift operator ß is convenient for describing the process of differencing. For example; 

∆𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1 = 𝑌𝑡 − ß𝑌𝑡 = (1 −  ß)𝑌𝑡;  

for the first order difference 

In general, the dth-order difference can be expressed as: 

 ∆𝑑𝑌𝑡 = (1 −  ß)
𝑑𝑌𝑡 (14) 

When the time series has the seasonality component, seasonal differences should be applied. A 

seasonal difference is represented as: (1 −  ß𝑠); while a seasonal difference followed by a first 

difference is:  (1 −  ß)(1 −  ß𝑠)  

Hence: 

  (1 −  ß)(1 −  ß𝑠)𝑌𝑡 =  (1 −  ß − ß
𝑠 + ß𝑠+1)𝑌𝑡  

= 𝑌𝑡 −  𝑌𝑡−1 − 𝑌𝑡−𝑠 + 𝑌𝑡−𝑠−1  

(15) 

3.2.5 White Noise 

The concept of white noise was first coined in engineering applications, with the analogy of the 

presence of all possible white light periodic oscillations having an equal strength. The collection of 

uncorrelated random variables 𝜔𝑡 with a mean 0 and finite variance 𝛿𝜔
2 was used to model noise. In 

most cases the noise is required to be identically and independently distributed (iid), with a 

particularly useful series, the Gaussian white noise, where the 𝜔𝑡(𝑠) are independent normal random 

variables with a mean 0 and finite variance 𝛿𝜔
2. In the analysis of time series data, the random error 

which is the inexplicable part of the series, is referred to as white noise. 

3.2.6 Autocorrelation Function (ACF) 

The ACF is very useful in describing the procedures involving in model development and model 

checking. It measures the degree of correlation between neighboring observations in a time series. 

The covariance between 𝑌𝑡 and 𝑌𝑡−𝑖 is called the auto covariance at lag i and is defined by; 

 𝜏𝑖 =  𝐶𝑂𝑉[(𝑌𝑡 , 𝑌𝑡−𝑖 )] (16) 

 The auto covariance at lag i = 0 is just the variance of the time series; 𝜏0 = 𝛿𝑌
2 

The autocorrelation at any lag i is defined as; 𝐶𝑂𝑅𝑅(𝑌𝑡  , 𝑌𝑡−𝑖) and is measured by: 

 
𝐶𝑂𝑅𝑅(𝑌𝑡  , 𝑌𝑡−𝑖) = 𝜌𝑖 =

𝜏𝑖
𝜏0
= 
𝐶𝑂𝑉[(𝑌𝑡 , 𝑌𝑡−𝑖 )]

𝛿𝑌𝑡  𝛿𝑌𝑡−𝑖
= 

𝐸[(𝑌𝑡 − 𝜇𝑦)(𝑌𝑡−𝑖 − 𝜇𝑦)]

[𝐸(𝑌𝑡 − 𝜇𝑦)
2 (𝑌𝑡−𝑖 − 𝜇𝑦)

2]
 

(17) 

Where 𝑌𝑡  is the observations at time 𝑡, 
              𝑌𝑡−𝑖  observation at time (𝑡 − 𝑖), 
              𝜏𝑖  the the covariance between 𝑌𝑡  and 𝑌𝑡−𝑖  {𝐶𝑂𝑉[(𝑌𝑡 , 𝑌𝑡−𝑖 )]},  
              𝛿𝑌𝑡  𝛿𝑌𝑡−𝑖 the variance of the time series and   𝜇𝑦 the mean 
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The collection of 𝜌𝑖 values,𝑤ℎ𝑒𝑟𝑒 𝑖 = 0,1,2…, is the Auto Correlation function (ACF). If the data are 

non-stationary, then 𝜌𝑖 = 1, for all values of i. But, if the series is stationary |𝜌𝑖| < 1. Thus for any 

defined process where 𝜌0 = 1, it is also true that 𝜌𝑖 = 𝜌−𝑖, which means, the ACF is symmetric around 

zero. 

The ACF is estimated by the sample ACF where the autocorrelation and auto covariance functions are 

estimated from a time series of finite length say 𝑌𝑡 = 𝑦1, 𝑦2, …  𝑦𝑛. Sample auto covariance: 

 
 𝑐𝑖 = 𝜏𝑖̂ = 

1

𝑛
 ∑(𝑌𝑡 − 𝜇𝑦)(𝑌𝑡−𝑖 − 𝜇𝑦)

𝑛−𝑖

𝑡=1

 where 𝑖 = 0,1,2…𝑛 
(18) 

 And the Sample auto correlation: 

 𝑟𝑖 = 𝜌̂𝑖 = 
𝑐𝑖
𝑐𝑜
 where 𝑖 = 0,1,2…𝑛 (19) 

In general, all stationary AR and ARMA processes exhibit ACF patterns that die down to zero as i 

increases while the ACF of a non-stationary AR process is always 1 for all values of i. MA processes are 

always stationary with ACF’s that cut off after certain lags. The theoretical behavior of the ACF and 

PACF is explained in the next section. 

According to Yule et al, a stationary time series can be seen as the weighted sum of the present and 

past random “disturbances” [79]. Given a stationary time series model 𝑌𝑡  that is an AR (p) process, the 

Yule-Walker equations for the ACF of an AR (p) process: 

 𝜌1 = 𝜙1 + 𝜌1𝜙2 (20) 

 𝜌2 = 𝜌1𝜙1 + 𝜙2 (21) 

 Replacing 𝜌1 = 𝑟1 and 𝜌2 = 𝑟2 we obtain   

𝑟1 = 𝜙1 + 𝑟1𝜙2 

𝑟2 = 𝑟1𝜙1 + 𝜙2 

We solve the equations to obtain the estimates: 

 
𝜙̂1 = 

𝑟1(1 − 𝑟2)

1 − 𝑟1
2
 𝑎𝑛𝑑 𝜙̂2 = 

𝑟2 − 𝑟1
2

1 − 𝑟1
2

 
(22) 

3.2.7 Partial Autocorrelation Function (PACF) 

The PACF measures the degree of association or correlation between  𝑌𝑡  and 𝑌𝑡−𝑖 when the effects 

of the other lower-order lags are held constant.  For instance, the partial autocorrelation between 𝑌𝑡 

and 𝑌𝑡−3 is the amount of correlation not explained by their common correlation with 𝑌𝑡−1 and 𝑌𝑡−2. 

It is considered when we are unaware of the appropriate autoregressive process to fit the time 
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series, and the partial autocorrelations at lags 1, 2, 3 form the PACF. Thus, for an AR (p) model, the 

PACF between 𝑌𝑡  and 𝑌𝑡−𝑖 for i > p should be equal to zero.  

Table 1: Behavior of Theoretical ACF and PACF patterns 

Model ACF PACF 

AR (p) Dies down/exponential decay Cut off after lag p 

MA (q) Cut off after lag q Dies down/exponential decay 

ARMA (p,q) Dies down/exponential decay Dies down/exponential decay 

 

3.3 ARMA Models and the Box Jenkins Methodology 

3.3.1 ARMA Models 

In 1926, Yule introduced the Auto Regressive (AR) models which were later complemented in 1937 by 

Slutsky who introduced the Moving Average (MA) models [79, 80]. In 1938, Wold combined both the 

AR and MA models into ARMA process showing that ARMA models could be used in the analysis of 

stationary time series by ensuring that appropriate number AR terms, order of p, and MA terms, order 

of q were clearly specified [81]. This meant that any time series 𝑌𝑡 could be modelled as a function of 

its past values 𝑌𝑡−1, 𝑌𝑡−2, … and the past error terms 𝑒𝑡−1, 𝑒𝑡−2  , …. However, to use the ARMA models; 

the original series 𝑌𝑡  must first be transformed to be stationary around the mean and variance; 

second, there should be a specification of the appropriate orders of p and q; third, the estimation of 

the parameters  ∅1, ∅2…∅𝑝 and/or  𝜃1, 𝜃2…𝜃𝑞 using non-linear optimization procedures to 

minimize the sum of squares or maximize the likelihood function. 

In the 1970’s, Box Jenkins popularized the use of ARMA modelling through an iterative procedure for 

Model Identification, Model Estimation, Model Checking and Diagnosis and Model Forecasting [78]. 

This involved i). Providing a guideline for making a time series stationary around the mean and 

variance, ii). Provision of visual inspection guides and computer programs for identification of 

appropriate orders of p and q, and parameter estimation, iii). Procedural diagnostic checks for residual 

analysis in which case process (i), (ii), and (iii) are repeated if the residuals are not white noise. The 

model is only considered final and used for the purposes of forecasting or control if the residuals are 

random and conform to the Gaussian distribution.  

The Box Jenkins approach proposed differencing as the procedure of making a series stationary and 

introduced the “integrated” part of the ARMA process making it an ARIMA process. The ARIMA models 

were popularized due to their wide applicability in modelling time series data as they account for all 

the components if the time series’. Differencing is a convenient way of eliminating the seasonal 

component of the time series. However, fitting an appropriate ARMA model to the differenced series 
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gives rise to a special case of general seasonal ARIMA (SARIMA) which models seasonal time series 

data [78]. 

SARIMA models have recently become popular due to their capability to account for the seasonal and 

non-stationary behavior observed in many time series’. In many cases, the dependence of the past 

tends to occur most strongly at multiples of some underlying seasonal lag s. With monthly data for 

instance, there is a strong yearly component occurring at lags that are multiples of s = 12 due to activity 

connection to the calendar year. Many physical and biological processes are likely to be disposed to 

seasonal fluctuations hence the need to introduce AR and MA polynomials that take care of the 

seasonal lags [78, 82]. 

These methods are described below: 

1. AR Model 

AR models are pegged on the idea that the current time series value  𝑌𝑡  can be expressed as a function 

of p past values in the series 𝑌𝑡−1, 𝑌𝑡−2, … 𝑌𝑡−𝑝. P determines the number of steps taken back into the 

past to forecast the current value. 

Consider the general class model from Eq. 8 for a stationary time series: 

𝑌𝑡 =  𝜇 + Ψ(ß)𝑒𝑡 =  𝜇 + ∑ 𝜓𝑖
∞
𝑖 =0 ß𝑖𝑒𝑡 

Following an exponential decay pattern, we will set 𝜓𝑖 = ∅
𝑖 where |∅| < 1 guarantees the 

“exponential decay”. Thus the weights for the current random term going back will be 1, ∅1, ∅2… 

 𝑌𝑡  =  𝜇 + ∑ ∅𝑖𝑒𝑡−𝑖 
∞
𝑖=0  (23) 

𝑌𝑡 =  𝜇 + 𝑒𝑡 +  ∅𝑒𝑡−1 + ∅
2𝑒𝑡−2 +⋯  

𝑌𝑡−1= 𝜇 + 𝑒𝑡−1 +  ∅𝑒𝑡−2 + ∅
2𝑒𝑡−3 +⋯ 

Combining the two equations and equating; 

𝑌𝑡−1 −  𝜇 =  𝑒𝑡−1 +  ∅𝑒𝑡−2 + ∅
2𝑒𝑡−3 +⋯  

 Where; ∅𝑌𝑡−1 −  ∅𝜇 =  ∅𝑒𝑡−1 + ∅
2𝑒𝑡−2 +⋯  

𝑌𝑡 = (𝜇 − ∅𝜇) +  ∅𝑌𝑡−1 + 𝑒𝑡 

 Setting; 𝛿 = (𝜇 − 𝜇∅) 

 𝑌𝑡 =  𝛿 + ∅1𝑌𝑡−1 + 𝑒𝑡 ; (24) 

Which is the first-order autoregressive process, AR (1) 

Therefore, the general AR (p) model is: 

 𝑌𝑡 =  𝛿 + ∅1𝑌𝑡−1 + ∅2 𝑌𝑡−2 +⋯+ ∅𝑝𝑌𝑡−𝑝 + 𝑒𝑡 = 𝑒𝑡 +  𝛿;  (25) 

𝑌̂𝑡 − ∑∅𝑖𝑌𝑡−𝑖

𝑝

𝑖=1

= 𝑒𝑡 +  𝛿  
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Or using the backshift operator: 

𝑌𝑡 − ∅1𝑌𝑡−1 − ∅2 𝑌𝑡−2 −⋯− ∅𝑝𝑌𝑡−𝑝 = 𝑒𝑡 +  𝛿; 

𝑌𝑡 − ∅1(ß)𝑌𝑡 − ∅2(ß
2)𝑌𝑡 −⋯−∅𝑝(ß

𝑝)𝑌𝑡 =  𝑒𝑡 +  𝛿; 

(1 − ∅1(ß) − ∅2(ß
2) − ⋯− ∅𝑝(ß

𝑝))𝑌𝑡 = 𝑒𝑡 +  𝛿; 

 ∅ (ß)𝑌𝑡 = 𝑒𝑡 +  𝛿 (26) 

                  Where ; 𝑒𝑡 is the error term 
                                ; 𝛿 = (𝜇 − 𝜇∅) is the mean of the AR process 
                                ; 𝜇 is the mean of the time series 

                  ; ∅ (ß) is the autoregressive operator of order p defined by 

  ∅(ß) = 1 − ∅1(ß) − ∅2(ß
2) − ⋯− ∅𝑝(ß

𝑝)  

Where 𝑌𝑡 is stationary and  ∅1… ∅𝑝  are constants. The AR (p) is a polynomial of degree p. 

2. MA Model 

The MA model assumes that the time series value  𝑌𝑡 can be expressed as a function of q past values 

of the random error terms in the series. A MA (q) process is always stationary regardless of values of 

the weight [61]. 

The general MA (q) model: 

 𝑌𝑡 = 𝜇 +  𝑒𝑡  − 𝜃1𝑒𝑡−1  − 𝜃2𝑒𝑡−2  −⋯− 𝜃𝑞𝑒𝑡−𝑞  = 𝜃 (ß)𝑒𝑡 +  𝜇; (27) 

𝑌𝑡 =  𝜇 + 𝑒𝑡 −∑𝜃𝑖𝑒𝑡−𝑖 

𝑞

𝑖=1

 

Or using the backshift operator: 

𝑌𝑡 −  𝜇 = 𝑒𝑡  − 𝜃1𝑒𝑡−1  − 𝜃2𝑒𝑡−2  −⋯− 𝜃𝑞𝑒𝑡−𝑞  ; 

𝑌𝑡 −  𝜇 = 𝑒𝑡  − 𝜃1(ß)𝑒𝑡  − 𝜃2(ß
2)𝑒𝑡  −⋯− 𝜃𝑞(ß

𝑞)𝑒𝑡  ; 

𝑌𝑡 −  𝜇 = (1 − 𝜃1(ß) − 𝜃2(ß
2) −⋯− 𝜃𝑞(ß

𝑞)) 𝑒𝑡  ; 

 𝑌𝑡 −  𝜇 = 𝜃(ß)𝑒𝑡  ; (28) 

                 𝑊ℎ𝑒𝑟𝑒 ;  (𝑌𝑡 −  𝜇) is the white noise;  
                              ;  𝜇 is the mean of the time series 
                               ;  𝜃(ß) is the moving average operator of order q defined by 

 𝜃(ß) = 1 − 𝜃1(ß) − 𝜃2(ß
2) − ⋯− 𝜃𝑞(ß

𝑞)  

3. ARMA Model 

ARMA models represent the linear relationship between the current and past values in a time series 

through the combination of two processes: AR process expressing 𝒀𝒕 as a function of the past values 

and a MA process expressing 𝒀𝒕  as a function of past values of the error term e. 
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The general ARMA (p, q) model: 

 𝑌̂𝑡 = 𝛿 + ∅1𝑌𝑡−1 + ∅2𝑌𝑡−2 +⋯+ ∅𝑝𝑌𝑡−𝑝 + 𝑒1 − 𝜃1𝑒𝑡−1  − 𝜃2𝑒𝑡−2 −⋯

− 𝜃𝑞𝑒𝑡−𝑞  

(29) 

𝑌̂𝑡 = 𝛿 +∑∅𝑖𝑌𝑡−𝑖

𝑝

𝑖=1

+ 𝑒𝑡 − ∑𝜃𝑖𝑒𝑡−𝑖 

𝑞

𝑖=1

 

Or using the backshift operator: 

 ∅ (ß) 𝑌𝑡 =  𝛿 + 𝜃(ß) 𝑒𝑡 (30) 

                              𝑊ℎ𝑒𝑟𝑒 ;  𝑒𝑡~ (𝜇, 𝜎
2) the white noise process; 

               ;  𝑝 and 𝑞 are autoregressive and moving average orders  

4. ARIMA Model  

A process  𝑌𝑡  is said to be ARIMA (p, d, q) if the stationary series obtained after differencing is an ARMA 

(p, q) shown below: 

 𝑍𝑡 = Ð
𝑑𝑌𝑡 = (1 −  ß)

𝑑𝑌𝑡  (31) 

In ARIMA models the random error term 𝑒𝑡 is assumed to be the white noise which is identically and 

independently distributed with a mean of 0 and common variance 𝜎2; 𝑒𝑡  ~ 𝑖𝑖𝑑 (0,  𝜎
2) 

The general ARIMA (p, d, q) model; with an AR part of order p, a MA part of order q and with a d order 

differencing is given by: 

[1 − ∅1(ß) − ∅2(ß
2) − ⋯− ∅𝑝(ß

𝑝)] (1 − ß)𝑑  𝑌𝑡 = [1 − 𝜃1(ß) − 𝜃2(ß
2) −⋯− 𝜃𝑞(ß

𝑞) 𝑒𝑡]  

 
 ∅ (ß)(1 − ß)𝑑   𝑌𝑡 = 𝛿 + 𝜃(ß) 𝑒𝑡 (32) 

OR 

 
𝑍𝑡 = ∑∅𝑖𝑍𝑡−𝑖

𝑝

𝑖=1

− ∑𝜃𝑖𝑒𝑡−𝑖 

𝑞

𝑖=1

+  𝛿 + 𝑒𝑡 
(33) 

Where          ∅𝑠 and 𝜃𝑠 are coefficients of the AR and MA processes; 
𝑝 and 𝑞 the number of past values of 𝑌𝑡  and the error term. 

5. Seasonal ARIMA (SARIMA) Models 

SARIMA models are a form of ARIMA models that incorporate the seasonality component (periodicity) 

of the time series. These models rely on seasonal lags and seasonal differences to fit seasonal patterns. 

Consider a time series with monthly observations. The current value 𝑌𝑡 might depend on the previous 

month’s value (local in-time trend) and the previous similar month from a year ago (long range trend). 

For instance the value for March might depend on the values for February and January of the same 

year and the value for March the previous year. 

 



26 
 

A pure seasonal time series only has seasonal AR and/or MA parameters. Seasonal parameters 

represent the autoregressive and moving average relationships between the time series data 

segmented by multiples of the number of periods per season. The auto-covariance between any two 

adjacent values is zero except when s = 1 at i = 12, where the auto-covariance overlaps and is 

significantly different from zero. We ignore all the lags between i = 1 and i = 11 and only consider 

lags at multiples of the period. 

A general SAR (p) model is given by: 
 

𝑌𝑡 = ∑𝛷𝑗𝑠𝑌𝑡−𝑗𝑠

𝑃

𝑗=1

 
(34) 

 
A general Seasonal MA (q) model is given by: 

 

𝑌𝑡 = 𝑒𝑡 +∑𝛩𝑗𝑠𝑒𝑡−𝑗𝑠 

𝑄

𝑗=1

 

(35) 

While the mixed SAR and SMA is given by: 

 

𝑌𝑡 = ∑𝛷𝑗𝑠𝑌𝑡−𝑗𝑠

𝑃

𝑗=1

+∑𝛩𝑗𝑠𝑒𝑡−𝑗𝑠 

𝑄

𝑗=1

+ 𝑒𝑡 

(36) 

Or 
      Φ𝑝 (ß

𝑠) 𝑌𝑡 = Θ𝑞(ß
𝑠) 𝑒𝑡 (37) 

Where 𝑌𝑡−𝑠 is of order 𝑠, 𝑌𝑡−2𝑠 𝑖s of order 2𝑠 … 𝑌𝑡−𝑝𝑠 is of order 𝑝𝑠;  and  
              𝑃 and 𝑄 are the orders of the ARMA process 

 
When the series does not only have the seasonal AR and/or MA parameters but also displays patterns 

for the local trend, we combine the local model which models the most recent months and the 

seasonal model which models what happened the previous year and the year before. When the 

seasonal aspects are combined with the regular ARMA model, we obtain a seasonal ARMA (p, q)*(P, 

Q)s. Which is: 

               Φ𝑝 (ß
𝑠)∅ (ß)𝑌𝑡 = Θ𝑞(ß

𝑠)𝜃(ß)𝑒𝑡 (38) 

With both regular and seasonal AR and MA terms. 
 
For example an ARMA (1, 1) (1, 1)12 becomes:  
 

(1 − Φ1 ß
12)(1 − ∅1ß)𝑌𝑡 = (1 − Θ1ß

12)(1 − 𝜃1ß)𝑒𝑡. 
 
Expanding this leads to a complex equation with too many terms and hence we only focus on the 

seasonal lags and the influence of the local trends (lags near zero). The SARMA model accounts for 

the lags neighboring the seasonal peaks. 
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The general multiplicative seasonal ARIMA (SARIMA) model of orders (p, d, q)*(P, D, Q)s obtained after 

applying both regular and seasonal differencing is represented by; 

 𝛷𝑝 (ß
𝑠) ∅ (ß)(1 − ß𝑠)𝐷 (1 − ß)𝑑   𝑌𝑡 = 𝛿 + 𝛩𝑄(ß

𝑠) 𝜃(ß) 𝑒𝑡 (39) 

The polynomials ∅ (ß) and 𝜃(ß)  denote the ordinary AR and MA components of orders p and q 

respectively and Φ𝑃 (ß
𝑠) = (1 − Φ1ß

𝑠 −⋯− Φ𝑝ß
𝑠𝑝)  and Θ𝑄  (ß

𝑠) = (1 − Θ1ß
𝑠 −⋯− Θ𝑄ß

𝑠𝑄) 

the seasonal AR and MA components. The D in the equation is the seasonal differencing element.  

Suppose we have a time series:  
  𝑌𝑡 =  𝜍𝑡 +  𝑋𝑡   (40) 

  Where: 𝜍𝑡  the seasonal trend with s is: 𝑋𝑡 is a stationary process 

We do a seasonal difference to get rid of the seasonal trend with s =12: 

(1 − ß𝑠) 𝑌𝑡 = (1 − ß
𝑠) 𝜍𝑡 + (1 − ß

𝑠) 𝑋𝑡   

 𝑌𝑡 −  𝑌𝑡−𝑠 = (𝜍𝑡 −  𝜍𝑡−𝑠) + ( 𝑋𝑡 −  𝑋𝑡−𝑠) 

This means that 𝜍𝑡 −  𝜍𝑡−𝑠 = 0 since s =12, removing the seasonal trend. We also consider the 

stationary process as white noise and substitute to: 

  𝑌𝑡 −  𝑌𝑡−𝑠 =  𝑒𝑡 −  𝑒𝑡−𝑠  (41) 

However, getting rid of the seasonal trend introduces dependency at lags which are multiples of the 

period. Seasonal difference accounts for this by additionally getting rid of the seasonal random walk 

type of non-stationarity. According to Box-Jenkins, the maximum values of all the parameters is two 

(2), making the operator polynomials simple expressions. 

3.3.2 Box-Jenkins Methodology 

The Box-Jenkins approach refers to a set of procedures for identifying, estimating, checking and even 

forecasting a time series model within the class of ARIMA models. ARIMA models use historical or past 

values of a variable of interest, and/or the random error term as explanatory variables to forecast its 

future values. The variable of interest should be a time series with equally spaced time intervals.  

Let’s consider a discrete time series 𝑌𝑡 = 𝑌1, 𝑌2, …  𝑌𝑛.  

The underlying principle of the Box-Jenkins procedure is that it considers the observed time series 𝑌𝑡 

as an output of inputs from an unobservable random process. These inputs are a series of independent 

random shocks 𝑒𝑡 , which are assumed to be normally distributed with a zero mean and a constant 

variance, and referred to as white noise. In simple terms, the approach views a time series as a result 

of the transformation of a white noise process through a “linear filter” to obtain a particular set of 
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outputs, which we now refer as the observed time series. ARIMA models of this form assume that the 

observed time series values may be dependent on; 

1. The previous and current inputs (random shocks/white noise) 

2. The previous output values of the time series under study [𝑌𝑡−1, 𝑌𝑡−2, …] in varying 

 proportions 

However, the Box-Jenkins approach assumes that the conditions at which the data is collected remain 

the same over time. If the assumption is not appropriate, a transfer function-noise model where a set 

of input variables which might have an effect on the time series are added to the model. 

1. Model Building Strategy 

Box-Jenkins defined a four step iterative procedure for Model Identification, Model Estimation, Model 

Checking and Diagnosis, and Model Forecasting. The steps are described below. 

Step 1: Model Identification 

This step involves the identification of a tentative model, whether multiplicative or additive, and 

establishing the number of parameters involved and their combinations. This is done through analysis 

of historical data.  

Visual inspection of time series plots is the first assessment tool. The first step is to consider the ACF 

and the PACF graphs to determine whether the series is stationary or not. Additionally, unit root tests 

are performed on the data to confirm stationarity and/or to make sure that differencing is necessary. 

If the series is non-stationary the series has to be either differenced to make it stationary in mean, or 

transformed if the covariance between any two observations 𝑌𝑡 and 𝑌𝑡+𝑖 is not constant over time. 

However, differencing should be done with care to avoid the issue of over-differencing which might 

introduce dependence where none exists.  

Secondly, a proposed model is estimated by finding the initial values (p, q, d) of the model parameters. 

This is done through looking at the significant coefficients in the ACF and PACF plots. The AC’s and 

PAC’s are compared with theoretical values to investigate candidate models. This procedure leads to 

deployment of various diagnostic tests which are conducted to first confirm stationarity of the series 

and check model fit. If the residual analysis confirms inadequacy of any particular model, a new model 

is proposed. The process is repeated until potential models are identified. 

When the time series data has the seasonality component, seasonal differencing is recommended to 

make the data stationary. A seasonal difference is the difference between an observation 𝑌𝑡 and the 
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corresponding observation from the previous year 𝑌𝑡−𝑠; where s is the length of the season. It is 

recommended that the seasonal differencing be done before the first difference of the whole series 

as this might make the data stationary.  

Step 2: Model Estimation  

This is the process of estimating the model parameters after selecting a tentative model. The 

parameter estimates should be significant, with each providing a substantial contribution to the model 

for the most accurate forecasts. There are a number of ways to estimate autoregressive and moving 

averages parameters in ARMA models such as: 

 Least Squares Estimation Method 

 Maximum Likelihood Estimation Method 

1. Least Squares Estimation 

Consider an AR (1) model: 

 𝑌𝑡 −  𝜇 =  ∅[𝑌𝑡−1 −  𝜇] + 𝑒𝑡 (42) 

Which can be regarded as a regression with predictor 𝑌𝑡−1and response variable 𝑌𝑡. 

We solve by minimizing the sum of squares of the differences: (𝑌𝑡 −  𝜇) − (∅(𝑌𝑡−1 −  𝜇)) and 

summing from 𝑡 − 2 to 𝑡 − 𝑛 since we only have 𝑌1, 𝑌2, … , 𝑌𝑛 observations; 

Let: 

 
𝑆𝑐 (∅, 𝜇) =  ∑[(𝑌𝑡 −  𝜇) −  ∅(𝑌𝑡−1 −  𝜇)]2

𝑛

𝑡=2

 
(43) 

Be the conditional sum of squares. 

We minimize 𝑆𝑐(∅, 𝜇) given 𝑌1, 𝑌2, … , 𝑌𝑛 to estimate ∅ and 𝜇 

Consider with respect to 𝜇  

𝜕𝑆𝑐
𝜕𝜇

=  ∑[(𝑌𝑡 −  𝜇) −  ∅(𝑌𝑡−1 −  𝜇)] (−1 + ∅) =  0

𝑛

𝑡=2

 

 
𝜇 =  

1

(𝑛 − 1)(1 − ∅)
[∑𝑌𝑡

𝑛

𝑡=2

−  ∅∑𝑌𝑡−1

𝑛

𝑡=2

] 
(44) 

For large values of n 

1

(𝑛 − 1)
∑𝑌𝑡

𝑛

𝑡=2

 ≈  
1

(𝑛 − 1)
∑𝑌𝑡−1

𝑛

𝑡=2

 ≈ 𝑌̅ 

Which reduces to: 𝜇̂ =  
1

(1−∅)
(𝑌̅ −  ∅𝑌̅) =  𝑌̅ 
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 Consider with respect to 𝜙 and minimize 𝑆𝑐(𝜙, 𝑌̅) 

𝜕𝑆𝑐(∅, 𝑌̅)

𝜕∅
= ∑[(𝑌𝑡 − 𝑌̅) −  ∅(𝑌𝑡−1 − 𝑌̅)] (𝑌𝑡−1 − 𝑌̅) =  0

𝑛

𝑡=2

 

 
 𝜙̂ =  

∑ [(𝑌𝑡 − 𝑌̅) (𝑌𝑡−1 − 𝑌̅)]
𝑛
𝑡=2

∑  (𝑌𝑡−1 − 𝑌)̅̅ ̅
2𝑛

𝑡=2

 
(45) 

To estimate ∅ for an AR (p) model, we need to consider the second order AR (2) model and replace 𝜇 

with 𝑌̅.  

 
𝑆𝑐(∅1, ∅2, 𝑌̅) =  ∑[(𝑌𝑡 − 𝑌̅) − ∅1(𝑌𝑡−1 − 𝑌̅) − ∅2(𝑌𝑡−2 − 𝑌̅)]

2

𝑛

𝑡=3

 
(46) 

Setting  
𝜕𝑆𝑐
𝜕∅1

= 0 

We have: −2∑ [(𝑌𝑡 − 𝑌̅) − ∅1(𝑌𝑡−1 − 𝑌̅) − ∅2(𝑌𝑡−2 − 𝑌̅)]
𝑛
𝑡=3 (𝑌𝑡−1 − 𝑌̅) =  0 

Re-writing the equation to 

∑(𝑌𝑡 − 𝑌̅)(𝑌𝑡−1 − 𝑌̅

𝑛

𝑡=3

) =  [∑(𝑌𝑡−1 − 𝑌̅)
2

𝑛

𝑡=3

]∅1 + [∑(𝑌𝑡−1 − 𝑌̅)(𝑌𝑡−2 − 𝑌̅

𝑛

𝑡=3

)]∅2 

And dividing both sides by∑(𝑌𝑡 − 𝑌̅)
2

𝑛

𝑡=3

 

We obtain: 

 𝑟1 = ∅1 + 𝑟1∅1 (47) 

 Using 
𝜕𝑆𝑐
𝜕∅2

= 0 

We have: 

  𝑟2 = 𝑟1∅1 + ∅2 (48) 

Consider an MA (1) model: 𝑌𝑡 = 𝑒𝑡 −  𝜃𝑒𝑡−1  

Invertible MA (1) models can be expressed as: 

 𝑌𝑡 =  𝑒𝑡 −  𝜃𝑌𝑡−1 − 𝜃
2𝑌𝑡−2 −⋯ ; of infinite order (49) 

The method of least squares can be carried out by choosing  𝜃 that minimizes 

 𝑆𝑐(𝜃) =  ∑[𝑒𝑡]
2 = ∑[𝑌𝑡 +  𝜃𝑌𝑡−1 + 𝜃

2𝑌𝑡−2 +⋯]
2 (50) 

 Where 𝑒𝑡 = 𝑒𝑡(𝜃) a function of the observed series and unknown parameter 𝜃 
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For moving averages, we result to numerical optimization, because first, the least squares is non-linear 

in the parameters and it is not possible to minimize 𝑆𝑐(𝜃) by taking a derivative with respect to 𝜃 and 

setting it to zero. We thus consider evaluating 𝑆𝑐(𝜃) for a single value of 𝜃 for our series. 

We could re-write the MA (1) model to:  

𝑒𝑡 = 𝑌𝑡 +  𝜃𝑒𝑡−1  

to calculate 𝑒1, 𝑒2, … , 𝑒𝑛 recursively if we have the initial value 𝑒0. A common approach is to 

set 𝑒0 = 0 the expected value for the mean of the random part. 

Thus: 𝑒1 = 𝑌1, 𝑒2 = 𝑌2 + 𝜃𝑒1, … , 𝑒𝑛 = 𝑌𝑛 + 𝜃𝑒𝑛−1 

We then calculate: 𝑆𝑐(𝜃) =  ∑[𝑒𝑡]
2 conditioning on  𝑒0 = 0 

For higher order MA models, we compute 𝑒𝑡 = 𝑒𝑡(𝜃1, 𝜃1, … , 𝜃𝑞) recursively from: 

 𝑒𝑡 = 𝑌𝑡 +  𝜃𝑒𝑡−1 +⋯+ 𝜃𝑞𝑒𝑡−𝑞: with 𝑒0 = 𝑒−1 = ⋯ = 𝑒−𝑞 = 0 (51) 

 The sum of squares is minimized jointly in 𝜃1, 𝜃1, … , 𝜃𝑞 in a multivariate methods. 

For Mixed AR and MA models 

Consider ARMA (1, 1) case where 

𝑌𝑡 =  ∅𝑌𝑡−1 + 𝑒𝑡 −  𝜃𝑒𝑡−1 

     As in pure MA case, we consider: 𝑒𝑡 = 𝑒𝑡(∅,𝜃) and wish to minimize: 𝑆𝑐(∅, 𝜃) =  ∑[𝑒𝑡]
2  

Re-writing the equation to: 𝑒𝑡 = 𝑌𝑡 −  ∅𝑌𝑡−1 +  𝜃𝑒𝑡−1 

To obtain 𝑒1we have to have 𝑌0. One approach is to set 𝑌0 = 0 or to 𝑌0 = 𝑌̅ if the series has a non-

zero mean. The other approach is to avoid 𝑌0 completely by begin recursion at 𝑡 − 2 and minimize: 

𝑆𝑐(∅, 𝜃) =  ∑[𝑒𝑡]
2 

For the general ARMA (p,q) model, consider the computation: 

 𝑒𝑡 = 𝑌1 − ∅1𝑌𝑡−1 − ∅2𝑌𝑡−2 −⋯−∅𝑝𝑌𝑡−𝑝 + 𝜃1𝑒𝑡−1 + 𝜃2𝑒𝑡−2 +⋯+ 𝜃𝑞𝑒𝑡−𝑞 (52) 

With 𝑒𝑝 = 𝑒𝑝−1 = ⋯ = 𝑒𝑝+1−𝑞 = 0 and then minimize 𝑆𝑐(∅1, ∅2, … ,∅𝑝, 𝜃1, 𝜃2, … , 𝜃𝑞) 

numerically to obtain the conditional least squares parameter estimates 

2. Maximum Likelihood Estimation 

Given a time series 𝑌1, 𝑌2, … , 𝑌𝑛 the likelihood function 𝐿 is defined as the joint probability of obtaining 

the observed series data. It is considered a function of the unknown model parameters with the 

observed data held fixed. Maximum likelihood estimators are those parameter values for which the 

actual data observed are most likely, that is, values that maximize the likelihood function. 
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Consider an AR (1) model 

We assume that the error terms are uncorrelated, normally distributed as 𝑁(0, 𝜎𝑒). The probability 

distribution function of each 𝑒𝑡 follows that of a normal distribution and is: 

 
(2𝜋𝜎𝑒

2)−1/2 𝑒𝑥𝑝 {−
𝑒𝑡
2

2𝜎𝑒
2} ; for − ∞ < et <  ∞ 

(53) 

By independence, the joint probability distribution for 𝑒2, 𝑒3, … , 𝑒𝑛 is 

(2𝜋𝜎𝑒
2)−(𝑛−1)/2 exp {−

1

2𝜎𝑒
2
∑[𝑒𝑡]

2

𝑛

𝑡=2

} 

Consider the equations: 

𝑌2 −  𝜇 =  ∅[𝑌1 −  𝜇] + 𝑒2 

𝑌3 −  𝜇 =  ∅[𝑌2 −  𝜇] + 𝑒3 

. 

. 

    𝑌𝑛 −  𝜇 =  ∅[𝑌𝑛−1 −  𝜇] + 𝑒𝑛 

Conditioning 𝑌1 = 𝑦1 these equations define a linear transformation between 𝑒2, 𝑒3, … , 𝑒𝑛 and 

𝑌2, 𝑌3, … , 𝑌𝑛 (Jacobian Transformation). Thus the joint pdf of 𝑌2, 𝑌3, … , 𝑌𝑛is obtained as: 

 
𝑓(𝑦2, 𝑦3, … , 𝑦𝑛|𝑦1 =  (2𝜋𝜎𝑒

2)−
𝑛−1
2 ∗ 𝑒𝑥𝑝 {−

1

2𝜎𝑒
2
∑[(𝑦𝑡 −  𝜇) −  ∅(𝑦𝑡−1 −  𝜇)]

2

𝑛

𝑡=2

} 
(54) 

We now consider the marginal distribution of 𝑌1 which is a normal distribution with mean 𝜇 and 

variance 𝜎𝑒
2/(1 − ∅2) . The joint probability distribution of 𝑌1, 𝑌2, … , 𝑌𝑛is thus obtained by 

multiplying the conditional probability distribution above by the marginal distribution of 𝑌1. 

The likelihood function for an AR (1) model defined as a function of the parameter ∅, 𝜇, 𝜎𝑒
2 is given 

by: 

 
𝐿(∅, 𝜇, 𝜎𝑒

2) =  (2𝜋𝜎𝑒
2)−𝑛/2(1 − ∅2)1/2 𝑒𝑥𝑝 {−

1

2𝜎𝑒
2
𝑆(∅, 𝜇)} 

(55) 

Where 

𝑆(∅, 𝜇) =  ∑[(𝑌𝑡 −  𝜇) − ∅(𝑌𝑡−1 −  𝜇)
2 + 

𝑛

𝑡=2

(1 − ∅2)(𝑌𝑡 −  𝜇) 

Which is referred to as the unconditional sum of squares. 

Practically, we obtain the log of the likelihood function. For an AR (1) model, the log-likelihood function 

is: 
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𝑙(∅, 𝜇, 𝜎𝑒

2) =  −
𝑛

2
𝑙𝑜𝑔(2𝜋) −

𝑛

2
𝑙𝑜𝑔(𝜎𝑒

2) +
1

2
𝑙𝑜𝑔(1 − ∅2) −

1

2𝜎𝑒
2
𝑆(∅, 𝜇) 

(56) 

For given values of ∅ and 𝜇 we can maximize 𝑙(∅, 𝜇, 𝜎𝑒
2) systematically with respect to 𝜎𝑒

2 in terms 

of the unknown values of ∅ and 𝜇 to obtain: 

 
𝜎̂𝑒
2 = 

𝑆𝑐(∅̂, 𝜇̂)

𝑛
 

(57) 

to obtain estimators with less bias, we divide by 𝑛 − 2 instead of 𝑛 since we are estimating 

two parameters. 

To estimate ∅ and 𝜇 we compare the unconditional sum of squares 𝑆(∅, 𝜇) with the conditional sum 

of squares 𝑆𝑐(∅, 𝜇) to get: 

𝑆(∅, 𝜇) =  𝑆𝑐(∅, 𝜇) + (1 − ∅
2)(𝑌𝑡 −  𝜇)

2 

Hence: 

𝑆(∅, 𝜇) ≈  𝑆𝑐(∅, 𝜇) 

Since 𝑆𝑐(∅, 𝜇) involves a sum of 𝑛 − 1 with (1 − ∅2)(𝑌𝑡 −  𝜇)
2 not involving 𝑛.  

We can also minimize 𝑆(∅, 𝜇) numerically as 
𝜕𝑆

𝜕∅
= 0 and 

𝜕𝑆

𝜕𝜇
= 0 are non-linear in ∅ and 𝜇 due to the 

term (1 − ∅2)(𝑌𝑡 −  𝜇)
2). This results in unconditional least squares estimates. 

Following parameter estimation, the most parsimonious model is selected using appropriate criterion 

from the pool of potential models identified. The Akaike Information Criterion (AIC) and the Schwarz 

Bayesian Information Criterion (BIC) are the two common goodness-of-fit statistics that are often used 

for model selection. The model with the lowest AIC and BIC is usually selected as the best fit.  

The formula for the AIC is: 
 𝐴𝐼𝐶 = −2 𝑙𝑛 𝐿 +  2𝑚 (58) 

 
The BIC is given as: 

 𝐵𝐼𝐶 = −2 𝑙𝑛 𝐿 + 𝑙𝑛(𝑛)𝑚 (59) 

 𝑊ℎ𝑒𝑟𝑒: 𝑚 is the number of model parameters (𝑚 = 𝑝 + 𝑃 + 𝑄 + 𝑞); 
               ∶ 𝑛 is the number of residuals that can be computed from the time series 

 
Step 3: Model Diagnostics Checking 

This step involves checking model adequacy, and if necessary incorporating potential improvements. 

Model checking is done through residual analysis. If the identified model is adequate, the residual 

observations should be transformed to a white noise process where the residuals are random and 

have the normal distribution. By studying the ACF plots of the residuals, we can establish whether the 

AC’s and PAC’s are small and significant enough to consider the model adequate. If the 
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autocorrelations are large, the values of p and/or q are adjusted and the model re-estimated until the 

best fit model is estimated. 

The residuals of an ARMA (p, q) can be obtained as below: 

 

𝑒̂𝑡 = 𝑌̂𝑡 −  (𝛿̂  +∑∅̂𝑖𝑌𝑡−𝑖

𝑝

𝑖=1

− ∑𝜃𝑖̂𝑒̂𝑡−𝑖 

𝑞

𝑖=1

) 

(60) 

Consider the sample ACF of the residuals denoted by 𝑟𝑒(𝑖). If the model is appropriate, the residual 

sample ACF should not have an identifiable structure. That is, the autocorrelation should not be 

significantly different from zero for all lags greater than 1. 

Comparatively, other than considering the residual terms individually, we could obtain an indication 

if the first i residual correlations considered together are sufficient to indicate model adequacy. The 

approximate Box-Pierce chi-square test statistic is: 

 
𝑄𝐵𝑃 =  𝑡∑𝑟𝑒

2(𝑖)

𝑛

𝑖=1

; a chisquare dist with (n − p − q)df 
(61) 

If the model is not appropriate or is inadequate, the calculated Q will be too large and hence the null 

hypothesis of model adequacy should be rejected if it exceeds an approximate upper tail point of the 

chi-square distribution. A modification of the Box-Pierce statistic is the Ljung-Box goodness-of-fit 

statistics which works better with small samples [83]: 

 
𝑄𝐿𝑃 = 𝑡(𝑡 + 2)∑[

1

𝑡 − 𝑖
]

𝑛

𝑖=1

𝑟𝑒
2(𝑖); a chisquare dist with (n − p − q)df 

(62) 

Where the squared sample autocorrelation at lag i is weighted by (𝑡 + 2)/(𝑡 − 𝑖). 

Step 4: Forecasting 

Forecasting is the last stage after the model has been identified and fitted. The model may be used to 

generate forecasts of future values. If we denote the current time as t, the forecast for 𝑌̂𝑡+𝑘  is the k-

period-ahead forecast denoted by 𝑌̂𝑡+𝑘 (𝑡).  

For an ARIMA (p, d, q) process at time 𝑡 + 𝑘 (k periods in the future) the model is: 

 

𝑌̂𝑡+𝑘 = 𝛿 + ∑∅𝑖𝑌𝑡+𝑘−𝑖

𝑝+𝑑

𝑖=1

+ 𝑒𝑡+𝑘 − ∑𝜃𝑖𝑒𝑡+𝑘−𝑖 

𝑞

𝑖=1

 

(63) 

Considering the infinite MA representation of a stationary process; 

𝑌𝑡+𝑘 =  𝜇 + ∑𝜓𝑖

∞

𝑖 =1

𝑒𝑡+𝑘−𝑖 

We can partition the equation as  
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𝑌𝑡+𝑘 =  𝜇 + ∑𝜓𝑖

𝑡−1

𝑖 =1

𝑒𝑡+𝑘−𝑖 + ∑𝜓𝑖

∞

𝑖 =𝑘

𝑒𝑡+𝑘−𝑖 
(64) 

Where the ∑ 𝜓𝑖
𝑡−1
𝑖 =1 𝑒𝑡+𝑘−𝑖 component involves the present and past errors, and the 

∑ 𝜓𝑖
∞
𝑖 =𝑘 𝑒𝑡+𝑘−𝑖 component involves the future errors.  

Hence, the best forecast in the sense of the mean square is; 

 
𝑌̂𝑡+𝑘 (𝑡) = 𝐸(𝑌𝑡+𝑘−𝑖|𝑌𝑡 , 𝑌𝑡−1…) =  𝜇 + ∑𝜓𝑖

∞

𝑖 =𝑘

𝑒𝑡+𝑘−𝑖 
(65) 

Since 𝐸(𝑌𝑡+𝑘−𝑖|𝑌𝑡 , 𝑌𝑡−1…) =  {
0, 𝑖𝑓 𝑖 < 𝑘

𝑒𝑡+𝑘−𝑖 ,   𝑖𝑓 𝑖 ≥ 𝑘           
  

And the forecast error  

 
𝑒𝑡(𝑘) =  𝑌𝑡+𝑘 − 𝑌̂𝑡+𝑘(𝑡) =  ∑𝜓𝑖

𝑘−1

𝑖 =0

𝑒𝑡+𝑘−𝑖 
(66) 

Where: 𝐸[𝑒𝑡(𝑘)] = 0; 

                             𝑉𝑎𝑟[𝑒𝑡(𝑘)] = 𝑉𝑎𝑟 [∑𝜓𝑖

𝑘−1

𝑖 =0

𝑒𝑡+𝑘−𝑖] =  ∑𝜓𝑖
2

𝑘−1

𝑖 =0

𝑉𝑎𝑟(𝑒𝑡+𝑘−𝑖) 

                                                    =  𝜎2∑𝜓𝑖
2

𝑘−1

𝑖 =0

 

                                    =  𝜎2(𝑘);where 𝑘 = 1, 2, … 

The variance of the forecast error gets bigger with increasing forecast lead times k.  

Since the random shocks are assumed to be normally distributed, then the forecast errors will be 

normally distributed with 𝑁(0, 𝜎2(𝑘)). We can then obtain the 100(1-α) % prediction intervals for 

future observations as shown below; 

𝑃(𝑌̂𝑡+𝑘 (𝑡) − 𝑧[∝
2
]
𝜎(𝑘) < 𝑌𝑡+𝑘(𝑡) <  (𝑌̂𝑡+𝑘 (𝑡) + 𝑧[∝

2
]
𝜎(𝑘) =   1 − α 

Where 𝑧
[
∝

2
]
 is the upper [

∝

2
] percentile of the standard normal distribution 𝑁(0, 1). Hence the 100(1-

α) percent prediction interval for 𝑌𝑡+𝑘 is 

𝑌̂𝑡+𝑘 (𝑡) ∓ 𝑧[∝ 
2
]
𝜎(𝑘) 

However, the forecast equation has two major issues; it involves infinitely many terms in the past but 

we only have a finite data amount practically and secondly, it requires knowledge of the strength of 

the random shocks in the past which is impractical.  

The past random shocks are estimated through a one-step-ahead forecasts as below; 
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𝑒̂𝑡 = 𝑌𝑡 − [𝛿̂ + ∑ ∅𝑖𝑌𝑡−𝑖

𝑝+𝑑

𝑖=1

− ∑𝜃𝑖𝑒𝑡−𝑖 

𝑞

𝑖=1

] ;  

(67) 

 Recursively by setting the initial values of the random shocks to zero for 𝑡 < 𝑝 + 𝑑 + 1. 

 

3.4. Forecasting with Decomposition and Exponential Smoothing Methods 

The class of ARIMA models has been applied in varied fields for in and post sample forecasting. 

However, empirical studies have shown that simpler methods such as moving averages, exponential 

smoothing and regression were equally as good or performed better than the more complex ARIMA 

models [10, 64, 74]. This could be due to the high levels of randomness in most time series data and 

the un-definitiveness of the constancy of relationships or patterns. Hence, to investigate whether the 

ARIMA models adopted above are the most appropriate for model fitting and/or out-of-sample 

forecasting, the simpler methods are described in detail and compared with the Box-Jenkins method 

for malaria forecasting.  

3.4.1 Seasonal Adjustment using STL 

Consider an additive time series: 𝑌𝑡 = 𝑙𝑡 + 𝑠𝑡 + 𝑒𝑡 = 𝑠𝑡 + 𝑑𝑡 

Where 𝑑𝑡 = 𝑙𝑡 + 𝑒𝑡  is the seasonally adjusted component 

Seasonal adjustment involves decomposing a time series and separately forecasting the seasonal 

component 𝑠̂𝑡 and the seasonally adjusted component 𝑑̂𝑡. It is assumed that the seasonal component 

is constant from year to year or changing very slowly. 

The seasonal component is forecast by setting each forecast to be equal to the last observed value 

from the same season (same month) in the previous year. The seasonal naive forecast for time 𝑡 + 𝑘 

is expressed as: 

𝑌𝑡+𝑘−ℎ𝑚 ; where 𝑚 = seasonal period and ℎ = [
𝑘 − 1

𝑚
] + 1 

To forecast the seasonally adjusted component, exponential smoothing models may be used. 

3.4.2 Exponential Smoothing Methods 

While simple averages weight past observations equally, exponential smoothing assigns exponentially 

decreasing weights to older observations where recent observations are given relatively more weight 

than older observations. Different smoothing parameters determine the weights assigned to 

observations. It was first suggested by C.C Holt in 1957 to be used for non-seasonal time series with 

no trend (Simple Exponential Smoothing). In 1958, the methodology was updated to handle trends 
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(Holt’s Linear Trend Method), and in 1965, winters generalized the method to include the seasonality 

component of a time series hence the “Holt-Winters Method” name [84]. 

The general class of models for modelling time series data as a function of time can be represented 
as; 

𝑌𝑡 = 𝑓(𝑡: 𝛽) + 𝑒𝑡 

Where 𝛽 is a vector of unknown parameters and 𝑒𝑡 the uncorrelated errors 

In exponential smoothing, the smoothers are the estimates for the process level (model estimation 

parameters) in any given constant process. In our case, we need to estimate 𝛽0 which is an estimator 

for 𝜇, the general mean of the time series. 

 

We introduce the sum of squared errors for the constant process; 
 

𝑆𝑆𝐸 =  ∑(𝑌𝑖 −  𝜇)
2

𝑡

𝑖=1

 

(68) 

Assuming that different observations shouldn’t have equal influence on the sum of squares, we 

introduce a set of weights geometrically decreasing in time with a discount factor 𝜗 on previous 

observations which is the weighting parameter; 

𝑆𝑆𝐸∗ = ∑𝜗𝑖(𝑌𝑡−𝑖

𝑡−1

𝑖=0

− 𝛽0)
2 ;  where |𝜗| < 1. 

To find the least square estimate for 𝛽0, we take the derivative with respect to 𝛽0and set it to zero 

𝑑𝑆𝑆𝐸∗

𝑑𝛽0
]
𝛽0

= −2∑𝜗𝑖(𝑌𝑡−𝑖 − 𝛽̂0)

𝑡−1

𝑖=0

= 0 

The solution thus becomes:  

𝛽̂0∑𝜗𝑖  

𝑡−1

𝑖=0

= ∑𝜗𝑖𝑌𝑡−𝑖

𝑡−1

𝑖=0

               
𝑦𝑖𝑒𝑙𝑑𝑠
→                 𝛽̂0 =

1 − 𝜗

1 − 𝜗𝑖
 ∑𝜗𝑖𝑌𝑡−𝑖

𝑡−1

𝑖=0

 

And with large i, 𝜗𝑖 goes to zero; 
 

𝛽̂0 = (1 − 𝜗)∑𝜗𝑖𝑌𝑡−𝑖

𝑡−1

𝑖=0

 

(69) 

It is clear that; 𝛽̂0  ≈  𝑌̂𝑡 

a. Single Exponential smoothing 

In a single exponential smoothing process, the discount factor on previous observations 𝜗 is 

introduced to obtain the exponentially weighted average: 

 

𝑌̂𝑡 = (1 − 𝜗)∑𝜗𝑖𝑌𝑡−𝑖

𝑡−1

𝑖=0

   
𝑦𝑖𝑒𝑙𝑑𝑠
→      𝑌̂𝑡 = (1 − 𝜗)(𝑌𝑡 + 𝜗𝑌𝑡−1 +⋯+ 𝜗

𝑡−1𝑌1) 

(70) 
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Which can also be expressed as a linear combination of the current observation and the smoothed 

observations at previous time points: 

𝑌̂𝑡 = (1 − 𝜗)𝑌𝑡 + (1 − 𝜗)(𝜗𝑌𝑡−1 + 𝜗
2𝑌𝑡−2 +⋯+ 𝜗

𝑡−1𝑌1) 

𝑌̂𝑡 = (1 − 𝜗)𝑌𝑡 + 𝜗(1 − 𝜗)(𝑌𝑡−1 + 𝜗
1𝑌𝑡−2…+ 𝜗

𝑡−2𝑌1) 

 Since: 𝑌̂𝑡−1 = (1 − 𝜗)(𝑌𝑡−1 + 𝜗
1𝑌𝑡−2…+ 𝜗

𝑡−2𝑌1) 

𝑌̂𝑡 = (1 − 𝜗)𝑌𝑡 + 𝜗𝑌̂𝑡−1 

The simple exponential smoother is often expressed as: 𝜆 = (1 − 𝜗) with 𝜆 representing the weight 

on the last observation and (1 − 𝜆) the weight put on the smoothed value of the previous 

observations. 

 
𝑌̂𝑡 = 𝜆𝑌𝑡 + (1 − 𝜆)𝑌̂𝑡−1 

(71) 

The initial value 𝑌̂0 is needed in recursive calculations that start with 𝑌̂1 = 𝜆𝑌1 + (1 − 𝜆)𝑌̂0 and the 

value needs to be estimated as shown; 

𝑌̂1 = 𝜆𝑌1 + (1 − 𝜆)𝑌̂0 

𝑌̂2 = 𝜆𝑌2 + (1 − 𝜆)𝑌̂1 =  𝜆(𝑌2 + (1 − 𝜆)𝑌1) + (1 − 𝜆)
2𝑌̂0  

. 

𝑌̂𝑡 =  𝜆[𝑌𝑡 + (1 − 𝜆)𝑌𝑡−1 +⋯+ (1 − 𝜆)
𝑡−1𝑌1] + (1 − 𝜆)

𝑡𝑌̂0  

Which means that as t gets large and (𝟏 − 𝝀)𝒕 gets small, the contribution of 𝑌̂𝑡 and 𝑌̂0 becomes 

insignificant. For large datasets, two common estimates for 𝑌̂0 are; 

 Set 𝑌̂0 = 𝑌̂1, which is only reasonable if changes in the process are expected to occur early in 

the series and fast; 

 Take the average of the available data 𝑌̅ and set 𝑌̂0 = 𝑌̅, which is preferred if the process can 

be assumed to be locally constant at the beginning 

The value of 𝜆 has been proposed in literature to vary between 0.1 and 0.4. 

The single exponential smoothing technique is not suitable when there is a linear trend or seasonal 

pattern in the series data as the fitted values are often over or underestimating the actual values. If it 

is a biased estimator of the model parameters, a double exponential smoother is considered.  

b. Double Exponential Smoothing 

A second-order exponential smoothing is applied on 𝑌̂𝑡  where: 
 

𝑌̂𝑡
(2)
= 𝜆𝑌̂𝑡

(1)
+ (1 − 𝜆)𝑌̂𝑡−1

(2)
 

(72) 

Where 𝑌̂𝑡
(1)
 𝑎𝑛𝑑 𝑌𝑡

(2) denote the first and second-order smoothed exponentials respectively. 

Based on the Holt’s methods, the “Double Exponential Smoothing” method divides the series into two 

parts: The level 𝐿𝑡 and the trend, 𝑇𝑡; the two components are: 
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𝐿𝑡 =  𝛼𝑌𝑡 + (1 − 𝛼)(𝐿𝑡−1 + 𝑇𝑡−1) 

𝑇𝑡 = 𝛾(𝐿𝑡 + 𝐿𝑡−1) + (1 − 𝛾)𝑇𝑡−1 

(73) 

For a given set of 𝛼 and 𝛾, both 𝐿𝑡 and  𝑇𝑡 are calculated. The level equation is composed of the 

weighted average of observation 𝑌𝑡 and the within sample one-step-ahead forecasts for time t. The 

trend equation is composed of the weighted average of the estimated trend at time t and the previous 

estimate of the trend 𝑇𝑡−1. The k-ahead forecast is thus equal to the last estimated level value plus k 

times the last estimated trend value; a linear function of k. 

While the higher-order (polynomial) and double exponential smoothing techniques are less biased 

than the single exponential smoothing technique, they do not capture the periodic oscillations in data 

referred to as seasonal patterns, which are observed in time series modelling of most disease trends.  

c. Holt-Winters Smoothing (Triple Exponential Smoothing) 

The exponential smoothing methodology, Holt Winters Smoothing, introduced by Holt in 1957 and 

Winters in 1960 is used to model seasonal time series data [84]. It involves a seasonal adjustment 

made to the linear trend model.  

For the Additive model where; 

𝑌𝑡 = 𝑙𝑡 + 𝑠𝑡 + 𝑒𝑡 

𝑙𝑡, the linear trend is a function of time; 𝑒𝑡 the error term and; 𝑆𝑡 represents the seasonal component 

with 𝑆𝑡 = 𝑆𝑡+𝑠 = 𝑆𝑡+2𝑠…  𝑓𝑜𝑟 𝑡 = 1,… , (𝑠 − 1). S is the length of the period of the cycles. However, 

a restriction on the model is that seasonal adjustments add up to zero during one period; 

∑𝑆𝑡

𝑠

𝑡=1

= 0 

To forecast future values, we first deploy the first-order exponential smoothers with different discount 

factors. The following procedure is for updating the parameter estimates once the current 

observation 𝑌𝑡 is obtained; 

Step 1: Update 𝐿𝑡 estimates using  

𝐿̂𝑡 = 𝜆1(𝑌𝑡 − 𝑆̂𝑡−𝑠) + (1 −  𝜆1)(𝐿̂𝑡−1 + 𝛽1.𝑡−1) 

Where 0 < 𝜆1 < 1. The first part in the equation is the “current value” for 𝐿𝑡 and the second part is 

the forecast of 𝐿𝑡 based on the estimates at (𝑡 − 1). 

Step 2: Update the estimate of 𝛽1 using 

𝛽̂1.𝑡 = 𝜆2 (𝐿̂𝑡 − 𝐿̂𝑡−1) + (1 −  𝜆2)𝛽1.𝑡−1 

Where 0 < 𝜆2 < 1. The estimate of 𝛽1  is a linear combination of the “current value” for 𝛽1 and the 
“forecast” at (𝑡 − 1). 

Step 3: Update the estimate of 𝑆𝑡  using 
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𝑆̂𝑡 = 𝜆3(𝑌𝑡 − 𝐿̂𝑡) + (1 −  𝜆3)𝑆̂𝑡−𝑠 

Where 0 < 𝜆3 < 1. 

Step 4: Finally the k-step-ahead forecast;  𝑌̂𝑡+𝑘(𝑡) is 

𝑌̂𝑡+𝑘 (𝑡) =  𝐿̂𝑡 + 𝛽1.𝑡𝑘 + 𝑆̂𝑡 (𝑘 − 𝑆) 

The problem is in the estimating the initial values of the exponential smoothers. For a given set of 

historic data with m seasons, thus ms observations, the least squares estimator can be used. 

 
𝑌𝑡 = 𝛽0 + 𝛽1𝑡 + ∑𝛾𝑖(𝐼𝑡,𝑖 − 𝐼𝑡,𝑠) + 𝑒𝑡

𝑠−1

𝑖=1

 
(74) 

Where 𝐼𝑡,𝑖 = {
1, 𝑡 = 𝑖, 𝑖 + 𝑠, 𝑖 + 2𝑠,   
0,                 otherwise

   

 

3.5 Evaluating Forecasting Model Performance 

Often, one-step-ahead forecast errors are used to evaluate forecasting accuracy: 

 𝑒𝑡(1) =  𝑌𝑡 − 𝑌̂𝑡(𝑡 − 1); (75) 

𝑤ℎ𝑒𝑟𝑒 𝑌̂𝑡(𝑡 − 1) 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑜𝑓 𝑌𝑡  𝑚𝑎𝑑𝑒 𝑜𝑛𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑝𝑟𝑖𝑜𝑟 

Suppose there are n observations for which forecasts have been made and n one-step-ahead 

forecasts 𝑒𝑡(1) 𝑤ℎ𝑒𝑟𝑒 𝑡 = 1,2,… , 𝑛. The following are the standard measures of forecast accuracy 

which are scale-dependent [85, 86]: 

The Mean Error (ME) 

 
𝑀𝐸 = 

1

𝑛
 ∑𝑒𝑡(1)

𝑛

𝑡−1

 
(76) 

The Mean Squared Error (MSE) - a direct estimator of the variance of the one-step-ahead-forecasts 

 
𝑀𝑆𝐸 = 

1

𝑛
 ∑[𝑒𝑡(1)]

2

𝑛

𝑡−1

 
(77) 

The Root Mean Squared Error (RMSE) 

 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √ (
1

𝑛
 ∑[𝑒𝑡(1)]

2

𝑛

𝑡−1

) 

(78) 

The ME is an estimate of the expected values of forecast error which should be 0 from the residual 

analysis. Bias in the forecast is indicated if the mean forecast error significantly differs from zero. The 
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MAE, MSE and RMSE measure the variability in the forecast errors which is desired to be small though 

the MSE and RMSE are more sensitive to outliers as compared to the MAE.  

However, accuracy measures that are scale dependent do not facilitate comparisons of a particular 

forecasting method across different data series. Hence, we adopt a measure of percentage forecast 

error: 

𝑝𝑒𝑡(1) = {
𝑌𝑡 − 𝑌̂𝑡(𝑡 − 1)

𝑌𝑡
}  100 =  {

𝑒𝑡(1)

𝑌𝑡
}100      

The Mean Percent Forecast Error (MPE): 

 
𝑀𝑃𝐸 = 

1

𝑛
 ∑𝑝𝑒𝑡(1)

𝑛

𝑡−1

 
(79) 

These percentage error measures tend to be undefined or indefinite when 𝑌𝑡 = 0 and having a skewed 

distribution when 𝑌𝑡 is close to zero. Additionally, they assume a meaningful zero even when 

measuring non-positive valued variables. Depending on the outcome of a forecasting procedure, any 

forecasting accuracy error measure can be used but with the full recognition of the underlying 

assumptions.  

For comparison of forecast accuracy across series with/out different scales, the scaled errors which 

are less sensitive to outliers, are not subject to the degeneracy issues from the absolute and 

percentage error measures, have a meaningful scale and are easier to interpret are recommended. 

The Mean Absolute Scaled Error (MASE) was proposed in 2006 and is calculated by scaling the error 

based on the in-sample MAE from the naïve forecasts and assuming that the series has no more than 

one unit root [85]. 

𝑆𝑐𝑎𝑙𝑒𝑑 𝐸𝑟𝑟𝑜𝑟𝑡 = 𝜀𝑡 = 
𝑒𝑡

1
𝑛 − 1 

∑ |𝑌𝑡 − 𝑌𝑡−1
𝑛
𝑡−1 |

 ;  

 𝑀𝐴𝑆𝐸 = 𝑚𝑒𝑎𝑛 |𝜀𝑡| (80) 

The 𝜀𝑡 < 1 , if it arises from a forecast that is better that the average one step ahead naïve in-sample 

forecast while 𝜀𝑡 > 1 conversely when it arises from a worse forecast. However, scaled errors would 

be undefined and infinite when all historical observations are equal. 

3.6 Choosing Between Competing Models 

A particular time series can be forecasted by use of various competing models. Identifying and 

selecting the model that is the best fit to historical data does not always result in a forecasting model 
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producing the best forecasts [60-62]. When evaluating the fit of the model to historical data, various 

measures are applied. These include residual analysis and the error measures described in Section 3.5 

which can be utilize to obtain the most accurate forecasts, compare forecast accuracy and choose 

between competing models with the ME, MSE, MAPE, RMSE, and MASE being the mostly commonly 

applied measures.  

The best approach proposed by Montgomery is often to select the model with the smallest standard 

deviation (MSE) of the one-step-ahead forecast errors of the validation subset of the data series [61].  

 
𝑠2 = 𝑀𝑆𝐸𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 =  

∑ 𝑒𝑡
𝑛
𝑡=1

𝑛 − 𝑝
 

(81) 

 
     ; 𝑛 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑓𝑜𝑟 𝑚𝑜𝑑𝑒𝑙 𝑓𝑖𝑡𝑡𝑖𝑛𝑔 𝑤𝑖𝑡ℎ 𝑝 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑎𝑛𝑑 𝑒𝑡 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 𝑓𝑖𝑡 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠     

The other criterion is the R-squared statistic: 

 
𝑅2 = 1 − 

∑ 𝑒𝑡
𝑛
𝑡=1

∑ (𝑌𝑡 −  𝜇)
2𝑛

𝑡=1

=
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
 

(82) 

The model that maximizes the 𝑅2 is equivalent to a model that minimizes the sum of squared 

residuals. Large values of R-squared suggest a good fit to historical data but relying on 𝑅2 to select a 

forecasting model encourages over-fitting and extra parameters might be included to obtain future 

forecasts. The “adjusted” 𝑅2 statistics is a better criterion: 

 

𝑅2𝐴𝑑𝑗 = 1 − 

∑ 𝑒𝑡
𝑛
𝑡=1
𝑇 − 𝑝

∑
(𝑌𝑡 −  𝜇)

2

𝑛 − 1
𝑛
𝑡=1

= 1 − 
𝑠2

∑
(𝑌𝑡 −  𝜇)

2

𝑛 − 1
𝑛
𝑡=1

 

(83) 

The model that maximizes the adjusted 𝑅2 statistic is equivalent to a model that minimizes the 

residual mean square (RMSE). 

Additionally, the AIC and BIC [Section] which penalize the sum of squared residuals for inclusion of 

extra parameters in the model are two other important criterion for choosing between competing 

models, where the model with the lowest AIC and/or BIC is considered the best fit model. 

3.7 Statistical Software to be used 

Data management and analysis will be done in R-Console Statistical Software. The results will be 

presented in form of tables, graphs and context. 
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CHAPTER 4: DATA ANALYSIS AND RESULTS 

This chapter presents the data analysis and results of forecasting malaria case admissions in three 

Kenyan health facilities. Data management and analysis was done in R-Gui Software. The data was 

segmented into two sets: Training Set (from 1999 to 2009) and the Test Set (from 2010 to 2011). The 

hold out set (test) provides the gold standard for measuring the model’s true prediction error which 

refers to how well the model forecasts for new data. To note, the test data should only be used after 

a definitive model has been selected. This ensures unbiased estimates of the true forecast error.  

Methods 

Method 1: Box Jenkins Approach 

Step 1: Plot the original data on a time plot and observe the structure, fit a linear trend and check for 

seasonal oscillations.  

Step 2: Plot the ACF and PACF of the original time series to observe pattern of auto correlations and 

determine if the data contains an AR and/or an MA structure. Conduct stationarity tests using the ADF 

and KPSS statistics to investigate if the data is stationary in mean. If the variance is not stable, apply a 

transformation. 

Step 3: If the series is non-stationary from Step 2, apply regular and/or seasonal differencing. 

Step 4:  Identify the values for the AR, MA, SMA and SAR parameter orders by observing the ACF and 

PACF plots and fit an ARIMA model 

Step 5: Conduct diagnostic checks to evaluate the model fit. If through the residual analysis and 

parameter contribution to the model, a model is considered inadequate, repeat Steps 5 until potential 

models which fulfill the underlying assumptions are obtained 

Step 6: Fit the different potential models to the data and estimate the appropriate parameters which 

either maximize the likelihood or minimize the sum of squared errors. Use appropriate criterion “AIC” 

and “BIC” to select the most parsimonious model and fit it to the data. 

Step 7: Additionally, estimate forecast model performance through cross validation with holdout data 

subset by observing the various error measures to assist in choosing between competing models. 

Step 7: The appropriate model chosen can now be used for forecasting to conduct the 𝑘 − ahead out-

of-sample forecasts for the time series data as required 
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Method 2: Forecasting with Decomposition  

Step 1: Decompose the data using the STL method to obtain the seasonal, trend and error 

components. 

Step 2: Deseasonalize the data by subtracting the seasonal component from the original data. 

Step 3: Conduct in-sample forecasts by forecasting the seasonally adjusted data using the Holt’s linear 

exponential smoothing method and reseasonalize by adding the seasonal naïve forecasts of the 

seasonal component.  

Step 4: Additionally, estimate forecast model performance through cross validation with holdout data 

subset by observing the various error measures to assist in choosing between competing models 

Step 5: Conduct 𝑘 − 𝑎ℎ𝑒𝑎𝑑 out-of-sample forecasts for the time series data as required.  

4.1 Descriptive Data Analysis 

a. Malindi  

There was a general declining trend in malaria case admissions in Malindi between 1999 and 2011 

with a peak in 2003. The mean malaria case admissions was highest in the month of July with 64 cases 

and lowest in September with 42 cases. The highest peak across the time period was in 2003 while 

the lowest was observed after 2010. 

 

Figure 1: Malindi Malaria Case Admissions Time Plot 
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Kitale 

In Kitale, malaria case admissions remained relatively stable within the same period with the highest 

peak observed in 2003 and the lowest in 2005. The mean number of cases was highest in the month 

of July at 332 cases and lowest in the month of September at 184 cases. 

 

Figure 2: Kitale Malaria Case Admissions Time Plot 

Siaya 

There was a relative increase in the number of malaria case admissions between 1999 and 2010 in 

Siaya with declines beginning after 2010. The highest peak was observed between 2008 and 2010. The 

highest mean number of malaria case admissions was observed in the month June at 187 cases and 

the lowest in October at 112 cases. 

 

Figure 3: Siaya Malaria Case Admissions Time Plot 
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4.2 Exploratory Data Analysis 

Malindi 

Method 1: Box Jenkins Procedure 

Plot the ACF and PACF plot of the data, conduct stationarity tests to check if data is stationary and 
identify the regular and seasonal parameters. 

Table 2: Malindi Stationarity Test Statistics 

 Statistic P-Value  Statistic P-Value 

ADF Original -3.1098 0.115 KPSS 1.966 0.01 

ADF 1st Difference -7.7356 0.01 KPSS 1st Difference 0.0112 0.10 

According to ADF and KPSS tests, the data is non-stationary. Applying a regular differencing, the data 

becomes stationary as shown below in Figure 4.  

Observing the ACF and PACF plots there are signs of over-differencing. We add MA (2) or MA (3) terms 

to the regular part of the model to cancel out these effects, and SMA (2) to cancel out the effects of 

over-differencing at the seasonal lags. In some instances, we apply a seasonal difference to preserve 

the seasonal pattern, lowering the amount of total differencing and increasing stability of trend 

projections.  

The original plots and regular difference plots are as shown below. 

 

Figure 4: Malindi ACF and PACF Plots 

Hence we compare between the following models: 
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Table 3: Malindi SARIMA Results 

Model Log Likelihood AIC 

SARIMA (0,1,2)(0,0,2)12 -609.52 1229.04 

SARIMA (0,1,3)(0,0,2)12 -606.67 1225.33 

SARIMA (0,1,3)(0,0,1)12 -609.42 1228.83 

SARIMA (0,1,3)(0,1,2)12 -565.91 1143.82 

SARIMA (0,1,3)(0,1,1)12 -566.02 1142.03 

SARIMA (0,1,3)(0,0,2)12 auto-arima -601 1216.00 

The best model selected was: SARIMA (0, 1, 3) (0, 1, 1)12 

The model parameters are:  

Parameters Coefficient Std Dev. P-value 

ma1 -0.2805 0.0962 0.0036 

ma2 -0.3671 0.0811 <0.0001 

ma3 -0.2019 0.0919 0.0280 

sma1 -0.8601 0.1343 <0.0001 

We then conduct the residual analysis by observing the ACF and PACF, plotting a QQ plot and 

conducting the Ljung Box Statistic goodness of fit to check if the residuals conform to the normal 

distribution. The results are as shown in Figure 5. 

Lag Lag 12 Lag 24 Lag 48 

Ljung Box Statistic 0.7622 0.0962 0.6729 
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Figure 5: Malindi Residual Analysis Results 

In addition, we cross-validate the forecast accuracy of the model by comparing model performance 

on data used for in-sample forecasts with data held out for validating the model (h=24 ahead out of 

sample forecast). The error measures are presented in Table 5. 

Method 2: STL + ETS Method 

The method is automated, and the de-seasonalization and forecasting occur concurrently. The 

parameter estimates obtained after we deseasonalize the series using STL are as below: 

Table 4: Malindi STL + ETS Resulta 

Smoothing Parameter Malindi 
Alpha (level) 0.4151 

Beta (trend) 0.0000 

AIC 1457.055 

ETS Model “MNN” 

 
We conduct h=24 ahead out of sample and observe the error measures presented in Table 5.  We 

then choose the best forecasting model to forecast malaria case admissions 

Table 5: Malindi Error Measures 

SARIMA (0,1,3)(0,1,1)12 

 ME RMSE MPE MASE ACF1 

Training set -0.5751 24.8260 -15.8563 0.5660 -0.0100 

Test set  6.0998 13.6208 -21.0994 0.3767 0.6202 

 

STL + ETS 

Training set -0.9760 22.1644 -13.7905 0.5182 0.3126 

Test set  -5.7905 10.7494 -141.1876 0.2821 0.6174 
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Visual Comparison of SARIMA and STL + ETS Models 

 
Figure 6: Malindi Cross-Validation 24-ahead Malaria Case Forecasts 

 
Figure 7: Malindi 12-ahead Malaria Case Admission Forecasts 
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Kitale 

Method 1: Box Jenkins Procedure 

Plotting the ACF and PACF plot of the data, and conducting stationarity tests the data is stationary but 

there are seasonal lags hence we conduct a seasonal difference. 

Table 6: Kitale Stationarity Tests 

 Statistic P-Value  Statistic P-Value 

ADF -4.0022 0.0113 KPSS 1.966 0.1 

The Kitale Series is stationary. The ACF and PACF plots are as shown below.

  
Figure 8: Kitale ACF and PACF plots 

However, we replace the significant seasonal lag in the model by applying a seasonal difference and 

also to maintain the seasonal pattern over time and add an SMA(1) term to the model. In the regular 

component of the model we add either MA(1) or MA(2) or MA(3) and AR(1). 

Hence we compare the following models: 

Table 7: Kitale SARIMA Results 

Model Log Likelihood AIC 

SARIMA (1,0,1)(0,1,1)12 -689.18 1386.36 

SARIMA (1,0,2)(0,1,1)12 -687.42 1384.85 

SARIMA (1,0,2)(0,1,0)12 -706.68 1421.36 

SARIMA (1,0,3)(0,1,1)12 -687.37 1386.74 

SARIMA (1,0,3)(1,0,1)12 -753.03 1520.06 

SARIMA (1,0,2)(1,0,1)12 auto-arima -753.03 1518.06 

The model selected is: SARIMA (1,0,2)(1,0,1)12 

However, the model selected does not have the lowest AIC. This is because while some of the other 

models contain parameters which are not significant, others do not fulfill the model diagnostic checks 

or have a higher standard deviation that the selected model.  
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We obtain the model parameters as: 

Parameters Coefficient Std Dev. P-value 

ar1 0.9873 0.0129 <0.0001 

ma1 -0.2966 0.0847 0.0005 

ma2 -0.4589 0.0916 <0.0001 

sar1 0.9484 0.0807 <0.0001 

sma1 -0.8013 0.1727 <0.0001 

 

Conducting the residual analysis and the goodness of fit statistics: 

Lag Lag 12 Lag 24 Lag 48 

Ljung Box Statistic 0.9426 0.9787 0.6922 

 

 

Figure 9: Kitale Residual Analysis 

We compare model performance on data used for in-sample forecasts with data held out for validating 

the model (h=24 ahead out of sample forecast). The error measures are presented in Table 9.  

Method 2: STL + ETS Method 

The parameter estimates obtained after we deseasonalize the series using STL are as below: 

Table 8: Kitale STL + ETS Results 

Smoothing Parameter Kitale 
Alpha (level) 0.4173 

Beta (trend) 0.0000 

AIC 1720.65 

ETS Model “ANN” 

 
We conduct h=24 ahead out of sample and observe the error measures presented in Table 19. We 

then choose the best forecasting model to forecast malaria case admissions 
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Table 9: Kitale Error Measures 

SARIMA (1,0,2)(1,0,1)12 

 ME RMSE MPE MASE ACF1 

Training set 5.6180 70.3830 -4.0837 0.6378 -0.0027 

Test set  -83.3431 94.4562 -51.8296 1.0554  

      

STL + ETS 

Training set 0.3232 56.7819 -3.6852 0.5537 0.1586 

Test set  -74.9825 91.9682 -48.1289 0.9998 0.1601 

Visual Comparison of SARIMA and STL+ETS Model 

 
Figure 10: Kitale Cross-Validation 24-ahead Malaria case Forecasts 

12-Ahead Forecasts 

 
Figure 11: Kitale 12-ahead Malaria Case Admissions Forecasts 
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Siaya 

Method 1: Box Jenkins Procedure 

Plotting the ACF and PACF plot of the data and conduct stationarity checks. 

Table 10: Siaya Stationarity Tests 

 Statistic P-Value  Statistic P-Value 

ADF Original -2.4091 0.4064 KPSS 1.918 0.01 

ADF 1st Difference -6.8405 0.01 KPSS 1st Difference 0.0154 0.1 

The data is non-stationary hence we apply a regular difference.  

 
Figure 12: Siaya ACF and PACF graphs 

The data is now stationary and we proceed to parameter estimation. However, there are still 

significant seasonal lags which are significant. We add either AR(1) or AR(2) to the model  and MA(1) 

or MA(2) to the regular part of the model and SAR(1) and SMA(1) to the seasonal part of the model. 

We compare the models as below:  

Table 11: Siaya SARIMA Results 

Model Log Likelihood AIC 

SARIMA (1,1,1)(1,0,1)12 -659.42 1328.83 

SARIMA (1,0,2)(0,1,1)12 -604.5 1218.99 

SARIMA (2,1,1)(1,0,1)12 -657.94 1327.88 

SARIMA (0,1,1)(1,0,1)12 -666.1 1340.2 

SARIMA (1,1,1)(0,1,2)12 -603.4 1216.81 

SARIMA (0,1,2)(0,1,2)12 -600.06 1210.12 

SARIMA (0,1,1)(1,1,1)12 -609.09 1226.18 

SARIMA (0, 1, 2)(1,0,1)12 auto-arima -656.81 1323.62 

The parameters for the models with the lowest AIC’s were mostly not significant while for some, the 

residuals were not uncorrelated. 
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The best model selected was: SARIMA (0, 1, 2) (1, 0, 1)12 

The model parameters are: 

Parameters Coefficient Std Dev. P-value 

ma1 -0.2200 0.0835 0.0084 

ma2 -0.4309 0.0862 <0.0001 

sar1 0.9813 0.0491 <0.0001 

sma1 -0.8568 0.1915 <0.0001 

The p-value of the Ljung Box Statistic at lag 12, lag 24 and lag 48 is 0.6827, 0.9481 and 0.9900 

respectively while from the ACF and PACF plots residuals are uncorrelated at all lags, confirming 

normality as shown:  

 

Figure 13: Siaya Residual Analysis 

We compare model performance on data used for in-sample forecasts with data held out for validating 

the model (h=24 ahead out of sample forecast). The error measures are presented in Table 13.  

Method 2: STL + ETS Method 

The parameter estimates obtained after we deseasonalize the series using STL are as below: 

Table 12: Siaya STL + ETS Results 

Smoothing Parameter Siaya 
Alpha (level) 0.8010 

Beta (trend) 0.0000 

AIC 1540.53 

ETS Model “ANN” 

 
We conduct h=24 ahead out of sample and observe the error measures presented in [Table xxx]. We 

then choose the best forecasting model to forecast malaria case admissions 
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Table 13: Siaya Error Measures 

SARIMA (0, 1, 2)(1,0,1)12 

 ME RMSE MPE MASE ACF1 

Training set 1.1649 34.6960 -4.6702 0.5433 -0.0176 

Test set  -74.1929 105.0948 -67.7307 1.9850 0.6805 

      

STL + ETS 

Training set 2.0270 28.7014 -1.1349 0.4511 0.0408 

Test set  -63.7880 93.8279 -58.3854 1.7773 0.6198 

 
Visual Comparison of SARIMA and STL+ETS 
 

 
Figure 14: Siaya Cross-Validation 24-ahead Malaria Case Forecasts 

 
12 Ahead Forecasts 

 

Figure 15: Siaya 12-ahead Malaria Case Admissions Forecasts 
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4.4 Results 

In this study two statistical time series methods were compared and their accuracy to forecast malaria 

case admissions in different epidemiological zones in Kenya assessed. While the decomposition and 

ETS method is computationally simpler and easier to interpret to the end user, the SARIMA models 

have been popularized in recent decades due to their statistical sophistication and underlying theory 

and assumptions. However, based on the forecasting error measures and visualization of the 

forecasted case admission numbers, the study confirms empirical evidence as no one method was 

superior to the other.  The simpler STL + ETS method performed equally as good and/or was in some 

instances even more accurate than the more complex Box Jenkins method. Other studies have also 

shown that the ARIMA class models perform better in model fitting the data but might be less robust 

in post-sample forecasts [62]. 

For the STL + ETS method, the STL technique was used in decomposing the series, and then the ETS 

method applied in modelling and forecasting the seasonally adjusted data. The seasonal naïve method 

was used to forecast the seasonal component and afterwards the series was re-seasonalized by adding 

the two forecasted data parts back together. This procedure enabled the model to accommodate both 

the seasonality component and recent trend changes concurrently. The SARIMA model was estimated 

by following the iterative Box Jenkins methodology and the best model which maximized the 

likelihood was chosen. Visual inspection of the forecasts shows that the SARIMA model [SARIMA (0, 

1, 3) (0, 1, 1)12] performed better in predicting malaria case admissions in Malindi where a general 

trend was observed across the series beginning after 2003. The method was able to capture both the 

trend and seasonal fluctuations over time. Conversely, the STL + ETS model performed better in Kitale 

and Siaya, where malaria case admissions were more stable over time characterized by abrupt trend 

and level shifts. However, the Dieblo-Mariano test statistics showed that both methods had the same 

forecast accuracy for all the sites [87].  

The SARIMA model has been shown to perform better in long-range forecasting due to its ability to 

estimate a more accurate long-term average. However, since this study only incorporated 12-ahead 

forecasts the model seemed to capture the trend fluctuations poorly in Kitale and Siaya. On the other 

hand, the decomposition method was more accurate in short term forecasts due to its ability to 

accommodate recent changes in the trend and the seasonal oscillations. However, previous studies 

show that this method is less accurate in long-range forecasts due to the uncertainties in updating the 

smoothing parameters over long periods of time. Thus, the importance of considering the forecasting 

horizon while choosing a forecasting method should be among the initial steps, as proposed by Briet 

[65]. 
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Many studies from malaria-endemic countries have shown the significant contribution of external 

factors such as climate-related variables to variations in malaria incidence levels. This is more 

noticeable in epidemic-prone areas where unexpected changes in the weather might lead to 

outbreaks culminating in very high case fatality rates. On the other hand, although transmission occurs 

throughout the year in the endemic regions, malaria case numbers are higher during the rainy season 

and lower during the dry months. However, the between year signals might be due to disease 

dynamics and not necessarily due to climatic changes [88]. Hence, the exclusion of external risk factors 

this study might have reduced the robustness of the models to capture year to year variations in 

malaria infection risk. This was one of the study limitations in addition to use of health facility based 

data which has been reported to be burdened by a number of shortcomings such as missing-ness, 

inconsistency and inaccuracies. However its longitudinal nature provides continuous data for 

monitoring temporal disease patterns.  

4.5 Conclusion 

Malaria poses a significant threat to public health and the growth and economic development of a 

country. The ability to forecast future malaria incidence is a major milestone as it will facilitate timely 

planning and implementation of control, prevention and case management interventions through 

optimal distribution of the available resources. While more research is required to develop accurate 

and efficient malaria forecasting methods, care should be taken to ensure that the models are tailor 

made to the specific transmission setting to avoid misleading results due to variations in malaria risk 

of infection and transmission dynamics. In addition, the pattern of the series, forecasting horizon, 

purpose to end user, and the expertise available should be some of the main considerations for the 

choice of a forecasting method. 
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