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Abstract

In this project we aim to classify simple plane curve singularities by considering simple plane
curve singularities as quotient singularities in C2 by a finite subgroup G ≤ SL(2,C). We also
review McKay correspondence which gives a connection between classes of finite subgroups
of SL(2,C) and Dynkin diagrams.
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Chapter 1

Introduction

Throughout this project, we fix our ground field to C. The main objectives of this project is to
understand complex plane curves singularities. They appear throughout the classification of
surfaces and in many other areas of algebraic geometry, singularity theory and group theory
[MR85]. By means of representation theory and by so called A-D-E Dynkin diagrams we
survey classification of these simple singularities by considering them as quotient singularities
in C2 by a finite subgroup G ≤ SL(2,C). In particular, we review McKay correspondence
which gives a connection between classification of finite subgroups of SL(2,C) and A-D-E
Dynkin diagrams.

In what will follow, we will see that there is a relation between quotient singularities with
conjugacy classes of finite subgroups of SL(2,C) and with A-D-E Dynkin diagrams as shown
below.

G ≤ SL(2,C) ←→ A−D − E Dynkin diagrams ←→ resolution graphs of C2/G

Klein in [GT69] determined the structure of quotient space C2/G where G is any finite
subgroup of SL(2,C). For each such group G, the algebra of invariants polynomial has three
generators related to a single equation . Thus C2/G can be realized as a space C3 defined by
a single equation. These equations are isomorphic to equations of simple surface singularities
also known as Du Val singularities [IR94]. For each case the origin is the singular point. The
corresponding G being a cyclic group, binary dihedral group and binary groups of tetrahedral,
octahedral and the icosahedral respectively.

Outline

This dissertation consists of four main chapters. In chapter 2 and chapter 3 we introduce
and explain main objects and relevant theory which will be handy in later chapters. Below
is the summary of each chapter.

Chapter 2

Here we do a quick review on complex plane curves and complex projective curves.
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Chapter 3

This chapter is an introduction to quivers, quiver algebra and their representations.

Chapter 4

In chapter 3, we introduce quotient singularities and explain the structure of C2/G for G a
finite subgroup of SL(2,C).

Chapter 5

Finally, we construct McKay graph of G ≤ SL(2,C) and explain the McKay correspondence.
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Chapter 2

Algebraic Plane Curves

We fix our ground field to be C

2.1 Complex plane curves

Definition 2.1.1. A complex plane curve is a subset C of C2 of the form

C = {(x, y) ∈ C2 : f(x, y) = 0},

where f is a non constant polynomial in C[x, y].

Definition 2.1.2. The degree d of the curve C is defined as the degree of f ∈ C[x, y] defining
C i.e.

d := max{r + s : a
r,s
6= 0},

where

f(x, y) =
∑
a
r,s
xrys.

Definition 2.1.3. The singularity of curve C in C2 defined by f ∈ C[x, y] is the point
(a, b) ∈ C satisfying

∂f(a,b)
∂x

= 0 = ∂f(a,b)
∂y

.

We denote the set of all singular points of a curve by Sing(C).

Definition 2.1.4. The curve C is said to be nonsingular (or smooth) if Sing(C) = Φ

Definition 2.1.5. A curve defined by a liner equation

αx+ βy + γ = 0,

for α, β ∈ C and α, β 6= 0 is called a line.

3



Example 2.1.6. Let f(x, y) = y2−x3 this is a cubic curve in C2 with a singular point (0, 0).
Since

∂f

∂x
(0, 0) = 0 =

∂f

∂y
(0, 0).

Figure 2.1: Real part of cubic curve defined by y2 = x3.

Example 2.1.7. f(x, y) = y2−x3−x2 is a curve in C2, which is a singularity at the origin.
Since

∂f

∂x
(0, 0) = 0 =

∂f

∂y
(0, 0).

Figure 2.2: Real part of cubic curve defined by y2 = x3 + x2.

Definition 2.1.8. A nonzero polynomial f ∈ C[x1, . . . , xn] is homogeneous of degree d if

f(λx1, . . . , λxn) = λdf(x1, . . . , x
n),

for all λ ∈ C. Equivalently f has a form,

f(x1, . . . , x
n) =

∑
r1+···+rn=d

a
r1··· ,rn

xr11 , . . . , x
rn
n ,

for some a
r1··· ,rn

∈ C.

Definition 2.1.9. The multiplicity of a curve C defined by f at a point (a, b) ∈ C2 is the
smallest positive integer m such that

∂mf

∂xi∂yj
(a, b) 6= 0,

for some i ≥ 0,j ≥ 0 such that i+ j = m.
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A point (a, b) ∈ C is called a double point if its multiplicity is 2, and an ordinary point if C
has distinct tangent lines at (a, b).

Example 2.1.10. The cubic curves in example 2.1.6 and 2.1.7 have double points at the
origin. But the first is not ordinary but the second is an ordinary double point.

Definition 2.1.11. A curve C is called irreducible if the polynomial f is irreducible; that is
if f has no other factors other than constant and scalar multiples of itself. Otherwise C is
reducible.

Example 2.1.12. The curve x3 + y3 + 1 = 0 is irreducible in C[x, y].

Definition 2.1.13. A node is a singularity on the curve which is locally complex isomorphic
to a neighborhood of the origin in the zero locus xy = 0 ⊂ C2.

2.2 Projective plane curves

By a projective space Pn we will simply be referring to a set of complex one dimensional
subspace of complex vector space Cn+1, Then any nonzero vector

(x0, . . . , xn) ∈ Cn+1

represents an element x ∈ Pn. We call (x0, . . . , xn) a homogeneous coordinate for x and write

x = [x0, . . . , xn].

Then
Pn =

{
[x0, . . . , xn] : (x0, . . . , xn) ∈ Cn+1 − {0}

}
. (2.1)

When n = 1 we have a projective line P1.

Definition 2.2.1. A projective plane P2 is the set of one dimensional complex subspaces of
C3 denoted by [x, y, z] the subspace spanned by (x, y, z) ∈ C3 − {0}, thus from equation 2.1
we have

P2 :=
{

[x, y, z] : (x, y, z) ∈ C3 − {0}
}
. (2.2)

If f ∈ C[x, y, z] is homogeneous of degree d then

f(λx, λy, λz) = λdf(x, y, z),

for all λ ∈ C∗.

Definition 2.2.2. Let f be a non constant homogeneous polynomial in C[x, y, z]. Then the
projective curve defined by f is

C :=
{

[x, y, z] ∈ P2 : f(x, y, z) = 0
}
. (2.3)
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Definition 2.2.3. The degree d of a projective curve C ∈ P2 defined by a homogeneous
polynomial f is the degree d of the polynomial f. i.e.

d := max{r + s+ t : a
r,s,t
6= 0},

where

f(x, y, z) =
∑
a
r,s,t

xryszt.

Definition 2.2.4. The singularity of curve C in P2 defined by the polynomial f is the point
(a, b, c) ∈ C satisfying

∂f

∂x
(a, b, c) = 0 =

∂f

∂y
(a, b, c) = 0 =

∂f

∂z
(a, b, c). (2.4)

The set of singular points of a curve C is denoted by Sing(C). Again the curve C is said to
be nonsingular projective curve (or smooth) if Sing(C) = Φ.

Definition 2.2.5. A projective curve defined by a liner equation

αx+ βy + γz = 0,

for α, β, γ 6= 0 is called a projective line.
The tangent line to a projective curve C in P2 defined by a homogeneous polynomial f at a
singular point [x, y, z] is the line

∂f

∂x
(a, b, c)x+

∂f

∂y
(a, b, c)y +

∂f

∂z
(a, b, c)z = 0. (2.5)
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Example 2.2.6. Let f(x, y, z) = zy2 − x3, this is a cubic curve in P2 with a singular point
(0, 0, 1). Since

∂f

∂x
(0, 0, 1) =

∂f

∂y
(0, 0, 1) =

∂f

∂z
(0, 0, 1) = 0

Figure 2.3: Complex algebraic curve with a point at infinity defined by zy2 = x3.

Example 2.2.7. f(x, y, z) = zy2 − x3 − zx2 is a curve in P2, which has a singularity at the
point (0, 0, 1). Since

∂f

∂x
(0, 0, 1) =

∂f

∂y
(0, 0, 1) =

∂f

∂z
(0, 0, 1) = 0.

Figure 2.4: Complex algebraic curve with a point at infinity defined by zy2 = x3 + zx2.
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Chapter 3

Quivers and quiver representations

In this section, we review definitions and some relevant results on (associative) algebras,
largely following [PO11].

3.1 Algebras and representations

Definition 3.1.1. An associative algebra over C is a C-vector space A equipped with an
associative bilinear map,

µ : A× A 7→ A, (a, b)→ ab = µ(ab).

such that (ab)c = a(bc).

We will always consider associative algebras with unit, i.e., with an element 1 such that
1a = a1 = a for all a ∈ A.

Example 3.1.2. 1. Let V be a C−vector space, and let A = End(V ) be the space of C-linear
maps from a vector space V to itself. Then A is an associative algebra with multiplication
the composition of maps.

2. The ring of polynomials C[x] in one indeterminate x with coefficients in C is an algebra
whose unity is the constant polynomial 1.

Definition 3.1.3. Let A be an algebra such that A = ⊕∞n=oAn for (An)n>0 sub algebras of A
and AmAn ⊆ Am+n for all m,n ≥ 0 then A is said to be a graded algebra.

Definition 3.1.4. A representation of an algebra A is a pair (V, ρ), where V is a C-vector
space and ρ : A→ End V is a homomorphism of algebras.

Equivalently a representation is a right A-module V equipped with an antihomomorphism
ρ : A → End V ; i.e., ρ satisfies ρ(ab) = ρ(b)ρ(a) and ρ(1) = 1. If A has an identity element
1, then we require that ρ(1) act as the identity map IV on V i.e., a linear map preserving the
multiplication ρ(ab) = ρ(a)ρ(b) and unit. Equivalently we can view it as a left A-module.
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We shall call V an A-module and write av for ρ(a)v. If V,W are both A-modules, then we
make the vector space V ⊕W into an A-module by the action a · (v ⊕ w) = av ⊕ aw for all
v ∈ V,w ∈ W .

Example 3.1.5. 1. V = A, and ρ : A→ End A is defined as follows: ρ(a)is the homomor-
phism of left multiplication by a, so that ρ(a)b = ab (the usual product). This representa-
tion is called the regular representation of A. Similarly, one can equip A with a structure
of a right A-module by setting ρ(a)b := ba.

2. A = C. Then a representation of A is simply a vector space over C.

Definition 3.1.6. A subrepresentation of a representation V is a subspace U ⊂ V which is
invariant under all morphisms ρ(a),from A to End V for a ∈ A.

Definition 3.1.7. A nonzero representation (V, ρ) is irreducible if and only if the invariant
subspaces of V are {0} and V itself.

Definition 3.1.8. A nonzero representation (V, ρ) is indecomposable if it cannot be written
as a direct sum of two nonzero subrepresentations.

Basic problems of representation theory includes, classification of irreducible representations
of a given algebra A and classification of indecomposable representations of A.

3.2 Quiver and quiver representations

In this section, we assume our quiver is of a finite type.

Definition 3.2.1. A quiver is a directed graph Q where loops and multiple arrows between
the vertices are allowed. Specifically a quiver Q is a quadruple Q = (Q0, Q1, s, t),where Q0 is
finite set of vertices’s, Q1 is finite set of arrows and s, t : Q0 → Q0 are maps which assigns
to each arrow a ∈ Q1 its source and target respectively.

The set Q0 usually will be identified with the set i = {1, . . . , n} for i ∈ Q0. The arrows will
be denoted by initial letters of the alphabet. If a ∈ Q1 is an arrow, then a has its source sa
and target ta, both in Q0.

Definition 3.2.2. A quiver Q is said to be of finite type if Q0 and Q1 are finite set.

Example 3.2.3. Consider a quiver
Q = i

a−→ j

with two vertices i and j in Q0 and one arrow a ∈ Q1. This quiver is of finite type.

Example 3.2.4. The r-arrow Kronecker quiver Kr is the quiver having two vertices’s i and
j and r arrows between the vertices’s denoted by Kr. For instance

K2 : i⇒ j

is a Kronecker quiver with 2 arrows.

9



Example 3.2.5. The loop is the quiver denoted by L having a unique vertex i and a unique
arrow a such that (s(a) = t(a) = i).

Figure 3.1: Loop quiver.

Definition 3.2.6. Let Q be quiver, a representation V of Q is a pair {Vi, ga}, for all i ∈ Q0

and a ∈ Q1 where {Vi; i ∈ Q0} is a family of finite dimensional C-vector spaces and C-linear
maps.

Definition 3.2.7. Let V = {Vi, ga} be a representation of a quiver Q with vertices’s {1, 2, ....., n}.
Then the dimension vector of V over C is

dV := dimV,

where
dimV : = dimC V.

Example 3.2.8. A representation of the loop quiver in example 3.2.5 is a C− vector space
V together with an endomorphism ga : V → V

Example 3.2.9. Consider a quiver

Q = 1
a−→ 2

The representation of this quiver is a collection of two finite C− dimensional vector spaces
V1 and V2, together with a C-linear map:

ga : V1 → V2

Recall that if V and W are two representations of the same quiver Q, we define their direct
sum V ⊕W by:

(V ⊕W )i = Vi ⊕Wi

for all i ∈ Q0, and

(V ⊕W )a : =

(
Va 0
0 Wa

)
: Vi ⊕Wi → Vj ⊕Wj,

for all a ∈ Q1, and if V is a vector space with basis x1, ..., xn and W is a vector space with
basis y1, ..., ym then V ⊕W is the vector space with basis

{x1, ..., xn, y1, ..., ym}.

Recall a representation V is indecomposable if it cannot be expressed as a proper direct sum,
i.e. from the decomposition V = V1 ⊕ V2 it follows that either V1 or V2 is zero.
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Example 3.2.10. A quiver in example 3.2.3 its indecomposable representations fall into
three isomorphism classes. i.e

S1 : C

(
1 0

)
−−−−−→ 0

S2 : 0

(
0 1

)
−−−−−→ C

P1 : C

(
1 1

)
−−−−−→ C

of respective dimension vectors (1, 0), (0, 1), (1, 1).

Definition 3.2.11. Suppose V = {Vi, ga} and W = {Wi, fa} are two representations of Q,
then a morphism

ϕ : V → W

is a collection of C−linear maps such that the following diagram commutes.

Vi Vj

Wi Wj

ϕi

ga

ϕj

fa

Remark 3.2.12. A morphism ϕi : Vi → Wi is an isomorphism if ϕi is invertible for every
i ∈ Q0.

Example 3.2.13. Consider a Kronecker quiver in example 3.2.4

K2: i⇒ j.

A representation M = (M1,M2) of Q is given by

M1 : C2 C2

(
1 0
0 1

)
(

0 0
1 0

)

M2 : C C2

(
1
0

)
(

0
1

) .

We need to calculate the Hom(M1,M2), suppose that ϕ = (ϕ1, ϕ2) is a morphism from M1 →
M2, then ϕ1 and ϕ2 can be written as

ϕ1 =

(
a b
c d

)
, ϕ2 =

(
x
y

)
|a, b, c, d, x, y ∈ C

11



therefore
ϕ2ga = faϕ1

using these commutative equation we find that(
a
c

)
=

(
x
y

)
and

(
b
d

)
=

(
0
y

)
.

Therefore

f =

[(
a 0
c c

)
,

(
a
c

)]
,

Hom (M1,M2) ' C2 is a two dimensional vector space with basis{(
1 0
0 1

)
,

(
1
0

)
,

(
0 0
1 0

)
,

(
0
1

)}
One naturally wants to classify all representations of a given quiver Q up to isomorphism.
We denote the set of all representations of a given quiver Q by Rep Q.

Given two representations V and W as above, the set of all morphisms from V to W is a
subspace of Πi∈Q0 Hom(Vi,Wi); which we denote by

HomQ(V,W ).

If V = W then

EndQV = HomQ(V, V )

is a subalgebra of the product algebra Πi∈Q0End(Vi)

Definition 3.2.14. A category is a triple C = (ObC,HomC, ◦), where Ob C is called the
class of objects of C, HomC is called the class of morphisms of C, and ◦ is a partial binary
operation on morphisms of C satisfying the following conditions:

(a) to each pair of objects X, Y of C, we associate a set HomC(X, Y ), called the set of mor-
phisms from X to Y , such that if (X, Y ) 6= (Z,U) then the intersection of the sets
HomC(X, Y ) and HomC(Z,U) is empty; and

(b) for each triple of objects X, Y, Z of C, the operation ◦ : HomC(Y, Z) × HomC(X, Y ) →
HomC(X,Z), (g, f) 7−→ g ◦ f (called the composition of f and g).

Definition 3.2.15. Let C be a category. A category D is a subcategory of C if the following
four conditions are satisfied:

(a) the class Ob D of objects of D is a subclass of the class Ob C of objects of C;

(b) if X, Y are objects of C, then HomD(X, Y ) ⊆ HomC(X, Y );

(c) the composition of morphisms in C is the same as in D; and

12



(d) for each object X of D, the identity morphism 1X́ in HomD(X,X) coincides with the
identity morphism 1X in HomC(X,X).

Definition 3.2.16. Let M and N be any two indecomposable representations of a quiver Q.
The radical of M and N is a subspace of HomQ(M,N) consisting of only non-isomorphic
morphisms f : M → N and is denoted by;

radQ(M,N)

rad2
Q(M,N) =

∑
rad(L,N) rad(M,L) where L ranges over subcategory of RepQ. rad2

Q(M,N)
is the sum of morphisms

f : M −→ L −→ N

and

irr(M,N) = rad(M,N)

rad2(M,N)

If f ∈ irr(M,N) the f is said to be an irreducible morphism between M and N.

Example 3.2.17. Consider example 3.2.3. For a C− linear map ga : C→ C we can always
choose bases in Vi and in Vj in which ga is given by the block matrix A(

Ir 0
0 0

)
where r is the rank of A and Ir is the r × r identity matrix. Note that two representations
V and W then ga : Vi → Vj and fa : Wi → Wj are isomorphic if and only if dimVi =
dimWi, dimVj = dimWj, and ga and fa have the same rank.

3.3 Quiver Algebra

We fix a quiver Q = (Q0, Q1, s, t). To any representation V = (Vi, fa) of Q, we associate the
vector space

V =
⊕
i∈Q0

Vi

equipped with two families of linear self maps: the projections

f : V → V, (i ∈ Q0 )

(the compositions V → Vi ↪→ V for the projections with the inclusions), and the linear maps

fa : V → V (a ∈ Q1 ).

these maps satisfy the relations

f 2
i = fi, fifj = 0(i 6= j), ft(α)fα = fαfs(α) = fα

13



and all other products equals to zero. This leads to the following definitions.

Definition 3.3.1. A path in a quiver Q is a sequence

p := (i|a1a2.....an|j)

of n arrows in Q such that t(al) = s(al+1) for all l ≤ n. Its length is n. The path has source
s(p) = s(a1) and target t(p) = t(al). We also allow length zero paths, concentrated at a single
vertex i of Q, which we denote ei.

Definition 3.3.2. The path algebra CQ of a quiver Q is a C− algebra with a basis labeled
by paths in Q. It is associative and determined by the generators ei, where i ∈ Q0, and the
following relations are satisfied

eiej = 0 (i 6= j), e2
i = ei, et(a)a = aes(a) = a.

ei are orthogonal idempotents of CQ, Also Σi∈Q0ei = 1
The product of basis elements is then extended to arbitrary elements of CQ by distributivity.
In other words, there is a direct sum decomposition

CQ = CQ0 ⊕ CQ1 ⊕ CQ2 ⊕ · · · ⊕ CQl ⊕ . . .

of the C−vector space CQ, where, for each l ≥ 0,CQl is the subspace of CQ generated by the
set Ql of all paths of length l. We observe that (CQn) − (CQm) ⊆ CQn+m for all n,m ≥ 0,
because the product in CQ of a path of length n by a path of length m is either zero or a
path of length n + m. This is expressed sometimes by saying that the decomposition defines
a grading on CQ or that CQ is a graded C− algebra.

Example 3.3.3. Consider a quiver consisting of a single point and a single loop. The defining
basis of the path algebra CQ is {ε1, a, a2, . . . , al, . . . } and the multiplication of basis vectors
is given by

ε1a
l = alε1 = al for all l ≥ 0

and

alak = al+k for all l, k ≥ 0,

where a0 = ε1. Thus CQ is isomorphic to the polynomial algebra C[x] in one indeterminate
x, the isomorphism being induced by the C-linear map such that ε1 → 1 and a→ x

Example 3.3.4. Consider a quiver

1
a−→ 2.

14



The path algebra CQ has as its defining basis the set {ε1, ε2, a} with the multiplication table.

. ε1 ε2 a
ε1 ε1 0 a
ε2 0 ε2 0
a 0 a 0

(3.1)

We can see, CQ is isomorphic to the 2× 2 upper triangular matrix algebra,

T2C =

(
C C
0 C

)
:=

{(
b c
0 d

)
|b, c, d ∈ C

}
,

where the isomorphism is induced by the C-linear map such that

ε1 →
(

1 0
0 0

)
, ε2 →

(
0 0
0 1

)
, a→

(
0 1
0 0

)
.

The representations of a quiver Q form a category where the morphism sets are denoted by
HomQ(V,W ) for V,W ∈ RepQ. For a finite-dimensional algebra A, the finite-dimensional
(left) A−modules form a category Mod A, where the morphisms are called homomorphisms
and form sets denoted by HomA(M,N) for M,N ∈ModA.

Definition 3.3.5. Let Q be a quiver. A relation in Q with coefficients in C is C − linear
combination of paths of length at least two having the same source and target. Thus, a relation
ρ is an element of CQ such that ρ = Σm

i=1λiwi, where the λi are scalars (not all zero) and
the wi are paths in Q of length at least 2 such that, if i 6= j, then the source (or the target,
respectively) of wi coincides with that of wj.

3.3.1 Module over a path algebra

Assume that Q is a finite type quiver and V a representation of Q. Given any representation
V of Q, we can define a left CQ−modules

V = ⊕Vi i ∈ Q0

by defining the multiplication V w with a path w = (j|al, . . . , a1|i) on a family (vh)h∈Q0 as
the family having V(a1) . . . V(al)(vi) in the jth coordinate and zero elsewhere. Notice that V̄ is
always finite dimensional, since Q is of finite type and by definition a representation as finite-
dimensional vector spaces attached to each vertex. Conversely, given a finite-dimensional left
CQ−module M , we define Mi = eiM = {eim|m ∈ M}. We have then M = ⊕i∈Q0Mi and
can easily define a representation by setting Ma : Mi → Mj, eim → (j|a|i)m for any arrow
a : i→ j in Q.

If φ : V → W is a morphism of representations, then we define φ̄ = ⊕i∈Q0φi : V̄ → W̄ , which
is a homomorphisms of CQ−modules.
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Conversely, any homomorphism ψ : M → N of finite-dimensional CQ−modules gives rise
to a morphism of representations by ψ(i) : Mi → Ni, eim → ψ(eim) = eiψ(m). The direct
sum of CQ − modules correspond to the direct sum of representations and therefore their
indecomposable s correspond one-to-one (up to isomorphism).

Remark 3.3.6. Every representation has a unique decomposition into indecomposable repre-
sentations (up to isomorphism and permutation of components). The classification problem
reduces to classifying the indecomposable representations.

Definition 3.3.7. Let Q be a quiver. Then the opposite quiver, denoted Qopp, is the quiver
with the same vertices as Q, and an arrow a∗ : j → i for every arrow a : i→ j of Q1.

Recall that if V is a vector space with basis x1, ..., xn and W is a vector space with basis
y1, ..., ym then V ⊕W is the vector space with basis {x1, ..., xn, y1, ..., ym}.

Theorem 3.3.8. Let Q be a quiver. Then representations of the quiver Q are the same as
left CQ−modules.

Proof. Suppose we have a CQ−modules. Set

Vi = eiM = eim|m ∈M.

Then, for each arrow a : i→ j, define a linear map ga : Vi → Vj by

ga(m) = am.

We should check that am ∈ Vj. This is true because a : i → j, so a = ejaei in CQ. Now
suppose we have representation V of Q. Define

M = ⊕i∈Q0Vi,

where the sum is over all the vertices i of Q. Define the module action as follows. For each
vertex i, let

πi : M → Vi

be the obvious projection map and let

ιi : Vi →M

be the obvious inclusion. Note that

πiιi : Vi → Vi

is the identity map. Then define eim = ιiπi(m), and for each arrow a of CQ, define am =
ιiVaπi(m). The action of a path is obtained by using the action of the arrows in the path.
This action respects the multiplication because

ιiπi : V i→ V i

is the identity map.
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3.4 Dynkin diagrams and extended dynkin diagrams

We fix Q =
(
Q0, Q1, s, t

)
.

Definition 3.4.1. The Ringel form for Q is the bilinear on ZQ0 defined by

〈α, β〉 = Σi∈Q0αiβi − Σa∈Q1αjβi,

and the quadratic form is
q(α) = 〈α, α〉.

Then the corresponding symmetric bilinear form

(α, β) = 〈α, β〉+ 〈β, α〉.

Definition 3.4.2. If q(α) > 0 for all 0 6= α ∈ ZQ0 the q is said to be positive definite and if
q(α) ≥ 0 then is said to be semi positive definite.

Recall that a quiver is of finite type when it has finite number of vertices and arrows, equiv-
alently a quiver with finitely many indecomposable representations is said to be of a finite
type. Forgetting the orientations of the arrows yields the underlying undirected graph of a
quiver.

Theorem 3.4.3. Let Q be a finite connected quiver without oriented cycles. The following
are equivalent:

i). Q is representation-finite.

ii). Q is a simply laced Dynkin diagram as shown below:

· · ·An

· · ·Dn

E6

E7

E8
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Theorem 3.4.4. Let Q be a finite connected quiver without oriented cycles. The following
are equivalent:

a). Q is representation-infinite and tame.

b). Q is a simply laced extended Dynkin diagram as shown below:

· · ·Ãn

· · ·D̃n

Ẽ6

Ẽ7

Ẽ8

3.4.1 Root system

Given a quiver Q = (Q0, Q1, s, t), we introduce the associated root system ∆Q a subspace in
ZQ0 , where ZQ0 is a vector space of dimension n determined by the finite number of vertices
in Q as follows;

If k is a loop free vertex then there is a reflection

Si : ZQ0 → ZQ0 , Sk(α) = α− (α, εi)εi,

where α = Σkiεi ∈ ZQ0 The group W ⊂ Aut(ZQ0) generated by all reflections is called Wely
group of the Quiver.

The real roots are the orbits of εk under W and the imaginary roots are the orbits of +α and −
α under W. The real root q(α) = 1 and the imaginary q(α) ≤ 0. Hence the root system ∆Q
is defined by

∆Q = {real root} ∪ {imaginary root}

∆Q =
{
α ∈ ZQ0|α 6= 0 q(α) ≤ 1

}
.
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Theorem 3.4.5. The indecomposable representations are in one-to-one correspondence with
the positive roots of the corresponding root system. For a Dynkin quiver Q , the dimension
vectors of indecomposable representations do not depend on the orientation of the arrows in
Q.

The following table shows the number of positive roots of (q) for each Dynkin diagram.

∆q An Dn E6 E7 E8

P (q) n(n+1)
2

(n− 1)n 36 63 120

Table 3.1: Number of positive roots of (q) for a given Dynkin diagram.

This gives the number of indecomposable representation for n, number of vertices’s.

Theorem 3.4.6. For an arbitrary quiver Q, the set of dimension vectors of indecomposable
representations of Q does not depend on the orientation of arrows in Q. The dimension
vectors of indecomposable representations correspond to positive roots of the corresponding
root system.

3.5 Variety of representations

In this part we let Q = (Q0, Q1, s, t). We fix a dimension vector d ∈ NQ0 , where NQ0 is a
vector space determined by the finite number of vertices in Q. Then each representation V
with dimension vector d is isomorphic to a representation of the form

M =

((
Cdi
)
i∈Q0

,
(
M(a)

)
a∈Q1

)
, (3.2)

where, for each arrow a : i→ j, M(a) is a matrix defining a linear map

M(a) : Cdi → Cdj ,

that is M(a) ∈ Cdi×dj .
We can define

Rep(Q, d) : = ⊕ Hom(Cdi ,Cdj). (3.3)

We can also view it as a vector space

Rep(Q, d) =
∏
a∈Q1

Cdi×dj .

Then Rep(Q, d) is said to be a variety of representations of Q of dimensional vector d ∈ NQ0

Two representations M,N ∈ Rep (Q, d) are isomorphic if and only if there exist a family
(φi : Cdi → Cdi)i∈Q0 of invertible linear maps, such that for every arrow a : i → j in Q we
have N(a)φi = φjM(a). We let

GL(Q, d) =
∏
i∈Q0

GL(di,C), (3.4)
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and define a group action of GL(Q, d) on Rep(Q, d) by

(g.M = (gjM(a)g−1
i )(a : i→ j) ∈ Q1.

Then M and N are isomorphic if and only if they lie in the same orbit under the action of
GL(Q, d). The orbit of M is denoted by O(M).
Let M,N ∈ Rep(Q, d), then the set of isomorphisms of representations M → N can be
identified with

{g ∈ GL(Q, d)|g.M = N}.

It follows that there is a one-to-one correspondence between isomorphism classes of represen-
tations M with dimension vector d and the GL(Q, d) orbit OM . In particular the stabilizer
GL(d)M of M in GL(Q, d) is identified with the set of AutCQ(M) of automorphisms of M.
The dimensions of Rep(Q, d) and GL(Q, d). Clearly

dimRep(Q, d) =
∑
a∈Q1

didj,

and viewing GL(Q, d) as an open subset in G =
∏

i∈Q0
Cdi×dj . The

dimGL(Q, d) =
∑
i∈Q0

d2
i

Now define χQ : Zn → Z by

χQ(d) =
∑
χi∈Q0

d2
i −

∑
χa∈Q1

didj.

This is a quadratic form, which satisfies

χQ(d) = dimGL(Q, d)− dimRep(Q, d), (3.5)

for each d ∈ NQ
0 .

There fore the
dimOM = dimGL(Q, d)− dim(AutCQ).
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Chapter 4

Classification of simple singularities

In this chapter, we classify simple singularities as quotient singularity by a finite subgroup
of SL(2,C).

4.1 Basic definitions

Definition 4.1.1. An affine algebraic variety is a set C ⊂ Cn defined as a zero locus of some
polynomial:

C : = {(x1, · · · , xn) : f(x1, · · · , xn) = 0 for f ∈ IC}

where IC ⊂ C[x1, · · · , xn] is an ideal of functions vanishing along the set C.

Example 4.1.2. If we fix n = 2 then

C : = {(x, y) : f(x, y) = 0}

is a variety in an plane C2 and is called an affine plane curve.

Now we translate the definition for singularities in chapter two to a modern language.

Definition 4.1.3. If C ⊂ Cn is a variety, then we define the coordinate ring OC of functions
on C, to be:

OC = C[x1, · · · , xn]/IC .

For any point p ∈ C we have a maximal ideal mp ⊂ OC of functions vanishing at p. The
localization of OC with respect to mp is the local ring OC,p of regular functions at p. Local
ring is isomorphic to the localization of a corresponding coordinate ring localized with respect
to mp.

Definition 4.1.4. Let OC,p be a local ring, then its Krull dimension is defined as the maximal
length of a strictly decreasing sequence of prime ideals in OC,p.

Definition 4.1.5. A point p ∈ C is smooth if the dimension dimC(m/m2) is equal to Krull
dimension of the local ring OC,p. Otherwise we say that C is singular at x.
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We can also check the smoothness of a point x ∈ C ⊂ Cn using Jacobian criterion. Namely,
the point is smooth if and only if there exists a function fi ∈ IC such that the Jacobi matrix
of derivatives (

∂fi
∂xj

)
evaluated at x is of rank n− r where r = dimC.

Example 4.1.6. Consider a variety where

f = y2 − x3

then Jacobi matrix of derivatives at a point (0, 0) is(
∂f

∂x
,
∂f

∂y

)
(0, 0) = (0, 0)

having a rank not equal to n− r for r ∈ N.

Definition 4.1.7. Let U ⊂ Cn+1 be an open subset containing a point x0. Let f be a regular
function defined on U and vanishing at x0.
Let us consider the algebraic set

C = {x ∈ U : f(x) = 0}

We will assume that f generates the ideal IC in the neighborhood of x0, call it U. That is
IC = f.OU and C is called a hypersurface.

For curves we have simple singularities:

An :x2 + yn+1 = 0 (n ≥ 1)

Dn :x2y + yn−1 = 0 (n ≥ 4)

E6 :x3 + y4 = 0

E7 :x3 + xy3 = 0

E8 :x3 + y5 = 0

(4.1)

They have their counterparts in dimension 2 [IR94]: A−D −E singularities of surfaces(Du
Val singularities):

An :x2 + yn+1 + z2 = 0 (n ≥ 1)

Dn :x2y + yn−1 + z2 = 0 (n ≥ 4)

E6 :x3 + y4 + z2 = 0

E7 :x3 + xy3 + z2 = 0

E8 :x3 + y5 + z2 = 0

(4.2)
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4.2 Finite subgroup of SL(2,C)
In this section, we follow [JC14].

Definition 4.2.1. The special linear group of degree 2 over C is the set of 2 × 2 matrices
with determinant 1 with complex entries, denoted by :

SL(2,C) =

{(
a b
c d

)
: a, b, c, d ∈ C, det

(
a b
c d

)
= ad− cb = 1

}
.

We aim to list the finite subgroups G ≤ SL(2,C), and describe their representation.

Theorem 4.2.2. Let G be a finite subgroup of SL(2,C). Then G is one of the following cases
(up to conjugacy) :

a) a cyclic group, of the form Z/nZ, with n ∈ N;

b) a binary dihedral group, of the form BD4n, with n ∈ N;

c) a binary group corresponding to one of the Platonic solids, that is BT24, BO48 or BI120

This theorem characterizes any finite subgroup of SL(2,C), and hence it gives the classifica-
tion of them. We give the proof later step by step.

Definition 4.2.3. The special unitary group of degree 2 over C is the set of 2 × 2 unitary
matrices with determinant 1 with complex entries, Observe it is a subgroup of SL(2,C),
denoted by :

SU(2,C) =
{
U ∈ SL(2,C) : UU∗ = U∗U = I2

}
,

where U∗ denotes the conjugate transpose of U.

Definition 4.2.4. The special orthogonal group of dimension 3 over R is the subgroup of the
orthogonal group O(3) whose elements have determinant 1, denoted by

SO(3) = {R ∈ O(3) : detR = 1},

where
O(3) = {Q ∈ GL(3,R) : QT = Q−1}.

It is called the rotation group of R3 because its elements are rotations around an axis passing
through the origin.

Having these definitions we can now state a theorem without proof.

Theorem 4.2.5. There is a surjective group homomorphism

η : SU(2,C)→ SO(3),

with
ker(η) = {±I2}.
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Proof. Now we can apply the first isomorphism theorem on groups, so SU(2,C)/ ker(π) ∼=
im(π), but since it is surjective, im(π) = SO(3), then SU(2)/±I2

∼= SO(3). And using the
properties of the group homomorphisms, we get that the finite subgroups of SU(2,C)/{±I2}
are the preimage under the natural projection (the double cover SU(2) → SO(3)) of the
finite subgroups of SO(3) as desired. So let G ≤ SU(2,C) be finite, it defines Ḡ ≤ SO(3)
finite, and let Ḡ ≤ SO(3) be finite, it can be lifted to G ≤ SU(2,C) finite with kernel of
order ≤ 2.

We will use the following notation in this section: G < SU(2,C) is a finite subgroup,
and H = η(G) is its homomorphic image in SO(3). Then either H ' G, which happens
if G

⋂
{±I} = I, or else H ' G/{±I}. Capital letters A,B, · · · will denote elements of

SU(2,C), thought of as 2× 2 matrices; small letters g, h, · · · will denote elements of SO(3),
thought of as geometric rotations. In particular, I ∈ SU(2,C) and id ∈ SO(3) will denote
the identity elements. Now we can proof theorem 4.2.2.

a) The cyclic case.

Suppose that H is just a cyclic group. Then it is generated by rotation g by angle 2π/r
around some axis u, and H ' Cr is the corresponding cyclic group of order r. To find the
corresponding subgroup of SU(2), let us fix u to be X-axis. Then using the geometric
description of η, leading to the subgroup of SU(2,C) generated by the diagonal matrix

A =

{(
ξ 0
0 ξ−1

)k
: ξr = 1, r ∈ N, k = 1, · · · , r − 1

}
= Cr, r ∈ N,

the nth primitive root of unity is denoted by ξ = exp 2πi/r, and for a fixed r this group
is called the cyclic group of order r, denoted by Cr, or Z/rZ. Which generates G ' Cr
inside SU(2,C), then G is a subgroup of SU(2) of type Ar−1, for r ≥ 2.

b) The dihedral case. Geometrically, it is fairly clear that we can extend any cyclic group of
rotation by a further rotation h whose axis is orthogonal to the original one by a rotation
by angle π only. In this way, we will continue to have a finite subgroup of SO(3). This
group H has order 2r. Let us now find the corresponding subgroup of SU(2,C). Choose
g as before, with axis u = (1, 0, 0). Choose h to have axis v = (0, 1, 0), and angle 2φ = π.
So all of these rotations are given by

A =

{(
ξ 0
0 ξ−1

)k
: ξr = 1, r ∈ N, k = 1, · · · , r − 1

}
,

the nth primitive root of unity is denoted by ξ = exp 2πi/r, Therefore G is generated by(
ξ 0
0 ξ−1

)
, k = 1, · · · , r and

(
0 ξ
−ξ−1 0

)
,

with ξ being a nth primitive root of unit, which is equivalent to be generated by by

A =

(
ξ 0
0 ξ−1

)
and B =

(
0 1
−1 0

)
where ξ is a 2nth primitive root of unity:

G = 〈A,B : Ar = B2;B4 = I2;BAB−1 = A−1〉,
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for every r ∈ N. The order of G is |G| = 4r. The group G of this type is called the binary
dihedral group of type Dr+2, for r ≥ 2, of order 4r, denoted by BD4r

c) The exceptional cases.

It turns out that, up to conjugation, there are only three further finite subgroups in SO(3).
It can be seen in [JC14] that corresponding subgroup of SU(2,C) can be generated by the
following triple of matrices. This subgroups are results on study of rotations groups of the
Platonic solids: the groups of rotations of the tetrahedron, octahedron and icosahedron.

(a) For the matrices

A =

(
i 0
0 −i

)
, B =

(
0 1
−1 0

)
, C =

1

2

(
1 + i −1 + i
1 + i 1− i

)
.

We have

G1 = 〈A,B,C : A4 = (AC)3 = (BC)3 = I2, A
2 = B2 = (AB)2 = C3〉.

This group is called the binary tetrahedral group.

(b) For the matrices

B =

(
0 1
−1 0

)
, C = 1

2

(
1 + i −1 + i
1 + i 1− i

)
, D =

1√
2

(
1 + i 0

0 1− i

)
,

then

G2 = 〈B,C,D : D4 = B2 = (D2B)2 = C3 = −I2, (D
2C)3 = (BC)3 = I2, D

8 = I2〉.

This group is called the binary octahedral group of order 48.

(c) Lastly for the matrices,

A =

(
ξ3 0
0 ξ2

)
, B =

(
0 1
−1 0

)
, C =

1√
5

(
−ξ + ξ4 ξ2 − ξ3

ξ2 − ξ3 ξ − ξ4

)
,

with ξ a fifth primitive root of unity:

G3 = 〈A,B,C, : C2 = −I2 = (AC)3 = (BC)3, A5 = I2 = B4〉.

The order of G is |G| = 120. This group is called the binary icosahedral group.

The subgroups G1, G2, G3 of SU(2,C), mapping to the groups H1, H2, H3 of symmetries
of the regular solid-pairs in SO(3), is that they are the subgroups of SU(2,C) of type
E6, E7, E8.
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4.2.1 Quotient singularities

Let G be a finite group of algebraic local automorphisms of Cn at 0. Following (Cartan 1957)
the action of G can be linearized, that is, in terms of a new coordinate system for (Cn, 0), G
acts linearly. Thus we are not restricted to assume that G ≤ GL(n,C). Then G acts also on
the ring of polynomials C[x1, . . . , xn] by

(g ◦ f)(x1, . . . , xn) = f(g(x1, . . . , xn)),

for g ∈ G ≤ GL(n,C) and f a polynomial function.

Then G-invariant polynomials i.e. the polynomials f ∈ C[x, y] such that g · f = f for all
g ∈ G form a homogeneous sub algebra

C[x1, . . . , xn]G ⊂ C[x1, . . . , xn],

that is finitely generated and closed. Thus we can choose a homogeneous generators φ1, . . . , φN
of C[x1, . . . , xn]G of positive degree and define a polynomial map

(φ1, . . . , φN) : Cn → CN

whose image is the orbit space Cn/G.

Then φ1, . . . , φN are constant on the G-orbit and thus factor through the orbit space by the
mapping

(φ̀1, . . . , `φN) : Cn/G→ CN .

We can say that the orbit space Cn/G is an affine variety whose algebra of regular functions
is C[x1, . . . , xn]G. Then Cn/G at G.0 is called a quotient singularity.

Definition 4.2.6. A non unit g ∈ GL(n,C) is called complex reflection if it is of finite order
and leaves hyperplane pointwise fixed.

Remark 4.2.7. Cn/G is isomorphic to Cn if and only if C[x1, . . . , xn]G is a polynomial
algebra. Chevalley (1955) gives a beautiful characterization of G, that is, C[x1, . . . , xn]G is a
polynomial algebra if and only if G is generated by complex reflections g ∈ GL(n,C)

This reduces the study of quotient singularities to case where G contains no complex reflec-
tion. Thus we will consider G to be a finite subgroup of SL(2,C).

1) Let m be a positive integer and consider a cyclic subgroup G ≤ SL(2,C) of order m
generated by a diagonal matrix

G =

{(
ζ 0
0 ζ−1

)
: ζm = 1

}
,
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then the algebra of polynomial in 2 variables invariant under G posses three generators
therefore C[x, y]G is generated by

t1 = xy, t2 = xm, t3 = ym,

using this as coordinate of
φ : C2 → C3

then the image of φ is in a hypersurface C3 defined by

tm1 − t2t3 = 0.

The germ (Cn/G, 0) is isomorphic to hypersurface singularity define by tm1 − t2t3 = 0,
which is a singularity of type An for n = m− 1.

Example 4.2.8. We take a singularity A2 as quotient singularity by consider the group
G = Z/2 acting on C2 by (x, y) 7→ (t1, t2, t3). The quadratic monomials

{x2, xy, y2}

are G-invariant functions on C2, so that the map C2 → C3 given by

t1 = xy, t2 = x2, t3 = y2

identifies the quotient space C2/G with

t2t3 − t21 = 0 ⊂ C3.

2) Considering G to be a dihedral group, we use result by Klein in 1884 [GT69]. Let 2 ≤
p ≤ q ≤ r be integer such that

1

p
+

1

q
+

1

r
> 1,

so that (p, q, r) = ((2, 2, r), (2, 3, 3), (2, 3, 4), or (2, 3, 5)).

According to spherical geometry there exists a spherical triangle 4 on the unit sphere
S2 whose angles are π/p, π/q, π/r. Orthogonal reflection in the sides of 4 generates a
subgroup Σ of the orthogonal group O3(C) which has 4 as a fundamental domain. Then
G.4 = S2 and the 4 is obtained by spherical projection of the shaded region.
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Figure 4.1: spherical polyhedral [EL83]

We consider a subgroup Σ+ : = Σ∩SO3. SU(2,C) naturally acts on C2 and thereby on the
complex projective line P1 = C ∪ {∞}. The spherical projection defines an isomorphism
between P1 and the unit sphere S2 of C3, which defines a homomorphism

η : SU(2,C)→ SO3

of lie groups. since both are compact connected and have dim 3, then η is a double- fold
covering. We take G : = η−1(Σ+.) As a result we obtain Singularities of type Dn and En.

Lets us consider the case of (p, q, r) = (2, 2, n) where n ≥ 4 and a dihedral subgroup G of
GL(2,C) of order 2n generated by{(

ζ 0
0 ζ−1

)
: ζ2n = 1

}
, and

(
0 1
−1 0

)
.

The first generator gives the invariants

t1 = xy, t2 = xn, t3 = yn,

and the second has the invariants

t1 = x2 − y2, t2 = xy(x2 + y2), t3 = x2y2.

We get G-invariants sub algebra of C[x, y] is generated by

t1 = x2y2, t2 = x2n + y2n, t3 = xy2n+1 − x2n+1y.
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They span the whole of C[x, y]G and satisfy the relation

t23 − t1t22 = 4(−t1)n−1.

Substituting −t1 for t1, 2t2 for t2 and 2t3 for t3 we obtain the equation of type Dn which
is

tn−1
1 + t1t

2
2 + t23 = 0.

Example 4.2.9. We consider a singularity D4 as a quotient singularity. Consider C2

with coordinates x, y and a binary dihedral group G of |G| = 16 generated by

ρ : x, y 7→ ix,−iy,

and
τ : x, y 7→ y,−x.

Thus ρ2 = τ 2 = −1. Therefore

x, y 7→


t3 = (x4 − y4)xy

t2 = (x4 + y4)

t1 = x2y2.

defines a G−invariant map C2 → C3, and that the image is the singular surface X ⊂ C3

defined by 4t31 + t1t
2
2 + t23, which is D4 up to a change of coordinates.

For the case (p, q, r) = (2, 3, 3), (2, 3, 4), or (2, 3, 5).) The relations between generators of
polynomial algebras yields equations of type E6, E7 and E8. For each such group G, the
algebra of invariants polynomial has three generators related to a single equation . Thus
C2/G can be realized as a space C3 defined by a single equations. These equations are
isomorphic to equations of Simple surface singularities also known as Du Val singularities
[IR94].

G (p, q, r) equations notation
D4r (2, 2, r ≥ 2) tn−1

1 + t1t
2
2 + t23 = 0 Dr+2

BT (2, 3, 3) t41 + t32 + t23 = 0 E6

BO (2, 3, 4) t31t2 + t32 + t23 = 0 E7

BI (2, 3, 5) t51 + t32 + t23 = 0 E8

Table 4.1: Equations of Simple surface singularities.
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Chapter 5

McKay correspondence

5.1 Representation theory

Fix a finite group G and a finite C-vector space V . Denote GL(V ) the set of all invertible
linear transformations of V to itself, called the general linear group of V.

Definition 5.1.1. A representation of G over C, is a group homomorphism

ρ : G→ GL(V ),

ρ(g)(v) := gv.

Equivalently, it is a structure on V of a left module over the group algebra C[G]. Recall
that C[G] is the linear space of functions on G with values in C with the multiplication law
defined by

(φ ∗ ψ)(x) = Σφ(g)ψ(g̃).

We call the dimension of V the degree of our ρ.
Let us recall some standard facts about representations of finite groups.

Theorem 5.1.2. Assume that |G| is coprime to the characteristic of C. Every linear repre-
sentation is isomorphic to a direct sum of irreducible subrepresentations.

Proof. The space of linear maps L( V , W) has a natural structure of a C[G]−module via

(g ◦ f)(x) = g · f(g−1 · x).

We have
L(V,W )G = HomC[G](V,W ).

Let W be a C[G]−submodule of V and p : V → W be a projection operator. Let

p̃ =
1

|G|
∑
g∈G

g · p.
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This is the standard averaging operation. It gives gp̃ = p̃. Also, for any w ∈ W,

p̃(w) =
1

|G|
∑
g∈G

g · p(g−1w) =
1

|G|
∑
g∈G

g(g−1w) =
1

|G|
|G|w = w.

Thus the kernel of p̃ is a C[G]−submodule and V = W ⊕K as C[G]−modules. Starting from
an irreducible submodule, we find the complementary submodule, and proceed by induction
on the dimension of V.

Lemma 5.1.3. Let f : V → W be a nonzero homomorphism of irreducible representations.
Then f is the composition of an isomorphism φ : V → W and a scalar endomorphism c idV .

Proof. The image f(V ) is a submodule of W, and the kernel Ker(f) is a submodule of V .
Since V and W are irreducible, none of them is a proper submodule. Since f is nonzero,
Ker(f) = 0 and f(V ) = W. Thus f is an isomorphism. Obviously we may assume that
V = W. Let c be an eigenvalue of f. The map f−cidV ∈ HomC[G](V, V ) and has non-trivial
kernel. Since V is irreducible, the kernel is equal to V. Thus f − cidV is the zero map.

corollary 5.1.4. Let ρ : G→ GL(V ) be a linear irreducible representation. Then the image
of the center of G is contained in the center of GL(V ).

Proof. Let z be an element of the center of G. For any g ∈ G we have

ρ(z) = ρ(g · z · g−1) = ρ(g) ◦ ρ(z) ◦ ρ(g)−1.

Thus ρ(z) : V → V is an automorphism of the representation ρ. By Schurs Lemma, it must
be a scalar automorphism, i.e. an element of the center of GL(V ).

Definition 5.1.5. The character of a representation ρ is the function χρ : G → C defined
by;

χρ(g) = Tr(ρ(g)).

Where Tr denotes the trace of the matrix ρ(g) representing g ∈ G.

It is a central function on G, i.e. constant on conjugacy classes of G. We will identify a central
function on G with a function on the set C(G) of conjugacy classes of G. Thus a character
is a special function in the linear space of central functions. A character of an irreducible
representation is called an irreducible character.

Define a hermitian inner product on the space of central functions CC(G) by

〈φ, ψ〉 =
1

|G|
∑
g∈G

φ(g) ¯ψ(g),

where the over line denotes the complex conjugate. Obviously,

〈φ, φ〉 =
1

|G|
∑
g∈G

|(g)|2 > 0.

Thus the inner product is a unitary product on the space of central functions CC(G).
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corollary 5.1.6. The number of non-isomorphic irreducible representations is equal to the
number of conjugacy classes of G.

Proof. Let Ir(G) = {ρ1, . . . , ρc} and {χ1, . . . , χc} be the set of the corresponding irreducible
characters. Let ρ be a linear representation. We know that

ρ ∼= ⊕ciρ
⊕mi
i ,

where mi are non-negative integers. The corresponding element [ρ] ∈ R(G) can be written
in the form

[ρ] =
c∑
i=1

mi[ρi].

The number mi is called the multiplicity of ρi in ρ and is denoted by multρiρ. It is clear that

dim ρ =
c∑
i=1

multρiρ dim ρi.

Taking the characters, we get

χρ =
c∑
i=1

miχi.

Since (χi)i=1,...,c is an orthonormal basis, we obtain

mi = 〈χρ, χi〉.

corollary 5.1.7. Let n1, . . . , nc be the dimensions of irreducible representations of G. Then

|G| = n2
1 + · · ·+ n2

c .

5.2 The MacKay correspondence

Let G be a finite subgroup of SU(2,C), ρ be the faithful representation of G obtained from
the embedding G ↪→ SU(2,C). and let {ρi} be the irreducible representations of G.

Definition 5.2.1. McKay quiver of G is a directed multi-graph with vertices ρi and mij edges
from ρi to ρj if ρj occurs mij times in the decomposition of ρi⊕ρnat into irreducible. In other
words, we have

ρi ⊕ ρnat = ⊕jρ
⊕mij

j .

Its vertices correspond to irreducible representations ρi of G. We put a label over the vertex
to indicate the dimension of the representation. A vertex ρi is connected to the vertex ρj by
an edge pointing to ρj if ρj is a direct summand of ρnat ⊕ ρi. We put the label mij over this
edge if

〈χnatχi, χj〉 = mij.

Note that if G ⊂ SL(2,C) then mij = mji. The McKay correspondence classifies the possible
groups G via their MacKay quivers.
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Definition 5.2.2. The MacKay graph of G is defined to be the graph consisting of vertices
v(ρ) for ρ ∈ IrrG, and simple edges connecting any pair of vertices ρi and ρj with mij = 1.

Example 5.2.3. Let G = Cn be a cyclic group of order n. Every linear representation
ρ : Cn → GL(V ) decomposes into the direct sum of one dimensional representation. So, G has
n irreducible representations of dimension 1. Let ρk be defined by sending g to exp 2πik/n, k ∈
Z/nZ. Take ρ0 = ρ1. Obviously ρ1 ⊗ ρk = ρk+1, Thus the McKay graph Γ(Cn, ρ1) is equal to
the graph Ãn−1 with additional orientation by giving arrows all pointing in one direction. On
the other hand, if we consider the representation ρ0 : Cn → SL(2,C) given by the matrix(

ξn 0
0 ξ−1

n

)
.

Thus ρ0 ⊗ ρk = ρk−1 + ρk+1. This gives us the Dynkin diagram of type Ãn−1.

Example 5.2.4. Let G = D3 be a binary dihedral group. As we already know, |D3| = 12.
The group D3 has two generators A, B which satisfy the following relations:

G = 〈A,B : A3 = B2;B4 = I2;BAB−1 = A−1〉.

The group D3 has 4 1-dimensional representations

A = 1, B = 1;A = 1, B = −1;A = 1, B = i and A = 1, B = i.

The natural representation is also known, it is just

A =

(
ξ 0
0 ξ−1

)
, B =

(
0 1
−1 0

)
.

There is also another one irreducible 2-dimensional representation:

A =

(
cos 2π

3
i sin 2π

3

i sin 2π
3

cos 2π
3

)
, B =

(
0 1
−1 0

)
.

We have found all 6 indecomposable representations of G. We can construct the character
table.

ρ Tr(ρ) χ(A) χ(B) dim
ρ0 χ0 1 1 1
ρ1 χ1 1 −1 1
ρ2 χ2 1 0 2
ρ3 χ3 −1 0 2
ρ4 χ4 −1 i 1
ρ5 χ5 −1 −i 1

Table 5.1: Character table of D3 (of type D5).
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Then from Table we see that
χ2
nat = χ0 + χ1 + χ3,

General representation theory says that an irreducible representation of G is uniquely deter-
mined up to equivalence by its character. Therefore ρ2 ⊗ ρnat = ρ0 + ρ1 + ρ3. Hence mij = 1
for j = 0, 1, 3 and mij = 0 for j = 2, 4, 5. We also observe that,

χ0χnat = χ2, χ1χnat = χ2,

χ3χnat = χ2 + χ4 + χ5,

χ4χnat = χ3, χ5χnat = χ3.

We get the McKay graph of |D3|

D̃5

Figure 5.1: Γ(D3)

We have just obtained the dual graph of the D5−singularity. Note that the fundamental cycle
of the D5−singularity. The coefficients of this decomposition are the same as the dimensions
of the representations corresponding to the vertices’s of the McKay quiver.

Example 5.2.5. Let us check the case of the binary tetrahedral group. let T ≤ SO(3),
we know that T ∼= A4 of even permutations of a set {1, 2, 3, 4}. Let ρi, i = 1, 2, 3 be one-
dimensional irreducible representations of G obtained as the compositions G→ A4. The first
one is the trivial representation. Let ρ4 be the 3-dimensional representation obtained as the
composition G→ SO(3). It is easy to see that this representation is irreducible. Let ρ0 = ρ5 be
the natural representation of G in SU(2,C) and ρ6 = ρ0⊗ρi, i = 2, 3. These are 2-dimensional
representations. Since ρ0 is irreducible, it is easy to see that these representations are also
irreducible. Now

|G| = 24 = 1 + 1 + 1 + 22 + 22 + 22 + 33,

so all irreducible representations are accounted for. This agrees with the number of conjugacy
classes of G. The group A4 has one conjugacy class of the identity, one class of elements
of order 2, and two classes of elements of order 3. We will denote the irreducible character
corresponding to the irreducible representation ρi by χi. We now turn to finding the conjugacy
classes of G and in total they must 7 of them. Every conjugacy class of T is lifted through
η : G → T to either two conjugacy classes with the same order or one conjugacy class with
twice the order of the original conjugacy class. Since 1 is lifted to 1 and -1 and each conjugacy
class of elements of order 2 is lifted to two conjugacy classes of elements of order 3 and 6.
Thus |C(G)| = 7. We already know that

ρ0 ⊗ ρi = ρ4+i, i = 1, 2, 3.
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ρ Tr(ρ) c1 c2 c3 c4 c5 c6 c7

ρ0 χ1 1 1 1 1 1 1 1
ρ1 χ2 1 −1 1 ξ3 ξ2

3 ξ3 ξ2
3

ρ2 χ3 1 0 2 ξ2
3 ξ3 ξ2

3 ξ3

ρ3 χ4 3 3 −1 0 0 0 0
ρ4 χ5 2 −2 0 −1 −1 1 1
ρ5 χ6 2 −2 0 −ξ3 −ξ2

3 ξ3 ξ2
3

ρ6 χ7 2 −2 0 −ξ2
3 −ξ3 ξ2

3 ξ3

Table 5.2: Character table of BT24.

We have
χ5χ4 = χ5 + χ6 + χ7.

This gives m45 = m46 = m47 = 1. We have

χ5χ5 = χ4 + χ1,

χ5χ6 = χ4 + χ2,

χ5χ7 = χ4 + χ3.

This gives m54 = m51 = m62 = m64 = m73 = m74 = 1. Getting all edges together we get the
McKay graph for (G, ρ5)

Figure 5.2: Γ(BT24).
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Theorem 5.2.6. Let G be a finite subgroup of SU(2,C) and ρnat be its natural 2-dimensional
representation defined by the inclusion G ≤ SU(2,C). Then the McKay graph of (G, ρ) is the
following extended Dynkin diagram.

· · ·Ãn 1 1 1 1 1

1

Figure 5.3: If G is cyclic of order n

· · ·D̃n
1

1
2 2 2

1

1

Figure 5.4: If G is binary dihedral of order 2n, n ≥ 4.

Ẽ6 1 2 3

2

1

2 1

Figure 5.5: If G is binary tetrahedral group of order 24.
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Ẽ7 1 2 3 4

2

3 2 1

Figure 5.6: If G is binary octahedral group of order 48.

Ẽ8 2 4 6

3

5 4 3 2 1

Figure 5.7: If G is binary icosahedral group of order 120.

This diagrams are the extended Dynkin diagrams of type An, Dn, E6, E7, E8. Then G is iso-
morphic to a finite subgroup of SU(2,C) and ρ is its natural 2-dimensional representation.

5.3 Resolutions and dual graphs of quotient singulari-

ties

We want now to answer our next question: what are minimal resolutions and dual graphs of
these singularities?

Definition 5.3.1. The blowup surface X̃ is the set of all pairs consisting of a point p in Cn

and a line from p through the origin of Cn. Note that X̃ is in the product space Cn × Pn−1.
Thus we have

X̃ = (p, p̄)|p ∈ Cn ⊂ Cn × Pn−1.

Therefore the resolution of a singularity X ∈ Cn at 0 is the surface X̃ together with the
projection map,

π : X̃ → X

Thus, π is an isomorphism on the open set Cn−{0}. The preimage of O is {0}×Pn−1, which
is isomorphic to Pn−1.

Definition 5.3.2. The set π−1(O) is called the exceptional divisor of the blow up.

Each line through the origin intersects the exceptional divisor at exactly one point, and hence
the blown-up curve intersects the exceptional divisor exactly once for every time the original
curve passes through the origin.

Example 5.3.3. Consider the singularity at the origin of the X = x2+y2−z2. The resolution
X̃ is a subset of C3 × P2. If C3 has coordinates (x, y, z) and P2 has coordinates [t : u : v],
then X̃ has the following defining equations:

{((x, y, z), (t : u : v)) ∈ C3 × P2|xu = ty, xv = ty, yv = zu}.
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xu− ty = 0, x2 + y2 = z2,

yv − uz = 0, t2 + u2 = v2,

xv − ty = 0.

On the coordinate chart v = 1 the equations reduce to the following:

y = uz, x = ty, x2 + y2 = z2.

After eliminating the variables x and y, the set of points in C3 satisfying the three equations
above is isomorphic to the cylinder {(z, t, u)|t2 + u2 = 1},

Let (X, 0) be a germ of a simple singularity, π : X̃ → X its resolution, E =
⋃n
i=1Ei = π−1(0)

and Ei for 1 ≤ i ≤ r the irreducible component of E. It is known that Ei : = P1 with
self-intersection −2.

Definition 5.3.4. Let E1, . . . , En be the irreducible components of a divisor E. The symmet-
ric matrix

A = (aij)1≤i,j≤n

where aij = Ei · Ej is called the intersection matrix of the divisor E.

Remark 5.3.5. Let G finite subgroup of SL(2,C). Let X be the surface defined by G and
let E be the exceptional curve of the minimal resolution of x. We can assign an intersection
matrix IG to G.

We associate a vertex vi to any irreducible component Ei of E, and join two vertices vi and
vj if and only if (Ei, Ej) = 1. Thus we have a finite graph with simple edges. We call this
graph the dual graph of E, and denote it by Γ(irrE).

Definition 5.3.6. The minimal nonzero effective unique divisor of X̃ denoted by Efund such
that EfundEi ≤ 0 for all i is called the fundamental cycle of X̃.

Let Efund : =
∑r

i=1Ei and E0 : = −Efund. For the simple singularities, we have E0Ei = 0
or 1 for any Ei ∈ irr E (except for the case A1, when E0E1 = 2). Therefore we can draw a
new graph Γ̃ after considering the vertex v0. In this case we denote irr E

⋃
{E0} by irr∗ E

For a quotient singularity (C2/G, 0), we have a Dynkin diagram as a dual graph Γ(C2/G, 0)
and Γ̃(C2/G, 0).

Example 5.3.7. In the D5 case, we have

E = E1 + E2 + E3 + E4 + E5

with
E2
i = −2

and
−E0 = Efund = E1 + 2E2 + 2E3 + E4 + E5.

Then
E0E2 = E1E2 = E2E3 = E3E4 = E3E5 = 1,

and all other EiEj = 0.
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D5

Figure 5.8: Γ(C2/G, 0).

D̃5

Figure 5.9: Γ̃(C2/G, 0).

Observe that we obtained the dual graph of the D5-singularity. Note that the fundamental
cycle of the D5-singularity is

Efund = E1 + 2E2 + 2E3 + E4 + E5.

Let us now consider E6− singularity X = (x2 + y3 + z4) ⊂ C3. The calculation will be rather
tedious as we will need multiple blowups, however we still carry through with it since it nicely
illustrates how to handle more complicated singularities.
Let π : X̃ → X be a minimal resolution, E = ∪Ei = π−1(0) the exceptional divisor. Then
considering the blow-up of C3

B = {((x, y, z), (u : v : w)) ∈ C3 × P2|xv = yu, xw = zu, yw = zv},

and the first chart v 6= 0 (i.e. v = 1). We get equations

x = yu, y = y, z = yw.

To get the equation of the strict transform of X̃, we assume that y 6= 0 and

y2u2 + y3 + y4w4 = 0, or u2 + y + y2w4 = 0.

In this chart X̃i i ∈ Z is smooth: Jacobi criterium implies system has no solutions. In the
chart u = 1 the strict transform X̃i is again smooth. Consider finally the chart w = 1.

x = zu, y = zv, z = z.

The strict transform is

z2u2 + z3v3 + z4 = 0, or u2 + zv3 + z2 = 0.

Jacobi criterion implies that this surface has a unique singular point u = 0, v = 0, z = 0,
or in the global coordinates ((0, 0, 0), (0 : 0 : 1)). We see that this point indeed lies only in
one of three charts of X̃1.
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The exceptional fiber is by the definition the intersection X̃1 ∩ {((0, 0, 0), (u : v : w))}. To
get its equation in the chart w = 1 we just have to set z = 0 in the equation of X̃1. z = 0
implies u = 0. Hence we get

E0 = {((0, 0, 0), (0 : v : 1))} ∼= C1.

Going to the other charts shows that E0
∼= P1. Finally, the function f in this chart gets the

form f = zu.
We have the following situation:

{
x2 + zy3 + z2 = 0

E0 x = 0, z = 0.

Consider again the blowing-up of this surface. We find that the interesting chart is

x = yu, y = y, z = yw,

with strict transform

y2u2 + yvy3 + y2v2 = 0, y 6= 0, or u2 + y2v + v2 = 0.

The exceptional fibre of this blowing-up has two irreducible components: y = 0 implies
u± iv = 0 (we call this components E ′1 and E ′′1 ). We have the following situation:

x2 + zy2 + z2 = 0

E0 x = 0, z = 0

E1 y = 0 x± iz = 0.

Consider again the blowing-up of this surface, we find that the interesting chart is

x = yu, y = y, z = yw,

with strict transform

y2u2 + yvy2 + y2v2 = 0, y 6= 0, or u2 + yv + v2 = 0.

The exceptional fiber consists again of two irreducible components E ′2, E
′′
2 .

We now obtain the equation of preimage of E0 by considering the chart

x = x y = xu z = xv,

we obtain the strict transform 1 + xu2v + v2, for x 6= 0. So the equation of exceptional
fiber E2 in this chart are x = 0 and v = ±i. Therefore the preimage of E1 is given by
x± ixv = o xu = 0, thus we have 2 more coordinate charts,
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
x2 + zy + z2 = 0

E0 x = 0, z = 0

E2 y = 0 x± iz = 0.


1+xy2z + z2 = 0

E1 y = 0, z ± i = 0

E2 x = 0 z ± i = 0.

Our

next step is the blowing-up at the point (0, 0, 0) in the different coordinate charts. To obtain
equations of the preimages of E0 and E2 we have to consider two coordinate charts

x = yu, y = y, z = yw.

The strict transform is a cylinder u2 + v + v2 = 0. The preimage of E0 is given by equations
u = 0, v = 0, the exceptional fibre E3 is given by u2 + v + v2 = 0, y = 0.
In the chart

x = x y = ux z = yw,

we obtain a strict transform 1+uv+v2 = 0 The exceptional fiber E3 is given by 1+uv+v2 = 0,
x = 0, the preimages ofE ′2 and E ′′2 are given by

u = 0, v = ±i.

Hence our exceptional fiber E is given by the following configuration of projective lines:

E0

E ′2E3E ′1

E ′′1 E ′′2

Figure 5.10: Dual graph for a minimum resolution of E6 singularity.

We have to take into account three coordinate charts of a minimal resolution.
X̃i : x2 + z + z2 = 0

E0 : x = 0, z = 0

E3 : y = 0 x2 + yz + z3 = 0.


X̃i : 1 + yz + z2 = 0

E3 : y = 0, x2 + yz + z2 = 0

E2 : y = 0 z ± i = 0.
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
X̃i : 1 + xy2z + z2 = 0

E1 : y = 0, z ± i = 0

E2 : x = 0 z ± i = 0.

Remark 5.3.8. Let X be a surface singularity, π : X̃ → X its resolution, E =
⋃n
i=1Ei =

π−1(0) the exceptional divisor. Suppose that X̃ is a good resolution, all Ei ∼= P1 and E2
i = −2.

Then X is a simple hypersurface singularity.

Let Γ be the dual graph of X. Then the quadratic form coincide with the Tits form of the
dual graph:

Q(x1, x2, . . . , xn) = −2
(
Σn

1=ix
2
i − Σ1=i<j=naijxixj

)
,

where aij is the number of arrows connecting vertices’s i and j. From the theorem of Gabriel
we know that Q is negatively definite (and quiver is representation finite) if and only if
Γ = A−D − E. Since our singularity is determined by its dual graph.
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