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ABSTRACT

The data used in this research is from the Human Mortality database for

the United States for the period 2000 - 2009. We first begin by fitting

linear, Makeham, cubic smoothing spline and Lee Cater models to the data

to establish which model best fits the data. Parameters are estimated using

linear regression, graphical method and Singular Value Decomposition

methods for the linear, Makeham and Lee Carter models respectively. By

use of goodness of fit tests conducted using chi square, Cramer Von Mises

criterion, Kolmogorov Smirnov and Anderson Darling tests, a best fit model

to the data is established. Using standard error measures, best forecast

model for the data is identified among the forecast methods, Cubic

smoothing spline, ARIMA (Auto Regressive Integrated Moving Average)

models with and without drift. Mortality rates based on the best fit model

are forecasted to five year horizon using best forecasting method to the

data. These rates are used to check if there has been a decline in mortality

rates over the years. Impact of mortality decline (longevity risk) is then

illustrated by calculation of Actuarial Present Values (APVs) of whole life

annuity of a 60 year old male over the years.
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CHAPTER ONE

1 INTRODUCTION

1.1 Background

Longevity risk is the risk of living beyond the expected time frame or

estimated and is one of the prominent insurance risk. Unlike other risks in

the market like inflation, taxes, lifestyles, fluctuation interest rates,etc.

which are relatively stable over time and can be modeled deterministically

using reasonable assumptions, longevity risk is dynamic and systematic and

can not be diversified. Recent studies and research have indicates an

increase in life expectancy and hence a reduction in the mortality rates. In

fact, the future improvements of life expectancy are difficult to be predicted

accurately but the general opinion from the experts tends to be that the

trend of longevity improvements is certain, but deviations to both sides are

possible. Improvement in mortality rates can be attributed majorly due to

increased literacy and improved education level where people are more

enlightened about their health issues and become focused on importance of

dieting, regular exercise and non indulgence in drug abuse behaviors.

Improved and accessibility to health facilities is also an important

contributory factor for improvement of mortality rates.

Gains in life expectancy or improvements in mortality have been under

estimated in most industrialized and developing countries in the past. In

fact, (Oeppon,Vaupel 2002) in their report show striking evidences that the

record life expectancy has been rising nearly three months per year in the

past 160 years, and the asserted ceilings on life expectancy were surpassed
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repeatedly in the past century.The revision of mortality projections leads to

the requirement of additional funds to support increasing liabilities in terms

of payments to retirees. The potential need for additional funds poses a

serious threat to annuity providers and pension funds who have the

responsibility of provision of survival benefits. This has been one of the

major hindrance or slow down of research to investigate the trend in

mortality and improve mortality rates.

Longevity risk has always been present but its significance has gained

enormously in recent times. This is due to risk less yields in the financial

markets are limited or have fallen considerably in many countries leaving

only little funds for the provision of additional reserves. For assessment of

longevity risk, maybe risk management for solvency purposes, a stochastic

mortality modeling rather than a deterministic model is required since the

mortality rates have been dynamic in the recent times.

However, the resulting risk capital charges are only credible if best estimate

mortality is projected adequately. If best estimate liabilities are

systematically underestimated, like an inappropriate mortality projection,

the risk capital charges will never guarantee the desired risk safety level.

Thus mortality projections do not help in quantifying longevity risk but an

adequate mortality projection can significantly reduce longevity risk.

Therefore mortality projections are extremely important for practical

actuarial work, hence insurance companies, pension funds and social

security institutions should consistently look to improve their projections to

minimize chances of solvency.

This research project is aimed at modeling mortality rates using an

appropriate model to be able to forecast mortality. Further the project will
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illustrate, using actuarial present values of whole life annuities at retirement

ages, that there exists a decline in mortality over the years and how this

decline affects pension schemes and annuity providers in terms of longevity

risk.

Most researchers apply the use of one model to particular data under

investigation, but this is not the case with this research where the

appropriate model is determined by fitting commonly used models, linear,

Makeham and Lee - Carter. Moreover the forecasting method is determined

after evaluation of three models, cubic smoothing spline, auto regressive

integrated moving average with and without drift, to be able to forecast

with one that offers the best fit.

This research project is organized as follows; chapter two reviews the

studies on mortality rate improvements previously done. Chapter three

outlines the methodology of the study, that is how the model is fitted to the

mortality data. The findings and results of the fit, investigation on how

best the model fits and forecasting of mortality rates are discussed in

chapter four. Chapter five concludes the research project and

recommendations for further research studies are stated in this chapter.
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1.2 Statement of the problem

The mortality data is examined to come up with a mortality model that

best fits the data for forecast of mortality rates into the future. Using

accurate mortality rates derived from the best fit model, investigate the

impact of longevity risk to pension schemes and annuity providers.

11



1.3 Objectives

1.3.1 General Objective

The general objective of the study is to show the impact of longevity risk to

pension schemes and annuity providers, using mortality rates derived or

estimated from an appropriate mortality forecasting model that best fits

mortality data under investigation.

1.3.2 Specific Objectives

The specific objectives of the study are;

(i) Fitting a mortality model that best fits the data.

(ii) Selection of an appropriate forecasting method.

(iii) Forecast mortality rates derived from best fit mortality model

(iii) Show the impact of longevity risk to pension schemes and annuity

providers.
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1.4 Justification/Significance of the study

Pension funds are the principal sources of retirement income for millions of

people in the world. In Kenya, retirement income accounts for 68% of the

total income of retirees. Annuity providers and pension schemes provides a

life time income to pensioners with an expectation of a certain life

expectancy. When retirees live beyond the expectations of these

institutions, there is a risk of straining to the pension schemes and annuity

providers to continue with the provision of this pension and may lead to

their insolvency or fall. To avoid insolvency, some of these institutions may

provide pension or annuities to retirees that is not proportional to their

purchase prices, using random exaggerated mortality rates. The use of

random mortality rates has led to this research which has an aim to

examine mortality data to come up with a best fit mortality forecasting

model . With these accurate mortality rates, we can be able to price

appropriately longevity risk and hence provide annuities and pension to

retirees for the value of their purchase price and at the same time making

sure annuity providers do not lose money leading to insolvency.
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CHAPTER TWO

2 LITERATURE REVIEW

Mortality data are often characterized by the presence of some outlier data.

In particular, in the case of older ages, the high variability can be due to

the small number of survivors in the population. This represents a common

problem when estimating mortality rates for groups aged 90 and more.

Techniques of smoothing/graduation have been implemented to avoid this

shortage of data, because the heavy variance at older ages influences the

fitting of mortality models (Delwarde et al 2007).

In the course of time graduation of data has been both extended and

narrowed in its application, according to the particular interests of different

writers. Th principles of graduation are of importance to a proper appraisal

of the behavior of actuarial statistics and to the development of a sound

judgment in the selection of a statistical basis for dealing with practical

problems. Our concern is mainly with the principles and methods of

adjusting a set of observed rates to provide a suitable basis for actuarial

calculations of a practical nature.Further, the process of fitting mortality

trend curves with the view to project into the future is our main concern.

Actuaries routinely face the problem of estimating a smoothed series of

rates from crude rate data. The smoothed rates must estimate the

probability of some outcome, such as death, for each point along an axis

representing increasing age, length of service, or some other variable.

Typically, there is some data for each point but prediction can be improved

by making use of the surrounding observations. Techniques for performing

such smoothing, or graduation, include graphical methods, curve fitting,
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moving averages, Kings osculatory method, Whittaker-Henderson, as well

as spline methods of graduations among others.

The methods of graduation that was imposed on the crude data vary from

one researcher to the other. The methods may be based on three

graduation methods. Firstly, Graphical methods where a hypothetical

curve is drawn by inspection through the area bounded by the confidence

intervals. With this method, there is clearly an element of objectivity

judgment and use is made of experience as to what a curve of death may

look like. Moreover, the method is subject to under graduation which is

characterized by lack of smoothness.Secondly, Finite differences graduation

methods depend on the principle that the standard error of the weighted

mean of two or more independent or imperfectly correlated random errors is

less than the sum of the correspondingly weighted individual standard

errors. This is not usually the case. Lastly, curve fitting methods of

graduation, based on mathematical formula, that are based on the

assumption that the underlying values have a particular mathematical form

whose parameters maybe estimated from the observed values. The

mathematical formula were favored in mortality work because unlike

summation formula they did not leave the rates for terminal ages to be

dealt with by other and somewhat arbitrary means and they enabled prior

experience of the natural shape of the force of mortality urve to be taken

into account. In this research project, our main focus will be on the curve

fitting methods of graduation by a mathematical formula and specifically

cubic spline method of graduation. This section reviews the research works

on graduation methods done previously.

The earlier statistical methods employed a two step procedure towards

graduation. First, they calculated raw mortality rates as a ratio of the
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number of deaths to the exposure. Second, they found a smooth set of

graduated rates close to the raw mortality rates; this step is known as

graduation. These early methods are are illustrated in details in books by

(Benjamin, Pollard 1993) and (London 1985). The first step supposedly

made suitable adjustments to account for the actuarial studies not being

simple binomial experiments. The latter due to not only migration but also

due to insured population dynamics. I say supposedly as contrary to the

intent behind some of the exposure calculations the raw mortality rates

turned out to be statistically biased and asymptotically inconsistent

estimates of the underlying mortality rates, (Elveback 1958),

(Breslow,Crowley 1974) and (Hoem 1984). More importantly violation of

the likelihood principle forced them to make unrealistic assumptions on

migration and resort to non-standard reasoning. A more direct approach to

calculating raw mortality rates is via maximum likelihood (ML) estimation

(Broffitt 1984). By adhering to the likelihood principle, ML estimation

avoids the above mentioned problems in exposure calculations. Moreover, it

indirectly derives the correct exposure but by subscribing to a sound

statistical reasoning. This is skillfully expressed by (Boom 1984) in

discussing (Broffitt 1984): This is intuitively superior to the concept of

exposure familiar to us in the actuarial estimation/Balduccis assumption

combination, since the awkwardness of having to expose the already dead

still further to the risk of death is avoided.

When the data from a given population are scanty but are known or

suspected to come from an experience similar to that for which a standard

graduated table already exists, it may be possible to use this standard table

as a base curve for graduating the new data. Any one of the standard

graduation methods can be used for this purpose (Benjamin, Pollard 1986).
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Since the standard table is believed to be similar to that underlying the

experience, no value of the ratio should vary too much from unity. With

this in mind, the choice of the standard table is important since any special

feature in its graduation will be reproduced, even exaggerated, in the

graduation of the new data. This method of graduation by reference to a

standard table is not considered often as it is not always possible to find a

suitable standard table, so that even if the constants in the graduation

formula are chosen properly, the adherence of the results to the rough data

is satisfactory.

Six point Lagrangian interpolation formula (Elandt,1998) provides good

approximations for adult mortality but it is less accurate for early

childhood ages. However the application of Lagrangian formula is limited

to the ages less than seventy five hence it is not a viable graduation method

at this point as our main aim is to smooth mortality data available and

forecast for older ages. Bayesian method of graduation is another method

that has been employed by some of the actuaries across the world. Bayesian

statistics provide a coherent method for combining prior information and

current observation. Also, parameters are viewed as being uncertain and

hence this approach requires the quantification of the uncertainty in the

form of a prior probability distribution (Hickman, Miller, 1977). The most

persistent impediment to the application of the Bayesian methods is the

difficulty that arises in specifying a prior distribution. (Kimeldorf, Jones,

1977) managed this problem by using conjugate multinormal distributions

for the prior and the sampling distributions. That is, the solution involved

defining classes of matrices from which a covariance matrix of the prior

distribution might be conveniently selected. An improvement of this

problem was developed by operating in a new metric. That is, by
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transforming the observations and the prior distribution by application of

the arc sine transformation, the graduator does not have to specify

individual variances for the prior distribution. Instead, more easily

interpreted past sample sizes are specified (Hickman, Miller, 1977).

Benjamin Gompertz argued that on physiological grounds the intensity of

mortality gained equal proportions in equal intervals of age, giving rise to

an increasing force of mortality (Gompertz,1825). Makeham(1860) made a

development on Gompertz law by introduction of a constant as well as the

exponentially increasing component of the force of mortality to reflect the

division of causes of death into two kinds, those due to chance and those

due to deterioration. Makeham’s formula was found to give satisfactory

adherence to data for a number of experiences in the late 19th and early

20th centuries, and several standard tables were graduated by its use. This

method has led to convenient calculation of monetary functions that its

adoption has been justified at the expense of some departure from the

degree of adherence to data that would otherwise be required. it has been

found increasingly difficult, however, to obtain satisfactory graduations by

this simple formula and more complicated formula have therefore been

developed. Curves allied to Makeham were introduced in the early years of

the 20th century when it became evident that changes in basic age pattern

of mortality meant that it was rarely possible to graduate successfully by

Makeham’s formula. The main changes were a substantial improvement in

mortality at the younger ages and a relative ’heaping up’ of mortality at

middle age. Allied formula were tried without any very great success since

a single curve will not fit the whole range of the table. This arises form the

fact that the observed mortality experience is heterogeneous and mixes

generations.
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King’s osculatory interpolation was introduced by George King in 1914 to

reduce the effects of age misstatement (preferences for even ages or

multiples of five) and provide mild graduation. This method was used to

produce English Life Tables 7 to 10. The method is applicable for intervals

of five years of age and requires the pivotal value and osculatory

interpolation to be computed (Rose, Zailan, 2011). Kings method can be

summarized as the exposed to risk, also applied directly to crude mortality

rates, being grouped into quinquennial age groups, then a pivotal exposed

to risk value is calculated for the central age of each group. Graduated

exposed to risk values at the remaining ages are then found by osculatory

interpolation and finally graduated mortality rates are found by division.

Osculatory interpolation overcomes the discontinuity difficulty associated

with ordinary interpolation. King’s pivotal value formula gives the value of

a single central ordinate in terms of sums of equally spaced ordinates and

its derivation commences with consideration of a third degree polynomial.

This formula is the same as the well known Gauss backward formula as far

as second differences. The osculatory effect is obtained by changing the

third difference term. This method assumes that the underlying curve can

be represented adequately by a cubic, at least over sections of its length.

The graduated rates at the intermediary ages calculated by means of

osculatory are not very smooth, owing to the variation in the crude rates

and the limited graduation power of the method (Benjamin,Pollard, 1986).

This leads to further thought of a better method of graduation that will

take into account this problem.

(Schuette, 1978) did a variation of the Whittaker-Henderson technique of

graduation proposed in 1914, which uses squared deviations for the terms

relating to fit and squares of differences in both directions, by replacing the
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squares of absolute values in the measures of both fit and smoothness and

finding the solution via linear programming. Standing in the way of

practical use of Schuette’s method are lack of appreciation for the rationale

and perceived computational difficulties. Recent research works in

parametric programming has made it possible to streamline the

computations so that Schuette’s problem can be solved completely as

quickly as one can generate solutions to the Whittaker-Henderson problem

for a few different parameter values. Schuette’s graduation technique has

been extended to generalization to bivariate graduation(Portnay, 1994).

Portnay suggests that two dimensional data can be smoothed by

minimizing a combination of the sum of weighted absolute deviations for

initial estimates and the sums of absolute values of differences in the two

directions. Further, the techniques of parametric programming make it

feasible to explore the difference results obtained by varying the emphasis

given to fit versus smoothness. Portnay found that measuring fit by

absolute deviation rather than by squared deviation results in a graduation

that is less influenced by outliers. A single graduation by this method

corresponds in a natural way to a median estimate: by changing the fit

measure we can obtain say 25th and 75th percentiles. Another one of the

major problems of Whittaker-Henderson graduation method is the amount

of subjectivity that enters into the determination of the degree of

smoothness required. That is, Whittaker left the analysis of how smooth

the graduated series should be, choosing smoothing coefficients, to the

intuition of the analyst. In a bid to rectify this problem, (Giesecke,1981)

investigated the use of chi square statistic to set the smoothing coefficients

when using the Whittaker-Henderson graduation procedure. In theory, a

Whittaker-Henderson solution using an analyst-set smoothing coefficient
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can yield better predictions than a Whittaker-Henderson where the

smoothing coefficient is iteratively set to yield a 50th percentile chi square.

If by chance an ungraduated series is already smooth, the chi square

iterations would enhance peaks and valleys more than they should be. If

the ungraduated series is ragged, the 50th percentile graduation may not be

smooth enough. It is remarkable then that 50th percentile graduation does

as well as the graduation with intuitively set coefficients. He concludes by

stating that at the very least, it can be said that the 50th percentile

solution provides a good initial solution.

Although osculatory interpolation formula were known last century,

increasing interest has been shown in them in recent years. Attention has

been focused on a particular kind of osculatory polynomials known as

spline functions. Spline functions are obtained by joining together a

sequence of polynomial arcs, the polynomials being chosen in such a way

that derivatives up to and including the order one less than the degree of

the polynomial used are continuous everywhere (Benjamin, Hollard 1986).

One of the advantages of the spline functions is that one can avoid the

marked undulatory behavior (curve being smooth in a local sense)

commonly encountered when a single polynomial is fitted exactly through a

large number of data points. At the same time, greater smoothness is

obtained than with traditional interpolation procedures, which gives rise to

discontinuities in the first derivative of the interpolating function. The

degree of the spline is selected. Usually, the degree is assumed to be as

small as possible. Typically a second degree spline is tested (That is, a

quadratic regression) first, if fit is not good enough, a cubic or higher order

regression can be tested (Bruce et al, 2013). Penalized splines functions is

part of the spline family of functions. P splines introduces a penalty for
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lack of smoothness and by adjusting the penalty, we can balance between

the fit to the data and smoothness. Higher penalties produce poorer fit but

are much more smoother, whereas no penalty produces a curve that fits the

data well. That is, fits every data point but very rough (CMI, 2005). P

splines have an edge effect, that is to say, that the final trend or slope of

mortality improvements may not be stable and can produce unreasonable

values. When a spline curve is fitted to a set of data, the resulting curve

fitted through the points is not unique. Hence it is clear that a particular

spline function chosen arbitrarily is unlikely to produce a satisfactory

interpolation (Benjamin, Pollard, 1986).Therefore, a constraint must be

introduced to eliminate the undulation problem. (Greville 1974) has shown

that the determination of the smoothest interpolating spline for given data

points takes a particularly simple form in the case of a cubic spine. It was

seen that when a natural cubic spline is fitted through points, any

undulatory behavior witnessed before disappears (Benjamin, Pollard, 1986).
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CHAPTER THREE

3 METHODOLOGY

3.1 The Data

The data used in this research project is obtained from the Human

Mortality Database. The period of the mortality data used was from 2000

to 2009 for the United States of America. Both raw data and for the life

tables data was utilized accordingly. The assumptions made with the data

are; it is similar to the Kenyan data.; there are no migration in the

population after age sixty five and that age of an individual is defined as

the completed age in years. (Depoid,1973) notes that death statistics are

more reliable than census data in countries where a birth registration

system has been in operation for a long time. Hence the use of mortality

data rather than census data.

The empirical mortality rate at age x in calendar year, Y can be calculated

as;

qYx =
lYx − lYx +1

lYx
= 1− lYx +1

lYx
=
dYx
lYx

where;

lYx = Number of people aged x living at the beginning of year, Y

dYx = Number of people dying between ages x and x+ 1 in calendar year, Y.

3.2 Statistical models for the force of mortality

3.2.1 Makeham model
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(Gompertz,1825) assumed that the force of mortality µx at age x was an

exponential function of age,

µx = Bcx (3.1)

An extra parameter was added to this model to take into account the force

of accidental death, assumed to be a constant independent of age

(Makeham, 1860), and obtained the model

µx = A+Bcx (3.2)

(Bowers et al, 1997) states that if the lifetime, X, of a person is Gompertz

distributed and the time, Y , to a fatal accident has an exponential

distribution, and the random variables X and Y are independent, then the

minimum of X and Y has a Makeham distribution. Based on this,

(Marshall, Olkin, 1997) mention that Makeham model can be considered as

a shock model. Gompertz and Makeham models were used for over a

century mostly by insurance companies to project the mortality tables

beyond age 65.

3.2.2 Lee - Carter Model

The LeeCarter model(1992) has become widely used and there have been

various extensions and modifications proposed to attain a broader

interpretation and to capture the main features of the dynamics of the

mortality intensity.The Lee Carter methodology is a milestone in the

mortality projections actuarial literature. The model describes the

logarithm of the observed mortality rate for age x and year t, mx,t as the
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sum of an age specific component, αx, that is independent of time and

another component that is the product of time-varying parameter, Kt,

reflecting the general level of mortality and an age-specific component, βx,

that represents how mortality at each age varies when the general level of

mortality changes (D’Amato et al, 2011).

lnmx,t = αx + βxKt + εx,t (3.3)

where

αx describes the general age shape of the age specific death rates, mx,t

βx coefficients describes the tendency of mortality at age x to change when

the general level of mortality Kt changes

Kt is an index that describes the variation in the level of mortality to t

εx,t is an error term and it is normally distributed

(Girosi, King,2007) showed that to produce mortality forecasts, Lee and

Carter assume that βx remains constant over time and they use forecasts of

K̂t from a standard univariate time series.

Due to the bilinear multiplicative construct (βxKt) present in in the Lee

Carter model, there is a clear identifiability problem that is traditionally

resolved by ensuring that these parameters satisfy a pair of specified

constraints, given by ∑
t

Kt = 0,
∑
x

βx = 1
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3.2.3 Other Models

Earlier models for mortality rates were deterministic,and include the

Gompertz curve (1825), which provides a satisfactory fit to adult mortality,

but overestimates death rates at ages greater than 80. The Perks (1932)

logistic model (a generalization of the Gompertz curve) gives a relatively

good fit to mortality rates over the entire adult range. The Heligman and

Pollard (1980) curve provides a relatively good fit to mortality rates over all

ages. Progresses in computational algorithms help handling complexes

models, and the number of parameters is no longer an issue. (Pitacco,

2004), (Haberman, 2004) and (Boe 1998) reviews earlier contributions to

mortality forecast and recent models. Some recent studies shown that the

mortality rates predicted from the classic parametric formulas were erratic

(Stoto 1983; Murphy 1995). Stochastic models seem more appealing,

because they associate a confidence error to each estimate. In 1992, Lee

and Carter presented a stochastic model, based on a factor analytic

approach, to fit and predict mortality rates for United States. Since then,

because of its simplicity and relatively good performance, the Lee-Carter

(LC) model has been widely used for demographic and actuarial

applications in various countries. For example, the LC model was used for

Japan (Wilmoth 1993), the seven most economically developed countries

(G7) (Tuljapurkar et al. 2000), Austria (Carter, Prskawetz 2001), Australia

(Booth et al. 2002), Belgium (Brouhns et al. 2002), and the Nordic

countries (Lundstrm, Qvist 2004; Koissi et al. 2006b).

Logistic model developed by an actuary, (Perks, 1932) has not received

much attention as the Gompertz and Makeham models. With this model,

the force of mortality at age x is given by the four parameter function
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µx =
A+Beµx

1 + Ceµx
(3.4)

By assuming that the parameter A = 0 in the logistic model, (Beard, 1963)

obtained the 3-parameter model

µx =
Beµx

1 + Ceµx
(3.5)

(Kannisto, 1992) used the simple 2-parameter model

µx =
Beµx

1 +Beµx
(3.6)

Note that the Gompertz (A = 0;C = 0), Makeham (C = 0), Beard (A = 0)

and Kannisto (A = 0;B = C) models are all special cases of the logistic

model; therefore, after successfully fitting the logistic and another one of

the above models, a likelihood ratio test could be performed to check

whether a model more parsimonious than the logistic one would be

appropriate considering its smaller number of parameters.

(Beard, 1971) showed that the logistic model can arise in a heterogeneous

population where each member has a Makeham force of mortality and

where the parameter B varies among individuals according to a gamma

distribution. This Makeham-gamma model is a frailty model. (Thatcher et

al, 1998) also mention two ways in which the logistic model could karise

from stochactic processes. The logistic model can also be considered as a

shock model: if the lifetime X follows a Beard distribution, the time to an

accident Y is exponentially distributed and the random variables X and Y

are independent, then min(X; Y ) follows a Perks distribution.
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3.3 Estimation of parameters

3.3.1 Makeham Model

Let qx represent the probability that a person aged x dies before attaining

age x+ 1. In terms of µx, qx equals (Bowers et al, 1997)

qx = 1− exp
(
−
∫ 1

0

µydy

)
= 1− e−µx

The complement of qx, px = 1− qx represents the probability that a person

aged x survives at least to age x+ 1.

We begin by transforming the Makeham model into a linear equation using

the log linear transformation, and fit the curve using linear regression.

(1− qx) = exp− (

∫ 1

0

µx+tdt)

= exp−µx

µx = −ln(1− qx)

Taking natural logarithm on both sides we get;

lnµx = ln(−ln(1− qx))

Thus the log linear transformation of the force of mortality would be given

by

lnµx = ln(−ln(1− qx))

We use the linear equation
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y = α + βx (3.7)

, where y = lnqx, x = the specific ages from age 20 to age 100, to transform

Makeham equation into a linear form. The parameters α and β are then

estimated using the linear regression;

β̂ =

∑
xy − nx̄ȳ∑
x2 − nx̄

.

α̂ = ȳ − nx̄

where ȳ and x̄ are means of y and x respectively. The linear equation,

y = α + βx, is then used to estimate the new value of y. A trend line is

then fitted using Microsoft excel software between the ages of 20 and 100.

The new value of y, y1, and hence q1x, that has been estimated is used for

log linear transformation. Thus the log linear transformation of the force of

mortality would be given by;

lnµx = ln(−ln(1− q1x))

That is,

y = ln(−ln(1− q1x))

A trend line is then fitted using excel between ages 20 and 100. This is

because on investigation of the log of the force of mortality between those

ages, it was identified that a straight line can be used to estimate the data

points. This is consistent with the Gompertz model that is accurate for

middle ages.
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The parameters of the Makeham model, B and c, are estimated by

sketching the straight line and noting its slope and y - intercept. Suppose

the trend line is given by the equation

y = mx+ d

, then

ĉ = em

and

B̂ =
logĉ

(ĉ− 1)
ed

The term A was obtained by taking a representative younger age 30 and

applying the formula;

Â = e−ym − e−yg

where

ym = height of the graduating curve at a representative younger age 30 in

the experience

and

yg = height of the straight line

Makehams’ survival rates are then calculated as;

p̂x = exp

[
−Â− B̂(ĉ− 1)

logĉ
ĉx

]

Therefore,

q̂x = 1− exp

[
−Â− B̂(ĉ− 1)

logĉ
ĉx

]
(3.8)
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3.3.2 Lee - Carter Model

For the Lee - Carter model, Lee and Carter used Singular Values

Decomposition (SVD) of the matrix Zx,t = [ln(mx,t)− α̂x] to obtain

estimates of βx and Kt (Lawson,Hanson, 1974): where

α̂x =
1

n

tn∑
t=t1

log(mx,t)

Applying singular value decomposition on the matrix, Z, we get;

SV D(Z) = USV ′

where U represents the age component, V represents the time component

and the S are the singular values which are arranged in a descending order.

The LC parameter β̂ is derived from the first vector of age component

matrix. That is,

β̂ = U1,1U2,1...Ux,1 = Ux,1

Parameter Kt is derived from the first vector of time component multiplied

by the first singular value. That is,

K̂t = S1 ∗ [V1,1V2,1...Vt,1]

But we need to adjust the parameters to fulfill LC model constraints that,∑
t

Kt = 0

, ∑
x

βx = 1

Hence we use quotient transformation to achieve this.
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Parameter β̂ becomes,

β̂ =
1∑
x

Ux,1 ∗ Ux,1

and K̂t becomes,

K̂t =
∑
x

Ux,1 ∗ S1 ∗ Vt,1

Central death rate is then given by;

mx,t = eα̂x+β̂xK̂t

and since

mx = −ln(1− qx)

then

qx = 1− e−mx

Hence mortality rate will be given by;

q̂x = 1− e−(eα̂x+β̂xK̂t) (3.9)

The parameters of the LC model can also be estimated using the Weighted

Least Squares (WLS) suggested by (Wilmoth, 1993):

Minimize
∑X

x=1

∑T
t=1Wx,t [ln(mx,t)− αx − βxκt]2

Wx,t = dx,t, where dx,t is the observed number of deaths for age - group x in

year t. If this does not hold, an alternative choice is

Wx,t = dx,t/(
∑

x

∑
t dx,t) for dx,t 6= 0 and Wx,t = 0 for dx,t = 0, which gives∑

x

∑
tWx,t = 1 as expected.

(Wilmoth, 1993) and (Alho, 2000) proposed using Maximum Likelihood

Estimation (MLE) to find the parameters in the LC model. This approach
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is based on a Poisson approximation of the number of deaths, Dx,t

presented by (Brillinger, 1986):

Dx,t ↪→ Poisson(mx,tEx,t)

, where mx,t = exp(αx + βxκt)

The coefficients αx, βx and κt are estimated by maximizing the full log

likelihood (Wilmoth, 1993)

l =

xA∑
x=x1

t1+T−1∑
t=t1

[Dx,tln(mx,tEx,t)− Ex,texp(αx + βxκt)− ln(Dx,t!)]

The loglikelihood function, denoted l(θ), defined as l(θ) = ln L(θ), equals

l(θ) =
100∑
65

dxlnqx(θ) + (lx − dx)lnpx(θ)

. We can find the MLE θ̂ numerically, either by maximizing directly the

log-likelihood function l(θ) or by solving the system of equations

δl(θ)

δθj
= 0, j = 1, ..., p,

where θj is the jth component of θ.

3.3.3 Other Models

For the logistic model, we find that

qx = 1− exp
(
−
∫ x+1

x

A+Beµy

1 + Ce
dy

)

= 1 - (e−A)
(

1+Ceµx

1+Ceµ(x+1)

)B−AC/Cµ
For Beard model,

qx = 1−
(

1 + Ceµx

1 + Ceµ(x+1)

)B/Cµ
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While for Kannisto model,

qx = 1−
(

1 +Beµx

1 +Beµ(x+1)

)1/µ

And for the Makeham model we have,

qx = 1− exp [−A+ (B/µ)(1− eµ)eµx]

In the Kannisto model, as x tends to ∞,qx tends to 1− e−1 = 0.632, while

it tends to 1− e−B/C in the Beard and logistic models. In the Gompertz

and Makeham models, since µx is unbounded, qx tends to 1.

Demographers often use the approximation

qx ∼= 1− e−µx+1/2

obtained with the use of the mid point rule. That is,
∫ x+1

x
µydy ∼= µx+1/2.

This approximation is very close to the true value. (Thatcher et al, 1998)

showed that for Kannisto model, the relative difference between the exact

value of qx and the approximate value obtained using the mid point rule is

minimal (only 0.03 percent for a male aged 80 and 0.0008 percent at age

100). The advantage of using the exact formula for qx instead of the

approximate one lies in the fact that an analytical expression can be found

for the probability npx that a person aged x survives to age x+ n,

npx = exp

[
−
∫ x+n

x

µydy

]
= (enA)

(
1 + Ceµx

1 + Ceµ(x+n)

)(B−AC)/Cµ

for the logistic model and

npx =

(
1 +Beµx

1 +Beµ(x+n)

)1/µ

for Kannisto model.
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The use of the mid-point rule

npx = exp

[
−
∫ x+n

x

µydy

]
∼= exp

[
−µx+n/2

]
would become less accurate as n gets larger, while using the mid point rule

over successive one year intervals

npx =
n−1∏
i=0

px+i ∼=
n−1∏
i=0

exp
[
−µx+i+1/2

]
would be more cumbersome.

Let θ be the vector of parameters of dimension p to be estimated, and qx(θ)

the value of qx calculated with a parametric model. For a logistic model

p = 4 and θ = (µ,A,B,C); for the Beard model p = 3 and θ = (µ,B,C);

Makeham model p = 3 and θ = (µ,A,B) while for the Kannisto model,

p = 2 and θ = (µ,B) We will use the method of maximum likelihood to

estimate the parameter vector θ. The likelihood function equals

L(θ) =
100∏
65

qx(θ)
dxpx(θ)

lx−dx

where dx is the number of deaths between ages x and x+ 1 and lx is the

number of people living at age x.

3.4 Goodness of fit tests

3.4.1 Chi-Squared Test

To test whether the fit of a model is appropriate to the data, χ2 goodness

of fit test statistic for males and females was used and compared with the

critical value of the χ2 distribution with the appropriate number of degrees

of freedom. The χ2 test statistic is defined as
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χ2 =
∑ (qobsx − qexpx )2

qexpx
(3.10)

where qobss is the observed mortality rate at age x, qexpx is the expected

mortality rate at age x according to the parametric model used.

3.4.2 Cramer Von Mises Criterion

This method is used to test goodness of fit of a cumulative distribution

function, F ∗, compared to a given empirical distribution function, Fn, or for

comparing two empirical distributions. It is also used as a part of other

algorithms such as minimum distance estimation. This criterion was used

to test goodness of fit. It is given by;

ω2 =

∫ ∞
−∞

[Fn(x)− F ∗(x)]2 dF ∗(x) (3.11)

where, F ∗ = theoretical distribution and Fn = empirically observed

distribution

3.4.3 Kolmogorov Smirnov (KS) two sample test

This method is used to calculate the largest absolute difference between the

cumulative distributions for the observed data and the fitted distribution

according to the equations;

D = max(D+, D−) (3.12)

where,

D+ = max
(
i
n
− F (x)

)
, i = 1...,n
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D− = max
(
F (x)− (i−1)

n

)
, i = 1,...,n

where D = KS statistic, x = value of the ith point out of n data points and

F (x) = fitted cumulative distribution.

3.4.4 Anderson Darling Test

The goodness of fit test by Anderson darling test has the statistic;

W 2 = n

∫ ∞
−∞

[Fn(x)− F (x)]2

F (x)[1− F (x)]
dF (x) (3.13)

where W 2 = AD statistic, n = number of data points, F (x) = fitted

cumulative distribution and Fn(x) = cumulative distribution of the input

data.

This test calculates the integral of the squared difference between the input

data and the fitted distribution, with increased weighting for the tails of the

distribution.

Normality tests were done using the Shapiro test for normality.

3.5 Description of graduation method

In this research project cubic spline graduation method will be used.

Although osculatory interpolation formula were known last century,

increasing interest has been shown in them in recent years. Attention has

been focused on a particular kind of osculatory polynomials known as

spline functions. Particularly, we focus on the cubic spline method of

graduation. A spline of odd degree 2k− 1 with knots at x1, x2,...xn is called

a natural cubic spline if it is given in each of the two intervals (−∞, x1) and
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(xn,∞) by a polynomial of degree k − 1 or less. The polynomials of degree

k − 1 in the two tails are not in general the same. The smoothest

interpolation cubic spline through a given set of data points is linear before

the first data point and linear after the final point. When natural cubic

spline method is fitted through some points, any undulatory (curve being

smooth in a local sense) behavior witnessed by use of quadratic fit through

the same points disappears (Benjamin, Pollard, 1986). For the interval

(−∞, x1), it is linear and can be expressed in the form;

y = ao + a1x, x < x1 (3.14)

At the point (x1, y1), the curve becomes cubic with the same first and

second derivatives as the initial straight line. We can add the term

b1(x− x1)3 to obtain a suitable cubic term. We have,

y = ao + a1x+ b1(x− x1)3, x1 ≤ x < x2 (3.15)

Where the first two derivatives of (3.15) are the same as in (3.14) above at

the point (x1, y1) because the first two derivatives of b1(x− x1)3 are the

zero at that point. We may define

φ1(x) =
{

0, x < x1; (x− x1)3, x ≥ x1

Combining (3.14) and (3.15) we have,

y = ao + a1x+ b1φ1(x)

The cubic spline over the range x2 ≤ x < x3 will be different from the cubic

over the interval x1 ≤ x < x2 although the two must have the same first

and second derivatives at x2. We may add b2(x− x2)3 and define,

φ2(x) =
{

0, x < x2; (x− x2)3, x ≥ x2
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Natural cubic spline for x < x3 therefore can be written in single simple

form as,

y = ao + a1x+ b1φ1(x) + b2φ2(x) (3.16)

Hence the complete natural cubic spline passing through the n data points,

valid for the whole range (−∞,∞) , can be written in the form;

y = ao + a1x+
n∑
j=1

bjφj(x) (3.17)

where

φj(x) =
{

0, x < xj; (x− xj)3, x ≥ xj

For x ≥ xn , the natural cubic spline reduces to a straight line. This can

only be true provided the cubic and quadratic terms in

n∑
j=1

bj(x
3 − 3x2xj + 3xx2j − x3j)

are zero. Hence the following constraints are imposed.

n∑
j=1

bj =
n∑
j=1

bjxj = 0

It follows that;

bn−1 = −
{

1

xn − xn−1

} n−2∑
j=1

bj(xn − xj)

bn =

{
1

xn − xn−1

} n−2∑
j=1

bj(xn−1 − xj)

and we deduce the following form for the natural cubic spline over the

entire interval (−∞,∞)

y = ao + a1x+
n−2∑
j=1

bjΦj(x) (3.18)
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where

Φj(x) = φj(x)−
{

xn − xj
xn − xn−1

}
φn−1(x) +

{
xn−1 − xj
xn − xn−1

}
φn(x)

The use of k knots requires the estimation of k regression coefficients

(ao, a1, b1, b2, ..., bk−2). If k exceeds the number of data points,n, the system

will be over determined. Therefore, k must be less than or equal to n. If

k = n and the knot ages coincide with the data ages, the spline function

will pass through all the original data points and a perfect fit will be

obtained, hence there will be no graduation. The use of a small number of

knots will usually result in a bold smooth graduation and the effect of

increasing the number is to improve adherence to data (possibly at the

expense of smoothness).

3.6 Mortality forecast

The estimated mortality rates, qx from the best fit model will be forecast

by Cubic smoothing spline, Auto Regressive Integrated Moving Average

(ARIMA) model, (p,d,q), with and without a drift. The values of p,d and q

will be established by an automatic ARIMA function. The model which has

the lowest AIC will be selected as the best fit for the forecast. The forecast

will have a five year horizon.
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CHAPTER FOUR

4 DATA ANALYSIS AND RESULTS

4.1 Linear model

The data for both the male and female lives were investigated for linearity.

That is, checking if the mortality rates follows a linear function. This was

done using log linear transformation and the graph below illustrates the

results;

Figure 4.1
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Figure 4.2

We are able to see from figures 4.1 and 4.2 that the mortality rates are

increasing at the younger ages, form age 0 to 5 years. This may be

attributed due to child disease, lack of proper care or ignorance and

proneness of child to some diseases. Mortality rates start decreasing at

about age 10, there is a dip, to about age 20 where it takes an upward

turn.We can explain this upward turn by the lifestyle (e.g. fast and reckless

driving, indulgence in drug abuse,etc) led by this age group.The female

lives have less accident hump at the than the male lives due to controlled

life style. Mortality trend reduces slightly and stabilizes to a linear trend in

the middle ages from about age 40. From the investigations, mortality rates

for both males and females are not linear. Hence the need to look for

alternative models of fitting the data.
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4.2 Makeham model

Model fit

Makeham model commences with fitting the Gompertz curve to middle

ages. The trend line that resulted from the fit in excel software for male

and female respectively was;

y = 0.0791x− 8.8613 (4.1a)

y = 0.0832x− 9.5459 (4.1b)

and R squared of 0.999049723 and 0.99950578 for male and female

respectively. This means that 99.904% and 99.95% of male and female

mortality rates respectively can be explained by the age, hence age affects

mortality significantly.

Figure 4.3
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Figure 4.4

Figures 4.3 and 4.4 have a linear trend. That is, the line represents an

asymptotic straight line. Parameters B and C are estimated from this line.

Parameter A is estimated from this line and the graduating curve.

Am = 0.010285469

Af = 0.007459156

Bm = 0.000136239

Bf = 0.0000685578

Cm = 1.082295009

Cf = 1.08678545

where subscript m represents the male lives and subscript f represents the

female lives.
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Comparison of the actual and estimated mortality rates using the Makeham

model for both male and female lives are shown in the graphs below;

Figure 4.5

Figure 4.6

Figures 4.5 and 4.6 shows the fitted Makeham curve which shows slight

variation in middle and older ages. The Makeham trend is similar to the

actual data except in the advanced ages from age 100. The actual mortality
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trend has a sharp bend assuming mortality rate of 1 from ages 110 onward,

unlike the estimated mortality rates trend which is gradual throughout.

Model goodness of fit results

The P value = 1 for both male and female lives, as calculated using the chi

square test in R programming indicates that the null hypothesis is not

rejected. Hence the estimated mortality rates are similar to the observed

ones. However due to the small values of the mortality rates used, there is a

chance that the test is incorrect. This prompts the use of other tests of

goodness.

The Cramer Von mises criterion test conducted in R shows that at 95%

confidence interval,the P value is 0.08691309 and 0.09090909 for male and

female lives respectively. This means that the null hypothesis is not

rejected. That is, the estimated mortality rates are as distributed as the

actual mortality rates.

Makeham is a good fit as indicated by the Kolmogorov Smirnov test

conducted in R. For the male lives, the test showed that the D value is

0.027027 and P value is 0.9221, meaning that there is 92% chance that the

highest difference between the fitted and the actual mortality rates is

0.027027. Similarly, for the female lives whose D value is 0.036036 and P

value of 0.8658, makeham model is a good fit.

Tests for normality were conducted using Shapiro Wilk test. For both male

and female lives, the population form which the data comes from, is not

normally distributed.
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4.3 Cubic spline model

Model fit

Cubic spline was conducted for the representative ages 20, 30, 40, 50, 60,

70, 80, 90 and 100 for both the male and female lives. The graphs below

illustrates the mortality rates estimated using the model as compared to

the actual rates.

Figure 4.7

47



Figure 4.8

Figures 4.7 and 4.8 shows that cubic spline is a good fit especially in the

earlier ages. There is a slight variation in the older ages for both male and

female lives. The cubic spline curve is smooth from the younger ages to the

maximum age of 110 at the mortality rate of 1 as opposed to the actual

rates which has a sharp turn to have mortality rate of 1 at age 110. Hence ,

we can conclude from the figures that cubic spline has a better fit than the

makeham model.

Goodness of fit of the Model

Similarly as in the Makeham model, the chi square test P value for both

male and female lives is 1. This implies a good fit although it might not be

correct given the small values involved. Other tests are used to verify the fit

of goodness.

Cramer Von Mises criterion test indicates a P value of 0.7362637 for the

male lives and 0.8631369 for the female lives. This implies that the
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distribution of the graduated mortality rates is as the actual mortality

rates. Further, the females lives graduated values are better estimated than

the male lives.

The Kolmogorov Smirnov test indicates D value of 0.063063 and P value of

0.9801 for the female lives. This indicates that the graduated and the

actual mortality rates are from the same distribution hence a good fit.

Similarly, for the male lives, D value is 0.09009 and P value is 0.4062.

Anderson Darling test shows a p values of 0.20187 when there are ties and

0.19448 after adjustment for ties, for the male lives. Similarly, for the

female lives, p values are 0.81405 when there are ties and 0.84942 after tie

adjustment. The results imply that the null hypothesis (all samples come

from a common population) is not rejected.

The population from which the data was obtained and the graduated data

are not normally distributed as indicated by the Shapiro Wilk Test for

normality. This was done on both male and female lives.

4.4 Lee Carter model

Parameter estimation

The Lee Carter model has three parameters to be estimated. Male lives

data was used in the estimation of the parameters, αx, βx and Kt. Results

of estimated parameters, goodness of fit tests and estimated mortality rates

based on the model are shown in the appendix. The figures of the

parameters are shown below;
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Figure 4.9

Parameter α̂x represents age specific pattern of mortality. From figure 4.9,

we find that we have an upward trend of mortality in general. The younger

ages have a high mortality which reduces gradually to the twenties where

we have a mortality hump. After the hump, the figure shows that mortality

increases gradually to the older ages.
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Figure 4.10

β̂x represents decline in mortality at particular age x. The parameter

describes the tendency of mortality at age x to change as the general level

of mortality changes. When β̂x is large for some age x, it means the death

rate varies a lot than the general level of mortality and when it is small,

death rate varies a little. From figure 4.10, the parameter has higher values

in the younger ages than the older ages, which then declines steadily from

about age 80.

Figure 4.11

Index of general level of mortality is represented by parameter, Kt. It

captures the main time trend on the logarithmic scale in death rates at all

ages. Figure 4.11 indicates a general decrease in the level of mortality from

year 2000 to 2009.

Model fit
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Comparison between the actual mortality rates and the estimated ones

from the Lee Carter model, using the above estimated parameters, are

shown in the graph below.

Figure 4.12

From the figure 4.12, we see that the actual mortality rates from ages 0 to

110 follows the mortality rates estimated using the Lee Carter model almost

to perfection. In the Lee Carter model, mortality rates increase gradually

even in the older ages as opposed to the actual data where there is sharp

bend at age 110 with mortality rate of 1. LC model, implies the maximum

age might not be actually 110 but more than that. Hence this model is best

fit for the data in comparison to the linear and Makeham models.

Goodness of fit of the model

The goodness of fit tests conducted in R programming showed p value of 1

for the chi square test, 0.999001 for the Cramer Von Mises criterion test

which implies the mortality rates estimated are distributed as the actual

ones observed in the mortality tables given. Kolmogorov Smirnov test had

a D value of 0.063063 and p-value = 0.9801. That is, there is 98% percent
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chance that the difference in CDF of the estimated and actual mortality

rates is 0.063063. Anderson darling test had a p value of 0.96844 when

there are ties and 0.94905 after adjustment for ties. This implies the Lee

Carter model is the best fit model for this data. Shapiro Wilk test

indicated that both the actual and estimated mortality rates do not come

form a normal population.

4.5 Forecast of mortality

The forecast of mortality rates estimated using the Lee Carter model can

be reduced to forecast of the parameter associated with general level of

mortality, Kt, as it is time based. This parameter is forecast using cubic

smoothing spline, time series model with and without a drift, Auto

Regression Integrated Moving Average (ARIMA) of (0,1,0) in R

programming. Horizon of the forecast is five years. Results of R are

displayed in the appendices.

From the analysis of the three methods of forecast, cubic smoothing spline

and ARIMA model with drift give almost similar results. ARIMA model

without drift assumes stationarity from the last year’s value of parameter,

Kt. ARIMA model with drift, has a Mean Absolute Standard Error

(MASE) of 0.3485736 and 0.4175512 for cubic smoothing spline. The

smaller the value of the MASE, the better the fit, hence ARIMA model

with drift give a better forecast. Further, The Root Mean Square Error

(RMSE) was 0.7688246 and 1.040821 for ARIMA model with drift and

cubic smoothing spline respectively. RMSE that is less than one is better

than more than one, therefore ARIMA model with drift is a better forecast

method. The Mean Absolute Percentage Error (MAPE) was 1060.53 and
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63.81906 for ARIMA with drift and cubic smoothing spline respectively.

Hence cubic smoothing spline offers a better fit in regard to MAPE. On

further application to the data and comparing to the actual mortality rates,

cubic smoothing spline was found to give a closer estimate to the actual

data. Hence in this research, we shall use cubic smoothing spline for

forecasting mortality into the horizon. The results are shown in the

appendix.

From the tables 14 and 15 in the appendix, we can deduce that mortality

has had a downward trend, in our case from the year 2000 to the last

forecast(using both ARIMA with drift and cubic smoothing spline models)

year 2014 for both. We can therefore calculate the percentage change in

mortality using the formula,

%change =

[(
F

S

) 1
Y

− 1

]
∗ 100 (4.2)

where,

F = current year mortality

S = previous year mortality

Y = the number of years

The results are illustrated in the table below.
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Table 1: Percentage mortality change

Age 2000-2004 2005-2009 2010-2014 (ARIMA) 2010-2014 (Cubic)

60 -1.3167% -1.6095% -1.3830% -1.6699%

65 -1.7502% -2.1392% -1.8395% -2.2202%

70 -2.3307% -2.8491% -2.4531% -2.9593%

75 -2.2614% -2.7670% -2.3844% -2.8771%

80 -2.2954% -2.8132% -2.4282% -2.9307%

From the table above, we can deduce that as much as the mortality declines

with both the ARIMA and the cubic smoothing spline forecasting models,

ARIMA model tends to underestimate the mortality rates. Therefore

annuity providers should be careful in the selection of forecasting models.

In the study we focus on mortality rates forecast using the cubic smoothing

spline.

4.6 Impact of mortality change

Our results indicates a decrease in the mortality rates over the years by

approximately 1.7% using cubic smoothing spline models for a 60 year old

male. This decrease may seem small but has a major impact on pension

schemes and annuity providers. we take an example of a whole life annuity

for a male aged 65 years. Assumption is made that the sum assured is 1 is

payable continuously .
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Figure 4.13

The actuarial present values of the whole life annuity has an upward trend.

This implies that the present values increase with decrease in mortality.

We can illustrate using a numerical example. APV of a whole life annuity

of a 60 year old male payable continuously for the year 2009. Assume

amount 1 is paid at an interest of 3%. The APV using actual mortality

rates is 32.74567 and using mortality rates based on Lee carter model is

32.9646. We can observe difference in the present values due to difference in

mortality rates.

Hence, pension schemes and annuity providers should incorporate longevity

risk (decline in mortality rates) when pricing annuities to avoid insolvency

in future. This can be done by using appropriate mortality rates from best

fit model, which in our case is the Lee Carter model.
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CHAPTER FIVE

5 CONCLUSION

5.1 Summary

We began by establishing the best fit model to the data. We fitted linear

model based on log transformation, makeham model, cubic spline and Lee

Carter models. Parameters of the were estimated using methods, linear

regression, graphical method and Singular Value Decomposition for the

linear model, Makeham model and Lee Carter model respectively. There

was no estimation of parameters for the cubic spline as it non parametric.

Goodness of fit techniques used for all models were chi square goodness of

fit, Cramer Von Mises criterion, Kolmogorov smirnov and Anderson Darling

tests. In the analysis we concluded that the Lee Carter model was the best

fit model to our data.

Selection of a forecast model was done using the results of the parameter

Kt of the Lee Carter model. This is because forecast of mortality rates

based on the Lee carter model is reduced to forecast of the parameter Kt.

Cubic smoothing spline, ARIMA models with a drift and without a drift

forecasting methods were tested using standard errors. We concluded that

cubic smoothing spline model with a drift was the best fit model.

Therefore, mortality rates were forecasted to a five year horizon.

Actuarial Present Values (APVs) of a whole life annuity for a 60 male life

was calculated using the forecast mortality rates based on the Lee Carter

model. The results obtained indicated an upward trend in the APVs of the
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annuity from previous years, implying that APVs increase with a decrease

in mortality rates .This implication may have a high cost to pension

schemes and annuity providers to the tune of insolvency if the decline of

mortality is not taken care of properly. Hence in calculating the present

values of annuities, annuity providers and pension schemes should take into

account the changing declining patterns of mortality in recent times to

accommodate longevity risk.

5.2 Recommendations

In this research we considered three models, this can be extended to include

other models in the investigation of best fit model to the data. Moreover,

we assume forecasting parameter Kt of the Lee Carter model is enough to

forecast mortality rates. This may not be true as the other parameters, αx

and βx may be dynamic and this needs to investigated. Further research

can be conducted in modifications of the Lee carter model, for example,

combining expert opinion and subjective indicators to the model. Methods

of forecasting also need to be reviewed and studied in details. Experts

should closely monitor the rates of mortality decline and re-calibrate the

model from time to time.

58



6 REFERENCES

Jenny Zheng Wang(2007). Fitting and Forecasting Mortality for Sweden;

Applying the Lee-Carter Model,8-12

Heligman, L. and Pollard, J.H(1980). The analysis of mortality and other

actuarial statistics,2,200-355

Kevin Dowd, Andrew J.G. Cairns, David Blake, Guy D. Coughlan, David

Epstein, Marwa Khalaf-Allah(2008). Evaluating the Goodness of Fit of

Stochastic Mortality Models

Louis G. Doray(2000). Living to age 100 in Canada in 2000,7-11

Perks,W(1932). On some experiments on the graduation of mortality

statistics, Journal on the institute of actuaries,63,12-40

Heather Booth and Leonie Tickle (2008). Mortality modelling and

forecasting: A review of methods,3,6-9

Lucia Andreozii, Maria Teresa Blacona, Nora Arnesi(1995). The Lee Carter

method for estimating and forecasting mortality: An application for

Argentina,4-6

Kirk Baker(2013). Singular Value Decomposition Tutorial,2,9-21

Renshaw, A.E. and Haberman, S. (2003). Lee-Carter mortality forecasting

with age-specific enhancement. Insurance: Mathematics and Economics 33,

255-272.

Lee, Ronald D. and Miller T. (November, 2000). Evaluating the

performance of the Lee-Carter mortality forecasts. Demography, v. 38, n. 4

pp. 537-549.

59



Rob J. Hyndman and Yeasmin Khandakar(2008). Automatic Time Series

Forecasting: The forecast Package for R,v.27, 3, 9-22

Fredrik Norstrm (1997). The Gompertz-Makeham distribution.

Cox, D.R., Oakes, D. (1984). Analysis of Survival Data.

William Feller Scott(1999). Life Assurance Mathematics,61-78

Peter Dalgaard (2002). Introductory Statistics with R.

Montgomery, D.C. and Johnson, L.A. (1976), Forecasting and Time Series

Analysis,New York: McGraw-Hill Book Co.

Lidstone,G.J. (1892). On an application of the graphic method to obtain a

graduated mortality table, J. Inst. Actu,30

Greville,T.N.E. (1969). Theory and applications of spline functions,

Academic press, Newyork

King, G. (1914). A short method of constructing an abridged mortality

table,J. Inst. Actu, 48

Cramer,H. and Wold,H.(1935). Mortality variations in Sweden. A study in

graduation and forecasting, Skandinavisk Aktuarietidskrift, 18

60



7 APPENDIX

7.1 Makeham Results

Male lives

¿chisq.test(malesmakeham) pearson’s chi square

Pearson’s Chi-squared test

data: malesmakeham X-squared = 0.70801, df = 110, p-value = 1

Warning message: In chisq.test(malesmakeham) : Chi-squared

approximation may be incorrect

cvm¡-cramer.test(qx.actual,qx.estimate) ¿ cvm

1 -dimensional nonparametric Cramer-Test with kernel phiCramer (on

equality of two distributions)

x-sample: 111 values y-sample: 111 values

critical value for confidence level 95 observed statistic 0.1426729 , so that

hypothesis (”x is distributed as y”) is ACCEPTED . estimated p-value =

0.08691309

[result based on 1000 ordinary bootstrap-replicates]

¿ ks.test(qx.actual,qx.estimate,alternative = ”two.sided”,exact=NULL)

Kolmogorov two sided

Two-sample Kolmogorov-Smirnov test

data: qx.actual and qx.estimate D = 0.53153, p-value = 4.807e-14

alternative hypothesis: two-sided

Warning message: In ks.test(qx.actual, qx.estimate, alternative =

”two.sided”, exact = NULL) : p-value will be approximate in the presence

of ties ¿ ks.test(qx.actual,qx.estimate,alternative = ”less”,exact=NULL)

kolmogorov one sided
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Two-sample Kolmogorov-Smirnov test

data: qx.actual and qx.estimate D− = 0.027027, p− value =

0.9221alternativehypothesis : theCDFofxliesbelowthatofy

Warning message: In ks.test(qx.actual, qx.estimate, alternative = ”less”,

exact = NULL) : p-value will be approximate in the presence of ties

¿ ad.test(qx.actual,qx.estimate)

Anderson-Darling k-sample test.

Number of samples: 2 Sample sizes: 111, 111 Number of ties: 7

Mean of Anderson-Darling Criterion: 1 Standard deviation of

Anderson-Darling Criterion: 0.75489

T.AD = ( Anderson-Darling Criterion - mean)/sigma

Null Hypothesis: All samples come from a common population.

AD T.AD asympt. P-value version 1: 16.99 21.181 1.2532e-09 version 2:

17.00 21.233 1.2380e-09

¿ shapiro.test(qx.actual) shapiro test

Shapiro-Wilk normality test

data: qx.actual W = 0.60361, p-value = 7.479e-16

¿ shapiro.test(qx.estimate) shapiro test

Shapiro-Wilk normality test

data: qx.estimate W = 0.64699, p-value = 5.875e-15

Female lives

chisq.test(femalemakeham) pearson’s chi square

Pearson’s Chi-squared test

data: femalemakeham X-squared = 0.68372, df = 110, p-value = 1

Warning message: In chisq.test(femalemakeham) : Chi-squared

approximation may be incorrect
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¿ cvf¡-cramer.test(qx.aF,qx.eF) ¿ cvf

1 -dimensional nonparametric Cramer-Test with kernel phiCramer (on

equality of two distributions)

x-sample: 111 values y-sample: 111 values

critical value for confidence level 95 observed statistic 0.123093 , so that

hypothesis (”x is distributed as y”) is ACCEPTED . estimated p-value =

0.09090909

[result based on 1000 ordinary bootstrap-replicates]

ks.test(qx.aF,qx.eF,alternative = ”two.sided”,exact=NULL) Kolmogorov

two sided

Two-sample Kolmogorov-Smirnov test

data: qx.aF and qx.eF D = 0.54955, p-value = 5.551e-15 alternative

hypothesis: two-sided

Warning message: In ks.test(qx.aF, qx.eF, alternative = ”two.sided”, exact

= NULL) : p-value will be approximate in the presence of ties ¿

ks.test(qx.aF,qx.eF,alternative = ”less”,exact=NULL) kolmogorov one

sided

Two-sample Kolmogorov-Smirnov test

data: qx.aF and qx.eF D− = 0.036036, p− value =

0.8658alternativehypothesis : theCDFofxliesbelowthatofy

Warning message: In ks.test(qx.aF, qx.eF, alternative = ”less”, exact =

NULL) : p-value will be approximate in the presence of ties

ad.test(qx.aF,qx.eF)

Anderson-Darling k-sample test.

Number of samples: 2 Sample sizes: 111, 111 Number of ties: 10

Mean of Anderson-Darling Criterion: 1 Standard deviation of

Anderson-Darling Criterion: 0.75489
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T.AD = ( Anderson-Darling Criterion - mean)/sigma

Null Hypothesis: All samples come from a common population.

AD T.AD asympt. P-value version 1: 18.219 22.810 2.6114e-10 version 2:

18.300 22.855 2.6124e-10

¿ shapiro.test(qx.aF) shapiro test

Shapiro-Wilk normality test

data: qx.aF W = 0.5653, p-value ¡ 2.2e-16

¿ shapiro.test(qx.eF) shapiro test

Shapiro-Wilk normality test

data: qx.eF W = 0.62384, p-value = 1.914e-15

7.2 Cubic spline results

Male lives

¿ chisq.test(malesspline) pearson’s chi square

Pearson’s Chi-squared test

data: malesspline X-squared = 0.2618, df = 110, p-value = 1

Warning message: In chisq.test(malesspline) : Chi-squared approximation

may be incorrect

cvm¡-cramer.test(qx,spline.qx) cramer von mises test ¿ cvm

1 -dimensional nonparametric Cramer-Test with kernel phiCramer (on

equality of two distributions)

x-sample: 111 values y-sample: 111 values

critical value for confidence level 95 observed statistic 0.03262741 , so that

hypothesis (”x is distributed as y”) is ACCEPTED . estimated p-value =

0.7362637

[result based on 1000 ordinary bootstrap-replicates]
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¿ ks.test(qx,spline.qx,alternative = ”two.sided”,exact=NULL) Kolmogorov

two sided

Two-sample Kolmogorov-Smirnov test

data: qx and spline.qx D = 0.13514, p-value = 0.2629 alternative

hypothesis: two-sided

Warning message: In ks.test(qx, spline.qx, alternative = ”two.sided”, exact

= NULL) : p-value will be approximate in the presence of ties ¿

ks.test(qx,spline.qx,alternative = ”less”,exact=NULL) kolmogorov one

sided

Two-sample Kolmogorov-Smirnov test

data: qx and spline.qx D− = 0.09009, p− value =

0.4062alternativehypothesis : theCDFofxliesbelowthatofy

Warning message: In ks.test(qx, spline.qx, alternative = ”less”, exact =

NULL) : p-value will be approximate in the presence of ties

Anderson-Darling k-sample test.

Number of samples: 2 Sample sizes: 111, 111 Number of ties: 8

Mean of Anderson-Darling Criterion: 1 Standard deviation of

Anderson-Darling Criterion: 0.75489

T.AD = ( Anderson-Darling Criterion - mean)/sigma

Null Hypothesis: All samples come from a common population.

AD T.AD asympt. P-value version 1: 1.3977 0.52689 0.20187 version 2:

1.4300 0.56324 0.19448

shapiro.test(qx) shapiro test

Shapiro-Wilk normality test

data: qx W = 0.6148, p-value = 1.252e-15

¿ shapiro.test(spline.qx) shapiro test
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Shapiro-Wilk normality test

data: spline.qx W = 0.57542, p-value ¡ 2.2e-16

Female lives

¿ chisq.test(femalesspline) pearson’s chi square

Pearson’s Chi-squared test

data: femalesspline X-squared = 0.1419, df = 110, p-value = 1

Warning message: In chisq.test(femalesspline) : Chi-squared approximation

may be incorrect

¿ cramer.test(qx.aF,spline.Fqx) cramer von mises test

1 -dimensional nonparametric Cramer-Test with kernel phiCramer (on

equality of two distributions)

x-sample: 111 values y-sample: 111 values

critical value for confidence level 95 observed statistic 0.01955044 , so that

hypothesis (”x is distributed as y”) is ACCEPTED . estimated p-value =

0.8631369

[result based on 1000 ordinary bootstrap-replicates]

¿ ks.test(qx.aF,spline.Fqx,alternative = ”two.sided”,exact=NULL)

Kolmogorov two sided

Two-sample Kolmogorov-Smirnov test

data: qx.aF and spline.Fqx D = 0.063063, p-value = 0.9801 alternative

hypothesis: two-sided

Warning message: In ks.test(qx.aF, spline.Fqx, alternative = ”two.sided”,

exact = NULL) : p-value will be approximate in the presence of ties ¿

ks.test(qx.aF,spline.Fqx,alternative = ”less”,exact=NULL) kolmogorov one

sided
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Two-sample Kolmogorov-Smirnov test

data: qx.aF and spline.Fqx D− = 0.036036, p− value =

0.8658alternativehypothesis : theCDFofxliesbelowthatofy

Warning message: In ks.test(qx.aF, spline.Fqx, alternative = ”less”, exact

= NULL) : p-value will be approximate in the presence of ties

Anderson-Darling k-sample test.

Number of samples: 2 Sample sizes: 111, 111 Number of ties: 11

Mean of Anderson-Darling Criterion: 1 Standard deviation of

Anderson-Darling Criterion: 0.75489

T.AD = ( Anderson-Darling Criterion - mean)/sigma

Null Hypothesis: All samples come from a common population.

AD T.AD asympt. P-value version 1: 0.43821 -0.74420 0.81405 version 2:

0.40300 -0.79107 0.84942

¿ shapiro.test(qx.aF) shapiro test

Shapiro-Wilk normality test

data: qx.aF W = 0.57947, p-value = 2.548e-16

¿ shapiro.test(spline.Fqx) shapiro test

Shapiro-Wilk normality test

data: spline.Fqx W = 0.54262, p-value ¡ 2.2e-16

7.3 Lee - Carter model results

¿ chisq.test(lcmales)

Pearson’s Chi-squared test

data: lcmales X-squared = 0.11878, df = 110, p-value = 1

Warning message: In chisq.test(lcmales) : Chi-squared approximation may

be incorrect
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¿ cvm¡-cramer.test(qx,qx.estimate) ¿ cvm

1 -dimensional nonparametric Cramer-Test with kernel phiCramer (on

equality of two distributions)

x-sample: 111 values y-sample: 111 values

critical value for confidence level 95 observed statistic 0.00527798 , so that

hypothesis (”x is distributed as y”) is ACCEPTED . estimated p-value =

0.999001

[result based on 1000 ordinary bootstrap-replicates]

¿ ks.test(qx,qx.estimate,alternative=”two.sided”,exact=NULL)

Two-sample Kolmogorov-Smirnov test

data: qx and qx.estimate D = 0.063063, p-value = 0.9801 alternative

hypothesis: two-sided

Warning message: In ks.test(qx, qx.estimate, alternative = ”two.sided”,

exact = NULL) : p-value will be approximate in the presence of ties ¿

ks.test(qx,qx.estimate,alternative=”less”,exact=NULL)

Two-sample Kolmogorov-Smirnov test

data: qx and qx.estimate D− = 0.063063, p− value =

0.6431alternativehypothesis : theCDFofxliesbelowthatofy

Warning message: In ks.test(qx, qx.estimate, alternative = ”less”, exact =

NULL) : p-value will be approximate in the presence of ties

¿ ad.test(qx,qx.estimate)

Anderson-Darling k-sample test.

Number of samples: 2 Sample sizes: 111, 111 Number of ties: 7

Mean of Anderson-Darling Criterion: 1 Standard deviation of

Anderson-Darling Criterion: 0.75489

T.AD = ( Anderson-Darling Criterion - mean)/sigma
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Null Hypothesis: All samples come from a common population.

AD T.AD asympt. P-value version 1: 0.26008 -0.98017 0.96844 version 2:

0.29000 -0.94041 0.94905

¿ shapiro.test(qx)

Shapiro-Wilk normality test

data: qx W = 0.60361, p-value = 7.479e-16

¿ shapiro.test(qx.estimate)

Shapiro-Wilk normality test

data: qx.estimate W = 0.62263, p-value = 1.808e-15

7.4 Forecast results

ARIMA model without drift

Forecast method: ARIMA(0,1,0)

Model Information: Series: kt.1 ARIMA(0,1,0)

sigma2estimatedas3.822 : loglikelihood = −18.8AIC = 39.61AICc =

40.18BIC = 39.81

Error measures: ME RMSE MAE MPE MAPE MASE ACF1 Training set

-1.600605 1.854787 1.602039 -1014.901 1053.585 0.9004029 -0.1993468

Forecasts: Point Forecast Lo 80 Hi 80 Lo 95 Hi 95 11 -8.844482 -11.35006

-6.338900 -12.67644 -5.0125253 12 -8.844482 -12.38791 -5.301054 -14.26369

-3.4252769 13 -8.844482 -13.18428 -4.504687 -15.48163 -2.2073384 14

-8.844482 -13.85565 -3.833318 -16.50840 -1.1805687 15 -8.844482 -14.44713

-3.241831 -17.41300 -0.2759665

ARIMA model with drift
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Forecast method: ARIMA(0,1,0) with drift

Model Information: Series: kt.1 ARIMA(0,1,0) with drift

Coefficients: drift -1.7792 s.e. 0.2865

sigma2estimatedas0.7389 : loglikelihood = −9.67AIC = 23.34AICc =

25.34BIC = 23.73

Error measures: ME RMSE MAE MPE MAPE MASE ACF1 Training set

0.000894798 0.7688246 0.6201985 1034.89 1060.533 0.3485736 -0.3211898

Forecasts: Point Forecast Lo 80 Hi 80 Lo 95 Hi 95 11 -10.62373 -11.72531

-9.52215 -12.30845 -8.93901 12 -12.40298 -13.96084 -10.84511 -14.78553

-10.02042 13 -14.18222 -16.09021 -12.27423 -17.10024 -11.26420 14

-15.96147 -18.16463 -13.75831 -19.33091 -12.59203 15 -17.74072 -20.20392

-15.27751 -21.50786 -13.97357

Cubic smoothing spline

Forecast method: Cubic Smoothing Spline

Model Information: beta[1]4.317349

callsplinef(x = kt.copy, h = 5)

Error measures: ME RMSE MAE MPE MAPE MASE ACF1 Training set

-0.7271741 1.040821 0.7429266 -2.815897 63.81906 0.4175512 -0.2809474

Forecasts: Point Forecast Lo 80 Hi 80 Lo 95 Hi 95 11 -10.79321 -12.06094

-9.525471 -12.73204 -8.854373 12 -12.91971 -14.64217 -11.197254 -15.55398

-10.285441 13 -15.04621 -17.35648 -12.735949 -18.57946 -11.512969 14

-17.17272 -20.17233 -14.173109 -21.76022 -12.585213 15 -19.29922 -23.07108

-15.527362 -25.06778 -13.530660

7.5 Table of results
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Table 2: Log transformation for male and female lives

linear Male Female linear Male Female

Age qx y=lnqx qx y=lnqx Age qx y=lnqx qx y=lnqx

0 0.00761 -4.8783 0.00622 -5.0800 26 0.00141 -6.5642 0.00053 -7.5426

1 0.00052 -7.5617 0.00044 -7.7287 27 0.0014 -6.5713 0.00055 -7.5056

2 0.00035 -7.9576 0.00028 -8.1807 28 0.00139 -6.5785 0.00058 -7.4525

3 0.00026 -8.2548 0.00020 -8.5172 29 0.00143 -6.5501 0.00062 -7.3858

4 0.00021 -8.4684 0.00017 -8.6797 30 0.00141 -6.5642 0.00063 -7.3698

5 0.00018 -8.6226 0.00014 -8.8739 31 0.00147 -6.5225 0.00068 -7.2934

6 0.00016 -8.7403 0.00013 -8.9480 32 0.00148 -6.5157 0.00073 -7.2225

7 0.00015 -8.8049 0.00012 -9.0280 33 0.00155 -6.4695 0.00078 -7.1562

8 0.00015 -8.8049 0.00012 -9.0280 34 0.00163 -6.4192 0.00084 -7.0821

9 0.00015 -8.8049 0.00012 -9.0280 35 0.00172 -6.3654 0.00092 -6.9911

10 0.00015 -8.8049 0.00012 -9.0280 36 0.00181 -6.3144 0.00099 -6.9178

11 0.00017 -8.6797 0.00012 -9.0280 37 0.00197 -6.2297 0.00109 -6.8216

12 0.00019 -8.5685 0.00013 -8.9480 38 0.00211 -6.1611 0.00119 -6.7338

13 0.00023 -8.3774 0.00015 -8.8049 39 0.00224 -6.1013 0.00132 -6.6301

14 0.00030 -8.1117 0.00019 -8.5685 40 0.00245 -6.0117 0.00144 -6.5431

15 0.00042 -7.7753 0.00024 -8.3349 41 0.00266 -5.9294 0.00156 -6.4631

16 0.00064 -7.3540 0.00033 -8.0164 42 0.00289 -5.8465 0.00171 -6.3713

17 0.00085 -7.0703 0.00038 -7.8753 43 0.00314 -5.7635 0.00189 -6.2712

18 0.00114 -6.7767 0.00044 -7.7287 44 0.00343 -5.6752 0.00205 -6.1899

19 0.00129 -6.6531 0.00044 -7.7287 45 0.00372 -5.5940 0.00222 -6.1102

20 0.00133 -6.6226 0.00044 -7.7287 46 0.00404 -5.5115 0.0024 -6.0323

21 0.00144 -6.5431 0.00048 -7.6417 47 0.00438 -5.4307 0.0026 -5.9522

22 0.00143 -6.5501 0.00047 -7.6628 48 0.00477 -5.3454 0.0028 -5.8781

23 0.00142 -6.5571 0.00048 -7.6417 49 0.00514 -5.2707 0.00302 -5.8025

24 0.00142 -6.5571 0.00050 -7.6009 50 0.0056 -5.1850 0.00327 -5.7230

25 0.00139 -6.5785 0.00050 -7.6009 51 0.00599 -5.1177 0.00348 -5.660771



Table 3: Log transformation contd.

linear Male Female linear Male Female

Age qx y=lnqx qx y=lnqx Age qx y=lnqx qx y=lnqx

52 0.00649 -5.03749 0.00377 -5.58068 78 0.05436 -2.91213 0.03759 -3.28102

53 0.00695 -4.96901 0.00404 -5.51151 79 0.05975 -2.81759 0.04151 -3.18182

54 0.00740 -4.90628 0.00435 -5.43758 80 0.06653 -2.7101 0.04663 -3.06551

55 0.00806 -4.82084 0.00470 -5.36019 81 0.07308 -2.6162 0.05153 -2.96559

56 0.00854 -4.76299 0.00507 -5.28441 82 0.08083 -2.51541 0.05783 -2.85025

57 0.00924 -4.68421 0.00555 -5.19396 83 0.08898 -2.41934 0.06429 -2.74435

58 0.00996 -4.60918 0.00607 -5.1044 84 0.09848 -2.3179 0.07197 -2.63151

59 0.01077 -4.53099 0.00664 -5.01464 85 0.10877 -2.21852 0.08064 -2.51776

60 0.01182 -4.43796 0.00732 -4.91714 86 0.12108 -2.1113 0.0904 -2.40351

61 0.01254 -4.37883 0.00792 -4.83836 87 0.13331 -2.01508 0.10105 -2.29214

62 0.01383 -4.28092 0.00875 -4.7387 88 0.14718 -1.9161 0.11294 -2.1809

63 0.01492 -4.20505 0.00950 -4.65646 89 0.16261 -1.8164 0.12591 -2.07219

64 0.01635 -4.11353 0.01048 -4.55829 90 0.17815 -1.72513 0.1399 -1.96683

65 0.01763 -4.03815 0.01136 -4.47766 91 0.19505 -1.6345 0.1557 -1.85982

66 0.01902 -3.96226 0.01234 -4.39491 92 0.21389 -1.54229 0.17242 -1.75782

67 0.02063 -3.88101 0.01352 -4.30359 93 0.23373 -1.45359 0.19049 -1.65816

68 0.02234 -3.80138 0.01464 -4.224 94 0.2548 -1.36728 0.20869 -1.56691

69 0.02446 -3.71072 0.01604 -4.13267 95 0.26828 -1.31572 0.2258 -1.48811

70 0.02677 -3.62047 0.01777 -4.03024 96 0.28807 -1.24455 0.24562 -1.40397

71 0.02893 -3.54288 0.01923 -3.95128 97 0.30819 -1.17704 0.26612 -1.32381

72 0.03177 -3.44923 0.02125 -3.8514 98 0.3285 -1.11322 0.28716 -1.24772

73 0.03489 -3.35556 0.02325 -3.76145 99 0.34885 -1.05311 0.30859 -1.17574

74 0.03783 -3.27465 0.02562 -3.66438 100 0.36908 -0.99674 0.33023 -1.10797

75 0.04181 -3.17462 0.02825 -3.56666 101 0.38904 -0.94407 0.35189 -1.04444

76 0.04526 -3.09533 0.03092 -3.47635 102 0.40861 -0.89499 0.3734 -0.98511

77 0.04969 -3.00195 0.03408 -3.37904 103 0.42764 -0.84947 0.39457 -0.9299672



Table 4: Makeham model results for actual(act) and estimate(est) mortality

rates

Male Female Male Female

Age act est act est Age act est act est

0 0.00761 0.01037 0.00622 0.00750 26 0.00141 0.01133 0.00053 0.00805

1 0.00052 0.01038 0.00044 0.00751 27 0.0014 0.01142 0.00055 0.00810

2 0.00035 0.01040 0.00028 0.00752 28 0.00139 0.01152 0.00058 0.00816

3 0.00026 0.01041 0.0002 0.00752 29 0.00143 0.01162 0.00062 0.00822

4 0.00021 0.01043 0.00017 0.00753 30 0.00141 0.01174 0.00063 0.00829

5 0.00018 0.01044 0.00014 0.00754 31 0.00147 0.01186 0.00068 0.00837

6 0.00016 0.01046 0.00013 0.00755 32 0.00148 0.01199 0.00073 0.00845

7 0.00015 0.01048 0.00012 0.00756 33 0.00155 0.01214 0.00078 0.00854

8 0.00015 0.01050 0.00012 0.00757 34 0.00163 0.01230 0.00084 0.00863

9 0.00015 0.01052 0.00012 0.00758 35 0.00172 0.01246 0.00092 0.00874

10 0.00015 0.01054 0.00012 0.00759 36 0.00181 0.01265 0.00099 0.00885

11 0.00017 0.01057 0.00012 0.00761 37 0.00197 0.01285 0.00109 0.00897

12 0.00019 0.01060 0.00013 0.00762 38 0.00211 0.01306 0.00119 0.00911

13 0.00023 0.01062 0.00015 0.00764 39 0.00224 0.01329 0.00132 0.00925

14 0.0003 0.01066 0.00019 0.00766 40 0.00245 0.01355 0.00144 0.00941

15 0.00042 0.01069 0.00024 0.00768 41 0.00266 0.01382 0.00156 0.00958

16 0.00064 0.01073 0.00033 0.00770 42 0.00289 0.01411 0.00171 0.00977

17 0.00085 0.01077 0.00038 0.00772 43 0.00314 0.01443 0.00189 0.00997

18 0.00114 0.01082 0.00044 0.00775 44 0.00343 0.01478 0.00205 0.01019

19 0.00129 0.01086 0.00044 0.00778 45 0.00372 0.01515 0.00222 0.01043

20 0.00133 0.01091 0.00044 0.00781 46 0.00404 0.01555 0.0024 0.01069

21 0.00144 0.01097 0.00048 0.00784 47 0.00438 0.01599 0.0026 0.01097

22 0.00143 0.01103 0.00047 0.00787 48 0.00477 0.01646 0.0028 0.01128

23 0.00142 0.01110 0.00048 0.00791 49 0.00514 0.01697 0.00302 0.01161

24 0.00142 0.01117 0.0005 0.00795 50 0.0056 0.01752 0.00327 0.01197

25 0.00139 0.01125 0.0005 0.00800 51 0.00599 0.01812 0.00348 0.01237
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Table 5: Makeham model results contd.

Male Female Male Female

Age act est act est Age act est act est

52 0.00649 0.01877 0.00377 0.01279 78 0.05436 0.07502 0.03759 0.05314

53 0.00695 0.01947 0.00404 0.01326 79 0.05975 0.08015 0.04151 0.05701

54 0.0074 0.02022 0.00435 0.01376 80 0.06653 0.08568 0.04663 0.06119

55 0.00806 0.02104 0.0047 0.01431 81 0.07308 0.09163 0.05153 0.06572

56 0.00854 0.02192 0.00507 0.01490 82 0.08083 0.09802 0.05783 0.07061

57 0.00924 0.02288 0.00555 0.01555 83 0.08898 0.10489 0.06429 0.07590

58 0.00996 0.02391 0.00607 0.01625 84 0.09848 0.11227 0.07197 0.08162

59 0.01077 0.02503 0.00664 0.01701 85 0.10877 0.12018 0.08064 0.08779

60 0.01182 0.02624 0.00732 0.01784 86 0.12108 0.12866 0.0904 0.09445

61 0.01254 0.02755 0.00792 0.01874 87 0.13331 0.13775 0.10105 0.10163

62 0.01383 0.02896 0.00875 0.01971 88 0.14718 0.14749 0.11294 0.10937

63 0.01492 0.03048 0.0095 0.02077 89 0.16261 0.15790 0.12591 0.11771

64 0.01635 0.03213 0.01048 0.02192 90 0.17815 0.16902 0.1399 0.12668

65 0.01763 0.03391 0.01136 0.02317 91 0.19505 0.18089 0.1557 0.13633

66 0.01902 0.03583 0.01234 0.02452 92 0.21389 0.19355 0.17242 0.14669

67 0.02063 0.03791 0.01352 0.02599 93 0.23373 0.20703 0.19049 0.15782

68 0.02234 0.04015 0.01464 0.02758 94 0.2548 0.22136 0.20869 0.16974

69 0.02446 0.04258 0.01604 0.02931 95 0.26828 0.23659 0.2258 0.18251

70 0.02677 0.04519 0.01777 0.03119 96 0.28807 0.25273 0.24562 0.19616

71 0.02893 0.04801 0.01923 0.03323 97 0.30819 0.26981 0.26612 0.21074

72 0.03177 0.05105 0.02125 0.03543 98 0.3285 0.28786 0.28716 0.22628

73 0.03489 0.05434 0.02325 0.03782 99 0.34885 0.30690 0.30859 0.24283

74 0.03783 0.05788 0.02562 0.04042 100 0.36908 0.32692 0.33023 0.26041

75 0.04181 0.06170 0.02825 0.04323 101 0.38904 0.34795 0.35189 0.27905

76 0.04526 0.06581 0.03092 0.04627 102 0.40861 0.36996 0.3734 0.29878

77 0.04969 0.07024 0.03408 0.04957 103 0.42764 0.39295 0.39457 0.3196174



Table 6: Cubic smoothing spline results for mortality rates

cubic Male Female

Age crude graduated actual crude graduated actual

0 0.00766 0.00061 0.00761 0.00625 0.00010 0.00622

1 0.00052 0.00069 0.00052 0.00044 0.00012 0.00044

2 0.00035 0.00077 0.00035 0.00028 0.00014 0.00028

3 0.00026 0.00084 0.00026 0.00020 0.00016 0.0002

4 0.00021 0.00092 0.00021 0.00017 0.00018 0.00017

5 0.00018 0.00099 0.00018 0.00015 0.00021 0.00014

6 0.00016 0.00106 0.00016 0.00013 0.00023 0.00013

7 0.00015 0.00112 0.00015 0.00012 0.00025 0.00012

8 0.00015 0.00118 0.00015 0.00012 0.00027 0.00012

9 0.00015 0.00122 0.00015 0.00012 0.00029 0.00012

10 0.00015 0.00126 0.00015 0.00012 0.00031 0.00012

11 0.00017 0.00129 0.00017 0.00012 0.00033 0.00012

12 0.00019 0.00132 0.00019 0.00013 0.00035 0.00013

13 0.00023 0.00134 0.00023 0.00015 0.00036 0.00015

14 0.00030 0.00135 0.0003 0.00019 0.00038 0.00019

15 0.00043 0.00135 0.00042 0.00024 0.00039 0.00024

16 0.00064 0.00136 0.00064 0.00033 0.00040 0.00033

17 0.00085 0.00135 0.00085 0.00038 0.00041 0.00038

18 0.00114 0.00135 0.00114 0.00044 0.00042 0.00044

19 0.00129 0.00134 0.00129 0.00044 0.00043 0.00044

20 0.00133 0.00133 0.00133 0.00044 0.00044 0.00044

21 0.00144 0.00133 0.00144 0.00048 0.00045 0.00048

22 0.00143 0.00132 0.00143 0.00047 0.00047 0.00047

23 0.00143 0.00131 0.00142 0.00048 0.00048 0.00048

24 0.00142 0.00131 0.00142 0.00050 0.00049 0.0005

25 0.00139 0.00131 0.00139 0.00050 0.00051 0.000575



Table 7: Cubic smoothing spline results contd.

cubic Male Female

Age crude graduated actual crude graduated actual

26 0.00141 0.00132 0.00141 0.00053 0.00052 0.00053

27 0.00140 0.00133 0.0014 0.00055 0.00055 0.00055

28 0.00139 0.00135 0.00139 0.00058 0.00057 0.00058

29 0.00143 0.00137 0.00143 0.00062 0.00060 0.00062

30 0.00141 0.00141 0.00141 0.00064 0.00064 0.00063

31 0.00147 0.00145 0.00147 0.00068 0.00068 0.00068

32 0.00148 0.00151 0.00148 0.00073 0.00073 0.00073

33 0.00155 0.00158 0.00155 0.00078 0.00078 0.00078

34 0.00163 0.00166 0.00163 0.00084 0.00085 0.00084

35 0.00173 0.00175 0.00172 0.00092 0.00093 0.00092

36 0.00181 0.00186 0.00181 0.00099 0.00101 0.00099

37 0.00197 0.00198 0.00197 0.00109 0.00110 0.00109

38 0.00212 0.00212 0.00211 0.00119 0.00121 0.00119

39 0.00225 0.00228 0.00224 0.00132 0.00132 0.00132

40 0.00246 0.00246 0.00245 0.00145 0.00145 0.00144

41 0.00266 0.00266 0.00266 0.00156 0.00158 0.00156

42 0.00290 0.00288 0.00289 0.00171 0.00172 0.00171

43 0.00314 0.00313 0.00314 0.00189 0.00187 0.00189

44 0.00344 0.00340 0.00343 0.00205 0.00203 0.00205

45 0.00372 0.00370 0.00372 0.00223 0.00220 0.00222

46 0.00405 0.00403 0.00404 0.00240 0.00239 0.0024

47 0.00439 0.00438 0.00438 0.00260 0.00258 0.0026

48 0.00478 0.00476 0.00477 0.00281 0.00280 0.0028

49 0.00516 0.00518 0.00514 0.00302 0.00303 0.00302

50 0.00561 0.00561 0.0056 0.00327 0.00327 0.00327

51 0.00600 0.00607 0.00599 0.00349 0.00354 0.0034876



Table 8: Cubic smoothing spline results contd.

cubic Male Female

Age crude graduated actual crude graduated actual

52 0.00651 0.00656 0.00649 0.00377 0.00383 0.00377

53 0.00697 0.00708 0.00695 0.00405 0.00415 0.00404

54 0.00743 0.00762 0.0074 0.00436 0.00449 0.00435

55 0.00809 0.00821 0.00806 0.00472 0.00487 0.0047

56 0.00858 0.00883 0.00854 0.00509 0.00527 0.00507

57 0.00928 0.00950 0.00924 0.00557 0.00572 0.00555

58 0.01001 0.01023 0.00996 0.00609 0.00621 0.00607

59 0.01083 0.01102 0.01077 0.00667 0.00675 0.00664

60 0.01189 0.01189 0.01182 0.00735 0.00735 0.00732

61 0.01262 0.01285 0.01254 0.00796 0.00800 0.00792

62 0.01392 0.01390 0.01383 0.00879 0.00873 0.00875

63 0.01503 0.01505 0.01492 0.00955 0.00953 0.0095

64 0.01649 0.01633 0.01635 0.01053 0.01041 0.01048

65 0.01779 0.01773 0.01763 0.01143 0.01138 0.01136

66 0.01920 0.01927 0.01902 0.01241 0.01245 0.01234

67 0.02084 0.02097 0.02063 0.01361 0.01363 0.01352

68 0.02259 0.02283 0.02234 0.01475 0.01493 0.01464

69 0.02477 0.02488 0.02446 0.01617 0.01636 0.01604

70 0.02714 0.02714 0.02677 0.01793 0.01793 0.01777

71 0.02936 0.02962 0.02893 0.01942 0.01965 0.01923

72 0.03228 0.03234 0.03177 0.02148 0.02156 0.02125

73 0.03551 0.03536 0.03489 0.02353 0.02366 0.02325

74 0.03856 0.03870 0.03783 0.02596 0.02600 0.02562

75 0.04270 0.04241 0.04181 0.02866 0.02862 0.02825

76 0.04630 0.04654 0.04526 0.03140 0.03155 0.03092

77 0.05096 0.05117 0.04969 0.03467 0.03486 0.0340877



Table 9: Cubic smoothing spline results contd.

cubic Male Female

Age crude graduated actual crude graduated actual

78 0.05587 0.05636 0.05436 0.03831 0.03860 0.03759

79 0.06159 0.06221 0.05975 0.04239 0.04287 0.04151

80 0.06883 0.06882 0.06653 0.04775 0.04775 0.04663

81 0.07586 0.07631 0.07308 0.05289 0.05335 0.05153

82 0.08423 0.08477 0.08083 0.05956 0.05977 0.05783

83 0.09313 0.09429 0.08898 0.06642 0.06710 0.06429

84 0.10358 0.10494 0.09848 0.07465 0.07542 0.07197

85 0.11502 0.11680 0.10877 0.08403 0.08483 0.08064

86 0.12888 0.12994 0.12108 0.09467 0.09540 0.0904

87 0.14283 0.14438 0.13331 0.10643 0.10721 0.10105

88 0.15888 0.16015 0.14718 0.11970 0.12030 0.11294

89 0.17700 0.17723 0.16261 0.13437 0.13471 0.12591

90 0.19557 0.19556 0.17815 0.15042 0.15042 0.1399

91 0.21612 0.21507 0.19505 0.16885 0.16740 0.1557

92 0.23950 0.23576 0.21389 0.18869 0.18572 0.17242

93 0.26466 0.25773 0.23373 0.21054 0.20546 0.19049

94 0.29201 0.28104 0.2548 0.23300 0.22675 0.20869

95 0.31698 0.30582 0.26828 0.25860 0.24971 0.2258

96 0.34394 0.33220 0.28807 0.28317 0.27452 0.24562

97 0.37060 0.36034 0.30819 0.31048 0.30138 0.26612

98 0.39766 0.39045 0.3285 0.33816 0.33051 0.28716

99 0.42744 0.42279 0.34885 0.36287 0.36221 0.30859

100 0.45764 0.45764 0.36908 0.39680 0.39680 0.33023

101 0.49879 0.49536 0.38904 0.43126 0.43470 0.35189

102 0.50335 0.53638 0.40861 0.45669 0.47639 0.3734

103 0.53478 0.58121 0.42764 0.48926 0.52244 0.3945778



Table 10: Estimated mortality rates using Lee Carter model

Age yr2000 yr2001 yr2002 yr2003 yr2004

0 0.00781969 0.00777683 0.00776641 0.00772831 0.00765351

1 0.00055385 0.00054655 0.00054478 0.00053835 0.00052586

2 0.00038166 0.00037408 0.00037225 0.00036563 0.00035289

3 0.00028915 0.00028337 0.00028198 0.00027693 0.00026721

4 0.00023524 0.00022910 0.00022762 0.00022229 0.00021212

5 0.00020222 0.00019675 0.00019543 0.00019069 0.00018166

6 0.00018077 0.00017511 0.00017376 0.00016888 0.00015963

7 0.00016281 0.00015974 0.00015900 0.00015632 0.00015115

8 0.00016616 0.00016252 0.00016164 0.00015847 0.00015239

9 0.00016062 0.00015732 0.00015652 0.00015364 0.00014809

10 0.00018069 0.00017337 0.00017163 0.00016539 0.00015372

11 0.00018724 0.00018194 0.00018067 0.00017608 0.00016735

12 0.00022359 0.00021425 0.00021203 0.00020409 0.00018924

13 0.00026433 0.00025640 0.00025450 0.00024766 0.00023467

14 0.00034926 0.00033832 0.00033570 0.00032628 0.00030841

15 0.00047659 0.00046394 0.00046091 0.00044995 0.00042905

16 0.00074383 0.00071908 0.00071317 0.00069190 0.00065168

17 0.00095113 0.00092673 0.00092087 0.00089970 0.00085926

18 0.00122434 0.00120413 0.00119925 0.00118152 0.00114724

19 0.00139008 0.00136622 0.00136047 0.00133956 0.00129916

20 0.00138610 0.00137396 0.00137101 0.00136026 0.00133924

21 0.00147227 0.00146473 0.00146289 0.00145618 0.00144301

22 0.00143891 0.00143693 0.00143645 0.00143468 0.00143119

23 0.00141033 0.00141289 0.00141351 0.00141581 0.00142036

24 0.00140162 0.00140610 0.00140719 0.00141121 0.00141919

25 0.00135205 0.00136009 0.00136205 0.00136929 0.00138373
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Table 11: Lee Carter model results contd.

Age yr2005 yr2006 yr2007 yr2008 yr2009

0 0.00763080 0.00755538 0.00751710 0.00746612 0.00740350

1 0.00052210 0.00050973 0.00050352 0.00049532 0.00048535

2 0.00034908 0.00033666 0.00033048 0.00032238 0.00031263

3 0.00026431 0.00025485 0.00025014 0.00024397 0.00023654

4 0.00020911 0.00019934 0.00019452 0.00018825 0.00018077

5 0.00017898 0.00017033 0.00016606 0.00016052 0.00015391

6 0.00015691 0.00014814 0.00014385 0.00013830 0.00013172

7 0.00014960 0.00014455 0.00014203 0.00013873 0.00013474

8 0.00015057 0.00014467 0.00014174 0.00013791 0.00013331

9 0.00014643 0.00014104 0.00013835 0.00013484 0.00013061

10 0.00015032 0.00013949 0.00013426 0.00012756 0.00011972

11 0.00016477 0.00015643 0.00015233 0.00014700 0.00014067

12 0.00018493 0.00017120 0.00016458 0.00015611 0.00014623

13 0.00023083 0.00021847 0.00021241 0.00020455 0.00019522

14 0.00030315 0.00028621 0.00027792 0.00026719 0.00025447

15 0.00042286 0.00040280 0.00039292 0.00038006 0.00036472

16 0.00063987 0.00060191 0.00058338 0.00055944 0.00053117

17 0.00084727 0.00080840 0.00078921 0.00076422 0.00073438

18 0.00113696 0.00110328 0.00108644 0.00106428 0.00103749

19 0.00128706 0.00124743 0.00122763 0.00120161 0.00117016

20 0.00133289 0.00131186 0.00130123 0.00128714 0.00126990

21 0.00143901 0.00142571 0.00141896 0.00140996 0.00139891

22 0.00143012 0.00142657 0.00142475 0.00142233 0.00141933

23 0.00142175 0.00142642 0.00142881 0.00143202 0.00143600

24 0.00142164 0.00142985 0.00143407 0.00143974 0.00144679

25 0.00138817 0.00140311 0.00141082 0.00142120 0.00143416
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Table 12: Lee Carter model results contd.

Age yr2000 yr2001 yr2002 yr2003 yr2004

26 0.00137279 0.00138009 0.00138188 0.00138845 0.00140154

27 0.00135537 0.00136506 0.00136744 0.00137619 0.00139366

28 0.00133209 0.00134458 0.00134764 0.00135894 0.00138157

29 0.00136407 0.00137750 0.00138079 0.00139295 0.00141731

30 0.00136683 0.00137568 0.00137785 0.00138582 0.00140173

31 0.00143076 0.00143910 0.00144114 0.00144865 0.00146362

32 0.00147506 0.00147607 0.00147631 0.00147721 0.00147900

33 0.00157864 0.00157112 0.00156930 0.00156261 0.00154946

34 0.00167017 0.00166085 0.00165859 0.00165030 0.00163405

35 0.00179586 0.00177903 0.00177495 0.00176007 0.00173099

36 0.00189990 0.00187715 0.00187164 0.00185157 0.00181252

37 0.00208968 0.00205995 0.00205277 0.00202663 0.00197590

38 0.00227798 0.00223845 0.00222892 0.00219429 0.00212738

39 0.00242946 0.00238412 0.00237320 0.00233353 0.00225704

40 0.00267433 0.00262063 0.00260770 0.00256079 0.00247051

41 0.00284816 0.00280232 0.00279125 0.00275101 0.00267315

42 0.00307848 0.00303393 0.00302316 0.00298398 0.00290799

43 0.00338177 0.00332322 0.00330910 0.00325779 0.00315865

44 0.00363033 0.00358311 0.00357169 0.00353009 0.00344925

45 0.00391796 0.00387124 0.00385993 0.00381872 0.00373851

46 0.00426099 0.00421068 0.00419850 0.00415412 0.00406773

47 0.00462224 0.00456757 0.00455435 0.00450612 0.00441226

48 0.00505067 0.00498723 0.00497188 0.00491596 0.00480723

49 0.00536114 0.00531248 0.00530068 0.00525760 0.00517345

50 0.00572749 0.00569853 0.00569149 0.00566573 0.00561514

51 0.00603764 0.00602599 0.00602315 0.00601275 0.00599224
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Table 13: Lee Carter model results contd.

Age yr2005 yr2006 yr2007 yr2008 yr2009

26 0.00140557 0.00141910 0.00142608 0.00143547 0.00144718

27 0.00139904 0.00141718 0.00142654 0.00143919 0.00145499

28 0.00138856 0.00141216 0.00142440 0.00144094 0.00146169

29 0.00142484 0.00145029 0.00146348 0.00148134 0.00150374

30 0.00140662 0.00142311 0.00143162 0.00144310 0.00145743

31 0.00146823 0.00148373 0.00149172 0.00150249 0.00151592

32 0.00147955 0.00148138 0.00148231 0.00148357 0.00148512

33 0.00154547 0.00153219 0.00152545 0.00151646 0.00150541

34 0.00162911 0.00161273 0.00160441 0.00159334 0.00157974

35 0.00172220 0.00169316 0.00167849 0.00165905 0.00163529

36 0.00180076 0.00176198 0.00174247 0.00171668 0.00168529

37 0.00196066 0.00191056 0.00188543 0.00185229 0.00181208

38 0.00210735 0.00204175 0.00200899 0.00196593 0.00191392

39 0.00223417 0.00215940 0.00212213 0.00207322 0.00201423

40 0.00244356 0.00235562 0.00231187 0.00225453 0.00218553

41 0.00264980 0.00257323 0.00253492 0.00248451 0.00242349

42 0.00288516 0.00281015 0.00277254 0.00272295 0.00266279

43 0.00312897 0.00303176 0.00298322 0.00291941 0.00284231

44 0.00342492 0.00334484 0.00330461 0.00325148 0.00318690

45 0.00371434 0.00363469 0.00359461 0.00354162 0.00347711

46 0.00404169 0.00395587 0.00391268 0.00385557 0.00378603

47 0.00438397 0.00429074 0.00424382 0.00418178 0.00410624

48 0.00477449 0.00466667 0.00461246 0.00454084 0.00445373

49 0.00514801 0.00506388 0.00502137 0.00496501 0.00489611

50 0.00559978 0.00554872 0.00552279 0.00548824 0.00544579

51 0.00598598 0.00596512 0.00595448 0.00594026 0.00592271
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Table 14: Lee Carter model results contd.

Age yr2000 yr2001 yr2002 yr2003 yr2004

52 0.00647489 0.00647782 0.00647854 0.00648116 0.00648635

53 0.00696729 0.00696321 0.00696222 0.00695858 0.00695138

54 0.00737396 0.00737894 0.00738015 0.00738460 0.00739341

55 0.00807556 0.00807109 0.00807001 0.00806602 0.00805814

56 0.00868414 0.00865308 0.00864553 0.00861785 0.00856339

57 0.00949303 0.00943932 0.00942628 0.00937855 0.00928488

58 0.01051960 0.01039974 0.01037073 0.01026492 0.01005887

59 0.01151068 0.01135228 0.01131400 0.01117458 0.01090391

60 0.01261330 0.01244335 0.01240226 0.01225261 0.01196198

61 0.01355513 0.01333559 0.01328261 0.01308993 0.01271708

62 0.01511114 0.01482936 0.01476146 0.01451489 0.01403931

63 0.01646426 0.01612433 0.01604253 0.01574578 0.01517495

64 0.01780078 0.01748145 0.01740447 0.01712479 0.01658483

65 0.01918768 0.01884408 0.01876125 0.01846030 0.01787924

66 0.02066951 0.02030348 0.02021522 0.01989453 0.01927519

67 0.02303282 0.02248649 0.02235527 0.02188005 0.02096963

68 0.02483484 0.02426155 0.02412379 0.02362473 0.02266778

69 0.02724364 0.02659761 0.02644244 0.02588046 0.02480375

70 0.02979182 0.02908165 0.02891108 0.02829337 0.02711004

71 0.03228553 0.03149032 0.03129941 0.03060837 0.02928591

72 0.03543404 0.03455625 0.03434553 0.03358282 0.03212342

73 0.03894051 0.03796685 0.03773314 0.03688732 0.03526929

74 0.04193348 0.04094734 0.04071041 0.03985219 0.03820707

75 0.04624518 0.04517585 0.04491886 0.04398774 0.04220184

76 0.05021330 0.04902445 0.04873883 0.04770425 0.04572126

77 0.05478005 0.05357060 0.05327973 0.05222515 0.05019939
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Table 15: Lee Carter model results contd.

Age yr2005 yr2006 yr2007 yr2008 yr2009

52 0.00648794 0.00649325 0.00649597 0.00649961 0.00650412

53 0.00694918 0.00694184 0.00693809 0.00693307 0.00692686

54 0.00739611 0.00740512 0.00740973 0.00741592 0.00742358

55 0.00805573 0.00804769 0.00804358 0.00803808 0.00803128

56 0.00854682 0.00849167 0.00846360 0.00842614 0.00838001

57 0.00925645 0.00916205 0.00911413 0.00905035 0.00897202

58 0.00999673 0.00979183 0.00968865 0.00955214 0.00938583

59 0.01082252 0.01055486 0.01042050 0.01024322 0.01002794

60 0.01187454 0.01158693 0.01144251 0.01125187 0.01102029

61 0.01260527 0.01223865 0.01205524 0.01181386 0.01152175

62 0.01389710 0.01343215 0.01320033 0.01289606 0.01252909

63 0.01500466 0.01444921 0.01417303 0.01381133 0.01337631

64 0.01642322 0.01589442 0.01563050 0.01528382 0.01486527

65 0.01770533 0.01713622 0.01685217 0.01647902 0.01602850

66 0.01908977 0.01848286 0.01817986 0.01778172 0.01730089

67 0.02069899 0.01981937 0.01938385 0.01881535 0.01813452

68 0.02238308 0.02145707 0.02099817 0.02039871 0.01968016

69 0.02448365 0.02344324 0.02292808 0.02225559 0.02145018

70 0.02675828 0.02561512 0.02504915 0.02431042 0.02342582

71 0.02889315 0.02761789 0.02698720 0.02616469 0.02518083

72 0.03169004 0.03028308 0.02958737 0.02868016 0.02759518

73 0.03478891 0.03322973 0.03245897 0.03145411 0.03025268

74 0.03771779 0.03612683 0.03533870 0.03430949 0.03307632

75 0.04167041 0.03994152 0.03908453 0.03796489 0.03662255

76 0.04513153 0.04321414 0.04226439 0.04102426 0.03953856

77 0.04959577 0.04762946 0.04665328 0.04537633 0.04384302
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Table 16: Lee Carter model results contd.

Age yr2000 yr2001 yr2002 yr2003 yr2004

78 0.05962333 0.05838248 0.05808381 0.05700016 0.05491490

79 0.06610642 0.06460936 0.06424940 0.06294470 0.06043989

80 0.07397730 0.07224193 0.07182486 0.07031372 0.06741533

81 0.08148282 0.07954711 0.07908195 0.07739674 0.07416534

82 0.09037599 0.08819711 0.08767358 0.08577717 0.08214188

83 0.09977989 0.09733794 0.09675128 0.09462644 0.09055450

84 0.10985544 0.10731404 0.10670294 0.10448776 0.10023453

85 0.12132150 0.11852403 0.11785125 0.11541217 0.11072759

86 0.13441146 0.13145629 0.13074505 0.12816473 0.12320090

87 0.14723800 0.14415743 0.14341546 0.14072182 0.13553180

88 0.16120384 0.15810566 0.15735862 0.15464381 0.14940052

89 0.17759715 0.17426908 0.17346626 0.17054767 0.16490582

90 0.19269654 0.18944688 0.18866205 0.18580572 0.18027014

91 0.20854987 0.20552330 0.20479130 0.20212376 0.19693811

92 0.22824714 0.22499111 0.22420338 0.22133203 0.21574680

93 0.24703065 0.24395254 0.24320703 0.24048683 0.23518303

94 0.26733155 0.26435949 0.26363906 0.26100834 0.25586968

95 0.28253218 0.27921582 0.27841211 0.27547778 0.26974874

96 0.30172117 0.29846493 0.29767529 0.29479076 0.28915147

97 0.32102553 0.31785561 0.31708645 0.31427522 0.30877228

98 0.34030407 0.33724480 0.33650209 0.33378611 0.32846330

99 0.35940829 0.35648213 0.35577136 0.35317098 0.34806901

100 0.37819855 0.37542386 0.37474956 0.37228152 0.36743422

101 0.39654420 0.39393601 0.39330190 0.39098002 0.38641547

102 0.41432714 0.41189653 0.41130536 0.40913992 0.40487929

103 0.43143925 0.42919386 0.42864755 0.42664578 0.42270414
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Table 17: Lee Carter model results contd.

Age yr2005 yr2006 yr2007 yr2008 yr2009

78 0.05429261 0.05226234 0.05125257 0.04992982 0.04833860

79 0.05969392 0.05726515 0.05606013 0.05448465 0.05259412

80 0.06655286 0.06374717 0.06235655 0.06053986 0.05836215

81 0.07320401 0.07007748 0.06852830 0.06650497 0.06408033

82 0.08106069 0.07754538 0.07580417 0.07353069 0.07080732

83 0.08934378 0.08540846 0.08345991 0.08091644 0.07787083

84 0.09896778 0.09484339 0.09279716 0.09012204 0.08691237

85 0.10933201 0.10478703 0.10253150 0.09958212 0.09604249

86 0.12172005 0.11689055 0.11448987 0.11134660 0.10756801

87 0.13398133 0.12891778 0.12639666 0.12309148 0.11911175

88 0.14783088 0.14269388 0.14012986 0.13676186 0.13269631

89 0.16321557 0.15767965 0.15491408 0.15127884 0.14688686

90 0.17860802 0.17315189 0.17041892 0.16681894 0.16245774

91 0.19537685 0.19023773 0.18765522 0.18424471 0.18009939

92 0.21406438 0.20852357 0.20573757 0.20205663 0.19758003

93 0.23358204 0.22829826 0.22563488 0.22210898 0.21781000

94 0.25431609 0.24918045 0.24658684 0.24314815 0.23894739

95 0.26801736 0.26229653 0.25940890 0.25558204 0.25090971

96 0.28744525 0.28180089 0.27894793 0.27516288 0.27053510

97 0.30710548 0.30158533 0.29879147 0.29508095 0.29053820

98 0.32684937 0.32149865 0.31878718 0.31518250 0.31076369

99 0.34652054 0.34138171 0.33877456 0.33530536 0.33104752

100 0.36596172 0.36107047 0.35858625 0.35527777 0.35121268

101 0.38502771 0.38041407 0.37806852 0.37494225 0.37109712

102 0.40358296 0.39926998 0.39707531 0.39414804 0.39054433

103 0.42150407 0.41750859 0.41547385 0.41275813 0.40941208

86



Table 18: Lee Carter model parameters estimation

x ax bx Years kt

0 -4.87177 0.003428 2000 7.168738

1 -7.55746 0.008247 2001 5.559169

2 -7.96013 0.012461 2002 5.166803

3 -8.23835 0.012542 2003 3.726592

4 -8.4727 0.01645 2004 0.878915

5 -8.62828 0.017049 2005 0.008751

6 -8.75993 0.019772 2006 -2.89917

7 -8.80756 0.011817 2007 -4.38657

8 -8.80111 0.013756 2008 -6.37874

9 -8.82897 0.012919 2009 -8.84448

10 -8.80291 0.025708

11 -8.71105 0.017861

12 -8.59568 0.02652

13 -8.37387 0.018929

14 -8.10129 0.019775

15 -7.76841 0.01671

16 -7.35412 0.021034

17 -7.07321 0.016158

18 -6.77892 0.010347

19 -6.65485 0.010762

20 -6.61979 0.005472

21 -6.54311 0.003194

22 -6.54929 0.000856

23 -6.55515 -0.00113

24 -6.55521 -0.00198

25 -6.57904 -0.00368

26 -6.56658 -0.0033

27 -6.57123 -0.00443
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Table 19: Lee Carter model parameters estimation contd.

x ax bx

28 -6.57875 -0.0058

29 -6.55293 -0.00609

30 -6.56582 -0.00401

31 -6.52293 -0.00361

32 -6.51528 -0.00042

33 -6.47168 0.002969

34 -6.41893 0.003479

35 -6.36334 0.005854

36 -6.31871 0.007492

37 -6.23357 0.00891

38 -6.16137 0.010886

39 -6.10287 0.011718

40 -6.01319 0.01262

41 -5.93203 0.010097

42 -5.84681 0.009072

43 -5.76558 0.010869

44 -5.67503 0.008149

45 -5.59376 0.007468

46 -5.50913 0.007395

47 -5.42767 0.007408

48 -5.34215 0.007873

49 -5.26662 0.005681

50 -5.18225 0.003158

51 -5.11535 0.001204

52 -5.03455 -0.00028

53 -4.96565 0.000365

54 -4.90309 -0.00042

55 -4.81733 0.000345
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Table 20: ARIMA model Forecast mortality rates for the period 2008 - 2014

x/qx 2008 2009 2010 2011 2012 2013 2014

60 0.011284 0.011128 0.010974 0.010823 0.010673 0.010525 0.01038

61 0.011855 0.011658 0.011464 0.011273 0.011086 0.010902 0.01072

62 0.012948 0.0127 0.012457 0.012218 0.011984 0.011755 0.01153

63 0.013873 0.013579 0.013291 0.013009 0.012733 0.012463 0.012199

64 0.015343 0.01506 0.014783 0.01451 0.014243 0.013981 0.013723

65 0.016542 0.016238 0.01594 0.015647 0.015359 0.015076 0.014799

66 0.017849 0.017525 0.017206 0.016893 0.016586 0.016284 0.015988

67 0.018912 0.018451 0.018001 0.017562 0.017134 0.016716 0.016308

68 0.0205 0.020014 0.019539 0.019075 0.018623 0.018181 0.017749

69 0.022369 0.021824 0.021292 0.020773 0.020266 0.019772 0.019289

70 0.024435 0.023837 0.023252 0.022682 0.022126 0.021583 0.021053

71 0.026304 0.025638 0.024988 0.024355 0.023737 0.023135 0.022548

72 0.028834 0.028099 0.027383 0.026684 0.026004 0.02534 0.024693

73 0.031624 0.03081 0.030017 0.029244 0.028491 0.027757 0.027041

74 0.034484 0.033649 0.032834 0.032039 0.031263 0.030505 0.029765

75 0.038155 0.037246 0.036359 0.035493 0.034647 0.03382 0.033013

76 0.041234 0.040229 0.039247 0.038289 0.037354 0.036441 0.03555

77 0.045593 0.044556 0.043542 0.04255 0.041581 0.040633 0.039707

78 0.050154 0.049079 0.048026 0.046995 0.045985 0.044997 0.044029

79 0.054752 0.053473 0.052223 0.051001 0.049808 0.048641 0.047502

80 0.060848 0.059374 0.057935 0.056529 0.055157 0.053817 0.052509
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Table 21: Cubic smoothing spline forecast mortality rates

x/qx 2008 2009 2010 2011 2012 2013 2014

60 0.011248 0.01106 0.010875 0.010694 0.010515 0.01034 0.010167

61 0.011809 0.011572 0.01134 0.011112 0.010889 0.01067 0.010456

62 0.012889 0.012592 0.012301 0.012017 0.011739 0.011468 0.011203

63 0.013804 0.013451 0.013106 0.012771 0.012444 0.012126 0.011816

64 0.015276 0.014937 0.014605 0.01428 0.013963 0.013652 0.013348

65 0.016471 0.016105 0.015748 0.015399 0.015057 0.014722 0.014395

66 0.017773 0.017383 0.017002 0.016628 0.016263 0.015906 0.015557

67 0.018803 0.01825 0.017714 0.017193 0.016687 0.016196 0.01572

68 0.020386 0.019803 0.019236 0.018685 0.01815 0.01763 0.017125

69 0.022241 0.021587 0.020953 0.020336 0.019738 0.019157 0.018593

70 0.024295 0.023576 0.022879 0.022203 0.021546 0.020908 0.020289

71 0.026147 0.025348 0.024574 0.023822 0.023094 0.022387 0.021702

72 0.028661 0.02778 0.026926 0.026097 0.025294 0.024516 0.023761

73 0.031432 0.030457 0.029511 0.028595 0.027706 0.026845 0.02601

74 0.034287 0.033286 0.032314 0.03137 0.030453 0.029562 0.028697

75 0.037941 0.036851 0.035792 0.034763 0.033763 0.032792 0.031848

76 0.040998 0.039792 0.03862 0.037483 0.036378 0.035306 0.034264

77 0.045349 0.044104 0.042893 0.041715 0.040568 0.039452 0.038366

78 0.049901 0.04861 0.047351 0.046125 0.044929 0.043763 0.042627

79 0.054451 0.052916 0.051424 0.049973 0.048561 0.047188 0.045854

80 0.060501 0.058733 0.057016 0.055347 0.053725 0.05215 0.05062
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