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ABSTRACT

The main purpose of this project was to design@imal bonus malus system that incorporates
both the number of claims and the claim size. Mjaf insurance companies charge premiums
based on the number of accidents. This way a gadicker who had an accident with a small size
of loss is penalized in the same way with a polidgter who had an accident with a big size of
loss, thus the need to develop a model that incates both the frequency and the severity
components. The frequency component was modelied iisson mixtures where the number
of claims is Poisson distributed and the underlyriglk for each policyholder or group of
policyholders is the mixing distribution. We corgidd the mixing distribution to be gamma,
exponential, Erlang and Lindely distribution. Fbetseverity component we used exponential
gamma mixture (Pareto distribution) where the clammount is exponential distributed and the
mean claim amount is inverse Gamma. Using the Bengxs'y we obtain the posterior structure
function for the frequency and the severity compdn€he premium was estimated as the mean
of the posterior structure function for the freqexyenomponent if we compute premiums based on
the number of claims only. The premium based oh lfr@quency and severity components was
estimated as the product of the mean of the postgructure function of the frequency component
and the mean of the posterior structure functiothefseverity component. We applied the data
presented by Walhin and Paris (2000) with somesaafjent of the claim amount data to fit the
Pareto distribution. The study established thateéfconsider only the frequency component, the
system was unfair to policyholders with small clamounts. However optimal BMS based on
frequency and severity component was found to inédfall policyholder since policyholders with
large claim amounts were charged higher malus duleet risk they pose to portfolio. Therefore
we recommend a system that considers both frequemtgeverity components.

Keywords. BMS, Poisson mixtures, exponential mixtures, ditcy component, severity

component.
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CHAPTER 1: GENERAL INTRODUCTION

1.1Background of study.
Bonus malus system hereafter referred to as BMSeastablished by insurance companies to

reward good drivers and penalize the bad ones. SBBually is based on classes where premium
paid in each class is based on the number of adsideespective of their size. Under these
systems, if an insured makes a claim he movesdass where he is required to pay a higher
premium (malus) or remains at the highest premilasscand if he does not make a claim he either
stays in the same class or moves to a class wieeerbquired to pay a lower premium (bonus).
Bonus malus system is normally determined by thlements: the premium scale, the initial class,
and the transition rules that determine the trarfsben one class to another when the number of
claims is known. An insured enters the system @nitiitial class when he applies for insurance,
and throughout the entire driving lifetime, thensdion rules are applied upon each renewal to
determine the new class. The transition probadditire determined by factors that can be broadly
classified into two; that is, the priori and thesfaiori classifications. The posteriori classifioa
criteria considered the number and the severitgoafdents that a policyholder made under the
years of observation. The priori classificatiorienia considered variables whose values are known
before the policyholder starts to drive such as, dgese power of the vehicle, and other
characteristics of the driver and the automobilewklver, there are other important or ‘hidden’
factors that cannot be taken into account by aripdassification. These include swiftness of
reflexes, aggressiveness behind the wheel, or ledgel of Highway Code, all of which have
bearing on the frequency and severity of motorrisusce claims. The existence of these attitudinal
factors renders a priori classification yet hetergpus despite the use of many classification

variables.
BMS in different countries.

The regulatory environment in the different cousgrare extremely diversified from total freedom

to government imposed systems.
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BMS in Belgium

In Belgium, third party automobile insurance wasdmacompulsory in 1956. Only the
characteristics of the automobile model such asenpower were used to differentiate premiums
with a moderate deductible for young drivers. BM&s introduced in 1961 by a single middle
sized company. The company gave the customersrofieither adopt the old policy without
experience rating or the BMS. The initial premiupn the BMS was set at 20% higher, however
vast majority of customers preferred this systeni971 the state enacted a BMS that had eighteen
classes that had to be applied by all companies.pfémium ranged from sixty for class one to
two hundred for class eighteen. The entry poinfiedéd depending on whether the customer is
private driver or business driver. The transitiales were for claim free years there was a reward
of one class discount. The first claim in any giyear led to a two class increase, any subsequent
claim reported during the same year was penaligabriee classes. Policies with four consecutive
claim free years could not be in a class abovesd@&s. To prevent switching of companies to
evade any penalties imposed in the past, compeaame up with systems to track customers where
any move to another company required a certifitat@ the current company clearly stating the
bonus malus level attained. There was an imbalantke bonuses awarded and the maluses
imposed on the policyholders since most of theadtswvere in class one. This led to creation of a
study group in 1983 whose mandate was to recomraendw tariff structure to the control
authorities (Lemaire 1985). The new system applecabhl 992 which recommended the following

changes among others.

Companies be allowed to use other variable suclyas
Companies to communicate their rates to the autesri
Consideration for young (under 23 years of agejedsi was optional

All policies become one year renewable contracts.

The new system consisted of twenty three classts prgemium ranging from fifty four to two
hundred. For a claim free year a one class discpentalty of five classes for the first claim and
five classes’ penalty for subsequent claims. Pbhbbgers with four consecutive free claim years
cannot be above level one hundred.
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BMS in Brazil

The BMS was based on seven classes, premium rafrgimg65 to 100. The starting premium
was one hundred. For a claim free year a bonusiefctass was awarded and for each claim a

penalty of one class was imposed.
BMS in Denmark.

BMS here was based on 10 classes with premiumsn@gfigpm thirty to one fifty. The starting
premium was one hundred. For a claim free yeaetivas bonus of one class and for each claim

a penalty of two classes.
BMS in Germany.

In Germany BMS the old system had eighteen clasglspremiums ranging from forty to two

hundred. The starting premium was set as 175 ofdr28rivers licensed for at least three years.
The transition rule was, for a claim free year aumof one class and for each claim a penalty of
one or two classes for highest levels and fouivi® years for the lowest levels.in the new system
they had twenty two classes with premiums rangnognfthirty to two hundred. The starting

premium was 175 or 125 depending on the experiandether cars in the household. For a claim
free year a bonus of one class was awarded anehfidr claim a penalty of one class for upper

classes to nine for lowest class.
BMS in Kenya.

BMS in Kenya was based on seven classes with prasiianging from forty for class one to one
hundred for class seven. The transition rules wereglaim free year a bonus of one year was
granted and for each claim all discounts were lost.

BMS in Korea

BMS was based on thirty seven classes with prentewel from forty to two hundred and twenty.
The entry premium was one hundred. For a claim yese the premium level decreases by ten.
However moving down was only allowed after thresmlfree years. The malus was based on the
level of severity of the accident. Property damages penalized by 0.5 or 1 penalty point

depending on cost. Depending on the type of injbodily injury claims were penalized 1 to 4
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points depending on the type of injury. Seriousrigs were assessed and imposed with penalties
of supplementary points of up to three. The premincreased by ten levels per penalty point with

a few exceptions.
BMS in Norway

The old BMS system was based on an infinite nurabelasses with the minimum premium level
being thirty and increasing by ten in each cladse €ntry premium was one hundred. The
transition rules were, for a claim free year a ot one class or a premium of 120 if more
favorable. For the first claim a malus of two cks$or highest levels and three classes for lowest
levels was imposed. Any subsequent claim was pegthlvith two classes. A new system was
introduced in 1987 by a leading company where s\B¥S coexist. The system had infinite
number of classes with premium levels being aéigets from 25 and above. The starting premium
level was 80 for drivers aged at least 25 insupnigately owned vehicle and 100 for al, other
customers. For a claim free year a bonus of 13%awmasded. For each claim, a fixed amount
premium was imposed as penalty. The penalty howewald not exceed 50% of the basic
premium. The penalty was reduced by half for thevers who have had between five and
nine consecutive claim-free years at level &%, their first claim. It is waived for driver
who have had atleast ten consecutive yetrhea 25 level, for their first claim. Aextra

deductible is enforced if the claimant is aathigher level than 80, prior to the claim
BMS in the United Kingdom

The system is made of seven classes with premeweld ranging from 33 to 100. The starting
premium is seventy five. For acclaim free yearna olass bonus is awarded. For the first claim
for a policy holder in class one a penalty of thekssses is imposed, for class two and three a
penalty of two classes and for the other clasgesnalty of one class. As British insurers enjoy
complete tariff structure freedom, many BM&xist. Many insurers have recently introduced
"protected discount schemes": policy- holdetsowave reached the maximum discount may
elect to pay a surcharge, usually in the%4ZD%] range, to have their entitlement to
discount preserved in case of a claim. Mdhan two claims in five years result in
disqualification from the protected discounhame. Both the protected and unprotected forms

are analyzed.
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The study showed that all BMS were based on th@ipromponent and the number of claims
ignoring the size of claim with the exception of ri€a level of severity was incorporated by

classifying claims as either property damage oilipaajury.
BMS in Nigeria

The Nigerian BMS recognizes three categories obmathicles, private motor cars, commercial
vehicles on schedule 1 to 5 and commercial vehmeschedule 6.

For the private motor cars if the policyholder repd no accident during the previous insurance
year, he would be given a 20% bonus in the cupenbd. Where no accident is reported during
the second year, the bonus will be increased to. Z86the third, fourth and fifth claim-free
insurance years, the premium discount is 33.3%, 40ftb 50% respectively. The premium
discount, however, cannot exceed 50%, as no dissaue allowed after the fifth claim-free year.
The initial premium is 100. In case of a claimtak discount gained is lost and the policyholder
starts from 100 all over again. If an insured clente insurance company, he will go direct to
the discount level achieved in the new insurancepamy if the policyholder can document the
discount level attained with the previous insuranompany. For the commercial vehicles on
schedule 1 to 5 a discount of 15% in premium isxdld where no claim is made or pending during
the preceding year or years of insurance. Whilioashe commercial vehicles in schedule 6 a
discount of 10% is allowed irrespective of the nembf claim free years. (Ibiwoye, Adeleke &
Aduloju 2011). However the study argued that th&tesy was not optimal since it did not take
into consideration factors such as claim seventy@epreciation of the motor vehicle, the transfer
of information between insurance companies wadiaieht and the loss of all discount attained

in case of a claim.

Optimal BMS based on the posteriori information.

There has been great effort to model an optimalibomalus system. Frangos, and Vrontos, (2001)
defined an optimal BMS as one that is financialyamnced for the insurer that is the total amount
of bonuses is equal to the total amount of malases fair for the policyholder that is each
policyholder pays a premium proportional to thé filsat he imposes to the pool. In this effort

5|Page



Lemaire (1995) developed a BMS quadratic error kosgtion, the expected value premium
calculation principle and the Negative Binomialtas claim frequency distribution. Similarly,
Tremblay (1992) designed an optimal BMS using thadgatic error loss function, the Poisson
Inverse Gaussian as the claim frequency distribuéind the zero-utility premium calculation
principle. However all this studies did not consitiee claim severity component but considered
the frequency component only. This system was usface there is no difference between the
policyholder having an accident with a small siZelass and a big size of loss. That is the
policyholder with a small claim size is penalizadhly compared to a policyholder with a big
claim size. This lead to policyholders with smddli;mn amounts not to report the claims due to the
fear of paying higher premium in future becausthefmalus imposed. This could go to the extent
of the policyholder paying the third party tharréport the claim. Lemaire (1977) referred to this
as the hunger for bonus. Therefore there was reettorporate the claim amount in the bonus
malus system. A BMS which incorporates both thércaequency and the claim amount is said
to be optimal. Here a policyholders pays premiuppprtional to the risk he imposes to the pool.
Motivated by this Frangos, and Vrontos (2001) desigan optimal BMS based on both the claim
frequency component and the claim severity usingatiee binomial distribution to model the
claim frequency and Pareto distribution to modeldlaim severity. Premium was computed using
the net premium principle. similarly Ibiwoye, Adk&& Aduloju (2011) considered the design of
optimal BMS based on both frequency and severitygmnents using Poisson exponential mixture
(Geometric distribution) and Poisson Gamma mixt(iregative binomial) for the frequency
component and Pareto for the severity componesb Mert and Saykan (2005) considered both
frequency and severity in the design of an optiBEIS system taking claim frequency to be

Geometric distributed and claim severity to beedareto distributed.

Optimal BMS based on both posteriori and priori information.

All the models mentioned above are function of tiame of past number of accidents and do not
take into consideration the characteristics of @adividual. However there was need to design
an optimal BMS based on both the posteriori andrpdlassification. Motivated by this Dionne

and Vanasse (1989), stated that the premiums deanpsimultaneously with other variables that

affect the claim frequency distribution. The BMSsaderived as a function of the years that the
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policyholder is in the portfolio, the number of at@nts and the individual characteristics which
are significant for the number of accidents. Sinyl®icech (1994) and Sigalotti (1994) derived a
BMS that incorporates the a posteriori and tha@iplassification criteria, with the engine power
as the single a priori rating variable. Frangosl, drontos, (2001) suggested a generalized optimal
BMS. The extended the work of Dionne and Vanas889,11992) by introducing the severity
component. The study proposed a generalized BMSitiegrates a priori and a posteriori
information on an individual basis based both anftequency and the severity component. This
generalized BMS was derived as a function of therg/¢hat the policyholder is in the portfolio,
the number of accidents, the exact size of logse&eh one of these accidents incurred, and the
significant individual characteristics for the nuenbof accidents and for the severity of the
accidents. Some of the a priori rating variabled tould were used include the age, the sex and
the place of residence of the policyholder, the #yetype and the cubic capacity of the car, etc.

1.2 Problem statement
Usually we consider claim frequency in Bonus MaBystem without taking into consideration

the size of the claim. This system is unfair sipodicyholders with large claim amounts are
penalized the same way with policyholders with éaaim amounts (Frangos, and Vrontos,
(2001). The study further proposed a generalizedSBNat incorporates both the posteriori and

priori information.

In literature only Poisson Gamma (Negative Binoji@dtribution, Poisson inverse Gaussian and
Poisson exponential (Geometric) distribution hasnbesed as the Poisson mixtures in modelling
the frequency component, while only the expone@i@inma (Pareto) distribution has been used
to model the severity component. Different claimgimency distributions and different claim
severity distributions would give different strieBs in terms of bonuses awarded to good drivers
and malus imposed on bad drivers. This will intaffect the competitiveness of the insurance
company in the market. Lemaire (1998), stated ith&elgium when the BMS was introduced
customers were given option on whether to takdrtuhtional policies or the BMS. Most of the
customers preferred the BMS though it was expensiVerefore the researcher sought to
investigate and compare the level of strictnesappiication of different frequency distributions

on the optimal BMS holding the severity distributim be Pareto distribution.
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1.3 Objectives
General objectives

The main objective of the study was to calculat®m=obile premiums taking into account both

claim frequency and claim severity components.
Specific objectives
The following were the specific objectives:

i.  To estimate frequency component using Poisson mextu
ii.  To estimate severity component using exponentiature.
iii. To use the claim frequency component mean and céawerity component mean to
estimate automobile insurance premium.
iv. To compare the premium charged and the level aftistrss under different frequency

distributions.

1.4 Significance of study

The finding of the study will play a great roledomparing the level of strictness of different glai
frequency distributions. The level of strictnesgum determines the competitiveness level of an
insurance company in the market. The study furdipens up areas of study such as investigation
and comparing the claim severity distributionsemits of their strictness in design of optimal
BMS. This can be done much easily by use of albetwveen Poisson mixtures and exponential
mixtures.
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CHAPTER 2: LITERATURE REVIEW

2.1 introduction

In this section we review the work that has beemedan the bonus malus system. We consider the
bonus malus system based on the posteriori compsrienst we review studies on BMS based
on the frequency component then BMS based on etuéncy and severity components. We
will then summarize our finding and state the gapsave identified in our review some of which

this paper will be based on.

2.2 BMS based on frequency component

In this case the number of claims a policyholdek@sadetermines the premium he/she is charged.
The claim frequencies under insurance polisiesv a considerable heterogeneity, especially
in the early years. Therefore it's not possiblenodel frequency as homogeneous sub-groups.

Hence most of the work done takes the frequencypooent as a distribution

Lemaire (1995) considered the design of an optBMSE based on the number of claims of each
policyholder. The optimal estimate of the policyder's claim frequency is the one that minimizes
the loss incurred. Lemaire (1995) considered, anmngr BMS, the optimal BMS obtained using
the quadratic error loss function, the expectediezgbremium calculation principle and the
Negative Binomial as the claim frequency distribati

Tremblay (1992) considered the design of an optBh4$ based on the Poisson Inverse Gaussian
as the claim frequency distribution. He took thegfrency of claims to be Poisson distributed
assuming that the frequency of claims vary withtfotio. He further assumed that the portfolio
risk in any particular portfolio has a Poissorstribution with meanA, where A is itself a
random variable with distribution representitige expected risks inherent in the given
portfolio. He tookA to be inverse Gaussian arguing that it has tradk aind has a closed form
expression of the moment generating functions. mhxe@d Poisson provided a better fit from the
insurer’'s point since its variance is greater themean as compared to the Poisson distribution
where the variance is equal to the mean. He useduadratic error loss function to estimate the

parameter that minimizes loss and using the Bayak&ory he estimated the posterior distribution
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for the portfolio inherent risk given the claimdreency in the past n years. Premium was computed

using the zero-utility principle.

Walhin and Paris (1999) extended the work of Leenéi®95) and Tremblay (1992) who used the
Poisson Gamma (Negative Binomial) distribution #imel Poisson inverse Gaussian distribution
as the claim frequency distributions respectivetyubing the Hofmann’s distribution which is a
three parameter distribution that encompasses tiwsdéh, Negative Binomial and the Inverse
Gaussian Distributions. For comparison purpose,hilahnd Paris worked with a portfolio
published by Buhlmann (1970) and used by Lemai®8%) and Tremblay (1992). They showed
that the Hofmann’s distribution gives a bettetdithe claim frequency data.

Dionne and Vanasse (1989, 1992) presented a BMSirttemyrates a priori and a posteriori
information on an individual basis. This BMS is ied as a function of the years that the
policyholder is in the portfolio, of the number acidents and of the individual characteristics

which are significant for the number of accidents.

2.3 BMS based on frequency and severity components.

In the models described above only the number aflaots is considered in design of the BMS
ignoring the size of the claim.in this way policythers with the same number of claims are
penalized the same. This is unfair to policyholdeitsh small amount of claims (Frangos, N. E.,
and Vrontos, S. D. 2001)

Lemaire (1995) pointed out that all BMS in the wiowith the exception of Korea consider the
number of claims in BMS ignoring the claim size.Korea claim severity was subdivided into
two, those with bodily damage and those with priypgamage. Policyholders with bodily injuries
were to pay higher maluses depending on the sgwdrihe accident.

Pinquet (1997) considered the designed an op&kt8 which makes allowance for the severity
of the claims first starting from a rating modekbd on the analysis of number of claims and of
costs of claims, then heterogeneity componentadded. This represent unobserved factors that
are relevant for the explanation of the severityaldes. The costs of claims follow Gamma or
lognormal distribution. The rating factors, as walthe heterogeneity components are included
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in the scale parameter of the distribution. Comsigethat the heterogeneity also follows a Gamma
or lognormal distribution, a credibility expressi@obtained which provides a predictor for the

average cost of claim for the following period

Mert and Saykan (2005) considered both frequendysamerity in the design of an optimal BMS
system taking claim frequency to be Geometric ihsted and claim severity to be to be Pareto
distributed. They used the quadratic loss functoastimate parameters and computed premium
based on the net premium method as a product oiméen of the posterior claim frequency

component and the mean of the posterior severitypcment.

Frangos, and Vrontos, (2001) designed an optimalSBb&sed on both number of claims
(frequency) and claim amount (severity) using niegabinomial distribution for the frequency
component and Pareto distribution for the sevetiynponent. The number of claims were
assumed to be Poisson distributed with meakihereh is the underlying risk of each policyholder
which varies from one policyholder hence a randamable. The underlying risk was assumed to
be Gamma distributed thus the mixed Poisson Ganitegdative binomial). For the severity
component, the amount of claims were assumed ¢xj@nential distributed with mean claim size
y which varies with policyholder hence a randomalale. The mean was assumed to be Inverse
Gamma distributed. Thus the exponential inverse iBamixture (Pareto distribution). Using the
Bayesian theory, they obtained the posterior strecfunctions of the frequency component and
for the severity component for the number of ye¢hespolicyholder has been under observation.
The premium estimate was based on the net premiimoigle as a product of the mean of the
posterior structure function of the frequency comga and the posterior structure function of the

severity component.

Ibiwoye, Adeleke & Aduloju (2011) considered thesidm of optimal BMS based on both
frequency and severity components using Poissonrexygial mixture (Geometric distribution)
and Poisson Gamma mixture (negative binomial) fier frequency component. The number of
claims were assumed to be Poisson distributed wthide underlying risk of the group of
policyholder was taken first to be Exponential giyithe Geometric distribution then Gamma
giving rise to the negative Binomial distributidrhey modelled the claim size to be an exponential
inverse Gamma mixture (Pareto distribution) whéeedlaim size for thekclaim was assumed

to be exponential and the mean claim amount tover$e Gamma distributed. The expected value
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of the parameters was estimated using the quadlvaianethod. The risk premium was estimated

as the product of the mean claim frequency ananctsverity components.

Promislow (2006) made an analysis on how to chtusé&equency and the severity distributions
comparing Binomial, Poisson and Negative binomiatrdbutions for the frequency component
and Normal, Gamma and Pareto for the severity commpo

2.4 Summary
In most of the work reviewed the frequency compomemodelled as a Poisson mixture where
the number of claims is Poisson distributed anduheéerlying risk distribution is the mixing

distribution. The mixing distributions used include

a. Gamma distribution.
b. Exponential distribution.

c. Inverse Gaussian distribution.

For the severity component, an exponential mixhae been applied to model the frequency
component. The claim size is taken to be exporedisributed while the mean claim size

distribution is the mixing distribution. The mixirtdistribution considered include:

a. Gamma distribution
b. Inverse Gamma distribution

c. Lognormal distribution.

The Bayesian theorem is used to obtain the postetriacture functions for the frequency and the
severity components. The mean of this functionssed to estimate the premiums to be charged

to a policyholder who have been under observation.

2.5 Research gaps.
Only a few Poisson and exponential mixtures hawenhesed to model the frequency and the
severity components respectively. This can be elaeiby considering among others the following

mixing distributions:

i. Erlang distribution
ii. Lindely distribution
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iii. Normal distribution

There is need to come up with a link between Paissa exponential mixture that will simplify

the comparison of the various mixing distributieamslesign of an optimal BMS.
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CHAPTER 3: METHODOLOGY

3.1 Introduction
In this chapter we design the optimal BMS basedaih frequency and severity components.

First we will consider the frequency component dihcgeveral distributions in modelling the
frequency component. Secondly we model the frequenamponent using a Poisson mixture.
Finally we will estimate the premiums charged tpaicyholder based on the frequency and

severity component.
The severity and frequency components will be assiito be independent.

3.2 Frequency component
In automobile insurance, when the portfolio is ¢desed to be heterogeneous, all policyholders

will have a constant but unequal underlying riskhaking an accident. That is, the expected
number of claims differs from policyholder to pglimlder. As the mixed Poisson distributions
have thicker tails than the Poisson distributidnsiseen that the mixed Poisson distributions
provide a good fit to claim frequency data when pbetfolio is heterogeneous. We will use the

following Poisson mixture distributions to mode¢tiiequency component.

I.  Poisson Gamma distribution
ii.  Poisson exponential distribution
iii.  Poisson Erlang distribution

iv.  Poisson Lindley distribution

3.2.1 Poisson Gamma distribution.
Consider the number of claims k, given the paramei® distributed according to Poissov) (

—AAk
p(k/A)==7

k=0,1,2,3,... and >

A denotes the different underlying risk of each @diblder to have an accident.

We assume thatfollows gammad, t) distribution, with pdf of the form:

a-1,a T
upy=2_€" a> 0> Or>
ra
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With mean E{)=a/t and variance vaN)=o/t?

The unconditional distribution of the number ofikia k will be:

=] 1K A W) di

e—/l Ak /]a_lfa e—M
k! Fa
Ak+a 1Z.a A7)
, KTla
%‘00 r( a+ k)(l + Z.)a'+k A k+a—1z.a e—/l (+7)
. [(a+K)@+ 1™ K Ta

dA

O'—'LI—.S o

r”r(a+k) (1+ Z_)a+k/] k+0/—1 ~A(1+7)
C(L+7)7K! raI (@ +k)
r“(a+k-1)!
(L+ 7)™ k! (a -1)!

_(a+k—1)!( r j( 1 ]k
kKl (a-D)!I\1+7) \1+1
"N G
- k 1+7) \1+r1
which is probability density function of Negatibeomial (@,t)
k+a-1) 7 Y[ 1 )
E(K k —
(K)= Z { j(1+rj £1+rj
:zk(k+a—l)!( r j"( 1 jk
= ki(a-)!'\1+7) \1+1

« (k+a-1)! (o1
—Z(k ~1)(a - 1)'[1+rj (1+rj

dA
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:(1+I')* 1 Q'Z(k-'-a_lj(Ljaﬂ(_ljk_l
r (A+1) = k 1+71 1+7

var(K )= E (K (K - 1))+ E (K)- [E(K)P

k _1 a k
E(K(K—l)):Zk(k—l)( +|f j(#j (%Tj

k(k-D(k+a-1( 7 \( 1)
{ kl(a-1)! (1+rj (1+rj

k

(k+a-2)! (7 Y[ 1)
Laoe i) ()

o (k+va-1t (7 (1
294+ H(k—2)!(a+1)!(1+rj (1+r)

k

_O’(O’+1) k+0'—1 r a+2 1 k-2
= ?[ k-2 j(ﬁj =)

_a(a+l)

Z.2

var(<)= ) +g_(gj
_a(+r)
2_2

)
T T

The variance of the negative binomial exceeds igmm this will help us to deal with over

dispersion.
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Consider a policyholder or group of policyholdersonhave been under observation for the last t

years.

t
Let K = Zki be the number of claims the policyholder had intthears, wheré is the number

i=1

of claims that the policyholder had in year i=1,21...

Using the Bayes theorem we can obtain the poststiacture function fok for a policyholder

with claim history (K,....k ), WA/K,...k)

u(A/K,...k)DO pk,...k)ud |

t @)k
p(k,....K //1):i|:|1 o

—At/}K

1x!

U(A/k,..k)O €* Ak et

D e—)l(t+r)/] K+a-1

Ju/k,. k) O] et ol
0 0

TAG_)'(HT)/‘ K+a—1d/1 :1
0

K+a
where A&
M(a+K)
hence
K+a A-A(t+7) 1 K+a-1
uA /K, k)= e A

M(a+K)
Which is the pdf for gamméa +k, t+7)
The optimal choice of,,; for a policyholder with claim histor¥;,..Kwill be the mean of the

posterior structure function, that is
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dA

Jua= [ r)K:(Aa e:;*)fm
0
_T (t+T)K+a/] K+L1e—/1(t+r)
5 M (a+K)
_0’+ K fioo ('[ + Z.)K+a+1/] K+ae—/1(t+r)
t+r ~([ MNa+K+1)

dA

wherel =< 3.2.1
T

O
/1t+1 = =
t+r1

a+K —(a+KJ

The occurrence of K accidents in t years necessita update of the parameters of gamma from

aandr to a+K and t+r respectively.

3.2.2 Poisson exponential distribution.
Assume that the number of claims k is distributecbading to Poisson with a given Parameter

e X
k!

p(k/A)=

Let us assume thatis distributed according to the Exponential disition with paramete (that
is, the structure function afis assumed to be an Exponential distribution). giedability density

function of\ is as follows:
uA)=6e" , A1>C
Then the unconditional distribution of k claimsas follows
p(K) = [ P(K/A). UA)
0

e’ dA

Te’ Ak
_l k!

© _—j(1+8) 1k
:'[ 9% p)
. !
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g Te—/l(1+9) (/1 1+ 9))kd/]

Tk o))
using integration by substitution we I&
7
K)=——— T (k+1
P(0= s g (k+D)
A
(1+6)k+1

AR
1+6 )\ 1+6
which is Geometric distribution with parameter

t
The conditional distribution of the total numbércaims in t yearK =ZK given) will be

i=1

(.. 11)= [ ] 52

_e-/it/‘ K

1=1

By applying the Bayesian, the posterior structumection for a group of policyholders with a

claim historyK,,...,K can be obtained as follows

U Koo KT POK, e k1 )UQ )
|:| —ét/‘Ke—AH
[] e/ (t+0) 4K

ju(A/kl,...,K)dA D_[ 'K o
0 0

_[u(A/kl,...,Ig)dA =j AE DK =1
0 0

Therefore

A
(t+6)"

J‘Ae—a(ne)/]K = ‘[e—ﬂ(ne) (/1(t+ 5))K dA
0 0
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using integration by sustitution we have
A
(t +0)K+1
_{t+9*"
T (K +1)
Hence

M(K+1)=1

_ (t +9)K+le—/1(t+€) (A(t"'e))K
B (K +1)

A >(

U(A /K, ... k)

which is pdf of Gamma (K+1, 8)

The optimal choice ofd,,; for a policyholder with claim histor,,....k will be the mean of the

posterior structure function

_oo (t+l9)k+l
/]t+1(k11"'1k( )_IAW

0

e—/\(t+6’)/‘k C“

_(t + e)k+l ]Se—/\ (t+6’)/‘ k+1dA
Mk+1) <

_(t +6)k+1 r(k+ 2) ]2 (t+€)k+2/] k+le—/1 (t+€)dA
0

Fk+1) ((+0)2) r(k+2)
_k+1

t+6
s _k+1
t+1 t+0
O — —
A =2 [ KAL) ynerer = 2 (3.2.2.1)

T o

3.2.3 Poisson — Erlang distribution
The conditional distribution of the number of clairk given the underlying risk is

assumed to be Poisson distributed with pdf
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e Ak
k!
k=0,1,2,3,... and >

p(k/A)=

Let A be Erlang distributed with parameter
u(l) =a*Ae™ A >

The unconditional distribution of k would therefdre

(=] ik A)-ud) o

¥f e o2 e dA

0

:F,[/‘ k+le—/l (I+a) da

_azr(k+2) (l+0)k 2Ak1e)l(la)
(1+a)k+2k|'[ I (k+2)
_a’(k+1)
(1+a)k+2

Mean of the Poisson Erlang

E(X) = jZke a’A e’ it
o k=0
7 z.o: :11:'1 ZAe—/md/‘

0 k=0

:a,zj‘/] 2677 dA
0

Using integration by parts we ha'

E(X) =2
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Variance of the Poisson Erlang.

Var(K) = E(k(k-1))+ ER-[ K Ia]z
E(K(K -1)) = jZk(k )4 g7 6 o)

o k=0

- A/‘kz —Aa
f/] Z w2or d
0 k=0

;J,Z]SA?:e—Aa d/‘
0

using integration by parts we have:

E(K(K—l))=%

The posterior distribution of given claim history k... ,k: will be

UA T K, k)T PR,k 1)U
De/]t/]k/] Aa
0 e—/](t+a)/] k+1

Ju/k,..K)dA Of 01 i
0 0
Hence

TAe—/I(Ha)/‘ k+ld/1 _1

(t+a) +2 g (t+ar) j kel _
_[ r(k+2) di=1

B (t +a)k+2
rk+2)
The posterior structure function fowill therefore be

(t + a)k+2A k+le—/1 (t+a)
Fk+2)

u(A/k,...k)= A>0q >
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Which is the pdf of Gammék + 2, t+a)

The optimal choice ofd,,; for a policyholder with claim histor,....K will be the mean of the

posterior structure function

(t +a)k+2/] k+1e—/1 (t+a)

Aa =14 dA
i { M(k+2)
L k+2 3 k+2 -1 (t+a)
=I(t+cr) A% A
5 Mk+2)
0 k+3 3 k+2 A (t+a)
_k+2J-(t+a) A %€ A
t+a s M(k +3)
~ _k+2 \
/1“1 —m 3@31,

3.2.4 Poisson Lindley distribution.
Taking the conditional distribution of the numbédrctaims k given the underlying riskto be

Poisson distributed with pdf

_/‘Ak
p(k/A)==

k=0,1,2,3,... and >

Let A be Lindley distributed with parameteér

2

u(ld) = 9 (A +1)e’? A>0,8 >

0+1

The unconditional distribution of k will be:

p(k) = [ p(k/ A).UA) A

)

:J‘ ek FUe’ 4 )

k! 6+1

0

~ 02 Te_a(ps)/]k(/]ﬂ)d/]
1+6 “

0
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- & [T A dA + j e dA}
1+6|

o)

T (k+1)

02 e ~A(146) yk+1 k+2 - (#6),k k+1
2 e ey

0

_92[ kt1 , 1 }
1+ 6 (1+6)k+2 (l+6)k+1
_G(k+2+0)
- (1+9)k+3

Mean

E(K):T|:ike_;,/‘k:| 92 (1+A) -9/1

k=0 1+6
0 o) 2
ol {Z (k_l),} 9 (A % di
oL k=0 1

j AZ (k‘ﬂf;} (A F%dA

& T -6
o _c[)l(1+/1)a d

52

HDAe'”dA +.[/12e“”"d/1}
0 0
Using integration by parts we have:
2
=2 (3+2)
_ 2+6
T H(1+6)

Variance

Var(K) = E(K(K-1))+ E(K)-( E(K))*

E(K(K -1) = I[Zk(k 1)e“k}(%](1+/1)e'”d/1
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([ 2732 | 4 g
s
22 (HA

0

1+9ﬁ A% 6”d/1+_|‘/]3 S0 }

:éi(£+éj
140\ ¢°

_26+6
@+6)8

Var(ky= 2646, 2+0 [ 2v6 ’
(1+0)8* (1+6)9 | (1+8)y
_GP+46°+80+ 2

(1+6)26?

The posterior structure function for a policyhaldéth a claim historyK,,...,Kis given by:

UA T K,k )D (K, k 1A)0Q)
0 e—/lt/]k /{+ b—/l@

Tu(/”ki K)d/‘ DJ‘ -)l(t+6’)(/1k+l+/]k) di
0
0 /1k+1 —/l(t+9)d/] m/]k A (t+0) m
e fre
TU(A/ky’K)d/‘ :{T/]kﬂe—/l(tﬂﬂd/] +]2Ak e—/l(t+6’) da}
0 0 0

A|:]i/1k+1e—/l(t+9)d/1 +T/1k e—/l(t+6’) m:| :1
0 0

B (t + 6)k+2
T T(k+2)+ (t+O) (k+1)
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Al _(t+0) e (11 + 1Y)
u(d/k,...k)= F(k+2)+ (t+6) (k+1)

The mean of the posterior structure function wal b

® (t+6)k+2e—/l(t+9)(Ak+l+A k)

Al K )= A B i D

B 1
Mk+2)+(t+0)r(k+1)

0

[ [ tero e Oz ar+ [ o et o) k”dﬂl}
0

1 Fs3) 0 (t+9)k+3 e (t+€)/1 k+2 © (t+9)k+2 e‘—/l(u-s)/‘ k+1
= dA+T (k+2)|—= 55— dA
F(k+2)+ (t+6?)F(k+1){ oy ey ( )!; Fk+2)

_ 1 rk+3), - (+ 2
F(k+2)+(t+0) (k+1)| (t+6)
~_(k+D[(k+2)+ (t+6)]
YL+ O)[(k+ D)+ (t+0)]

(3.2.4.1)

3.2.5 Estimation of parameters
We estimate the frequency distribution parametsisguthe method of moment and maximum
likelihood method. We use the Newton’s approximadifor the non-linear equations.

3.2.5.1 Estimation of Negative Binomial Distributio parameters

Using methods of moments

E(K)=¢
Therefore
k=2
a=kr
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T
A
$= K ¥}
1=s-k
r k
2 — Kk
T ===
s2-k
~ EZ
a s2-k

Using the maximum likelihood method

According to Lemaire (1995) we estimate the paramas follows:

eyl kra-n oz Y1 Y
'—(C”)‘D[k! (a—l)!£1+T] (1”) }

. a
T== 1
” (1)
oinL(a,r) _ 0 < 0
— 2= M Inkk+a-D)l—nIn(a-DH nint - ninl+7)=0
3 aa;( )aa() r (1+7)

& ko= T Y1
In L(a,T)—;'”{k! (a—l)!(l*' r) (1”j }

> Ink+a - 1)!Zn: Irk+zn: Ing— Dtre Ir-ny In(7 > k Ifl+7)

i=1 i=1
2k
dinL(a,7) _na _na <43

or r 1+r 1+7
na_na _ nk _ g
r 1+r 1+71
Using stirling approximation
That is:

Inxt=In{ (277°°(%)" |

27 | Page



Z'n(k+a 1)'_z|n[(2ﬂ(k+a 1)) (k+a 1)k+a—1J

=1 i=1

En:[ 0.5Im2+ 0.5kta- )4(k+a-1In(k+a-1)- (k+a-1)

i=1

_Zln(k"'a 1)|_Z|:2(k+a 5 tin(k+a- 1)}

=1

:ZerZ Ink +a - 1)

55 n@=11=in| (2t -0)"* (2]

3%[ 0.5In2+ 05la(- Ha- Hmc Dat ]1)

et If- 1
Therefore
dinL(a,r -
a( ) - Zzw l)+ZIn(K+a D+5d5+In(@-1)+ninz - nin(l+7)= 0 (
replacing (1) in (2)
olnL(a
5 @ _ Zz(w l)+Zln(lg+a 1) +5g&5+In@-1)+nina - nin(k+a)=0 (3)

Equation (3) is nonlinear in unknownand the solution needs to be found by numericéhaus.

We consider one important algorithm for finding Isacsolution, Newton’s method.

a=a,- gl(ao)
9'(ap)
where:

a, is the initial estimate using the method of moreent

aln L(a)

9(a) =
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3.2.5.2 Estimation of the geometric distribution peameters

Using the maximum likelihood estimation

L) =[] (:5) ()’
InL(6) = iz;:ln (&)()" ]

=nlr¥ -nin(18 )Enllg In(x &

i=1

=ni@ -nin(18 )-nkin 8 )

aInL(H):E_ n _nk _
00 6 1+8 1+6

6=

=~ =

3.2.5.3 Estimation of Poisson Erlang parameter

Method of moments

K =

IS
11
N|IENESEEN

Maximum likelihood estimate

n
— a’(k+1)
L(a) = |_1| (1+a)<?
=

n 2
InL(a) :Zm( gj);fi)
i=1

n

S'( 2w+ Ink + 1 k+ 2)InEa )

i=1

=2 Im'+zn: Ink + 1)—_Zn: K+ 2)In(xa

= Im+zn: Ink + 1 n k+ 2)In(ka )

i=1
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dinL(a) _2n_n(k+2) _

oa a ([1+a)

2ler YK+ =
2+2 ka+ @

a

7~'I||||\J

3.2.5.4 Estimation of Poisson Lindley parameter
Using method of moments

2+0
o(1+6)
k(@+6*)=2+6
k(6+6°)-2-6=0
ké*+(k-1)6-2=0

_—(k=D+y(k-1y +8K

2K

=k

For more on the moments of Poisson Lindley Skanker and Fesshaye (2015)

Maximum likelihood estimate
6 (k+2+6)
L(6) = ﬂ b
_ 62 (k; +2+6)
InL(6) _;|n[ e

=2 |n9+Zn; Ik + 26 }Zn: k+ 3)InEo

onL(@) _2n &, n(k+3)_
0 8 LT 1+6)

2n & n(k+3) _

_+Z & +12+.9) - = (5)

1+
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Equation five is nonlinear and can be solved by ewical method such as Newton’s method

assuming the method of moment estimate as thaliettimate.

3.3 Severity component
In an insurance portfolio, in addition to many sheddim severities, high claim severities can also

be observed. Therefore, long tail distributionshsas Lognormal, Weibull, Pareto, Burr, etc. are

widely used to model claim severity data.

In this study we use the Exponential Inverse Gammdure (Pareto distribution) to model the

frequency component.

Let X be the size of claim each insured and Y leentiean claim size of each insured.

We assume that the conditional distribution of ¢ke@m size X given the mean claim size Y is
exponential distribution with parametgr

Therefore:

f(x/y)=% e’ x>0 ,y>(

The mean of the exponential is E(X/Y)=y and theéarae is Var(X/Y)=y

The mean claim size is different for different pgholders and takes different values therefore
it's reasonable to express y as a distribution.thetprior distribution for y be Inverse Gamma

with parameters s and m and probability densityfiom

Le_%
a(y) =—"—

(2) s

The expected value of y will bE(X) =5

3l<

The unconditional distribution of the claim sizean be obtained as follows
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p(X == f(x/ ).d ¥ dy

0

o _-ioem

iyi ()'rs

:z y™* FZ:;)Z xI:lr(ns+l) TP ek T o
e m)s_lz ( e)(r)(s+1) ‘

s (x+ m)*

which is the pdf of Pareto distribution with pardere s and m

Mean of the Pareto.
E(X) =] xsni( % §*" d
0

:srﬁjx &+ m)~" dx
0

using integration by parts

E(X)=sn? {[— +my°]’ +;S]° (x+ my d>}

_ 1 (X+m)—s+1 o
_Srﬁ[E (1) l)
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Variance of Pareto:

var(X)=E(¥)-( E(X)*
E(X?) :T Xsmi( ¥ it d

%m';T X (¢ m) T dx

using integration by parts

E(X?) = srﬁ{[&} —2]0”_—;"5 d)}

_Znsj' x(x+m) dx

0

_ -s11 7% -
=2 {[—X(X;_T) } +L _[ x+ m)s* d>}
0 0
— ow [ oam "
T (s 1) s1 0

(s-1)(s-2)

— o’
(s-1)(s-2)

var(X)=E(¥)-[ E(X]°
_(s—i)n(15—2) _I: S-l:lz

— 2 —
(s-1)(s-2) (s—1)2

— s
(s-2)(s-1y

The relatively tame exponential distribution getansformed in the heavily-tailed Pareto
distribution which is a better candidate to modairo severity.

In order to obtain an optimal BMS that will takeéaraccount the size of loss in each claim , we
have to find the posterior distribution of the mekaim size y given the information we have about

the claim size for each policyholder for the timezipd he is in the portfolio.
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Consider a policyholder who has been in the padfidr t years.

Let X denote the claim amount for tk& claim, wher&k =1,2,3,...K

K
Z X, is the total claim amount for a policyholder whastbeen in the portfolio for t years.
k=1

We obtain the posterior distribution of the clailpesY given the claim size history of the policy

holder X,...,X using the Bayes theorem

9(y/ %, )0 fO%,.x 1) oY)
f(xl,...x(/y):l:'%é;

«Q
—~
<
-
o
<
~
0
—
<[~

K

r < Kestl Ty m+Z
[a(y/ %,..x)dy0 (2) e[ **] d
0 0

K k+s
(m+z )g(j
k=1

MK +s)
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Therefore:

3]

k+s+l
X (K +s)
m+;>§(

K
Which is the pdf of an inverse GamrEa+ K, m+z &j

k=1

a(y/ x,..x)dy=

The optimal choice ofy,,; for a policyholder reporting claim amoudtsk =1,2,3,...K over t

years is estimated as:

BD/Hl()(l,...,)U :]i y [””ZM]

. g
« —x €
S A LY
O{ 4 J F(K+s)
mY %
3

Yo (% %) =i
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3.3.1 Estimation of Pareto distribution parameters

We consider Hogg and Klugman (1984) to estimatdPtreto parameters.

Using method of moments

m
E(X)=—
(X) <1
_._m
X=—
s-1
m=X(s-1)
2
Va_r()():szzL2
(s—-2)(s-1)
, _ X%(s-17s
(s-2)(s-1y
, _ X’s
(s-2)
. 29
8_82—7(2
. [ 2s?
-
o — 2+?2
m‘x(izst)

Using the maximum likelihood method

L(s, m) :q s ¥ i
InL(s, m):im[ sm( ¢ ni** |

n

> [ I+ s Inm= (s 1)In(x+ )

i=1

:nlns+nslnm-(s+$ hEm )

olnL(s,m _ n .

—————==—+4nlnm-) In(x+ mM=0 4
s < le (x+ m (

olnL(s,m _ ns .

——2=——(s+])) -=0 !
m el );(“m) (
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Clearly equations (4) and (5) are nonlinear fumgim the unknowns sand m. we use the Newton’s

method to find the solution.
Say the preliminary guess €3, M) , the linear equations equated to zero are

0(s M)+ d(s (s 9+ o & 9 M 0
%($ M)+ (s M(s 9+ o & 9 M 0

where:
g :a|n L(s,m
! s
_ 09,
O 3s
_ 99,
P am
g :aln L(s,m)
2 om
_ 99,
U 3s
_ 99,
922 am

We takeSandmto be the initial estimates using the method of reots.

3.4 Calculation of premiums
If the risk premium is determined not only by takithe number of claims into account but also

the total amount of the claims, then the risk premito be paid at time t+1 for a policyholder
whose claim number history ik;,....K and whose claim amount history %,...,% can be

calculated according to the net premium princigdhe product of the of the mean of posterior
structure function for the frequency component tir@lmean of the posterior structure function
for the severity component. The estimated premissuiing each of the frequency distributions

discussed above and assuming the severity comp@ieateto would be:

Assuming the frequency component is Negative Binomial distribution.
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K
a+k m+k2:‘1>&

t+7 s+K-1

premium= (3.4.1)

Assuming the frequency component is Geometric distribution.

K
m+
k+1 Z;)&
t+0 s+ K-1

premium= (3.4.2)

Assuming the frequency component is Poisson Erlang distribution.

(c+D] e+ 20+ t+) ™
t+O)[(k+D+(t+6)] s+ K-1

premium= (3.4.3)

Assuming the frequency component is Poisson Lindley distribution.

K
+
k+2 m kZ:;)i

t+a s+ K-1

premium= (3.4.4)

Therefore risk premium that must be paid dependshermparameter of the posterior structure
function for the frequency component, the paransetdrthe posterior structure function for

severity component, the number of year’s t thatblecyholder is under observation, and his/her

K
total number of claims K and the total amount afrols Z Xy
k=1
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CHAPTER 4: DATA ANALYSIS.
We consider the data presented by Walhin and F2030).

Table 1: Observed Claim frequency distribatio

Number of accidents Number of policyholders
103704
14075
1766
255

45

6

2

| O B~ W N | O

The mean and variance of the data is obtained as

Mean= HK)=0.1551
Var(K) = S* =0.17931¢

We need to estimate the frequency distributionameaters using the data. This is summarized in

the following table

Table 2: Frequency distribution pareters

Distribution Parameter | Estimated value
Negative binomial a 0.9956

T 6.4176
Geometric 0 6.4458
Poisson Erlang | a 12.8916
Poisson Lindley |0 7.2291
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4.1 Estimation of premium based on the frequency coponent

First we estimate the premium charged to a polilddrobased on the frequency component only as in

Lemaire (1995)

We consider the various frequency distribution petedently:

4.1.1 Negative binomial distribution

We apply the Negative Binomial parameter estimatisequation 3.2.1.1 and obtain the optimal BMS as
presented in table 3. This optimal BMS can be amrsid generous with good drivers and strict witth ba
drivers. For example, for a policyholder with aataim in the first year is awarded a bonus of 1%4%h

the basic premium charged while as for a drivehwite claim in the first year has to pay a malug3094%

of the basic premium.

Table 3: Optimal BMS based on Negative binomial

Number of claims

<
®
8

0

2

3

100

86.51855

173.0371

259.5557

346.0742

432.5928

519.1113

76.24026

152.4805

228.7208

304.961

381.2011

3457.4416

68.14475

136.2895

204.4343

272.579

340.723

3408.8685

61.60344

123.2069

184.8103

246.4138

308.0172

369.6206

56.20796

112.4159

168.6239

224.8318

281.0398

337.2478

51.68148

103.363

155.044¢

5206.7259

258.4074

310.0889

N O o1 B~ W N | O

47.82972

95.65943

143.4891

191.3189

239.1486

286.9783

4.1.2 Geometric distribution

We use equation 3.2.2.1 to estimate the optimal BSI@esented in table 4. We observe that a palidgh
with a first claim free year enjoys a bonus of B3#of the basic premium while for a policyholdetiwi

one claim in the first year is penalized 73.14%haf basic premium.
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Table 4: Optimal BMS based on Geometric distributio

Number of claims

Year t

0

2

3

100

86.56961

173.1392

259.7088

346.2784

432.848

519.417Yy

76.31959

152.6392

228.9588

305.2784

381.598

457.917%

68.23985

136.4797

204.7196

272.9594

341.1993

409.4391

61.7071

123.414

2185.1213

246.8284

308.5355

370.2426

56.31585

112.6317

168.9476

225.2634

281.5793

337.8951

51.79097

103.5819

155.3729

207.1639

258.9548

310.7458

N O o1 B~ W N | O

47.93913

95.87827

143.8174

191.7565

239.6957

287.6348

4.1.3 Poisson Erlang distribution

We estimate the optimal BMS using equation 3.2a3.presented in table 5. Here we find that theeayst
is not generous to good drivers as compared toggative Binomial and the Geometric distributionss
the bonus awarded for the first free claim yeaf.Z0% of the basic premium. However it's lenienthwi

bad drivers by imposing a malus of 39.20% of th&dpremium.

Table 5: Optimal BMS based on Poisson Erlang disitibn.

<
®
2

Number of claims

0

2

3

100

92.80141

139.2021

185.6028

232.0035

278.4042

324.8049

86.56961

129.8544

173.1392

216.424

259.708¢

3302.9936

81.1221

121.683

2162.2442

202.8053

243.3663

283.9274

76.31959

114.4794

152.6392

190.799

228.958

3267.1186

72.05392

108.0809

144.1078

180.1348

216.1618

252.1887

68.23985

102.3598

136.4797

170.5996

204.7196

238.8395

Nl o o] A w| N k| o] H

64.80927

97.2139

129.618;4

5162.0232

194.4278

226.8324
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4.1.4 Poisson Lindley distribution

We estimate the optimal BMS using equation 3.2a4.presented in table 6.we observe that this
system is generous with good policyholders but Esgnt with bad policyholders. For example
a policyholder with first free claim year is givarbonus of 13.18% of the basic bonus and for a

policyholder with one claim in the first year a msilof 8.96% of basic premium.

Table 6: Optimal BMS based on Poisson Lindley thistion.

<
D
QD
=

Number of claims

0

2

3

100

86.81664

108.9594

141.1096

180.8121

226.3543

276.5049

76.66999

94.72119

121.2425

154.3132

192.5523

234.9418

68.6261

83.6256

9105.8843

133.8713

166.4585

202.7953

62.09664

74.75919

93.71028

117.7111

145.8283

177.3449

56.69309

67.52592

83.85824

104.6734

129.1909

156.8014

52.14873

61.52217

75.74505

93.97296

115.5468

139.9445

N O O A W N 2| O H

48.27474

56.46534

68.96371

85.06091

104.1955

125.917

From the above analysis we see that use Geomettiibdtion, as the claim frequency distribution
is the strictest to bad drivers with a malus ofl436 and the most lenient is the Poisson Lindley

with a malus of 8.96% for a policy holder with oziaim in the first year.

The most generous frequency distribution is thedtieg binomial with a bonus of 13.48% for a

policy holder with first free claim year.

4.2 Estimation of premium based on both claim freqancy and Claim severity.
We consider the data presented by Walhin and P20B30) but we add some values on the right

so that the Pareto distribution fits well.
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Table 7: Observed Claeweyity distribution (“000”)

42 44 47 54 59 60 61 61 61 61

64 64 65 66 67 68 71 71 73 75

76 81 85 87 93 94 101 103 105 109

110 110 113 116 116 129 134 134 141 141

151 154 156 159 167 171 172 173 174 179

181 183 185 187 195 195 203 226 235 240

251 255 273 340 361 429 465 531 646 923

1,043 |1,226 |[1,398 | 1,423 |1,569 |1,702 |1,929 |2,081 |2,265 |2,545

Mean claim amount= 321422.22

Variance on claim amount= 2.85637E+11

We estimate the parameters s and m for the Paigtigbdtion using the maximum likelihood

method to be:
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§=3.1332774¢
m=685,6&.79

Here we will illustrate only two cases that the @ggte claim amount of a policyholder is equal
to Ksh 250,000, and Ksh1, 000,000. However we cartle net premium formula with any value
that the aggregate claim amount can take. We @se thalues of the aggregate claim amount for
illustration on how the model works. The premiums ot divided with the premium whent =0,
as it will be interesting to see the variationltd premiums paid for various number of claims and
claim sizes in comparison not with the premium palebn t = O but with the specific claim sizes.
This is the basic advantage of this BMS in compariwith the one that takes under consideration

only the frequency component, the differentiaticnading the severity of the claim.
For us to compute the premiums we need to havenraton on:

a. Number of years the policy has been in existence, t
b. Total number of claims K that the policyholder Imaade in the t years
K
c. Aggregate claim amounZXk
k=1
We will consider calculation of premium assumirgle of the frequency distributions discussed

above independently.

4.2.1 Negative binomial distribution
We use equation 3.3.1 to estimate the optimal BMS3able 8 we use an aggregate amount of

250,000 and in table 9 we use aggregate amoun060,000.

We illustrate using an example on how the BMS wd&knsider a policyholder with a claim
amount of 250,000 in the first year of observatienwill pay a premium of 81,406.08 (see table
8). If in the second year of observation he makekian of 750,000, then his aggregate amount
for the two years he has been under observatidrbeil, 000,000 and thus the premium charged
will be 126,179.14 (see table 9).
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Table 8: Negative Binomial Optimal BMS based onqudency and severity

component (Aggregate claim amount 250,000)

Number of claims
Year | O 1 2 3 4 5
0 48,176.26
1 41,681.41 81,406.08 108,002.713 12096 146,152.54 160,297.64
2 36,729.71 71,735.14 95,172.15 113,730.46 128,789.81 141,254.49
3 32,829.60 64,118.01 85,066.87 101,654.08 115,114.37 126,255.5%0
4 29,678.24 57,963.23 76,900.Y3 91,896.17 104,064.38 114,136.06
5 27,078.90 52,886.57 70,165.45 83,847.53 94,950.00 104,139.%5
6 24,898.21 48,627.57 64,514.97 77,095.21 87,303.59 95,753.11
7 23,042.57 45,003.41 59,706.Y3 71,349.39 80,796.95 88,616.73

Table 9: Negative Binomial Optimal BMS

(Aggregate claim amount 1,000,000)

based feequency and severity component

Number of claims

Year | O 1 2 3 4 5

0 48,176.26

1 41,681.41 107,928.1Q 143,189.91 171,111.5 193,768.89 212,522.45
2 36,729.71  95,106.38§ 126,179.14 150,783.73 170,749.4Q 187,275.04
3 32,829.6( 85,007.59 112,780.91 134,772.8§ 152,618.52 167,389.41
4 29,678.24 76,847.59 101,954.91 121,835.84 137,968.45 151,321.47
5 27,078.9( 70,116.96 93,025.29 111,164.9 125,884.61 138,068.11
6 24,898.21  64,470.38 85,533.88§ 102,212.75 115,747.01 126,949.37
7 23,042.57 59,665.47 79,159.13 94,594.94 107,120.51 117,487.96

4.2.2 Geometric distribution.

We apply equation 3.4.2 in estimating the optimsl$ Table 10 gives the estimated premiums
for an aggregate claim amount of 250,000 whileetalll give the estimated premium for an
aggregate amount of 1,000,000. For example fodiaybmlder who have been under observation

for the last three years and has made two clainssa/laggregate claim amount of 250,000 will
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have to pay a premium of 84,936.99. If in the fourear he makes two claims whose aggregate

amount is 750,000 then the estimated premium woel#l03,874.85 (see table 11).

Table 10: Geometric distribution Optima¥iIB based on frequency and severity component

(Aggregate claim amount 250,000)

umdber of claims

year | O 1 2 3 4 5

0 48,177.48

1 41,707.05 81,276.57 107,751.72| 128,715.75| 145,727.25| 159,807.73
2 36,768.85 71,653.26 94,993.70| 113,475.54| 128,472.84| 140,886.16
3 32,876.24 64,067.53 84,936.99| 101,462.21| 114,871.79] 125,970.95
4 29,728.92 57,934.20 76,805.78 91,749.00| 103,874.85| 113,911.46
5 27,131.56 52,872.59 70,095.39 83,733.05 94,799.49| 103,959.21
6 24,951.58 48,624.36 64,463.33 77,005.23 87,182.50 95,606.26
7 23,095.86 45,008.04 59,669.02 71,278.15 80,698.50 88,495.77

Table 11: Geometric distribution Optimal BMfased on the frequency and severity

component (Aggregate claim amount 1,000,000)

Nben of claims

year| O 2 3 5

0 48,177.48

1 41,707.05 107,756.40 142,857.12 8,115.75 145,727.25 159,807.73
2 36,768.85 94,997.82 125,942.65 13,475.54 128,472.84 140,886.16
3 32,876.24 84,940.6Y 112,609.837 01,462.21 114,871.79 125,970.95
4 29,728.92 76,809.11 101,829.p2 91,749.00 103,874.85 113,911.46
5 27,131.56 70,098.48 92,932.89 83,733.05 94,799.49 103,959.21
6 24,951.58 64,466.18 85,465.42 77,005.23 87,182.50 95,606.26
7 23,095.86 59,671.61 79,109.13 71,278.15 80,698.50 88,495.Y7
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4.2.3 Poisson Erlang distribution

Here we apply equation 3.4.3 to estimate the premium for a policyholder with aggregate claim size of
250,000 (table 12) and aggregate claim of 1,000,000 (table 13)

Table 12: Poisson Erlang Optimal BhtSed on the frequency and severity component

(Aggregate claim size 250,000)

Number of claims

Year| O 4 5

0 48,177.48

1 44,709.3§ 65,345.51 77,005.55 86,238.42 93,730.54 99,931.79
2 41,707.03 60,957.43 71,834.48 80,447.34 87,436.35 93,221.17
3 39,082.58 57,121.60 67,314.20 75,385.09 81,934.30 87,355.11
4 36,768.83 53,739.94 63,329.13 70,922.21 77,083.71] 82,183.60
5 34,713.76 50,736.3Q 59,789.53 66,958.22 72,775.33 77,590.18
6 32,876.24 48,050.65 56,624.66 63,413.8§ 68,923.07 73,483.05
7 31,223.44 45,635.02 53,777.99 60,225.91 65,458.14 69,788.88

Table 13: Poisson Erlang Optimal BM&sed on frequency and severity component.

(Aggregate claim amount of 1,000,000)

MNber of claims

Year | O 3 4 5

0 48,177.48

1 44,709.3§ 86,635.01 102,093.89 114,334.81 2APAB5 132,489.46
2 41,707.0§ 80,817.30 95,238.08 106,657.01  ,92%02 123,592.54
3 39,082.58 75,731.76 89,245.10 99,945.47 8,6P8.41 115,815.31
4 36,768.85 71,248.36 83,961.70 94,028.60 2,197.50 108,958.93
5 34,713.76 67,266.14 79,268.90 88,773.14 96,485.46 102,868.9¢
6 32,876.24 63,705.50 75,072.91 84,074.06 91,378.14 97,423.76
7 31,223.47 60,502.87 71,298.81 79,847.45 86,784.34 92,526.02

47 |Page



4.2.4 Poisson Lindley distribution
We apply equation 3.4.4 to estimate premiums for a policyholder with aggregate claim of 250,000 and

1,000,000. This is presented in table 14 and table 15 respectively.

Table 14: Poisson Lindley Optimal BM&sed on frequency and severity component

(Aggregate claim amount of 250,000)

MNber of claims

year| 0 1 3 4 5

0 48,262.18

1 41,899.60 80,856.02 106,344.06§ 126,184.7§ 142,045.44 155,000.84
2 37,002.61 71,523.27 94,187.33 111,869.39 126,028.87 137,610.14
3 33,120.45 64,099.64 84,493.97 100,434.49 113,217.97 123,685.93
4 29,969.19 58,057.64 76,589.26 91,095.8§ 102,743.84 112,291.60
5 27,361.30 53,046.84 70,023.16 83,329.19 94,024.43 102,798.98
6 25,168.11 48,825.5 64,484.28 76,770.74 86,655.47 94,771.31
7 23,298.44 45,221.8] 59,750.44 71,160.63 80,347.57 87,895.61

Table 15: Poisson Lindley Optimal BMS lhsm frequency and severity component
(Aggregate claim size of 1,000,000)

Numbércaims

Year| O 1 2 3 4 5

0 48,262.18

1 41,899.60 107,157.59 140,936.6Q0 167,231.29 188,251.2§ 205,420.89
2 37,002.61 94,789.00 124,825.42 148,259.271 167,024.66 182,373.19
3 33,120.45 84,950.54 111,978.93 133,104.72 150,046.52 163,919.60
4 29,969.19 76,943.13 101,502.90 120,728.31 136,165.27 148,818.81
5 27,361.30 70,302.39 92,800.92 110,435.23 124,609.54 136,238.35
6 25,168.11 64,707.95 85,460.31 101,743.44 114,843.54 125,599.37
7 23,298.44 59,931.96 79,186.62 94,308.4Q0 106,483.74 116,487.071
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If we consider both the claim frequency and claewesity in computing premium, it's evident
from the above analysis that a policy holder witlarger claim amount will pay higher premium

compared to a policy holder with a smaller claizedbut with the same number of claims.

The negative binomial is the strictest with a Ipaticyholder paying the highest premium. It's

also the most generous frequency distribution wabd policyholders paying the least premium.
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CHAPTER 5: SUMMARY, CONCLUSION AND RECOMMENDATIONS.

5.1 Introduction
In this paper we have developed the design of @map estimate of premiums paid by an

automobile insured by considering the claim frequyesind the claim severity. Compare this with
BMS based on the frequency component only and rmakgarison when we use different Poisson
mixtures in modeling the frequency component. lis thapter we make a discussion of the
findings, summary of the main findings, conclusgiving recommendations and areas of further

studies.

5.2 Discussion of findings

The study findings matched what has been studied in the past specifically, Lemaire (1995) pointed out
that optimal BMS based on the frequency and sgvedimponents was fair to policy holders as
compared to BMS based on frequency component tr/was same findings by Mehmet Mert
and Yasemin Saykan (2005), Frangos, N. E., andtgsprs. D. (2001), and Ade Ibiwoye, I. A.
Adeleke & S. A. Aduloju (2011). All this studiesggested optimal BMS using Poisson mixture
as the frequency distribution and exponential miextas the severity distribution. This is because
of the thick tails of the mixtures as comparedhe tonditional distribution. Also the Poisson
mixtures were found to have a variance greater thamean a quality desirable by the insurer as
compared to the Poisson whose variance is equlaétmean.

5.3 Summary of the findings.
First we considered the design of an optimal BM&ebleon the frequency component and fit this

using Poisson mixtures. In this case we consideredative binomial (Poisson Gamma),
Geometric (Poisson exponential), Poisson ErlangRwidson Lindely distributions as the claim
frequency distribution. We observe that the Geoimetthe strictest with bad drivers and Negative

Binomial is the most generous with good drivers.

Second we consider design of optimal BMS basedaimdrequency and claim severity. We fit

claim severity using Pareto (exponential Inversen@®a). In an application, the risk premium is
calculated using the net premium principle as tteglpct of the mean of the posterior structure
functions of the frequency and severity componefitse results obtained using the claim

frequency and by using both the claim frequencyd@auin severity are compared.
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5.4 Conclusion

From the findings of the study, it is concluded that it is fairer to charge poliolders premiums
which not only take into account the number ofralgi but also the aggregate amount of the claims
the years he/she have been under observation.

The study also concludes that different frequenay severity distributions gives different level
of strictness by the insurer.

5.5 Recommendations

5.5.1 Policy
The study recommends the following:

Premium charged to policyholders should be bas#udiothe frequency and severity components
as this creates fairness to all policyholders.

Insurers should choose the frequency and the $gwamponents distributions that yields an
optimal BMS as defined by Frangos, N. E., and Mweens. D. (2001). The choice of distributions
should also ensure that the insurer remains cotiyeeiin the market.

5.5.2 Research.
The study only investigated the effect of differérequency distributions on the level of severity
in design of optimal BMS. The study recommends lsinstudies on the severity distribution.

The study further recommends an investigation bhla between the Poisson and exponential
mixtures. This will enable a simplified and extergsianalysis on the effect of different claim
frequency and claim severity distributions on tlesign of optimal BMS.
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