Contents

1. Seed Classification Systems, Their Production Requirements And Maintenance

SEED CLASSIFICATION SYSTEMS, THEIR PRODUCTION REQUIREMENTS AND MAINTENANCE

PRESENTED AT SEMIS SEED PRODUCTION COURSE HELD AT CAS ON 10th AUGUST 2015

3Y

Munyao W. M KEPHIS

wmunyao@kephis.org

OUTLINE OF THE PRESENTATION

- Introduction
- Seed certification classes
- Seed classes standards
- Maintenance of seed classes

INTRODUCTION

- Seed certification class is a generation system of seed multiplication for production of a particular class from specific class up to certified stage.
- Refers to the number of generations distant this seed is from the original variety as developed by the plant breeder
- Means a stage in a seed multiplication system well defined in respect of parental seed standards of cultivation and seed quality

Introduction cont'd

The generation system model depends on:-

- 1. The rate of genetic deterioration
- 2. Seed multiplication ratio
- 3. The total seed demand

Introd' continued

Based on these factors different seed multiplication class models can be derived

- Three-Generation model: Breeder seed (BRS), Foundation seed (FS) and certified seed (CS)
- 2. Four-Generation model: BRS, FS, Registered seed (RS), and CS or BRS, Pre basic seed (PB), Basic seed (BS), and CS
- 3. Five-Generation model: BRS, FS (i), FS (ii), CS(i) and CS (ii)

<u>NB</u>: In cross pollinated crops three and four generation model system is used

Introd' continued

 Generally two seed classes of nomenclature are recognized, the Organization for Economic Cooperation and Development (OECD)
 Association of Official Seed Certifying
 Agencies (AOSCA)

SEED CLASSES

- The following classes of certified seed of released varieties are recognized by seed certifying agencies
 - 1. Breeder
 - 2. Foundation/Pre-basic
 - Registered/Basic
 - 4. certified

Breeder seed

- It is the progeny of the nucleus seed
- Produced directly under plant breeder supervision
- Produced in one or more stages
- Used for production of pre-basic or basic seed.
- 99.9% genetically and 100% physically pure.
- Labeled upon meeting quality standards
- Pre-controlled to determine its genetic purity.
- Not available for general cultivation

Pre-basic seed

- It is the progeny of breeder seed
- Produced under the supervision of the breeder and seed certifying agency.
- The seed is not available for general cultivation.
- It is the source of basic seed.
- Pre-controlled to determine its genetic purity
- Labelled upon meeting the quality standard

Basic seed

- It is a progeny of pre-basic seed
- Produced under the supervision of the plant breeder and the seed certifying agency
- Not available for general cultivation
- Pre-controlled to determine its genetic purity.
- Labeled upon meeting quality standards

Certified seed

- Progeny of basic seed
- Available to farmers for general cultivation.
- Produced under control of seed certifying agency
- Further generations of certified classes may be produced using this class.
- Labeled upon meeting quality standards
- This class of seed requires post controlling.

Comparative seed classes and colour of labels for selected regions

Defination	COMESA	SADC	OECD	AOSCA
1 st generation supplied by the breeder		Breeder	Pre-basic - White with diagonal violet stripe	Breeder - White
2 nd Generation	Basic - White	Pre-basic - violet band on white	Basic - White	Foundation - White
3 rd Generation	Certified 1st generation - Blue	Basic - white		Registered - Purple

Comparative seed classes and colour of labels for selected regions

Defination	COMESA		SADC		OECD		AOSCA
4 th Generation	Certified generation Red	2 nd	Certified generation Blue		Certified generation Red	2 nd	Certified - Blue
5 th Generation			Certified generation Red	2 nd			
Others			Quality declared see Green			Grey	

KENYAN SEED CERTIFICATION CLASSES

Class	Colour of the label
Breeder	White
Pre basic	White
Basic	White
Certified first gen	Blue
Certified 2 nd Gen	Pink
Certified 3 rd Gen	Pink
Certified 4 th Gen	Pink
Standard	Grey

REGIONAL SEED CLASSES STANDARDS FOR HYBRID MAIZE

Field standard	SADC		COMESA	
	Basic	Certified	Basic	Certified
Minimum previous			1*	1*
cropping season				
Isolaton (M)	400	350	400	200
Maximum off-types	0.1	0.3	0.1	0.2
Minimum number of inspections	5	5	3	3
Head smut at final inspection			0	0
Minimum germination (%)	70	90	80	90
Minimum pure seed (%)	99	99	99	99

STANDARDS OF VARIOUS SEED CLASSESS IN KENYA

Field standards for Maize - isolation distance and purity				
Class	Distance	Max. no. of offtype per 100 plants		
Breeder	400	0		
Pre basic	400	0		
Basic	400	0		
C1	200	1		
C2-4	200	2		

MAINTENANCE OF SEED CLASSES

The objective is to maintain the purity and identity of a variety

Clauses of genetic purity of seed

- 1. Developmental variation
- 2. Mechanical Mixtures
- 3. Mutation
- 4. Natural Crossing
- 5. Genetic drift
- 6. Selective influence of Disease
- 7. Breakdown of male sterility
- 8. Improper Seed Certification

Maintenance of Genetic Purity during seed Production

The following methods have been suggested for maintenance of genetic purity

- 1. Use of approved seed in seed multiplication
- 2. Inspection of seed fields prior to planting
- 3. Field inspection of seed crops
- 4. Sampling and sealing of cleaned lots
- 5. Pre/post control (Grow -out test)

Various steps in genetic purity maintenance

Various steps suggested for maintaining genetic purity are

- 1. Providing isolation to prevent cross fertilization or mechanical mixtures
- 2. Rouging of seed fields prior to planting
- 3. Grow in adapted areas only to avoid genetic shifts in the variety
- 4. Certification of seed crops to maintain genetic purity and quality
- 5. Adopting generation system

Procedures for variety maintenance

- Maintenance procedures are the extension of normal breeding process but selection is mild and aims not to improve the variety by to keep the identity unchanged
- The commonly used produces are
 - Mass selection
 - Ear-to-row/Plant-to-row

Maintenance procedure for self-pollinating crops

- Pure line or Ear-to-row selection method can be used
- Procedure
 - At least 100 true-to-types ears or plants are selected and harvested separately
 - The seeds from each plant are then planted together in a separate rows or small plots
 - Eliminate rows/plots which do not conform to variety description

Maintenance procedure for selfpollinating crops cont'd

- Only row/plots that are uniform and definitely true to the variety are harvest for seed
- The harvested seed from the different uniformlooking rows can be bulked to constitute breeder seed

Self-pollinating crops are easy to maintain

Maintenance procedure for cross-pollinating crops

- Ear-to-row method is used
- Procedure
 - Select at least 200-500 good looking ears all the typical characteristics of the variety
 - Plant rows with the seeds of each plant (ears).
 These rows may consist of 10 to 50 plants
 depending on the available field size

Maintenance procedure for crosspollinating crops cont'd <

- Remove the poor-looking rows preferably before flowering
- Remove the most irregular rows preferably at flowering and harvest the other rows and bulk the seed
- Before harvesting select the best plants or ears within the god-looking rows to start new selection cycle

CONCLUSION

- Certified seed must relate directly to authentic basic seed of the variety and seed classes makes this possible
- Maintenance of each class is paramount to ensure production of quality seed

Munyao W.M

wmunyao@kephis.org