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ABSTRACT 

 

Aflatoxins are toxic and carcinogenic chemicals produced by several fungi grown in many farm 

produce and food spices. The naturally produced aflatoxins by fungi Aspergillus flavus and 

Aspergilus parasiticus are aflatoxin B1, aflatoxin B2, aflatoxin G1 and aflatoxin G2. Aflatoxin 

B1 (AFB1), investigated in this work, is the most toxic, highly carcinogenic and the most 

widespread contaminant. The existing detection techniques are slow, expensive, involve use of 

chemicals, tedious sample preparation and some devices are complicated. This work reports on 

application of Raman spectroscopy in detecting the presence of AFB1 in maize kernels and flour. 

The technique promises to be rapid, non-invasive, requires no sample preparation and can be 

modified to be deployed in the fields. It uses laser light (here of wavelengths centred at 532 nm 

and 785 nm) to excite vibrational bands in the AFB1 molecules and the scattered radiation 

detected and measured. Maize kernels and ground samples were intentionally contaminated with 

AFB1 with concentrations ranging from 0 ppb to 1.1x10
6
 ppb. Twenty two Raman peaks were 

identified with the most intense centred at 1552 cm
-1

 and 1593 cm
-1

. Classification and 

quantification of AFB1 concentrations in maize kernels and flour was achieved using the 

following chemometric tools:  Principal Component Analysis (PCA), Partial Least Squares 

Regression (PLSR) and Multiple Linear Regression (MLR).  PCA classified AFB1 contaminated 

samples based on concentration ranges (variance of > 59%). Of the models for predicting 

concentration PLSR performed better than MLR with R
2
 > 0.9. Predicted concentration values 

from Raman spectroscopy were found to correlate well with reference values from ELISA (P > 

0.9 for 785 nm laser). Maize samples from Nairobi open markets were found to have AFB1 

concentration levels of 12 ppb to 869 ppb which were higher than the permissible limits of 10 

ppb in Kenya. The absorption and fluorescence spectra of AFB1 in methanol were centred and 
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peaked at 340 nm and 440 nm respectively and with some small maxima ascribed to vibrational 

bands in the first excited and ground state.  
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CHAPTER 1: INTRODUCTION 

1.1 Aflatoxin 

Aflatoxins are toxic chemicals produced by fungi species Aspergillus flavus, Aspergillus 

parasiticus and the rare type Aspergillus nomius (Ali et al., 2005). These fungi produce several 

similar compounds of aflatoxin (around 20) but only four are naturally found in food stuffs: 

aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1) and aflatoxin G2 (AFG2) 

(Cary et al., 2005). All aflatoxins absorb maximally at a wavelength centred at 360 nm (Dirr, 

1987; Pestka and Chu, 1984). Under ultraviolent (UV) light illumination they fluoresce around 

425 nm (blue light hence the B designation in aflatoxins B types) and around 450 nm (green-blue 

light for aflatoxins G types). It should be noted that the designations ‘1’ and ‘2’ only show the 

major and minor compounds. Both the moulds Aspergillus flavus and Aspergillus parasiticus 

produce aflatoxin B (AFB) but aflatoxin G (AFG) is mainly produced by the latter (Alcaide-

Molina et al., 2009). This happens when there is warm and humid weather together with poor 

after harvest storage or damaged seeds and stress conditions like drought and insect infections on 

the seeds (Zöllner and Mayer-Helm, 2006; Alcaide-Molina et al., 2009). 

 Aflatoxin M1 (AFM1) and aflatoxin M2 (AFM2) are found in milk from dairy animals that 

ingest feed stuff contaminated with AFB1 and AFB2 respectively. Consequently cheese and 

yoghurt derived from them are also contaminated. Their existence in milk led to the M 

designation of aflatoxin M (AFM) (Stroka and Anklam, 2002). Feed and food stuffs in warmer 

and humid regions of the world experience more contamination due to ideal conditions for 

culprit fungi growth (Alcaide-Molina et al., 2009).  
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AFB1 has the highest acute and chronic toxicity followed by AFG1, AFB2 and AFG2 

respectively (Ali et al., 2005). Table 1.1 presents chemical formulas and physical properties 

including molar weights and melting points of the four aflatoxins; B1, B2, G1 and G2 (Pitt et al., 

2009). Figure 1.1 on the other hand shows the molecular structures of the four aflatoxins.  

Table 1.1: A presentation of melting point, molecular formula and weight  of Aflatoxins B1, B2,  G1 and 

G2 adopted from (Pitt et al., 2009) 

Aflatoxin Molecular formula Molecular weight (g) Melting point (
0
C) 

B1 C17H12O6 268-269 268-269 

B2 C17H14O6 286-289 286-289 

G1 C17H12O7 328 244-246 

G2 C17H14O7 330 237-240 

M1 C17H12O7 328 299 

M2 C17H14O7 330 298 

 

 

Figure 2.1: Molecular structures of aflatoxin B1, B2, G1, and G2 (Netto-Ferreira et al., 2011). The only 

structural difference between aflatoxin B and G is the inclusion of oxygen in the cyclopentanone ring 
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AFB1 has been recognized as a potent carcinogen which causes liver cancer in humans and 

animals after prolonged exposure (Thirumala-Devi et al., 2001; Fung and Clark, 2004). Due to 

the health dangers posed by aflatoxins, extreme care must be observed during handling 

contaminated stuff. Disposable gloves, mouth masks, aprons or overalls and boots should be 

worn when handling contaminated samples (see appendix I). 

Health risks and economic losses posed by aflatoxin contaminated food and feed stuff has forced 

various countries to go a great length in detecting the presence of these toxins (Robens and 

Cardwell, 2003). Limits of allowable toxin concentration in various products have been set in 

different regions and countries as summarized in Table 1.2.  Due to this, farmers with highly 

contaminated farm produce often incur immense financial loses. To avoid infestation by 

aflatoxin producing fungi, food and feed stuff should be stored in less humid conditions and for 

cereals like maize with moisture content below 14 % at 20
0
C. A method that can provide fast 

reliable aflatoxin detection and quantification is therefore welcome since appropriate action can 

be taken before widespread contamination and poisoning takes place. 

In Kenya, cases of aflatoxin poisoning leading to a number of fatalities were first reported in the 

year 1981 and several other cases followed with the worst incident reported in April 2004 in 

Eastern province (Daniel et al., 2011; Lewis et al., 2005). This case claimed the lives of one 

hundred and twenty five people with three hundred and seventeen reported cases despite the 

country having allowed aflatoxin set limits in food stuff at 10 ppb (Daniel et al., 2011).  The 

incident was termed as the most severe outbreaks of acute aflatoxicosis ever documented 

worldwide (Lewis et al., 2005). 
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The conventional methods of detecting and quantifying the amount of aflatoxin contamination 

often employ expensive equipment requiring trained personnel to operate. A lot of time is also 

required in preparing the samples besides using large amounts of chemicals in terms of reagents. 

These methods include: Chromatography methods like Thin layer chromatography (TLC) 

(Hoeltz et al., 2010), Liquid chromatography (LC) and Immunochemical methods such as 

Radioimmunoassay (RIA), Enzyme-linked immunosorbent assay (ELISA) and immunoaffinity 

column assay (ICA), Mass Spectrometry Imaging (MSI) (Norris and Caprioli, 2013; Ivanova and 

Spiteller, 2014). In developing countries where risks of contamination are high, the above 

mentioned techniques are scarce due to their costs (Bhat et al., 1997). For this reason, fast, 

sensitive, simple to operate and inexpensive detection methods need to be developed. 

Table 1.2: Aflatoxin set limits in human food products of different countries (Frelka and Harris, 2014). 

For the presence of all aflatoxins, the term Total has been used while those of AFB1 only have been 

indicated 

COUNTRY AFLATOXIN 

LIMITS (µg/Kg) 

TYPE OF FOOD 

United states of America 20 Total 

15 Total 

Human food 

Peanut and Pistachio 

Kenya 10 ppb Human food 

European union members 

(EU) 

4-15 Total 

(2-12 AFB1) 

 

Subject to the type of food and the level of production 

Saudi Arabia 0.05 Total Children and infant food 

South Africa 10 Total (5 AFB1) All food 

 

Fluorescence spectroscopy with UV light excitation (wavelength ~ 360 nm) would have 

provided a cheap and fast detection process but the spectral overlap of signals from aflatoxins 

and the bright greenish-yellow fluorescence (BGYF) emanating from kojic acid make it 

unfavourable (Yao et al., 2006); Yao et al., 2010). Kojic acid (see Figure 1.2 for its molecular 
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structure) is another metabolite of Aspergillus flavus (Yao et al., 2010). Fluorescence from food 

or feed samples exposed to UV light is therefore only used as preliminary inspection signature 

for samples requiring further tests. This spectral overlap renders definitive distinction between 

aflatoxins and BGYF compounds impossible (Afoakwa and Sefa-Dedeh, 2001). 

 

Figure 1.3: Molecular structure of kojic acid (May et al., 1931).  Kojic acid is one of the compounds 

produced together with AFB1 and has similar characteristics of fluorescence with AFB1 

 

This work shows that Raman spectroscopy can be a plausible alternative to the above mentioned 

methods. Maize kernels and flour intentionally laced with AFB1 are used. Its application in 

detection of mycotoxins in cereals, in particular maize is rare in literature. A recent report by Lee 

and his companions  showed a great potential in this direction (Lee et al., 2013). It is for this 

reason that we explored it further here. The technique involves irradiation of a sample with a 

monochromatic light (laser light) in the UV or VIS or Infrared regimes of the electromagnetic 

spectrum and the wavelength shifted scattered light dispersed in a spectrometer equipped with a 

Charge Coupled Device (CCD) camera. The energy (or frequencies) of the scattered light 

corresponds to the vibrational motions of the molecules under study (Demtröder, 2011). Both the 

Raman and infrared spectroscopic techniques provide information about vibrational motions of 

the molecule. The latter technique however, does not work well in situations where aflatoxins 

levels are very low due to spectrum overlap and interference from other functional groups with 

active modes in the spectral region (Lee et al., 2013). Besides, distortions emanating from HOH 
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bending mode of water molecules are common (Medders and Paesani, 2015; Falk and Ford, 

1966). Raman spectroscopy on the other hand is insensitive to water and hence can also be used 

for aqueous samples.   

In this work chemometric techniques (Partial Least Squares Regression (PLSR) and Multiple 

Linear Regression (MLR)) have been trained to predict the concentration of AFB1 in 

unsuspected samples of maize kernels and flour from Nairobi open markets. Principal 

component analysis (PCA) has been employed in pattern recognition based on the information 

from spectral signatures from maize samples.   The results obtained indicate the possibility of 

using Raman Spectroscopy and chemometrics to qualify and quantitative AFB1 in maize. 

1.2 Problem statement 

Conventional methods used in the detection of aflatoxin are labour intensive, time consuming, 

require highly qualified personnel and the results can be subjective. This is because some aspects 

of these techniques can depend on the expertise of the analyser. Optical methods offer the safest 

and fastest means of detecting aflatoxins. However, the existing optical methods such as 

fluorescence, infrared transmittance and reflectance spectroscopies which would have come in 

handy to solve these problems have shortcomings of spectral overlapping with other molecules 

including kojic acid. Raman spectroscopy on the other hand does not need sample preparation, is 

more sensitive to the symmetrical vibrations of the covalent bonds and is a better option for 

aqueous samples as it is insensitive to water. In this study, Raman spectroscopy is adopted 

because it is non-invasive, non-subjective and can be easily modified for deployment in the field 

for detection and quantification of AFB1. 
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1.3 Objectives 

1.3.1 Main objective 

The broad objective of this work was to be able to employ Raman spectroscopy in providing a 

fast, accurate detection and quantification of aflatoxins, in particular the potent aflatoxin B1, in 

maize kernels and flour. 

1.3.2 Specific objectives 

1 To measure the absorption spectrum of AFB1 dissolved in methanol solvents using a UV-

VIS-IR spectrophotometer. 

2 To obtain fluorescence spectrum of AFB1 solutions after 375 nm excitation with an LED 

diode light source and a USB Ocean Optics spectrometer. 

3 To obtain the specific Raman spectra of AFB1 using a confocal Raman spectrometer at 532 

and 785 nm excitations.  

4 To interpret and make assignments on the Raman peaks in the spectra. 

5 To obtain Raman spectra on the AFB1 spiked and clean maize kernels and flour excited at 

532 and 785 nm.  

6 Use chemometric techniques such as Principal Component Analysis (PCA), Multiple 

Linear Regression (MLR) and Partial Least Squares Regression (PLSR) in developing 

calibration models for aflatoxin quantification. 

7 Compare the concentration results obtained from Raman spectroscopy and chemometrics 

with those obtained from analysis of the same samples using ELISA. 
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1.4  Justification 

From 1960, when aflatoxin claimed the lives of 100,000 turkeys in England to date aflatoxin 

poisoning has claimed the lives of both human and domestic animals. Kenya is not exceptional to 

this problem. During the year 1981, Kenya reported its first case of aflatoxin poisoning and in 

2004 it recorded the highest number of casualties worldwide among which were 125 deaths. 

Farmers have also suffered enormous losses caused by aflatoxin contaminated feeds. These 

problems have even escalated in our modern times because of the change in weather that cause 

prolonged droughts and excessive rain during rainy seasons. The high cost of living has also 

made pesticides and fertilizers very expensive not to mention the conventional aflatoxin 

detection methods. The few who can afford these detection techniques have to go through long 

and tedious hours of sample preparations. Coupled to these is the lack of streamlined aflatoxin 

regulatory limits in developing countries that exposes so many people and domestic animals to 

aflatoxin poisoning. It is for these reasons that we explore an alternative detection and 

quantification technique using Raman spectroscopy. The most common and most toxic aflatoxin 

B1 is chosen as a prototype. Investigation of aflatoxin B1 contaminated maize is done and PCA 

employed for classification of samples.  In order to detect and quantify AFB1 levels in maize 

consumed in Nairobi PLSR and MLR are applied.  
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CHAPTER 2: LITERATURE REVIEW 

This chapter reviews the most common techniques used in aflatoxin detection and annihilation 

ranging from the current conventional methods to optical methods with myriad applications of 

Raman Spectroscopy in various research works. Data pre-processing and chemometrics used by 

various researchers in aflatoxin classification and quantification using Raman spectroscopy are 

also discussed. 

2.1 Conventional methods 

Aflatoxins as earlier indicated in this work are first class carcinogenic  metabolites of Aspergillus 

fungi that grow on myriads of food crops ranging from cereals, nuts to processed food stuffs 

provided the conditions are favourable (Rocha et al., 2014; Egmond et al., 2007). Conditions 

responsible for the presence of aflatoxins in both processed and unprocessed foods and animal 

feeds can be various including cultural practices, biotic and abiotic alongside weather conditions. 

Aflatoxicosis which refers to poisoning resulting from ingestion of food or feed contaminated 

with aflatoxins was first reported during the year 1960 in England on aflatoxin contaminated 

feeds. Thisclaimed the lives of more than a hundred thousand turkeys. Over the years 

Aflatoxicosis has frequently been reported in India and Kenya. In 2004 Kenya recorded the 

worst aflatoxicosis characterized by one hundred and twenty deaths with three hundred and 

seventeen reported cases (Center for Disease Control and Prevention (CDC), 2004; Lewis et al., 

2005). Because aflatoxins pose a threat to animal/human health and life, researchers have been 

working endlessly to eliminate their presence in food and feeds by educating farmers on good 

farming methods with pre-harvest and post-harvest techniques being emphasized. In cases where 

prevention of aflatoxins in harvested produce has failed farmers tend to physically sort 
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infected/mouldy seeds (cereals) from healthy looking ones.  

However not all aflatoxin infected seeds show physical presence of the fungi for farmers to 

physically eliminate them from the food chain. Thus researchers have adopted the application of 

chemicals and electromagnetic beams to destroy aflatoxin and its fungi or reduce the level of 

aflatoxin in food samples (Ribeiro et al., 2011). Various chemicals are used to destroy aflatoxin 

and their fungi. Some of these chemicals include bleach, borax, vinegar, ammonia, hydrogen 

peroxide, baking soda, tea, oils from some trees and grapefruit seed extracts (Ribeiro et al., 2011; 

Torbert, 2002). At the same time aflatoxin contaminated samples can be exposed to a laser beam 

of appropriate intensity, microwaves and pressure cooking (Herzallah et al., 2008), gamma 

radiation (Ghanem et al., 2008; Ribeiro et al., 2011) and to solar radiation (Herzallah et al., 

2008; Netto-Ferreira et al., 2011) in order to annihilate the contaminants. 

Although the above procedures seem promising, quick and cheap, they do not offer a solution for 

detection of the presence of aflatoxin in food and feed stuff. Since aflatoxins are poisonous 

carcinogen substances early detection methods are urgently needed in order to take precautions 

against its spread in human food and animal feeds. Moreover, there have been no reported cases 

where aflatoxins were totally eliminated from food and feeds. Rather the use of chemicals even 

makes human food and animal feed unfit for consumption. It is for this reason that researchers 

have resorted to more sensitive chromatographic techniques like Thin Layer Chromatography 

(TLC) and High Power Liquid Chromatography (HPLC) in detection of aflatoxins (Bacaloni et 

al., 2008; (Khayoon et al., 2010). The use of assay is as sensitive as chromatography. Perhaps 

this is why several methods involving assay have been employed recently: Radioimmunoaffinity 

assay (RIA) and Enzyme-linked Immunosorbent assay (ELISA) and Immunoaffinity Column 

assay (ICA) among others (Wang et al., 2014). However, these techniques and procedures 
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therein are expensive, laborious, time consuming and require very highly qualified personnel to 

use them. 

2.2 Optical methods 

2.2.1 Introduction  

Optical based methods are increasingly being pursued as potential alternatives due to their 

portability and rapidity in delivering results combined with the fact that they require little or no 

sample preparation. Such techniques have been demonstrated in groundnut and groundnut cakes, 

pistachios (Pearson and Schatzki, 1998), oil (Mirghani et al., 2002), figs (Kalkan et al., 2014; 

(Gunes et al., 2013), peanuts (Kaya-Celiker et al., 2014), chili powder (Tripathi and Mishra, 

2009) and in single corn kernels (Yao et al., 2010). The optical characteristics of interest include 

transmittance (Pearson et al., 2001), reflectance (Mirghani et al., 2002; Pearson et al., 2001) and 

fluorescence (Hruska et al., 2009; Yao et al., 2010). Molecular vibrational motions initiated by 

optical excitation with wavelengths in the infrared (infrared spectroscopy) (Tripathi and Mishra, 

2009) or in the ultraviolet or visible (Raman spectroscopy) (Lee et al., 2014; Wu et al., 2012) 

regime of the electromagnetic spectrum are also gaining interest in aflatoxin detection and 

quantification. 

2.2.2 Fluorescence spectroscopy 

As earlier mentioned in the introduction, aflatoxins readily fluorescence with spectra centred 

around a wavelength of 425 nm for the B aflatoxins and around 450 nm for the G aflatoxins upon 

irradiation with an ultra-violet light centred at around 360 nm (Ononye et al., 2010; Yao et al., 

2010; Netto-Ferreira et al., 2011; Fujita et al., 2013). This property has been employed in the 

characterization of aflatoxins in nutmeg (Fujita et al., 2013) and maize (Hruska et al., 2014). 
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Fluorescence and machine learning techniques have also been used successfully to detect and 

quantify aflatoxins (Yao et al., 2010; Kalkan et al., 2014). However, this method faces 

challenges especially in distinguishing the fluorescence signal of aflatoxins from those of the 

kojic acid (also produced by Aspergillus Flavus) which is associated with the bright greenish-

yellow fluorescence substance (BGYF) (Basappa, 1970). This is why Fluorescence Spectroscopy 

is known for false positive results (Alcaide-Molina et al., 2009). 

2.2.3 Absorbance spectroscopy 

Absorbance spectroscopy is another optical technique that has been used in detection of aflatoxin 

detections. However, this technique has not been used independently in the study of aflatoxins 

but it is usually combined with other methods. Pearson and companions for example combined it 

with reflectance and transmittance to study single corn kernels and found  that the 750 nm band 

is capable of detecting discoloration in fungal infested kernels while the 1200 nm band could 

respond to degraded endosperm (Pearson et al., 2001). This technique is limited just like 

fluorescence as it suffers from overlapping from other compounds associated with AFB1. As a 

result of this it gives very high classification errors. Therefore absorbance cannot be used on its 

own to detect aflatoxins. In this work, absorption spectroscopy was used to identify the 

characteristic absorption band of AFB1 and also to identify whether the lasers available for use 

in our Raman setup (532 nm and 785 nm) can excite it resonantly or not. 

2.2.4 Infrared spectroscopy 

Infrared Spectroscopy, just like Raman Spectroscopy, gives a detailed information on molecular 

bonds and vibrations of substances (Wellner et al., 2011). This property has been explored by 

Pearson and co-workers  in detection of aflatoxin in single corn kernels (Pearson et al., 2001). 
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However both infrared and near infrared cannot detect aflatoxins to concentration limits set for 

human food and infant milk (about 0.05 ppb) (Frelka and Harris, 2014). This is because infrared 

has a low diffraction resolution caused by higher excitation wavelength that renders it limited in 

studying micron-sized particles. Moreover, infrared spectroscopy is sensitive to water molecules 

vibrations and as a result, it is limited in detecting solutes in aqueous samples (Medders and 

Paesani, 2015).  

2.2.5 Raman spectroscopy 

On the other hand in Raman spectroscopy the samples are excited at shorter wavelengths. The 

shorter wavelength excitation gives it better resolution than infrared spectroscopy and it can 

attain up to a micron resolution power  (Ryder et al., 2000). At the same time, the weak Raman 

signal from water renders it insensitive to HOH vibrations (Galvin and Zerulla, 2011). This 

makes Raman spectroscopy not experience interference from water molecules while analysing 

wet biological samples or samples in aqueous form. It is for these reasons that we explore the use 

of Raman Spectroscopy in detection and quantification of AFB1 in single maize kernels. Maize 

is especially chosen because it is consumed in different parts of the world and in particular it is a 

staple food in this country (Kenya). While AFB1 is specifically chosen due its toxicity levels as 

compared to other aflatoxins as mentioned in the introductory part of this thesis.  

Even though the use of Raman Spectroscopy in the research of aflatoxin has been limited over 

the years, several researchers have recently indicated its potential in analysis of aflatoxins and 

related compounds in cereals. Dheeraj and co-workers for example  used silver substrates and 

Raman spectroscopy to detect mycotoxins in citrinin (Dheeraj et al., 2013). Ivanova and Spiteller 

on the other hand used Raman and Mass spectrometers to determine aflatoxin (Ivanova and 
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Spiteller, 2014). Lee and co-workers recently reported on the use of Raman spectroscopy in 

qualitative and quantitative analysis of aflatoxins and fumonosins  in ground maize and were 

able to determine concentrations of both fumonosins and aflatoxins in processed and 

unprocessed contaminated maize products (Lee et al., 2014; Lee et al., 2013). Some other 

researchers have shown that Raman Spectroscopy can give more sensitive results if samples are 

deposited on surface enhanced substrates (specially prepared silver-coated) (Wu et al., 2012). 

Despite the fact that Surface Enhanced Raman Spectroscopy (SERS) is highly recommended due 

to its sensitivity, the procedure of first preparing and depositing samples on roughened silver, 

copper, aluminium or any other alkali metal coated substrates makes it a less attractive cheap 

alternative and also not possible for rapid screening purposes in the field or sorting of 

contaminated kernels on a conveyer belt in milling factories. Since the sole purpose of this work 

was to provide lay farmers, manufactures, exporters and importers with a rapid, reliable and field 

deployable method of aflatoxin detection without long hours of preliminary training on its use, 

bulk Raman spectroscopy was used.  

In as much as the use of Raman spectroscopy in studying aflatoxins seems ideal it should be 

noted that this technique has its own limitations. Raman spectroscopy is a weak scattering 

process (one out of a million scattered processes is Raman) (Dieing et al., 2011). Furthermore, 

maize samples contain other components like starch, protein, fat and fibre in varying 

percentages. Starch in particular is a major component of maize and has many Raman active 

vibrational modes (see Figure 2.1). The starch peaks at 719, 770, 1125, 1261, 1343 and 1659 nm 

found by Wellner and colloquies (Wellner et al., 2011) could overlap with AFB1 peaks at 686, 

752, 1147, 1279 and 1355 nm found by SERS (Wu et al., 2012). To overcome these challenges 

we employed machine learning (ML) models to enable the Raman spectroscopy to identify 
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patterns in Raman data sets that will aid in classification and quantification of AFB1 in maize 

samples. However, Raman spectra have to be pre-processed before constructing multivariate 

models for quantification. 

 

Figure 2.1: Raman spectra of ae maize kernel and wild specie maize kernel adopted from (Wellner et al., 

2011). The excitation of samples was done by a 532 nm Nd-YAG laser and the spectra were obtained 

from 50 µm spot size. The dotted spectrum at the bottom represents the difference between the two 

spectra.  

 

2.3 Data pre-processing of Raman Spectra 

The vibrational information from Raman spectroscopy make the technique as shown in the 

previous section popular for characterization of materials (Torii et al., 1997). However, the 

spectra from Raman spectroscopy often overlaps spectrally with fluorescence signals from 

organic compounds present in samples being studied which at times are stronger than the weak 
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Raman scattered radiation creating huge baselines that make the research difficult (McCreery, 

2005).  

Numerous data pre-processing methods have been used over time to make both resolution and 

analysis of Raman spectra possible ranging from instrumental to mathematical methods (Burke, 

2001). The traditional use of anti-stoke Raman spectroscopy (Mosier-Boss et al., 1995) and low 

energy 785 nm excitation adopted in this work cannot remove florescence rather it reduces the 

sensitivity of the Raman instrument since Raman scattering has a positive relationship with the 

fourth power of excitation frequency (Dieing et al., 2011; Wu et al., 2006). Mathematical 

methods like the use of derivatives, polynomial fits, moving averages, and wavelet transforms 

which are often used either over fits or changes the shape of the spectra depending on which 

method was adopted. Though manual fitting is subjective to the experimenter and tedious if the 

samples are many, it was adopted in this work since it allows the user to create the baseline fit 

manually. This eliminates the possibilities of over fitting and changing of shapes of Raman 

spectra caused by other methods.  

Smoothing as a universal process of data pre-treatment has been used by several researchers in 

this field to pre-process Raman data before applying multivariate techniques. Lee and co- 

workers used smoothing with Savitzky-Golay filter to study different concentrations of 

aflatoxins (Lee et al., 2013). Even though the use of filters is not advisable in data pre-processing 

since filters can cause loss of information, Savitzky-Golay (Digital Smoothing Polynomial) filter 

is exceptionally good as it maintains the curve shapes of Raman spectra while smoothing the 

data which prevents loss of spectral information unlike what happens in other filters. 
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Furthermore, Savitzky-Golay is not a strong filter like Moving Average filter that will filter off 

important spectral information (Wu et al., 2015).  

Apart from fluorescence arising from samples, Raman spectra also experience distortions from 

cosmic rays. These rays can be filtered out using instrumental and mathematical methods. Dieng 

and co-workers proposed the use of cameras with faster (as fast as 0.76 milliseconds) readout 

like full vertical binning modes (CCD cameras with 1600 x 200 pixels) that readout specific 

regions (Dieing et al., 2011). However, the camera on our Raman system could not allow such 

spectra acquisition as it is connected via USB cable. This implies that data streams are controlled 

by the processor which also controls the microscope and thus limited in rapid readout. As a result 

of this, cosmic rays could only be eliminated after the spectra has been recorded using 

mathematical methods such as filters (Saviztky-Golay) which compares each pixel with its 

adjacent pixel and if the two pixel are dissimilar the pixel in question is identified as a cosmic 

ray (Quintero et al., 2006). While this method is problematic in handling sharp and thin based 

peaks, it was found appropriate in filtering AFB1 Raman spectra peaks whose line widths 

(FWHM) exceed 3 cm
-1

 and have broad base resembling Lorentztian curves (Dieing et al., 

2011). Moreover, the software (OriginPro 9.1 32Bit) used in this work allowed previews and 

adjustments to correct parameters by the user. 

2.4 Raman spectroscopy and chemometrics  

Chemometrics incorporate the science of getting information from chemical systems by data-

driven means. Thus chemometric techniques are used to solve both descriptive and predictive 

phenomena in experimental sciences where the datasets are often very bulky and complex. They 

extract information by use of mathematical, statistical and symbolic ways of encompassing 
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simultaneous observation and analysis of many variables (Jurado-López and Luque de 

Castroothers, 2003). This is achieved through minimizing the amount of noise in the datasets. 

The information obtained is then used in modelling and making predictions of the unknown 

samples. These multivariate techniques are also known for capturing information of correlated 

and covariant trends in datasets which would be difficult to find by use of classical analytical 

spectroscopy (Myakalwar et al., 2011). Several researchers in this field have used different 

machine learning methods in detection and quantification of aflatoxins. Wu and co-workers used 

surface enhanced Raman spectroscopy to analyse different types of aflatoxins and employed 

PCA on the obtained Raman data to classify them and different patterns were displayed on the 

score plot (Wu et al., 2012). PC 1 was able to differentiate between aflatoxin B and aflatoxin G 

by placing them in different quadrants of the score plot. PC 2 then grouped samples of AFB1 

together separating them from AFB2 samples. Similar results were also observed using aflatoxin 

G (Wu et al., 2012). Lee and co-workers using regression models (PCR, PLSR and MLR) also 

used PCA for pattern variation in maize flour samples before employing other discriminant 

methods (Lee et al., 2014). In all these works PCA has performed well in pattern recognition and 

clustering of different concentrations of aflatoxins. It is for these reasons that we employ PCA in 

this work.  

Apart from pattern recognition, other multivariate techniques have also been used by several 

researchers for calibration and spectral modelling of aflatoxins. Lee and co-workers for instance 

employed PCR, PLSR and MLR to Quantify aflatoxin in ground maize (Lee et al., 2014). It was 

found that PLSR was the best model among the three regressions while MLR was the worst 

regression as it carried the highest errors among the three models. For this work, we also chose 
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MLR and PLSR in order to compare with what was reported by lee and co-workers (Lee et al., 

2014). 
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CHAPTER 3: THEORETICAL BACKGROUND 

In this chapter absorption and emission spectroscopic techniques are discussed. The classical and 

quantum principles of Raman spectroscopy are also presented followed by a brief description of 

molecular vibrations and how assignment of Raman peaks is done. The concepts of multivariate 

chemometrics techniques MLR, PCA and PLSR are also discussed.  

3.1 Absorption and emission spectroscopic techniques 

The absorption or emission of EM wave by atoms and molecules is shown by spectroscopic 

techniques that give information about the molecules or atoms. There are several spectroscopic 

techniques; absorption, emission and fluorescence spectroscopy. In absorption spectroscopy the 

radiation absorbed by the sample is measured as a function of wavelength. When an atom or 

molecule is shown with light of correct wavelength (with photon energy between ground and 

excited state) molecules or atoms absorbs energy in form of photons and get excited to higher 

electronic energies (see Figure 3.1). The measurement of the intensity of light absorbed at the 

resonant frequency as light passes through atoms or molecules is what we call absorption 

spectroscopy. From Equation (3.1) (Boltzman distribution function) most of atoms or molecules 

will be at the ground at room temperature (Csele 2004).  

 
exp

n mn n

m m

E EN g

N g kT

  
  

 
        (3.1) 

where n and m are excited and ground vibrational levels respectively, Nm stands for the number 

of molecules in the ground vibrational energy level, Nn represents the number of molecules in the 

excited vibrational energy level, En - Em is the change in energy between the vibrational energy 

levels, g is the degeneracy of the levels n and m, T is temperature and k is Boltzmann’s constant 
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Equation (3.1) shows that the molecules at ground vibrational state will absorb more light than 

the molecules at the excited vibrational states since at the ground state the density of molecules is 

high. Therefore if light absorbed is measured in several concentrations of a substance at a 

constant temperature then the information can be used for quantitative analysis in the unknown 

samples of the same substance since increase in the number of molecules increases the amount of 

light absorbed.  

Just like absorption emission of a substance takes place when the substance is excited with an 

energy source that consists of a collection of the allowable emission wavelengths due to the 

quantum nature of the emitted wavelengths. Many substances though do not emit light after 

absorption because absorbed energy can be dissipated without emitting photons. Secondly when 

molecules of a substance are excited molecules absorb light to various excited states. Thus we 

expect that we expect that emission will take place from the different excited states the 

molecules were excited to as shown in Figure 3.1. However this does not happen, rather when 

molecules interact with EM wave they get excited to higher state but most of them settle at 

lowest excited state S1 according to Equation (3.1). Thus emission is initiated from the ground 

state of the excited state (S1). From Figure 3.1 it can be seen that the emission is similar to 

absorption but opposite in direction. Thus if the spectra of both absorption and emission were to 

be plotted they will show the same spectrum. However experimentally this does not happen 

because the highest excited molecule does not always occupy the lowest excited state. Some 

highly excited molecules can go directly to the ground state in which there will be no emission of 

radiation while others will occupy other vibrational states and emit radiation. These are normally 

shown in the spectrum as small maxima (Demtröder, 2011). 
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Fluorescence spectroscopy incorporates absorption and emission spectroscopy. As absorption a 

laser light or a light emitting diode can be used to excite molecules to higher vibrational modes 

of the excited state as shown in Figure 3.1. However in fluorescence instead of measuring the 

light absorbed as it is done in absorption, here we measure emission caused by decay of atoms or 

molecules excited by the incident light. The emitted molecules can also occupy different 

vibrational states and thus result to small maxima in the characteristic spectra. Furthermore, just 

like in absorption the light emitted increases with increase in concentration of atoms or 

molecules. Hence this technique can also be used for quantitative analysis (Csele, 2004).  

 

Figure 3.1: A Jablosky diagram showing absorption, emission and fluorescence processes between the 

ground electronic state and the first electronic excited state (Csele, 2004) 
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3.2 Classical framework of Raman scattering 

A beam of light scatters either elastically or inelastically or both processes take place 

simultaneously when an electromagnetic (EM) wave encounters an obstacle as shown in Figure 

3.2 (Smith and Dent, 2005). This is the essence of Raman spectroscopy. An EM wave interacts 

with a sample and causes perturbation in the electron orbits of its molecules. This electron cloud 

perturbation results in induced dipole moment which oscillates at a frequency (υ0) equal to that 

of the incident beam’s electric field (Demtröder, 2011). The most intense and probable scattering 

process is the elastic scattering (often referred to as Rayleigh scattering) where the emitted 

beam’s frequency is the same as incident frequency. At the same time some light is scattered 

inelastically (i.e. emitted at different frequencies from those of the incident beam). This latter 

process is called Raman scattering. Figure 3.2 shows a schematic of the interaction between 

incident beam (beam drawn in thick green line) and the sample with Rayleigh scattering as the 

strongest process (multiple rays drawn in thin green lines) since most photons scatter elastically 

and do not involve frequency change while Raman scattering is displayed as the weakest process 

(few rays drawn in thin red lines). 

As mentioned earlier, the incident EM wave induces a dipole moment (p) when the light and 

sample interact (Sato-Berrú et al., 2004). This induced dipole moment is given by Equation 3.2

   EEP                                                                                 (3.2)  

where P(E) is the said electric dipole moment, α is electric polarizability tensor and E  is the 

electric field which can be expressed as shown in Equation 3.3. 
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Figure 3.2: A schematic showing Rayleigh and Raman scattering. Raman scattering is a very weak 

process as compared to Rayleigh process (Smith and Dent, 2005) 

 

 0 0 0cos cos(2 )E E t E t 
 

             (3.3) 

with υ0 as the incident frequency in hertz (Hz),   is the angular frequency and E0 is the initial 

electric field. Substituting Equation (3.3) into (3.2) we obtain Equation (3.4). 

   0 0cos 2p E E t          (3.4) 

However, to perturb the electron cloud of a molecular structure we need to know where different 

atoms are situated. Molecular bonds cause atoms to be confined to specific quantized vibrational 

energy levels with unique modes just like electronic energies and can be expressed as in 

Equation (3.5). 
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where Evib is vibrational energy of a particular mode,  j is the vibrational quantum number and is 

an integer (0, 1, 2…), h is the Planck’s constant and υvib is the frequency of individual vibrational 

modes. If energy Evib from a particular vibrational mode can cause a displacement ( dQ ) to an 

atom at equilibrium state, then the displacement (dQ) is given by Equation (3.6). 

)2cos(0 tvQdQ vib            (3.6) 

where 
0Q represents the highest displacement the atom can attain from the equilibrium position. 

Therefore the polarizability (α) can be expressed by a Taylor series expansion of Equation (3.7).  

 dQ
Q





 0

             (3.7) 

Obviously 
0 is the polarizability when the molecular bond is at equilibrium. Substituting 

Equation (3.6) into (3.7) we obtain Equation (3.8). 
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Thus the Electric dipole in Equation (3.4 is given by Equation (3.9) which can be expanded 

further to Equation (3.10). 
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Using the trigonometric identity in Equation (3.11), Equation (3.10) expands to Equation (3.12). 

    bababa  coscos
2

1
coscos        (3.11) 
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From Equation (3.12) it is clear that the induced dipole moment is affected by two terms; the first 

term with frequency (υ0) is responsible for elastic (Rayleigh) scattering while the second term 

causes inelastic (Raman) scattering. Under Raman scattering there are two distinct frequencies; 

down-shifted (υ0-υvib) and up-shifted (υ0+υvib) frequencies (Smith and Dent, 2005). The down 

shifted frequencies results into Stoke’s Raman scattering while the up-shifted frequency causes 

anti-Stoke’s Raman scattering. In short, for Raman scattering to take place there must be 

vibrational displacement of atoms corresponding to individual vibrational modes that cause 

change in the polarizability ( 0




Q


 in Equation (3.12)). 

3.3  Quantum framework of Raman scattering 

Raman scattering depends on the quantized vibrational energy states of different molecular 

vibrational modes as shown in the Jablonski diagram of Figure 3.3. The discrete vibrational 

states respectively correspond to the vibrational quantum numbers as explained in Equation (3.5) 

(Dieing et al., 2011). 

At room temperatures molecules occupy different vibrational states according to Boltzmann’s 

distribution function with the ground vibsrational state (j=0) being highly populated. The 

incident EM wave with energies below the first excited electronic state promotes molecules to a 
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virtual energy state above the electronic ground state (Smith and Dent, 2005). Normally the 

molecule occupies its ground electronic state but in the presence of the incident beam, some 

quantum of energy (equal to the vibrational mode) is transferred to the molecule, as shown in 

 

Figure 3.3: A Jablonski diagram showing Raman and Rayleigh scattering processes (Demtröder, 2011). 

The usual Raman scattering does not excite the molecules to first excited electronic levels but if the rare 

phenomenon does occur we term it as ‘coherent Raman scattering 
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Figure 3.3 causing the emitted beam to be Raman scattered (inelastically scattered). If the 

molecular system is at equilibrium at the ground vibrational state then the scattering originating 

from this point is the Stokes Raman shown in Figure 3.3. For Anti-Stokes Raman scattering, the 

molecule initially occupies the excited vibrational state (more likely j=1). When this molecule 

interacts with the incident photon, the vibrational energy state relaxes to a lower level (j = 0). As 

a result a change in vibrational quantum energy ( vibhE  ) will be experienced by the system 

and will be added to the incident photon causing the scattered photon to have more energy than 

the incident photon (Demtröder, 2011). 

3.4  Intensity of Raman scattered light 

Intensity of Raman scattering is given by Equation (3.13) which shows the factors that affect 

Raman scattering process (Torii et al., 1997). 

     4

0I K v A v v I J v C         (3.13) 

where I is Raman scattered intensity, K is spectrometer response, A is the absorption of the 

medium, v is frequency of the exciting laser, Io is the excitation intensity, J is the molar 

scattering coefficient and C is the concentration of a given sample. 

Raman spectrum is a representation of intensity as a function of wave shift (the difference 

between the excitation frequency and the Raman scattered radiation frequency). In the classical 

framework of Raman scattering Raman power and intensity depend on the polarizability of the 

molecules, the concentration of these molecules in the sample and the excitation source (Sato-

Berrú et al., 2004). Thus the Raman scattering intensity is proportional to the forth power of the 

exciting laser radiation frequency (energy) (Dieing et al., 2011). Therefore increase in excitation 

frequency decreases the signal to noise ratio.  
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Moreover, the measured Raman spot size depends on wavelength of the exciting laser which in 

turn determines the spatial resolution of the spectrometer. Thus the laser spot diameter (LSD) is 

dependent on the excitation wavelength and the objective of the microscope in use and can be 

expressed in Equation (3.14). 

  
1.22

LSD
NA


          (3.14) 

where LSD is laser spot diameter, λ is the excitation wavelength and NA represents the 

numerical aperture. 

Equation (3.14) indicates that the LSD has a positive relationship with the wavelength of the 

Raman laser. This implies the higher the wavelength the larger the spot size. This explains why 

lasers with low wavelength have higher resolution than lasers with high wavelengths (Smith and 

Dent, 2005). 

3.5 Molecular vibrations 

High intensity of Raman scattering is experienced by vibrations which cause alteration in the 

polarizability of the electron cloud around the molecules. Symmetric vibrations are usually 

responsible for the greatest changes and give the intense scattering (Demtröder, 2011). Sampling 

also affects the Raman scattering intensity band width and the band position just like electron 

cloud polarization. The energy of the system experiences six degrees of freedom provided energy 

is conserved. Three of which are responsible for the translation of the molecules while the other 

three describe the rotational modes of the molecules except for linear molecules that have only 

two rotational modes. This is because linear molecules have 3N - 5 vibrational modes instead of 

3N - 6 vibrations as usual (N is the number of molecules in an atom) (Smith and Dent 2005).  
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3.6 Assignment and interpretation of Raman peaks 

Different vibrations occupy different positions on the spectral line. To assign and interpret 

various vibrations distributed on the spectral line one must know the type of bonds involved and 

different positions each bond occupies on the spectral peaks. There is a possibility of giving 

energy ranges that characterize the frequencies of frequent groups that are strong in Raman. The 

wave shift of a particular peak give a confirmation that the correct vibration has been selected 

(Smith and Dent, 2005) (see Table 3.1 ).  

Table 3.1: Raman vibrational modes and their strength adopted from (Dieing et al., 2011) 

 

 

Functional Group/ Vibration Raman shift (cm
-1

) Strength 

υ(C-O-C) 800 -970 Medium 

υ(C-O-C) asym 1060 – 1150 Weak 

υ(CC) alicyclic, aliphatic chain vibrations 600 – 1300 Medium 

υ(CC) aromatic ring chain vibrations 1580 

1450 

1000 

Strong 

Medium 

Strong/medium 

δ(CH3) 1380 Medium 

δ(CH2) 

δ(CH3) asym 

1400 – 1470 Medium 

υ(C=C) 1500 – 1900 Strong 

υ(C=O) 1680 – 1820 Medium 

υ(C≅C) 2100 – 2250 Strong 

υ(C−Η) 2800 – 3000 Strong 

υ(=(C-H)) 3000 – 3100 Strong 

υ(≅(C-H)) 3300 Weak 
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3.7 Multivariate techniques  

Multivariate analysis entails statistical analysis of data that has many variables such as Raman 

spectral data. These techniques extract the most important information by taking in consideration 

of all the variations in the data sets, removing redundancy and correlating information in the 

same data set. In this study AFB1 is detected and quantified using multivariate analysis. The use 

of chemometrics is necessary since maize constitutes some vibrational modes in the same range 

as AFB1 which cause a lot of interference in the spectral data acquired and make conventional 

data analysis limited in giving molecular information and spectral correlation (Lee et al., 2014). 

Thus the use of multivariate analysis to find the correlation between Raman intensity of AFB1 

and its concentration is a necessity in this study. It is for this reason that PCA is used for pattern 

recognition while PLSR and MLR are used for calibration and modelling. 

When Equation 3.13 is critically analysed it is found that holding other factors constant, the 

scattered Raman intensity should be proportional to the number of molecules (AFB1) present in 

the sample (Dieing et al., 2011). However this relationship is hardly obeyed due to several 

factors. Self-reabsorption for example in highly concentrated samples is unavoidable. In this case 

molecules at the lower vibrational levels easily reabsorb the radiation emitted by molecules at 

higher vibrational levels which results into non-linear relationship between Raman intensity and 

concentration. This makes the characteristic line intensity to deviate from the ideal straight line 

as the number of molecules increases (Smith and Dent, 2005). Interference from other 

components of the samples is also expected. In the case of maize, starch (the main component) 

has vibrational bands in the same range as AFB1 (Wellner et al., 2011).  

However, other influential factors such as fluctuations in laser power and lens to sample 

distances caused by movements around the Raman setup can be minimized by scanning through 
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different parts of the sample and averaging the measured signals. This can further be improved 

by use of data pre-processing techniques discussed earlier in this thesis. These factors affect the 

positive correlation that exists between Raman intensity and concentration of AFB1 (Wang et 

al., 2011). Thus the ideal way of extracting information from characteristic line of different 

concentrations is to get full spectrum range of each concentrations and use multivariate 

techniques to cater for these deviations. Below is a brief description of the three selected 

techniques used in this work. 

3.7.1 Principal component analysis (PCA)  

Principal component analysis (PCA) is one of the common methods of identifying dominant 

clusters in data sets by use of eigenvalue-eigenvector technique of matrix algebra. The 

developing of PCA model involves the decomposition of a correlation or covariant matrix into 

eigenvalue and corresponding eigenvectors, which are orthogonal to each other among other 

properties (Shaver, 2001). The eigenvectors are found as orthogonal vectors along an n
th

 

coordinate system that explains the maximum variance in the original matrix (Raman dataset). 

Analysis of eigenvectors aids in the identification of spectral features and the understanding of 

the PCA clusters. In order to remove noise and reproduce spectra, mean centring (subtracting the 

mean of the spectrum) is advisable as it takes care of the mean changes in all the factors (Ryder 

et al., 2000). The removal of noise, redundancy and multi-collinearity in data sets is done by use 

of principal component analysis by sorting out the most influential factors (principle 

components/factors) from the data set followed by less influential factors. As a result unwanted 

information is discarded without losing important spectral information (Ryder et al., 2000). 

However, some weak signals maybe considered by PCA as noise and lost, thus less influential 

factors should be carefully analysed before they are discarded. 
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Mathematically,  if a matrix can be expressed as a function x, then the sum of the product of all 

subsets (vectors/ principal components) and their weighting factor reproduces the matrix as 

shown in Equation (3.15) (Shaver, 2001). 

 1 1 2 2 ... n nx t p t p t p e             (3.15) 

where x represents any spectrum, t score (weighting factor), p is vector (subset of components) 

and e is the residual signal that was not modelled. From Equation (3.15) it is clear that factors 

(principle components) are the basis behind groupings (clusters) in score plots since for some 

spectra to be clustered in one group they must have the same factors that are similar (Shaver, 

2001).  

Generally in this work, PCA was used as an initial investigative multivariate approach to find out 

the differences and similarities in the Raman datasets in preparation for quantitative analysis. 

Moreover, PCA can also be used for developing calibration and predictive models if its 

regression is invoked. However, in this work only the exploratory properties of PCA are 

employed (Shaver, 2001).  

3.7.2 Regressions 

 A regression is a statistical modelling technique that fits a relationship describing joint 

variability between two or more variables. The fitted model will be used for prediction purposes. 

Before carrying out any regression, it is important to form an X and Y matrix which will be used 

in forming the model (Y= f (X)). X represents the predictors (independent variables) and Y 

represents responses (dependent variables). The model establishes a link between X and Y 

variables by forming a set of samples from both X and Y.  
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There are two types of regressions: univariate regression and multivariate regression. Univariate 

regression uses only one predictor while multivariate regression uses many predictive variables 

at the same time. In this research measurement of known concentrations were taken, regressions 

(PLSR and MLR) were then used to predict unknown concentrations. 

The results of the regression modelling are generally measures of the model’s goodness usually 

summarized by the so-called analysis of variance table (ANOVA). In this study, the measures of 

performance used are the R-squared value (R
2
), the root mean square error of calibration 

(RMSEC), correlation coefficients (p), the slope, Standard Error of Calibration (SEC), Standard 

Error of Prediction (SEP) and Root Mean Square Error of Prediction (RMSEP).  Models with R
2
 

value close to unity are preferred to models with low R
2
 values. Whereas RMSEC measures how 

well the models fit the calibration data, RMSEP measures how well the models fit the prediction 

data. The accuracy of the model can also be measured by calculating its SEP. Ideally RMSEC 

and RMSEP should have low values. 

Partial Least Squares Regression (PLSR) 

PLS is a regression that relates two sets of data (independent variables (X) and dependent 

variable (Y)) by establishing a linear model. It does this by extracting important information that 

relates the dependent and independent variables. It is this information that is crucial for 

prediction of targets. In this work Partial Least Squares regression (PLSR) will find a 

relationship between variations in different concentrations of AFB1 (dependent variables) and 

variations in Raman spectra of these concentrations (independent variable) as explained in 

Equation (3.16) (Westland, 2007).  
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 Y BX           (3.16) 

where Y represents the concentrations of different samples, B stands for the matrix of regression 

coefficient and X is the intensity of the spectra 

Equation (3.16) can only hold if the spectra is bulky and if there exists consistency in the spectra 

(Wold et al., 1984). Once the relationship is established PLS just like PCA uses dependent 

variables (concentration) to extract the most important information (breaks in to principal 

components) with the first PLS component carrying the most relevant information. Thus in 

PLSR dependent variable aids in finding PLS components from independent variables. 

Multiple Linear Regression (MLR) 

MLR is a mathematical method that uses many variables to make predictions on the response 

variables  (Sidik and Center, 1972). It does this by finding a best linear fit statistically with the 

relationship in Equation (3.17). 

 0 1 1 2 2 ...i i i p ip iy x x x e               (3.17) 

where βo is the intercept, β1-p are coefficients and i varies from 1 to n. Equation (3.16) holds on 

condition that all variances are equal (standard deviations are the same). Since equation (3.16) is 

a linear combination, the linear fit usually explains how the mean varies with explanatory 

variables and the fitted values are the coefficients of the linear fit. As stated earlier in MLR, y 

values oscillate around their mean thus the residual e represent the deviations of y variables from 

their mean. Therefore just like PLSR the best fit is found by minimizing the values of the 

intercept and slope (we try to make vertical deviation of all data points to be zero) (Kelly and 

McNeil, 1975). 
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CHAPTER 4: MATERIALS AND METHODS 

This chapter presents the equipment, materials and methods used in carrying out the 

experiments. It further explores how data was initially handled. 

4.1 Equipment and materials  

4.1.1 Introduction 

In order to make different concentrations of AFB1 solutions, standard AFB1 in powder form (5 

mg) was bought from Libios SARL (Pontcharra Sur Turdine, France) and the ELISA kit was 

obtained from Helica Biosystems Inc to run confirmatory tests. Methanol and acetonitrile 

solvents of analytical grade, sulphuric acid, sodium hypochlorite and other essentials such as 

gloves, mouth masks and lab coats were sourced locally. Pure methanol was the main solvent in 

this work and was used to dissolve the standard AFB1 powder. The locally supplied acetonitrile, 

sulphuric acid, sodium hypochlorite and distilled water were used for cleaning the glasswares as 

described in section 4.2 

The maize kernels used in the study were obtained from Kimaeti Kenya Seed in Bungoma 

County, Nairobi open markets and the International Maize and Wheat Improvement Centre 

(CIMMYT), University of Nairobi. Samples from Kimaeti Kenya Seed were used for developing 

the models to predict AFB1 levels in samples obtained from Nairobi open markets. AFB1 levels 

in maize kernels supplied by CIMMYT were determined by ELISA method and the results 

served as reference data sets in validation of the AFB1 predicted concentrations from MLR and 

PLSR models. 
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4.1.2 Confocal Raman spectrometer 

The confocal laser Raman spectrometer (STR Raman Spectrum System, Seki Technotron Corp) 

used in this study was equipped with a 300 mm imaging triple grating monochromator 

spectrograph and two lasers emitting at 532 nm and 785 nm. The 300-mm imaging spectrometer 

had 1800, 1200 and 600-lines/mm grating optimized as discussed in section 4.1.2. The 

spectrometer was also equipped with a back-illuminated CCD camera that aided in capturing the 

spectra within a specified period.  

For any measurement to take place the green laser at 532 nm or the red laser at 785 nm beam is 

delivered to the Raman optics via an optical fiber which gives the beam a total internal 

reflection.  Once at the Raman optics, the beam is passed through the ND filter where it is 1-

100% filtered to the shutter. The shutter then delivers the beam to either 532 or 785 nm band 

pass filter depending with the laser in use. In our set up this was done manually by the laboratory 

technologist. The band pass filter delivers the beam to the beam splitter which splits the beam in 

two equal parts; fifty percent of the beam is reflected while the remaining fifty per cent passes 

through the beam splitter to the sample where Raman and Rayleigh scattering takes place (see 

Figure 4.1). 

The scattered beam is then passed through the objective to the 532/785 nm low pass filter which 

blocks the Rayleigh scattered beam and only allows the Raman beam to pass through. From the 

low pass filter the beam is passed through a black optical fiber of the spectrogram to the CCD 

camera then to the computer. The spectrometer is equipped with a microscope that uses a lever to 

control the motorized stage. The spectrometer also has two switches that allow one to observe 

the sample using light from above or below the sample depending on the nature of the sample 

(opaque or transparent).  
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Once the NIR laser beam has excited the sample, the weak Raman scattering is measured using 

the imaging spectrometer and CCD camera. Sample focusing was done using the motorized 

stage, the computer equipped with STR software and the camera attached to the microscope. The 

spanner in the software aided in choosing the detector settings and the time limit for opening and 

closing the camera shatter. The motor driven stage also helped in scanning through the sample 

and collecting data at the randomly identified spots. 

 

Figure 4.1: The layout of Confocal Raman spectrometer adopted from (CORNES, 2012). The system is 

equipped with two lasers (532 nm and 785 nm lasers) and a spectrograph fitted with a 256 x 1024 pixel 

CCD camera 
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4.1.3 Optimisation of the Raman instrument  

The Raman spectrometer was equipped with a shift of 1800, 1200 and 600 lines mm
-1

 spectral 

window. Measurements with the three windows were taken and 600 mm
-1

 showed best spectra. 

Thus the Raman shift spectral window was optimized at the 600 lines mm
-1

 grating window with 

the shift range of 400 – 1800 cm
-1

 since this is the region where most vibrational bands for AFB1 

are found. The excitation laser intensity was controlled using Neutral Density Filters (NDF) with 

different attenuation coefficients (see Table 4.1) and the spectrograph was fitted with a 256 x 

1024 pixel CCD camera. The excitation field power was measured using Orion Laser Power 

Meter from Ophir Photonics and the field powers displayed in Table 4.1. The 50% NDN 

transmission intensity and the powers transmitted at this level were used in exciting samples with 

both 532 and 785 nm laser (see Table 4.1). 

Table 4.1: The measured excitation optical field powers used in Raman spectroscopy in exciting all 

samples with excitation wavelengths at 532 nm and 785 nm laser 

NDF Transmission 

Intensity (%) 

Power after the objective Power after first filter 

785 nm laser 532 nm laser 785 nm laser 532 nm laser 

5 0.4 µW 24.0 mW 8.0 mW 0.695 W 

10 0.3 µW 24.1 mW 5.0 mW 0.709 W 

25 0.6 µW 28.0 mW 11.0 mW 0.733 W 

50 1.0 µW 32.0 mW 23.0 mW 0.759 W 

100 3.0 µW 41.0 mW 48.0 mW 0.765 W 

 

The Raman laser spot diameter (LSD) was approximately 40 µm and 50 µm for 532 nm and 785 

nm lasers respectively. The LSD found agrees with literature since wavelength is directly 

proportional to the LSD as discussed in section 3.4. This implies that the 532 nm laser has higher 
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resolution than 785 nm laser. And in order to obtain all the expected AFB1 peaks the Raman 

spectra recorded was centred at 1,100 cm
-1

. Several spectra were taken from 10 different parts of 

the samples and averaged in order to get a single spectrum. For each measurement three minutes 

of exposure time were used for 10 scans in order to reduce fluorescence and noise in the spectra 

acquired.  

For purposes of determining which laser among the two was best suited for detection and 

quantification of AFB1, the signal to noise ratio (SNR) was also determined using Equation (4.1) 

and averaged for various samples excited by the two lasers (Carranza et al., 2003).  

p

n

I
SNR

I
                 (4.1) 

where Ip and In represents intensity of the main peak (1593 cm
-1

) of AFB1 and the average 

intensity of the 12 adjacent noise peaks respectively. Each spectrum’s SNR of AFB1 levels 

greater than 10
5
 was calculated according to Equation 4.1. Later the SNR of each matrix; AFB1 

on glass slide, cuvette, and maize were averaged and classified according to the excitation 

wavelength. 

In order to determine the least AFB1 concentration that could be detected and quantified by the 

Raman instrument, the Limit of Detection (LOD) and the Limit of Quantification (LOQ) were 

calculated  using Equation (4.2) (Lee et al., 2014).  

3

10

s
LOD

r

s
LOQ

r





                     (4.2)  
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Where s is the standard deviation of Raman intensity and r is the slope of the intensity vs the 

Raman shift. The standard deviation and the slop were obtained from the entire Raman spectra 

and averaged. 

4.1.4 The ultraviolet-visible-near infrared (UV-VIS-NIR) spectrophotometer 

In order to find out the purity of the prepared solutions, the absorbance of standard AFB1 

solutions was measured using UV-VIS-NIR spectrophotometer (Solidspec-3700 DUV, 

Shimadzu Corporation). The beam of light from the UV-VIS-NIR source is split into two; 

reference and sample beams using the half mirror (see Figure 4.2). The reference beam intensity 

is set at 0% absorbance and 100% transmittance. The ratio of the two beam intensities were 

measured using the two detectors (photodiodes), with the aid of a computer connected to the 

system (Figure 4.2). The computer was installed with UVprobe 2.221 software for better data 

collection. The UVprobe thus helped in optimizing wavelength range between 200-600 nm, a 

region in which AFB1 and methanol absorbs. 
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Figure 4.2: Schematic diagram for the setup of the UV-VIS-NIR spectrophotometer used to measure 

absorbance of standard AFB1 in methanol. The data was acquired using UVprobe 2.21 software installed 

in the computer which was connected to the optical system 

4.1.5 Fluorescence spectroscopy 

For purposes of confirming the purity of the standard AFB1 fluorescence spectroscopy was 

measured using the USB Ocean Optics (USB 2000) spectrometer. The LED light was made to 

illumine the sample at 2 mm distance and the emitted light was emitted at the same distanceThe 

LED light with centre wavelength of 375 nm was used to excite AFB1 in methanol in a cuvette 

using an optical fibre and a USB cable (Figures 4.3).The fluorescence procedure was carried out 

in the dark room to avoid interference from other sources of UV light. The obtained fluorescence 
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spectra were optimized between 400 - 600 nm since it is in this region that the fluorescence 

characteristics of AFB1 in methanol are seen. A computer installed with the Spectra Suite 

software was connected to the Ocean Optics spectrometer to aid in data acquisition (Figure 4.3). 

 

Figure 4.3: Schematic diagram of the setup used to measure fluorescence spectra of standard AFB1 in 

methanol. The spectra were captured to the computer with the help of Spectra Suite software. All 

fluorescence measurements were taken in a dark room to minimize noise 
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4.2 Safety precautions and cleaning of glassware 

The solution preparations and experimental procedures were all performed at room temperature 

(~24
o
C). Moreover AFB1 solutions were made in the fume chamber and stored in a demarcated 

part of the laboratory to prevent exposure of AFB1 to people and other equipment. Other safety 

precautions taken while handling AFB1 are explained in Appendix I. 

Before using any glassware; beakers, glass slides and cuvettes were first put in dilute sulphuric 

acid (105 ml H2SO4 in one litre of water) for two hours, then rinsed five times with distilled 

water to remove traces of the acid (checked with litmus paper). This was done to prevent 

decomposition of aflatoxin as use of acid stained glassware may accelerate this process. After 

use, all glassware exposed to aflatoxin were rinsed with methanol and then soaked in a solution 

of methanol and 1% NaOCl for 2hrs. After this the glassware was soaked again with 5% acetone 

solution for 30 minutes before being rinsed five times in distilled water.  

4.3 Developing multivariate models 

The pre-processed data was later transferred to Unscrambler software for chemometrics analysis 

(PCA, MLR and PLSR).  Prior to the qualitative and quantitative sample analysis maize samples 

with AFB1 levels below 1 ppb were labelled C1, C2 for 15 - 950 ppb, C3 for 150 - 950 ppb and 

C4 for 1500 - 9500 ppb as shown in Appendix II. Thus calibration and validation analysis 

involved use of Raman spectral data from samples with aflatoxin B1 concentration values 

ranging from 0.15 ppb – 4950 ppb which covers majority of aflatoxin levels found in Kenyan 

maize. And the Raman spectra range of 400 cm
-1

 and 1800 cm
-1

 was used as these covers most of 

the Raman active vibrational modes. The scan of large sampled concentrations would provide 
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better results in low concentrated samples (Lee et al., 2014).  PCA was then used to reduce 

dimensionality of the data sets and to find patterns in the Raman spectra. 

In order to develop multivariate models, Raman spectra extracted from one hundred and twenty 

intentionally contaminated maize samples were split randomly into two groups of calibration 

(80) and validation (40) models. The PLSR and MLR models were then developed and used to 

predict unknown concentrations in maize obtained from Nairobi open markets. To validate 

Raman spectroscopy as a method of detecting and quantifying AFB1, the predicted 

concentrations obtained from different models were compared with the reference values obtained 

from ELISA. 

PLSR was used to decompose the data sets by finding principal components (factors) that 

explained the variance in the data and compared between AFB1 concentration in the data and the 

Raman spectral information like intensity and the width of the peaks. The calibration models of 

PLSR were developed by full cross validation that involved considering one variable at a time 

untill all spectra were considered. MLR model was also developed using a step wise regression. 

The accuracy of the calibration models were determined by the R-Squared value and root mean 

square error of calibration (RMSEC). The models were afterward validated with a validation 

scheme that was chosen based on the accuracy of the developed models.  

4.4  Sample preparation 

4.4.1 Solutions of different concentrations 

To protect the researcher and other laboratory users from intoxication since AFB1 powder is 

electrostatic in nature, the weight of 5 mg of AFB1 powder was assumed to be correct as 

indicated by the supplier. The supplier’s bottle and its content of AFB1 powder was therefore 
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measured and noted in Table 4.2. Then using a needle and syringe methanol was carefully added 

to the brim of the bottle and its contents shaken for 5 minutes to allow AFB1 dissolve in 

methanol to a clear colourless solution (A) and its final weight noted in 4.2. Other solutions in 

solutions (B, C, D, E and F) were made from solution (A) and their concentrations were 

evaluated using equation (4.3). 

  
91 10AFB

Sol

M
concentration ppb

M
         (4.3) 

where MAFB1 is mass of AFB1 powder and Msol is mass of AFB1 solution 

A total of 126 different solutions with varying AFB1 concentrations ranging from 0.1 ppb to 

1.1x10
6
 ppb were prepared. Table 4.2 shows six solutions with the levels of AFB1 

(concentrations of the solutions prepared) and the procedure of determining their weights as 

shown in Table 4.2.  Samples made from solutions whose concentrations were greater than 10
5
 

ppb were used to obtain Raman characteristic spectra. Due to the weak nature of Raman 

scattering, we needed highly concentrated solutions to obtain the weak AFB1 Raman peaks that 

would not have been physically visualized in lowly concentrated solutions such as the 1751 cm
-1

 

peak. Samples with AFB1 levels ranging from 1.0 x 10
-1

 ppb to 9.95 x 10
4
 ppb were used for 

developing classification and quantification models (see Appendix II) because this region covers 

the AFB1 levels found in Kenya. These samples were further categorized in terms of AFB1 level 

ranges C1 (0.15 - 0.95 ppb), C2 (15 - 95 ppb), C3 (150 - 950 ppb) and C4 (1500 - 9500 ppb) as 

shown in Appendix II. The C1 range would cover the contamination in human infant food, C2 

adult human food, C3 domestic animal feeds and C4 in fungi infected maize mostly used for 

second generation alcohol ‘chang’aa’.  
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Table 4.2: Different concentrations (Conc.) in ppb of AFB1 in methanol (Ap) and determination of the 

masses of quantities measured 

Be (g) Be+M (g) M (g) Asol+Be+M (g) Asol (g) Ap (g) Conc. Symbol Conc.(ppb) 

5.166 9.757 4.591 14.353 4.596 5.0 X 10
-3

 A 1.1 X 10
6 

6.946 8.270 1.324 9.414 1.144 1.2 X 10
-3 

B 5.0 X 10
5 

6.193 9.776 3.583 10.434 0.658 7.2 X 10
-4 

C 1.7 X 10
5 

8.117 9.744 1.627 9.967 0.223 1.2 X 10
-4 

D 6.9 X 10
4 

8.068 9.740 1.672 9.816 0.076 8.3 X 10
-5

 E 4.7 X 10
4 

8.150 9.833 1.680 10.106 0.273 4.6 X 10
-5 

F 2.4 X 10
4 

Where Ap+Be+M is the sum of mass of aflatoxin powder, methanol and empty bottle, Be+M is mass of 

methanol plus mass of empty bottle, Be is mass of empty and Asol mass of AFB1 solution Asol.   

For purposes of obtaining characteristic AFB1 Raman spectra, solution (A) (concentration 6.1 x 

10
6
 ppb) was placed in the cuvette and 10 Raman spectra acquired from it at both 785 nm and 

532 nm excitation.  Later the same solution was pipetted onto a clean microscope glass slide and 

left for 15 minutes to allow methanol to evaporate. This resulted in a thin layer of AFB1 getting 

adsorbed onto the glass slide as shown in Figure 4.4. 

 

Figure 4.4: The image of AFB1 adsorbed on a glass slide (a) and under Raman spectrometer at 50 µm 

spot size (b) when excited at 785 nm 

 

(a) 

(b) Image of AFB1 adsorbed 

on the glass slide 

AFB1 image 

on Raman 

spectrometer 
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4.4.2 Maize samples 

The maize samples used to develop classification and quantification models were obtained from 

Kimaeti Kenya Seed, Bungoma County. The kernels were uniformly mixed then 120 samples of 

20 g each made from it randomly for analysis. These samples were then randomly labelled with 

same codes given to the AFB1 solutions in Appendix II. Five grams of each sample was then 

sent to CIMMYT for detection of AFB1 levels by ELISA. It was found that the maize samples 

had an average value of 4.31 ppb of AFB1. This AFB1 level was considered negative as in 

Kenya human food is allowed to have up to 10 ppb. Due to unavoidable circumstances we could 

not access maize with 0 ppb. As a result of this we had no option than to use Kenya seed maize 

to develop our models. Ten kernels were randomly picked from each sample and soaked in the 

solutions bearing same labels for 24 hours after which the maize was removed from the AFB1 

solution and left to dry for one hour.  Raman spectroscopy was then done on each of them. For 

every kernel ten suspected spots were chosen for Raman analysis. The ten spectra obtained were 

averaged to give one spectrum. Thus for each sample we had ten Raman spectra. The 

intentionally contaminated maize kernels were later ground using a blender to get flour samples. 

The Raman spectra of flour samples were taken by scanning through 10 different spots of 5g of 

each sample. The 10 spectra acquired in each sample were then averaged to get one spectrum for 

every sample. 

Maize collected from Nairobi open markets were used for predictions. The maize was divided 

into two samples of suspected and unsuspected samples. This was based on the visual 

appearance of the maize. The moldy (fungi visually observed) maize samples were labelled as 

suspected samples while non-moldy (fungi not visually observed) maize were labelled as 

unsuspected samples.  The unsuspected maize samples were also randomly divided into 50 
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samples (M1, M2, M3… M50) of 20 g each. Ten kernels from each sample were thereafter 

randomly picked and Raman spectra collected from each sample as described above. The 

suspected maize samples were grouped into 20 samples (N1, N2, N3… N20) of ten kernels each 

and Raman spectra collected from them in a similar way. 

4.4.3 Sample preparation for ELISA 

Maize samples supplied by CIMMYT, University of Nairobi were labelled as P6, P9, P12, P14, 

P27, P38, P41, P43, P62, P130 and P116 (see Table 4.3). The samples were grown at Machakos 

County – Kenya in various plots identified by the various numerical numbers hence the 

designation P in Table 4.3. In order to extract aflatoxin from the ground samples an extraction 

solution was prepared from methanol and distilled water in the ratio 7:3. To 5g of each 

representative sample, 25 ml of the extraction solution was added. The suspension was vortexed 

in a sealed cuvette for 2 minutes and left to settle for 15 minutes after which the filtrate was 

filtered off using a Whatman 1# filter paper (Hyunh et al., 2012). 

The ELISA procedure proposed by Helica Biosystem inc was adopted as a method for 

quantifying the AFB1 in the samples. The samples and the standard to be quantified were each 

represented on the dilution well and on a microwell holder. Then 200 µl of the conjugate was 

dispensed into each dilution well followed by 100 µL of each sample. The conjugate and the 

sample were then mixed by priming the pipette up and down three times. 100 µl of the contents 

in the dilution well were later transferred to the corresponding antibody coated microtiter well 

and incubated for 15 minutes. The contents of the microwell were afterwards decanted off and 

the microwell washed 5 times using distilled water to remove the residual. The microwells were 

then tapped (face down once) onto an absorbent towel to ensure that all the residuals from the 

mixture were all eliminated. 100 µl of substrate was then added to each microwell and incubated 
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for 5 minutes at room temperature. To stop the reaction in the microwells 120 µl of stop solution 

was added in each microwell in the same sequence as substrate solution. Finally light was made 

to pass through a 450 nm polarizer that was placed on the contents of the microwell. The optical 

density of each microwell was then measured using a microtiter plate reader and the results noted 

in Table 4.3. These optical densities of the standard samples plus their concentrations and optical 

densities of the samples were then fed into elisaanalisis.com online software which calculated the 

concentrations of the samples as shown in Table 4.3. The dilution factor was multiplied by 

concentration in ppb to obtain the AFB1 levels in each sample (Hyunh et al., 2012).  
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Table 4.3:  Results of AFB1 levels in maize samples obtained from CIMMYT. To find the AFB1 in each 

sample dilution factor was multiplied by conc. in ppb 

PLOT 

NO: 

Well optical 

density 

Mean 

optical 

density 

Conc. 

in ppb 

Confidence 

interval 

dilution 

factor 

Conc. of 

AFB1 

P38 0.458,0.427 0.443 4.202 1.743 - 3.339 x200 840.459 

P43 0.295,0.295 0.295 2.994 2.467 - 4.031 x200 598.800 

P41 0.212,0.212 0.212 2.327 2.897 - 4.852 x200 465.400 

P130 0.285,0.285 0.285 2.029 1.274 - 5.426 x200 405.800 

P27 0.475,0.475 0.475 1.255 0.999 - 3.512 x100 125.500 

P116 0.519,0.519 0.519 2.043 0.945 - 3.193 x20 40.860 

P9 0.266,0.266 0.266 3.208 1.305 - 5.683 x30 96.250 

P14 0.418,0.418 0.418 3.874 1.074 - 3.983 x20 77.470 

P12 0.364,0.364 0.364 3.501 1.151 - 4.503 x200 700.200 

P62 0.162,0.162 0.162 2.683 1.490 - 7.412 x30 80.500 

P6 0.098,0.098 0.098 3.501 1.615 - 8.839 x200 700.200 

Standard 2.376,2.376 2.376 0 N/A   

Standard 1.735,1.735 1.735 0.2 N/A   

Standard 1.348,1.348 1.348 0.4 N/A   

Standard 0.939,0.939 0.939 1 N/A   

Standard 0.534,0.534 0.534 2 N/A   

Standard 0.203,0.203 0.203 4 N/A   
 

 

 

4.5 Data pre-treatment 

The confocal Raman spectrometer system was embedded with mechanism of background noise 

removal. Further noise removal was done by  constantly calibrating the Raman spectrometer 

using the standards (silicon) before taking any measurement (Dieing et al., 2011). Once the data 

was acquired it was first transferred to OriginPro 9.1 32Bit software for pre-processing, graphing 

and thereafter to Unscrumbler software (version 9.2, CAMO) for analysis.  
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In order to remove fluorescence background from the spectra baseline offsetting was done on the 

raw data using Origin software. This was done manually by adjusting 25 to 35 points of a 

constant line in all the spectra (Wu et al., 2015). These points were neither too much for manual 

adjustment nor too little to fit the whole spectra. Baseline offsetting was followed by manual 

denoising under a wavelet of DB5 and periodic extension mode accustomed at a third level with 

ten percent threshold for each point.  

Once denoised the data was smoothened using Savitzky Golay method of 8 window points. The 

savitzky Golay was applied to remove cosmic ray peaks. The first polynomial smoothing was 

made better with no boundary conditions attached on it. The denoising and smoothing were 

specifically carried out to remove cosmic signals (Dieing et al., 2011). In order not to have 

negative peaks the minimum value in each spectrum was subtracted and the result used for 

chemometrics.  

The aforementioned parameters for baseline offsetting, denoising and smoothing were selected 

based on how the preview fitted the data. The parameters employed in this work thus were found 

to remove most of the noise in the spectra without posing overfitting challenges. 

 

  



53 

 

CHAPTER 5: RESULTS AND DISCUSSIONS 

In this chapter, the results of optical characterization and Raman spectroscopy of AFB1 and 

aflatoxin-contaminated maize kernels and flour samples are presented and discussed. The steady 

state characteristics of AFB1, Raman profiles and results from application of chemometric tools 

PCA, MLR and PLSR on the Raman spectral data of AFB1 obtained from the maize kernels and 

flour are also presented and discussed.  

5.1  Steady state absorption and fluorescence spectroscopy 

The absorbance and fluorescence of standard AFB1 in methanol were measured as described in 

sections 4.1.4 and 4.1.5 respectively. Figure 5.1 (a) shows the steady state absorption spectra of 

different concentrations of AFB1 in methanol at room temperature obtained with a UV- VIS-

NIR spectrophotometer. AFB1 showed a broad spectrum centred at 340 nm. The absorption peak 

around 280 nm belongs to methanol. In addition the small maxima at around 340 nm, 354 nm 

and 375 nm can be ascribed to vibrational transitions in the first excited singlet state which agree 

with literature as discussed in section 3.1. Similar results were found by Netto-Ferreila and 

companion when they showed that AFB1 in acetonitrile absorbed at around 355 nm (Netto-

Ferreira et al., 2011). 

The fluorescence spectra of different concentrations of AFB1, is shown in Figure 5.1 (b) and 

reveal small maxima around 448 nm, 480 nm and 500 nm. These peaks are attributed to the 

vibrational bands in the ground state. Both absorption and emission spectra displayed intensity 

dependence on AFB1 concentration as expected due to increase in AFB1 absorbing and emitting 

molecules in the solutions as discussed in the theoretical background (section 3.1). In studies 

done by Yao and companions also showed that AFB1 fluorescence at around 360 nm (Yao et al., 
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2010). Netto-Ferreira and colloquies on the other hand showed that the emissive properties of 

AFB1 are solvent dependent with AFB1 dissolved in acetonitrile, Benzene and lipids fluorescing 

at 418, 393 and 418 nm respectively (Netto-Ferreira et al., 2011).  

In short the absorbance and fluorescence characteristics indicated that the purity of AFB1 

solution was unquestionable since they agreed with literature. Thus the quantification models 

made from these solutions were reliable as the purity of the AFB1 solutions used to develop 

chemometric models was not questionable.   

 

Figure 5.1: Absorbance (a) and Fluorescence (b) spectra of AFB1 in methanol. The absorbance spectra 

of different concentrations of AFB1 in methanol were obtained from UV-VIS-NIR DUV 

spectrophotometer (Solidspec-3700 DUV, Shimadzu Corporation) while the fluorescence spectra were 

obtained at 375 nm excitation with a light emitting diode (LED) 
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5.2  Optimization of Raman data 

To evaluate the suitability of the two lasers in detection of AFB1, the SNR of the two excitation 

wavelengths were determined as described in section 4.1.3 and results noted in Table 5.1. The 

SNR of samples excited by 785 nm were generally higher than those excited by 532 nm laser. 

For instance, among all the samples, solutions adsorbed on glass slides had the highest SNR. The 

785 nm excitation on the glass slide showed SNR of 14.02 which was higher than the SNR of 

6.28 when the same sample was excited at 532 nm. Samples in cuvette followed the same trend 

and among the three matrices (glass slide, cuvette and maize) this recorded the lowest SNR. This 

therefore shows that cuvettes holding fluids to be studied with Raman spectrometer should be 

made from Raman inactive materials. Table 5.1 also showed that maize kernel had higher SNR 

(12.53) than flour samples (11.29). This is the reason why quantitative models developed from 

kernels were characterized with higher accuracy than those developed from flour samples. 

The fact that 785 nm has bigger laser spot diameter (LSD) caused it to have higher SNR than 532 

nm which agrees with literature as discussed in section 3.4. The 532 nm has higher resolution 

because of its smaller LSD which makes it zoom into the matrix of either glass or maize thus 

bringing out more noise (maize or glass signal) instead of AFB1 signal. As result of this the 

AFB1 signal was marred with a lot of noise and fluorescence background at 532 nm excitation. 

The fluorescence back ground causes the spectrum to hang instead of lying on the x-axis thus 

making analysis difficult. These fluorescence signals were also stronger in 532 nm than in 785 

nm resulting to significant noise as shown in Figure 5.2. The effect of this noise and fluorescence 

on 532 nm excitation is even higher in low concentration (C1 and C2 ranges) when the matrix 

almost masks the whole of AFB1 signal completely. Furthermore, the higher excitation power 
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from 532 nm laser contributed a lot in the glass slide and cuvette interference see Figures 5.2 and 

5.3. 

 

Figure 5.2: Raw Raman spectra of AFB1 adsorbed on glass slide. The spectra were obtained from 

excitation with 532 nm laser (a) and 785 nm laser (b) and the two excitations resulted in a significant 

background attributed to fluorescence 

 

Figure 5.3: Comparing the interference of glass slide on Raman spectra of AFB1 at 785 nm (a) and 532 

nm (b) excitation. The spectra from 785 nm excitation showed more glass interference than the spectra 

excited at 532 nm 
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Moreover, the interference of glass slide and cuvettes signals introduced foreign peaks to the 

spectra analyzed. A number of Raman data pre-processing techniques were employed in order to 

fluorescence offset background and noise as described in section 4.5 of this thesis. The Raman 

spectral profiles of Figure 5.2 are displayed in Figure 5.3 after pre-processing procedures. The 

effect of glass slide on AFB1 Raman spectrum is displayed in Figure 5.3. The signals (both 

Raman and fluorescence) emanating from the glass slide matrix were subtracted in order to 

obtain the AFB1 characteristic spectra.  Samples excited at 785 nm experienced more glass 

interference as opposed to 532 nm laser which was expected as was discussed in the literature. 

This was due to the high photon power generated by 532 nm laser which resulted in intense 

Raman signal that suppressed the noise signal.  

The interference from glass signals were even more prominent in the results obtained after 

exciting AFB1 solution in a cuvette as seen in Figure 5.4. These noise signals from cuvette 

material were observed to greatly mask the signal from AFB1. The glass peaks are the most 

prominent at 1267 nm and 450 nm and tend to overlap AFB1 peaks found in this region. This is 

because the material of the cuvette (glass) is Raman active and the AFB1 solution was inside it. 

So the laser beam first interacted with the glass before it reached the solution. As result of this 

the glass signal was stronger in samples placed in the cuvette. On the glass slide however, laser 

beam first interacted with the AFB1 adsorbed on the slide before interacting with the glass. 

Therefore AFB1 signal were more intense  on the glass slide. It was observed that even after 

subtracting the signal from cuvette only 7 peaks (out of 22 found from glass slide) of AFB1 

Raman are observed in Figure 5.4. It was for this reason that AFB1 was adsorbed onto a glass 

slide and the resulting layer (see Figure 4.4 section 4.4.1) excited at 532 nm and 785 nm 

separately.  
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The presence of Raman signal peaks attributable to AFB1 in samples inside cuvette showed the 

great potential of Raman spectroscopy in operating remotely.  The findings also show that liquid 

and gaseous samples can be probed while inside transparent containers such as cuvettes (made 

from Raman inactive materials) for extraction of Raman spectra as earlier implied by other 

researchers in the work quoted here (Sharma et al., 2002; Bowen et al., 1989). However, analysis 

of fluids in cuvettes can only be possible with higher excitation wavelengths (785 nm and above) 

because at 532 nm excitation and other lower wavelengths will only show cuvette signal. 

 

Figure 5.4: Raman spectra of AFB1 solution in cuvette, empty cuvette and the difference of the two 

spectra excited at 785 nm. The spectra were obtained at center 1,100 cm
-1

 with 50 µm spot diameter 
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In order to further confirm the suitability of the two lasers in the analysis of AFB1, the LOD and 

LOQ were calculated and noted in Table 5.1 as described in section 4.1.3 of this document. The 

two limits revealed the least concentration of AFB1 the Raman spectrometer could detect and 

quantify at the two excitations on various samples. Just like in the SNR 785 nm laser showed 

better results of LOD and LOQ. AFB1 adsorbed on the glass slide and excited at 785 nm showed 

the lowest LOD (1.59)/ LOQ (3.14) (see Table 5.1) and that is why all Raman spectra of AFB1 

adsorbed on glass slide showed most of the peaks needed for analysis. This also explains why the 

characteristic spectra of AFB1 in this work were extracted from data whose solutions were 

adsorbed on the glass slide. Maize kernels gave better LOD (3.16) and LOQ (10.53) than flour of 

4.26 and 12.85 respectively. Samples excited at 532 nm showed the same trend but with higher 

LOD (32.24; 40.30) and LOQ (104.30; 129.36) in maize and flour respectively. The LOD and 

LOQ in Table 5.1 show that our Raman spectrometer at 785 excitation can be used to detect and 

quantify AFB1 in human adult food and domestic animal feeds whose limit of consumption is at 

10 ppb and 300 ppb respectively. However, the 785 nm laser is limited in monitoring AFB1 

levels in human infant food whose consumption limit is at 0.5 ppb. With 532 nm we will only be 

able to monitor AFB1 levels in animal feeds. Table 5.1 also reveals that monitoring AFB1 levels 

in liquid foods adsorbed on surfaces would give accurate results than monitoring solid foods.  

Finally the LOD and LOD in kernel matrix and flour matrix show the need of testing for 

aflatoxin levels in maize in the fields and silos before milling and other processing procedures 

are carried out.   
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Table 5.1:  A table showing the SNR of various samples at 785 nm and 532 nm excitation and the LOD 

and LOQ in ppb that the two lasers achieved 

Sample SNR LOD LOQ 

Excitation wavelength 785  532  785 532 785  532 

STD AFB1 on glass slide 14.021 6.284 1.590 14.965 3.136 32.555 

STD AFB1 in cuvette 4.526 2.512 280.147 3000.147 693.820 687.156 

Maize 12.350 4.123 3.159 32.248 10.530 104.367 

Flour 11.285 3.458 4.255 40.298 12.850 129.361 

 

5.3 Characteristic Raman spectrum of AFB1 standard 

The characteristic Raman spectra in Figures 5.5 (a) and (b) with assigned peaks were obtained 

after AFB1 solution (6.1 x 10
6
 ppb) was adsorbed on a glass slide as described earlier in section 

4.4.1 after exciting it at 532 nm and 785 nm respectively. It is evident that the Raman intensity of 

the spectra obtained after 532 nm excitation was higher than those from 785 nm excitation. A 

sample excited at 532 nm and 785 nm under the same spectroscopic parameters showed 32 mW 

and 50 µW power for 532 and 785 nm excitation. This is expected since Raman intensity is 

known to be proportional to the fourth power of excitation frequency as discussed by (Dieing et 

al., 2011) in section 3.4. The prominent peak at 1552 cm
-1

 was attributed to v(C-C) and ring 

deformation while 1593 cm
-1

 peak was attributed to v(C-C) and v(C-C-C) and are less intense in 

785 nm excitation compared to 532 nm excitation. The high intensity of the spectrum from 532 

nm excitation was also caused by the small LSD of 40 µm unlike in 785 nm which showed 50 

µm.  
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Figure 5.5: The characteristic Raman spectra of standard AFB1 after background subtraction. Both 

spectra were obtained at centre 1100 cm
-1

 with spot diameter of 40 µm and power of 32 mW (532 nm 

laser) and 50 µm spot diameter for 785 nm laser and 1 µW power 

 

Table 5.2 gives a summary of Raman signal peak positions obtained from  AFB1 adsorbed on 

glass in our work and the corresponding positions plus assignments from SERS (Wu et al., 2012) 

and AFB1 powder (Móricz et al., 2008) done elsewhere. The positions were found to be fairly 

close indicating the good prospects of glass substrates as an alternative to the specially prepared 

metal-based SERS substrates (Wu et al., 2012). 
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Table 5.2: Assignment of AFB1 Raman peaks with excitation at 785 nm and 532 nm. The 785 nm laser 

measurements of AFB1 were taken first followed by the 532 nm laser measurement. The experimental 

peaks found in this work are compared with results reported by Wu and co-workers  using SERS (Wu et 

al., 2012) and Móricz and colleagues from AFB1 powder (Móricz et al., 2008)  

Laser 

 

Reference peak  

Peak assignment 
785 nm 532 nm 

SERS (Wu et al., 

2012) 

AFB1 powder (Móricz 

et al., 2008) 

- 446 - - Skeletal modes 

- 527 - - Skeletal modes 

560 570 - - Skeletal modes 

628 628 624 - Ring deformation 

685 685 686 - C–H in-plane bending 

714 712 752 - C–H out-of-plane bending 

756 776  - Ring modes 

776 816 813 - Ring deformation 

829 827 830 832 Ring deformation 

930 930 934 - Ring breath, 𝜐(C–O) 

997 988 993 - β(C–O), υ(C–C) 

1079 1077 1086 1072 υ(C–C–C) ring deformation) 

1134 1136 1147 1134 β(C–H)(ring), β(C–H)(–CH3) 

1188 1188 1186  γ(C-H2) (ring) 

1238 1237 1249 1242 β(C-H2) (ring) 

1267 1271 1274 1270 β(C–H) ring deformation 

1302 1301 1303 1305 A(C–H2)(ring)(C–H) 

1350 1353 1355 1350 δCH3 

1427 1445 1440 1431 β(C-H)(CH3), β(C-H)(ring) 

1481 1479 1491 1485 υ(C7=C8), ring deformation 

1552 1553 1550 1549 υ(C-C) and ring deformation 

1592 1591 1592 1591 υ(C-C) and υ(C-C-C)  

1630 1630 1620 1616 υC17(H)=C18(H) 

1689 1686 1693  υ(C=O) (cyclopentene ring) 

1752 1750 1756 1747 υ(C=O) (pyran ring) 
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5.4 Raman spectroscopy of AFB1 contaminated and uncontaminated maize 

Both intentionally AFB1 contaminated and uncontaminated maize kernels and flour were excited 

with the two lasers and Raman signals detected and measured. Figure 5.6 shows Raman spectra 

obtained from contaminated kernels and flour after 532 nm and 785 nm excitation. The spectral 

profiles of the two samples (kernels and flour) were identical with maize kernels having higher 

intensity than flour at 1552 cm
-1

 and 1593 cm
-1

 peaks in both excitations which could be 

explained by the high SNR noticed in maize kernel samples discussed in section 5.2. However, at 

785 nm excitation the powerful glass peak at 1267 cm
-1

 (that persisted in AFB1 spectrum even 

after pre-processing) deviated from this since because it does not belong to AFB1. The 1353 cm
-1

 

and 1751 cm
-1

 peaks under 532 nm excitation also showed deviations which can be attributed to 

experimental errors during data acquisition. 

 

Figure 5.6: Raman spectra of spiked maize and flour excited at 532 nm and 785 nm and centred at 1,100 

cm
-1

. Both maize kernels and flour samples were spiked with 6.1X10
6
 ppb 

 

a) 

b) 
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Figure 5.7 displays Raman spectra obtained from maize kernels spiked with different AFB1 

concentrations after excitation with a 785 nm laser. Increase in intensity of Raman peaks with 

concentration was observed (see inset of Figure 5.7) thus showing the great potential of the 

technique as an AFB1 detection and quantification method. This result also agrees with Equation 

(3.13) which predicts increase in intensity of Raman spectral profiles with concentration of the 

active molecule as discussed by (Dieing et al., 2011; Torii et al., 1997). A similar positive 

relationship between aflatoxin concentration and Raman intensity was also reported by Lee and 

co-workers on maize flour (Lee et al., 2014).  

 

Figure 5.7: Raman spectra of different concentrations of AFB1 in spiked maize kernels excited at 785 nm. 

The inset shows increase in Raman peak at 1593 cm
-1

 with AFB1 concentration 
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When many samples are to be screened for presence of aflatoxins, a rapid and sensitive 

inspection technique is needed. In order to explore the potential of Raman detection technique 

for this purpose, AFB1 contaminated and uncontaminated maize kernels were both excited with 

532 nm and 785 nm laser separately, the spectra were recorded and compared as displayed in 

Figure 5.8. In both excitations, a significant difference was noticed between Raman profiles from 

kernels laced with AFB1 and those not laced. Raman peaks attributable to the presence of AFB1 

such as 1552 cm
-1

, 1481 cm
-1 

1353 cm
-1

 and 1751 cm
-1

 among others were clearly prominent in 

the contaminated kernels. The results show that Raman spectroscopy can be adapted for a fast 

screening of maize kernels for example in conveyer belts or inspection in a storage places such 

as silos. Figure 5.8 also show that the Kenya seed maize used in developing models were not 

AFB1 free as earlier shown in section 4.4.2. However the levels were low (4.31 ppb) and cannot 

be quantified by our Raman spectrometer (at 785 and 532 nm excitation) that has maize 

quantification limit of 10.53; 12.85 ppb and 40.30; 129.36 ppb for maize kernels and flour 

respectively (see section 5.2). 
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Figure 5.8: Raman spectra of intentionally contaminated and uncontaminated maize kernel excited at 532 

and 785 nm. The Contaminated samples displayed spectral profiles with peaks such as 1552 cm
-1

, 1481 

cm
-1

 and 1353 cm
-1 

 

5.5  Principal Component Analysis (PCA) 

The pre-processed spectral Raman data collected from samples of various concentrations of 

AFB1 were analysed using PCA. PCA was applied as described earlier in section 3.4.1. The 

technique uses mathematical projections to express data with many variables (of which some 

may be correlated) using few variables called principal components (PCs). These new variables 

(PCs) which are perpendicular to each other are a linear combination of the original variables 

(Raman signal intensity at each wave shift value). Each PC consists of scores and a loadings 

counterpart where scores describe associations between samples while loadings describe how 
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variables relate. Data with identical information will be clustered together in a principal 

component (PC) score plot. 

In the current study, PCA was used to characterize the intentionally contaminated AFB1 maize 

samples whose concentrations were grouped as described in section 4.4.2. The patterns created 

by different groups of concentrations were recognized by PCA as shown in the score plots in 

Figure 5.9. The first two principal components (PCs), PC 1; PC 2 explained the variance in the 

clusters with 785 nm and 532 nm having the variance of 59 %; 28 % and 62 %; 22 % (71 %; 6 % 

and 79 %; 7 %) for kernels and flour respectively. This implied that majority of the data points 

were represented by PC 1. The increased explained variance in PC 1 for samples excited at 532 

nm can be attributed to low SNR encountered while acquiring Raman spectra. 

For samples excited at 785 nm, (Figures 5.9 (a) and (b)) PCA score plot shows the transition 

from one concentration range of AFB1 to another. The Raman spectra at this excitation have 

been clustered into extremely high (C4), high (C3), low (C2) and very low (C1) concentrations 

based on the strength of υ(C-C) ring deformation, υ(C-C) and υ(C-C-C) molecular bonds as 

revealed by the loading profile in Figures 5.10 (a) and (b). PC 2 further, classified samples based 

on AFB1 concentrations with C1 and C2 having lower PC 2 scores as compared to C3 and C4 in 

both kernels and flour as shown in Figures 5.9 (a) and (b) respectively. The positive loadings 

observed in Figure 5.10 explains the positive correlation that exists between concentration and 

Raman intensity just as predicted by Equation 3.12 (Torii et al., 1997).  

At 785 nm excitations the spectrometer has highest SNR and low LOD (see section 5.2) and that 

is why PCA is able to recognize the patterns of both kernel and flour matrix. The concentration 

ranges are also recognized due to the same reasons. It was difficult to discuss the PCA results 
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obtained from samples excited at 532 nm as seen in Figure 5.9 (c) and (d). This was thought to 

be due to the high noise emanating from maize components like starch and fluorescence signals 

that limit the model from classifying the Raman spectra based on AFB1 concentrations. This 

noise and fluorescence background were characteristic of 532 nm spectra due to its high 

excitation power and smaller LSD that caused this laser to have low SNR and high LOD. 

 

Figure 5.9: PCA score plots of Raman spectra of samples excited at 785 ((a) and (b)) and 532 nm (c) and 

(d)  
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All the Raman peaks obtained at 532 nm excitation were found to influence the random 

clustering in the score plots of Figures 5.9 (c) and (d). This explained why PCA could not 

classify data obtained with this excitation based on AFB1 concentrations as displayed in PCA 

profile Figures 5.10 (c) and (d). This was also contributed by low SNR and high LOD as shown 

in Table 5.1. 

 

Figure 5.10: PCA loading profiles responsible for score plots for maize kernels and flour samples excited 

at 785 nm ((a); (b)) and 532 nm ((c); (d)) respectively 

 

In order to find out if PCA could identify samples excited at different wavelengths PCA was 

done on a few selected samples excited by the two lasers. Figure 5.11 shows the score plot of 

PCA and the samples represented in the plot had concentrations ranging from 0.15 ppb to 9500 
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ppb. The explained variance for the two principal are 82 % and 11 % respectively. Samples 

excited at 785 nm displayed negative scores on both PC 1 and PC 2 (3rd quadrant) while those 

excited at 532 nm displayed largely positive PC 2 scores. The two data were therefore 

statistically different as expected due to the different amounts of Raman intensity (Dieing et al., 

2011). 

 

Figure 5.11: PCA score plot of samples excited at both 532 nm and 785 nm. Samples excited at 785 nm 

laser are clustered at the negative part of PC 1 and PC 2 

 

5.5  Regressions of different samples 

Among the maize kernels obtained from Nairobi open markets were those that were suspected to 

be contaminated already and those that were not. The sorting of these samples was based on 

visual appearance of the maize. Kernels with coloration were labelled suspected samples and 
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samples with no colour (white maize) were labelled unsuspected samples as described in section 

4.4.2. The task was now to determine the amount AFB1 in the samples.  

Furthermore, AFB1 quantification results obtained from Raman spectroscopy had to be 

compared with the conventional ELISA method whose data served as reference results in this 

work. For quantification, two chemometric techniques, namely MLR and PLSR were employed. 

The two methods were shown recently to perform well by Lee and company when applied on 

maize flour (Lee et al, 2014).  

5.5.1 Partial Least Squares Regression (PLSR) 

PLSR is a powerful regression algorithm that uses few factors to represent Raman spectral data 

to predict aflatoxin concentration in the maize samples under study. PLSR calibration models 

were developed from Raman spectral data that were acquired from maize samples obtained from 

the Kimaeti Kenya seed with the concentration ranges as described in Table 4.3. The ability of 

PLSR to predict unknown concentration was determined by full cross validation method of one 

spectra at a time (Wold et al., 1984). The spectral range of 400 cm
-1

 to 1800 cm
-1

 from 120 

samples was used to develop the models that were later used to predict AFB1 concentrations in 

unknown samples obtained from Nairobi open markets. 

Figure 5.12 shows a representative plot of the PLSR calibration and validation models (the other 

PLSR predicted vs measured plots are shown in Appendix II). The PLSR calibration models 

resulted in linear regression equations with slopes of 0.94 - 1.03 for kernels and 0.93 - 1.01 for 

flour and with an average correlation coefficient of determination (R
2
) of 0.97 for kernels excited 

at 785 nm and 0.77 for 532 nm excitation (see Table 5.3). The R
2
 obtained from flour were on 

average 0.93 and 0.74 for 785 nm and 532 nm excitations respectively as shown in Table 5.3. 
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The high values of Pearson’s correlation (0.99 and 0.97 for maize kernels and flour samples 

respectively) for samples excited at 785 nm indicate that the Raman spectra were well correlated. 

This resulted in high R
2
 values (> 0.93) in samples excited by 785 nm, an indication that these 

models performed better than models developed from samples excited at 532 nm which had low 

R
2
 value (0.76) and Pearson’s correlations (0.83).  

Meanwhile the average values of RMSEC (5.74; 7.83), RMSEP (8.29; 8.96), SEC (7.70; 8.29) 

and SEP (11.00; 9.30) for maize and flour samples excited at 785 nm suggest that these models 

were accurate and in agreement with the work of Lee and co-workers (Lee et al., 2014). Similar 

increase in errors is seen in kernels and flour samples excited at 532 nm which have RMSEC 

values of 12.41 and 40.21 respectively. The high errors in models developed from samples 

excited at 532 nm were replicated in average values of RMSEP (14.27; 36.88), SEC (14.01; 

38.36) and SEP (15.53; 76.43) for maize kernels and flour respectively (see Table 5.3). This still 

emphasize that PLSR models from 532 nm excitation data were less accurate than 785 nm laser.  

In general, based on R
2
 and RMSEC, PLSR performed better in predicting AFB1 concentration 

from Raman spectral data obtained at 785 nm excitation than the models developed from 

samples excited at 532 nm due to the high SNR exhibited by 785 nm laser as earlier shown in 

section 5.2. In studies done elsewhere on maize flour, a similar observation on the robustness of 

PLSR to predict AFB1 concentration was observed (Lee et al., 2014).
 

The high accuracy in calibration and validation models of samples excited at 785 nm are 

attributed to the high LSD and low excitation power which caused the laser to have high SNR 

and low LOD. The R
2
 (~1) indicate that the values predicted with this model are accurate and 

can be adopted in monitoring AFB1 in human food and animal feeds. The high correlation of > 
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0.9 showed that the data analysed here has minimal experimental errors and that no much 

information was lost during data pre-processing. Hence the predictions that would be done using 

these models are valid 

However, the high errors characterizing 532 nm laser confirm that this laser is not good in 

monitoring AFB1 levels and can have serious negative implications if used solely to quantify 

AFB1 levels in maize. The high calibration errors were due to low SNR that made this laser to 

have high LOD. The errors particularly affected the C1 and C2 concentration ranges which could 

not be detected by this laser.  

Further research in this field (AFB1 in maize) using Raman spectroscopy should thus involve 

higher excitation levels of 785 nm and above. However care should be taken while choosing 

higher excitations as increase in wavelength reduces the power of excitation and result to a low 

intensity spectrum. The resolution of the spectrometer also reduces with increase in excitation 

wavelength caused by increase in LSD. The problem with large LSD is the samples will not be 

well-focused due low resolution. 

5.5.2 Multiple Linear Regression (MLR) 

MLR is a mathematical technique that makes predictions of one variable based on many 

variables. Unlike PLSR which uses few components to represent a large data, multiple linear 

regression (MLR) uses a number of variables in the calibration equation as described earlier in 

section 3.7.2. It models by finding the coefficients of the linear fit of Equation (3.16). The 

predictions in MLR models can only take place if the variables are linearly independent since 

Equation 3.16 involves matrix inversion (Sidik and Center, 1972). This is the reason why some 

variables were rejected while developing this models. As a result it was only the independent 
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variables (predictors) that were used in developing the model (Kelly and McNeil, 1975). The 

requirement of having more samples than predictors for the matrix conversion was achieved 

using the Unscrumbler Camo software that uses singular value decomposition. MLR does not 

recognise missing values and as result rejects all variables with missing values.  

MLR performs a similar function as PLSR and here both were used for comparison sake. As can 

be seen in Figure 5.13 (a representation of MLR models, others are found in Appendix III), MLR 

also gives a linear regression equation. As in the previous regression model (i.e. PLSR), its 

performance is judged by the value of R
2
 and RMSEC. The regression model had average R

2
 

values of 0.93 and 0.86 for kernels and flour respectively excited at 785 nm. However, at 532 nm 

excitation we had 0.61 and 0.41 for kernels and flour respectively as displayed in Table 5.4.   

From the R
2
 squared values it is confirmed 785 nm laser is superior to 532 nm in detection of 

AFB1 as shown in PLSR. Other errors shown in Table 5.4 also replicate the same conclusion 

above. Generally in both excitations, MLR performed poorer than PLSR. A similar observation 

on the performance of both MLR and PLSR models were also reported by Lee and company 

recently (Lee et al., 2014).  

The MLR models were characterized by higher errors than MLR because this model is non-

linear and involves matrix inversions thus posing the problem collinearity as discussed in section 

3.7.2. The errors were even worse with 532 nm excitation. Thus in choosing chemometric 

techniques for quantifying AFB1 in maize linear models like PLSR should be used so that the 

predictions are accurate and reliable. 
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Figure 5.12: The predicted vs measured plot of PLSR for maize kernels excited at 785 nm, (a) the calibration models and (b) validation models 
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Table 5.3: Extracted PLSR results for maize kernels and flour samples excited at 532 nm and 785 nm 

Excitationn Conc. 

range 

RMSEC RMSEP SEC SEP Correlation  R
2
  Slope  

      Calib. Valid. Calib. Valid. Calib. Valid. 

Kernels 
785 nm C1 0.018 0.012 0.008 0.091 0.989 0.98 0.978 0.957 1.031 0.964 

 C2 0.096 0.555 0.689 0.119 0.990 0.956 0.978 0.902 0.959 0.829 

 C3 3.135 7.123 4.147 13.789 0.980 0.998 0.958 0.995 0.935 1.049 

 C4 19.698 25.466 25.963 29.999 0.998 0.992 0.975 0.982 1.011 0.917 

 Ave. 5.737 8.289 7.702 11.000 0.989 0.982 0.972 0.959 0.984 0.940 

532 nm C1 0.032 0.066 0.039 0.071 0.45 0.781 0.331 0.462 0.549 0.577 

 C2 0.631 0.752 0.788 0.793 0.965 0.999 0.927 0.999 0.867 1.001 

 C3 9.835 10.258 11.598 15.147 0.991 0.975 0.982 0.976 0.981 0.862 

 C4 39.158 45.987 43.624 46.123 0.918 0.998 0.833 0.997 0.934 1.045 

 Ave. 12.414 14.266 14.012 15.534 0.831 0.938 0.768 0.859 0.833 0.872 

FLOUR 
785 nm C1 0.002 0.006 0.002 0.06 0.969 0.993 0.937 0.983 0.970 1.042 

 C2 0.116 0.125 0.118 0.129 0.971 0.991 0.939 0.979 0.989 0.959 

 C3 9.835 10.258 9.598 10.147 0.972 0.982 0.942 0.961 1.009 1.003 

 C4 21.369 25.466 23.456 26.845 0.953 0.993 0.904 0.985 0.930 0.953 

 Ave. 7.831 8.964 8.294 9.295 0.966 0.990 0.931 0.977 0.975 0.989 

532 nm C1 0.120 0.109 0.116 0.458 0.772 0.489 0.574 0.144 0.711 0.463 

 C2 0.960 0.882 0.802 2.147 0.752 0.915 0.510 0.817 0.546 1.605 

 C3 45.258 40.812 41.852 82.147 0.988 0.980 0.976 0.956 1.012 1.000 

 C4 114.524 105.711 110.654 220.961 0.950 0.952 0.917 0.894 0.958 0.942 

 Ave. 40.214 36.8785 38.356 76.428 0.866 0.834 0.744 0.703 0.807 1.003 

Where Conc., Ave., Calib. and Valid. represent concentration, average, calibration and validation values respectively. The wavelengths used to 

excite the samples are shown in the first column. 
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Figure 5.13: The predicted vs measured plot of MLR for maize kernels excited at 785 nm, (a) the calibration models and (b) validation models 
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Table 5.4: The MLR results for maize kernels and flour samples excited at 785 nm and 532 nm. MLR models revealed more errors than PLSR with 

samples excited at 532 nm having the highest values 

Excitation Conc. RMSEC RMSEP SEC SEP Correlation R
2
 Slope 

            Calib. Valid. Calib. Valid. Calib. Valid. 

Kernel samples 
 785 nm  C1 0.111 0.210 0.119 0.221 0.969 0.993 0.937 0.983 0.97 1.042 

 C2 0.126 0.897 0.574 0.995 0.971 0.991 0.939 0.979 0.989 0.959 

  C3 5.115 9.369 7.259 10.725 0.972 0.982 0.942 0.961 1.009 1.003 

 C4 23.289 30.789 28.657 34.598 0.953 0.993 0.904 0.985 0.93 0.953 

 Average 7.160 10.316 7.702 11.634 0.967 0.990 0.931 0.977 0.975 0.989 

 532 nm  C1 1.132 1.366 1.214 1.522 0.45 0.781 0.331 0.4621 0.549 0.577 

 C2 1.191 2.052 1.968 2.096 0.965 0.999 0.927 0.999 0.867 1.001 

  C3 19.835 21.001 20.321 22.512 0.991 0.975 0.982 0.976 0.981 0.862 

 C4 95.108 98.258 96.331 99.998 0.918 0.998 0.833 0.997 0.934 1.045 

  Average  29.317 30.669 29.959 31.532 0.831 0.938 0.768 0.8586 0.833 0.871 

 Flour samples 

  

  

  

  

  

  

  

  

  

  

 785 nm  C1 0.201 0.986 0.789 0.823 0.989 0.980 0.978 0.957 1.031 0.964 

  C2 0.419 1.212 0.933 1.936 0.99 0.956 0.978 0.902 0.959 0.829 

 C3 6.353 7.222 7.123 8.012 0.98 0.998 0.958 0.995 0.935 1.049 

  C4 22.060 28.442 27.146 30.179 0.998 0.992 0.975 0.982 1.011 0.917 

   Average 7.258 9.466 9.000 10.237 0.989 0.982 0.972 0.959 0.984 0.940 

 532 nm  C1 2.591 3.698 3.334 5.994 0.772 0.489 0.574 0.144 0.711 0.463 

  C2 5.981 6.146 6.019 7.290 0.752 0.915 0.51 0.817 0.546 1.605 

 C3 25.211 29.169 27.412 31.224 0.988 0.98 0.976 0.956 1.012 1 

  C4 125.159 147.937 140.684 159.355 0.95 0.952 0.917 0.894 0.958 0.942 

 Average 39.736 46.738 44.362 50.966 0.866 0.834 0.744 0.705 0.807 1.003 
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5.5.3 Predictions of unknown samples 

Raman spectra obtained from maize samples collected from Nairobi open markets were 

preprocessed as described earlier in section 4.3. The PLSR and MLR models developed in 

sections 5.5.2 and 5.5.3 were then used to predict AFB1 concentrations in the samples. Models 

developed from data generated by 785 nm excitation were selected for predictions as they gave 

the least errors of prediction and highest R
2
 values. The results of this predictions were averaged 

and classified according to the labels of the samples (suspected and unsuspected) as indicated in 

Tables 5.5.  

Samples predicted by PLSR models gave better predictions with low deviations (mean standard 

deviation of 3.48 in unsuspected and 27.02 for suspected maize flour samples). However, MLR 

models were characterized by high mean standard deviations of 22.33 and 71.85 for the 

unsuspected and suspected samples respectively, which could be linked to the low R
2
 values 

obtained while developing these models due to the non-linearity nature of this model. 

Tables 5.5 show that suspected maize had higher levels of AFB1 than unsuspected samples in 

both PLSR and MLR just as expected. PLSR model predicted that the unsuspected maize 

consumed in Nairobi had AFB1 levels ranging from 12 ppb to 869 ppb while suspected samples 

had AFB1 levels as high as 1.87 x 10
4
 ppb. Similar results were found in North Eastern province 

of Kenya in the year 2007 (Daniel et al., 2011) using ELISA method. MLR models were 

characterized by extreme standard deviations that were averaged to 25 and 48 for suspected and 

unsuspected samples respectively which make predictions of this model unreliable.  

The levels of AFB1 in unsuspected maize were higher than the allowable AFB1 levels consumed 

in Kenya with PLSR. Thus it is not always accurate to conclude that white looking maize is good 
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for consumption. The suspected maize was confirmed to be unsuitable for consumption. Thus for 

the fungi to be physically observed in maize it means that maize has extremely high AFB1 levels 

(> 1000 ppb ) and should be sorted out of food meant for human consumption. Suspected maize 

also should not be used as animal feed as the levels in them are higher than the allowable levels 

(300 ppb) in animal feeds. 

The MLR models are characterized with very high deviations and that is why they misclassified 

suspected maize as unsuspected maize and vice versa. These errors also contributed in sample 

M24, M31, M35 and M44 having same standard deviations even though they had different levels 

of AFB1. The predictions also confirm that PLSR model is superior to MLR model. 

Table 5.5: Average predictions and deviations of suspected and unsuspected maize flour excited at 785 

nm 

Model Suspected samples Unsuspected samples 

 Predicted levels  (ppb) Mean 

standard 

deviation 

Predicted levels (ppb) Mean 

standard 

deviation 

PLSR 1.19 x 10
3
 – 1.88 x 10

4
 27.02 12.05 – 818.00 3.48 

MLR 560.59 – 1.84 x 10
4
 71.85 94.04 – 971.35 22.02 
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5.5.4 Validation of Partial Least Squares regression (PLSR) and Multiple Linear 

Regression (MLR) models using ELISA 

The ground maize samples from CIMMYT were first analysed by Raman spectra as earlier 

described in section 4.4.2 and AFB1 concentrations were predicted by PLSR and MLR models 

developed in section 5.5.1 and 5.5.2. These levels of AFB1 found by Raman spectroscopy are 

compared to those obtained from ELISA in Table 5.6. Sample P6 was not reflected in Table 5.6 

because its spectra was averaged with that of P12 as the two samples were found to have the 

same level of AFB1. Using these results PLSR and MLR models developed in this work were 

validated.  

AFB1 levels in most of the samples excited at 785 nm were correlated with the reference 

(ELISA) measurements with only sample P27 having a deviation greater than 15 ppb. This could 

have been brought about with experimental errors since Raman is a weak scattering and any 

movement near the system may cause the peaks on the spectrum to shift. The shift from 

reference values increased with MLR up to a difference of 60 ppb in P27 sample (see Table 5.6) 

The mean deviations in samples excited at 785 nm with PLSR was -5.40 which makes this model 

valid in detection and quantification of AFB1. However the MLR models had higher errors (> 10 

ppb) which are even higher than the allowable limits in human food. The errors are even worse 

in samples excited at 532 nm (in hundredths) in both PLSR and MLR. Therefore this excitation 

should not be used to detect AFB1 in food and feeds. Samples excited at 532 nm deviated most 

from the reference values in both regressions (PLSR and MLR) especially in P27, P116, P9 and 

P62 
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Table 5.6: Compares the results of AFB1 levels obtained by ELISA and Regression models (PLSR and 

MLR) 

Flour 

samples 

Conc. (ppb) of AFB1 

 using ELISA 

PLSR ( ppb)                 MLR (ppb) 

785 nm  532 nm 785 nm 532nm 

P38 840.459 850.600 945.567 885.222 1042.245 

P43 598.800 565.040 660.381 644.812 359.876 

P41 465.400 455.258 550.179 525.114 651.984 

P130 405.800 408.640 506.658 445.778 609.781 

P27 125.500 183.400 678.369 65.590 372.359 

P116 40.860 42.688 100.158 85.596 241.001 

P9 96.250 95.147 112.369 36.487 296.555 

P14 77.470 79.976 105.987 117.445 277.547 

P12/P6 700.200 715.162 790.125 691.004 505.230006 

P62 80.500 89.510 110.815 40.335 298.522 

 

Pearson's correlation coefficients of 0.99 and 0.74 for PLSR and 0.99 and 0.59 for MLR models 

of flour samples excited by 785 nm and 532 nm respectively were obtained as given in Figure 

5.14. This implied that the AFB1 levels in unknown samples were satisfactorily predicted with 

an average R
2
 value of 0.99 for 785 nm excitation. The 532 nm excitation models gave low R

2
 

values (0.74 and 0.59 for PLSR and MLR models) which could be linked to low SNR obtained 

from spectra of samples excited at this wavelength. The ratio of the standard deviation of the 

reference (ELISA) values to the standard error of cross-validation values followed the same 

trend as presented in Table 5.7.  

Generally the data obtained in this work was well correlated both in model development and in 

validating them (Table 5.7). The high R
2
 values are indications that the models were accurate. In 

studies done elsewhere on maize flour, Raman spectroscopy predicted AFB1 concentration 
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values that were highly correlated with reference HPLC values (Lee et al, 2014) thus confirming 

the potential application of this technique for aflatoxins screening and quantification. 

Table 5.7: Statistical summary of PLSR and MLR models in predicting the unknown 

concentration of AFB1 in Nairobi open market maize 

Chemometric technique 

and excitation 

s R
2
  p 

PLSR with 785 nm  4.199 0.993 0.997 

PLSR with 532 nm 2.927 0.735 0.974 

MLR with 785 nm  3.259 0.993 0.987 

MLR with 532 nm 2.025 0.591 0.798 

Where s and p represent the ratio of standard deviation of reference values and the standard 

error of cross validation and Pearson’s correlation coefficient respectively 

From the ratio of standard deviation of reference values and the standard error of cross validation 

it can be concluded that PLSR model can quantify AFB1 in maize better than MLR model. The 

high R
2
 (0.99) and Pearson’s correlation coefficient (0.99) obtained at 785 nm excitation 

confirms that Raman spectrometer is indeed a robust, rapid and non-invasive method of aflatoxin 

B1 detection and quantification.   
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Figure 5.14: The predicted (measurements from PLSR and MLR models) vs measured (ELISA 

measurements) plot of samples excited at 785 nm and 532 nm 
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CHAPTER 6: CONCLUSION AND RECOMMENDATIONS 

6.1 Conclusion 

This study was undertaken to explore Raman spectroscopy as an alternative AFB1 detection 

technique which is fast, non-invasive, reliable and with a potential for field deployment. There 

are few reports on the application of this technique in detection and quantification of this highly 

toxic and carcinogenic chemical in maize kernels and flour. Here Raman data obtained from 

intentionally contaminated and uncontaminated samples were analysed using chemometric 

models; PCA, MLR and PLSR. Steady state absorption and fluorescence spectroscopy on AFB1 

in methanol was also carried out in order to obtain its characteristic ground state and excited state 

absorption and emission spectra respectively.  

AFB1 being toxic has limited researchers studying its steady state characteristics and this has 

made this information rare in literature. Here we report of fluorescence and absorbance steady 

state properties of AFB1. The absorption and fluorescence were centred at 340 nm and 440 nm 

respectively. Both absorbance and fluorescence intensities increased with increase in 

concentration and had three small maxima attributed to first three vibrational states in the ground 

state and first excited states respectively. Methanol absorption was also found at 280 nm when 

excited in the UV-VIS-NIR regions. 

It has been shown that most of Raman peaks found either by long procedures of SERS can easily 

be found by adsorbing AFB1 on a glass slide. The twenty two Raman active peaks were 

registered on the Raman signature with the most prominent peak being 1552 cm
-1

 and 1593 cm
-1

 

for 785 nm and 532 nm lasers respectively which agree with literature. Raman spectra of AFB1 

found with 532 nm excitation have ten times more intensity than 785 nm excitation with SNR of 
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4 and 12 respectively. This was contributed by the high excitation power at 532 nm.  At the same 

time standard AFB1 adsorbed on a glass slide gave a better Raman profile than AFB1 dissolved 

in methanol inside cuvette giving an alternative to SERS done by other researchers. The SNR of 

AFB1 adsorbed on glass slide and in cuvette was found as 14 and 4.5 respectively for 785 nm 

excitation. However, SNR of AFB1 adsorbed on glass slide at 532 nm excitation was 6 and for 

AFB1 solution in cuvette were 2.5. 

Moreover, it has been shown that chemometric aided Raman spectrometer model is a superior 

alternative to the traditional quantitative methods used in detection of AFB1 such as ELISA and 

HPLC. PCA was used for data exploration and it was found that 1552 cm
-1

 and 1593 cm
-1

 peaks 

(assigned to υ(C-C) ring deformation and υ(C-C)/ υ(C-C-C)) were responsible for detection of 

AFB1.  The use of Chemometrics also confirmed that 785 nm excitation of AFB1 is better than 

532 nm excitation. Raman spectrometer with the help of PLSR was able to quantify AFB1 levels 

in Nairobi in white maize (unsuspected samples) meant for human consumption within 12 ppb to 

869 ppb range. It was also confirmed in this work that suspected maize (fungi infected) is neither 

good for human nor animal consumption. Suspected maize samples recorded AFB1 

concentrations with PLSR in the order of 10
4
 ppb values. These levels are far higher than the 

accepted limits of feeds and human food. Indeed Raman spectrometer can provide a rapid cheap 

and reliable method of detecting AFB1. 

In conclusion, Raman spectroscopy equipped with 785 nm laser with PLSR models can be used 

to monitor AFB1 levels in human food and animal feeds. Models developed from samples 

excited at 532 nm and PLSR can only be used in monitoring AFB1 levels in animal feeds. MLR 

models should be avoided in AFB1 monitoring systems since they are nonlinear and pose 
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collinearity problems in quantifying AFB1 levels in maize. This is because AFB1 levels depend 

on a linear relationship between intensity and number of molecules of AFB1. 

6.2 Recommendations 

Use of pellets and simulates could be considered in the future to improve on the spectra acquired 

and consequently improve the detection and quantification limits. This will aid in detection and 

quantification of AFB1 in lower concentrations found in infant cornmeal. Other aflatoxins (B2, 

G1, G2 and total) could also be studied in maize kernels since they are also carcinogenic. This 

could be done in selected regions of Kenya. Such studies could be important in monitoring 

aflatoxin intake among Kenyans. We also recommend the use 785 nm excitation or higher 

excitation wavelengths in the analysis of AFB1. 

  



88 

 

REFERENCES 

Abdi, H. and Williams, L. J. (2010). Principal component analysis. Wiley Interdiscip. Rev. 

Comput. Stat. 2, 433–459.  

Afoakwa, E. O. and Sefa-Dedeh, S. (2001). Chemical composition and quality changes occurring 

in Dioscorea dumetorum pax tubers after harvest. Food Chem. 75, 85–91.  

Alcaide-Molina, M., Ruiz-Jiménez, J., Mata-Granados, J. M., and Castro, M. L. de (2009). High 

through-put aflatoxin determination in plant material by automated solid-phase extraction 

on-line coupled to laser-induced fluorescence screening and determination by liquid 

chromatography–triple quadrupole mass spectrometry. J. Chromatogr. A 1216, 1115–

1125.  

Ali, N., Hashim, N. H., Saad, B., Safan, K., Nakajima, M., and Yoshizawa, T. (2005). Evaluation 

of a method to determine the natural occurrence of aflatoxins in commercial traditional 

herbal medicines from Malaysia and Indonesia. Food Chem. Toxicol. Int. J. Publ. Br. Ind. 

Biol. Res. Assoc. 43, 1763–1772.  

Bacaloni, A., Cavaliere, C., Cucci, F., Foglia, P., Samperi, R., and Laganà, A. (2008). 

Determination of aflatoxins in hazelnuts by various sample preparation methods and 

liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 1179, 182–189.  

Basappa, V. S. (1970). Aflatoxin and kojic acid production by resting cells of Aspergillus flavus 

Link. J. Gen. Microbiol. 61, 81–6. 

 



89 

 

Bhat, R. V., Shetty, P. H., Amruth, R. P., and Sudershan, R. V. (1997). A foodborne disease 

outbreak due to the consumption of moldy sorghum and maize containing fumonisin 

mycotoxins. J. Toxicol. Clin. Toxicol. 35, 249–255.  

Bowen, J. M., Sullivan, P. J., Blanche, M. S., Essington, M., and Noe, L. J. (1989). ‘Optical-fiber 

raman spectroscopy used for remote in-situ environmental analysis.’ Google Patents.  

Burke, E. A. (2001). Raman microspectrometry of fluid inclusions. Lithos 55, 139–158.  

Carranza, J. E., Iida, K., and Hahn, D. W. (2003). Conditional data processing for single-shot 

spectral analysis by use of laser-induced breakdown spectroscopy. Appl. Opt. 42, 6022–

6028.  

Cary, J. W., Klich, M. A., and Beltz, S. B. (2005). Characterization of aflatoxin-producing fungi 

outside of Aspergillus section Flavi. Mycologia 97, 425–432.  

Centers for Disease Control and Prevention (CDC) (2004). Outbreak of aflatoxin poisoning-

eastern and central provinces, Kenya, January-July 2004. MMWR Morb. Mortal. Wkly. 

Rep. 53, 790–793. 

Csele, M. (2004). 'Fundamentals of light Sources and Lasers'.J. A. John Wiley and sons, Inc., 

New Jersey Canada.   

Cornes, T. (2012). 'STR Spectrum System Manual.' Software Version, Chome Tokyo 

 

Daniel, J. H., Lewis, L. W., Redwood, Y. A., Kieszak, S., Breiman, R. F., Flanders, W. D., Bell, 

C., Mwihia, J., Ogana, G., Likimani, S., Straetemans, M., and McGeehin, M. A. (2011). 



90 

 

Comprehensive Assessment of Maize Aflatoxin Levels in Eastern Kenya, 2005–2007. 

Environ. Health Perspect. 119, 1794–1799.  

Demtröder, W. (2011). ‘Atoms, Molecules and Photons: An Introduction to Atomic-, Molecular- 

and Quantum Physics’, 2nd ed. 2010 editionth ed. Springer, Heidelberg; London.  

Dheeraj, K. S., Erdene-Ochir, G., Eun-min, C., Kwang-Hwi, C., Jaebum, C., and Sehun, K. 

(2013). Detection of the mycotoxin citrinin using silver substrates and Raman 

spectroscopy. J. Hazard. Mater. 265C, 89–95.  

Dieing, T., Hollricher, O., and Toporski, J. (2011). ‘Confocal Raman Microscopy.’ Springer 

Berlin Heidelberg, Berlin, Heidelberg.  

Dirr, H. W. (1987). Solvent effects on the spectroscopic properties of aflatoxin B1. Int. J. 

Bichemistry 19, 1137–1140.  

Egmond, H. P. van, Schothorst, R. C., and Jonker, M. A. (2007). Regulations relating to 

mycotoxins in food. Anal. Bioanal. Chem. 389, 147–157.  

Falk, M. and Ford, T. A. (1966). Infrared Spectrum and Structure of Liquid Water. Can. J. 

Chem. 44, 1699–1707.  

Frelka, J. C. and Harris, L. J. (2014). Nuts and Nut Pastes. In ‘The Microbiological Safety of 

Low Water Activity Foods and Spices’ (J.B. Gurtler, M.P. Doyle, J.L. Kornacki, Eds.), 

pp213–244. Springer New York.  



91 

 

Fujita, K., Sugiyama, J., Tsuta, M., Shibata, M., Kokawa, M., Onda, H., and Sagawa, T. (2013). 

Detection of Aflatoxins B1, B2, G1 and G2 in Nutmeg Extract Using Fluorescence 

Fingerprint. Food Sci. Technol. Res. 19, 539–545.  

Fung, F. and Clark, R. F. (2004). Health effects of mycotoxins: a toxicological overview. J. 

Toxicol. Clin. Toxicol. 42, 217–234.  

Galvin, M. and Zerulla, D. (2011). The Extreme Low-Frequency Raman Spectrum of Liquid 

Water. ChemPhysChem 12, 913–914.  

Ghanem, I., Orfi, M., and Shamma, M. (2008). Effect of gamma radiation on the inactivation of 

aflatoxin B1 in food and feed crops. Braz. J. Microbiol. 39, 787–791.  

Gunes, A., Kalkan, H., Durmus, E., and Butukcan, M. B. (2013). Detection of aflatoxin 

contaminated figs using Near-Infrared (NIR) reflectance spectroscopy. In ‘2013 

International Conference on Electronics, Computer and Computation (ICECCO)’, 

pp123–126.  

Herzallah, S., Alshawabkeh, K., and Fataftah, A. A. (2008). Aflatoxin Decontamination of 

Artificially Contaminated Feeds by Sunlight, γ-Radiation, and Microwave Heating. J. 

Appl. Poult. Res. 17, 515–521.  

Hoeltz, M., Welke, J. E., Noll, I. B., and Dottori, H. A. (2010). Photometric procedure for 

quantitative analysis of Aflatoxin B1 in peanuts by thin-layer chromatography using 

charge coupled device detector. Quím. Nova 33, 43–47.  



92 

 

Hruska, Z., Yao, H., Kincaid, R., Brown, R., Cleveland, T., and Bhatnagar, D. (2014). 

Fluorescence Excitation–Emission Features of Aflatoxin and Related Secondary 

Metabolites and Their Application for Rapid Detection of Mycotoxins. Food Bioprocess 

Technol. 7, 1195–1201.  

Hruska, Z., Yao, H., Kincaid, R., Brown, R., Cleveland, T., and Bhatnagar, D. (2009). 

Evaluating the Relationship Between Aflatoxin Concentration and Hyperspectral 

Fluorescence Response in Single Corn Kernels. In ‘ISM Conference.’ International 

Society for Mycotoxicology, Tulln, Austria.  

Hyunh, T., Ly, C., Knight, P., and Wolde-Mariam, W. (2012). Quantitation of Aflatoxin B1 by 

ELISA in Commodities that Pose a Matrix Effect. In ‘Presented at AOAC 126th Annual 

Meeting.’  

Ivanova, B. and Spiteller, M. (2014). Raman Spectroscopic and Mass Spectrometric 

Determination of Aflatoxins. Food Anal. Methods 7, 242–256.  

Jurado-López, A., Luque de Castro, M. D., and others (2003). Chemometric approach to laser-

induced breakdown analysis of gold alloys. Appl. Spectrosc. 57, 349–352.  

Kalkan, H., Güneş, A., Durmuş, E., and Kuşçu, A. (2014). Non-invasive detection of aflatoxin-

contaminated figs using fluorescence and multispectral imaging. Food Addit. Contam. 

Part Chem. Anal. Control Expo. Risk Assess. 31, 1414–1421.  

Kaya-Celiker, H., Mallikarjunan, P. K., Schmale III, D., and Christie, M. E. (2014). 

Discrimination of moldy peanuts with reference to aflatoxin using FTIR-ATR system. 

Food Control 44, 64–71.  



93 

 

Kelly, F. J. and McNeil, J. T. (1975). ‘Testing Research Hypotheses Using Multiple Linear 

Regression.’ Southern Illinois University Press.  

Khayoon, W. S., Saad, B., Yan, C. B., Hashim, N. H., Ali, A. S. M., Salleh, M. I., and Salleh, B. 

(2010). Determination of aflatoxins in animal feeds by HPLC with multifunctional 

column clean-up. Food Chem. 118, 882–886.  

Lee, K.-M., Herrman, T. J., Nansen, C., and Yun, U. (2013). Application of Raman spectroscopy 

for qualitative and quantitative detection of fumonisins in ground maize samples. Int. J. 

Regul. Sci. 1, 1–14.  

Lee, K.-M., Herrman, T. J., and Yun, U. (2014). Application of Raman spectroscopy for 

qualitative and quantitative analysis of aflatoxins in ground maize samples. J. Cereal Sci. 

59, 70–78.  

Lewis, L., Onsongo, M., Njapau, H., Schurz-Rogers, H., Luber, G., Kieszak, S., Nyamongo, J., 

Backer, L., Dahiye, A. M., Misore, A., DeCock, K., Rubin, C., and Kenya Aflatoxicosis 

Investigation Group (2005). Aflatoxin contamination of commercial maize products 

during an outbreak of acute aflatoxicosis in eastern and central Kenya. Environ. Health 

Perspect. 113, 1763–1767.  

May, O. E., Moyer, A. J., Wells, P. A., and Herrick, H. T. (1931). The Production of Kojic acid 

by Aspergillus Flavus. J. Am. Chem. Soc. 53, 774–782.  

McCreery, R. L. (2005). ‘Raman spectroscopy for chemical analysis.’ John Wiley & Sons.  



94 

 

Medders, G. R. and Paesani, F. (2015). Infrared and Raman Spectroscopy of Liquid Water 

through ‘First-Principles’ Many-Body Molecular Dynamics. J. Chem. Theory Comput. 

11, 1145–1154.  

Mirghani, M. E. S., Man, Y. B. C., Jinap, S., Baharin, B. S., and Bakar, J. (2002). FTIR 

spectroscopic determination of soap in refined vegetable oils. J. Am. Oil Chem. Soc. 79, 

111–116.  

Móricz, Á. M., Horváth, E., Ott, P. G., and Tyihák, E. (2008). Raman spectroscopic evaluation 

of the influence of Pseudomonas bacteria on aflatoxin B1 in the BioArena complex 

bioautographic system. J. Raman Spectrosc. 39, 1332–1337.  

Mosier-Boss, P. A., Lieberman, S. H., and Newbery, R. (1995). Fluorescence rejection in Raman 

spectroscopy by shifted-spectra, edge detection, and FFT filtering techniques. Appl. 

Spectrosc. 49, 630–638.  

Myakalwar, A. K., Sreedhar, S., Barman, I., Dingari, N. C., Rao, S. V., Kiran, P. P., Tewari, S. 

P., and Kumar, G. M. (2011). Laser-induced breakdown spectroscopy-based investigation 

and classification of pharmaceutical tablets using multivariate chemometric analysis. 

Talanta 87, 53–59.  

Netto-Ferreira, J. C., Heyne, B., and Scaiano, J. C. (2011). Photophysics and photochemistry of 

aflatoxins B1 and B2. Photochem. Photobiol. Sci. Off. J. Eur. Photochem. Assoc. Eur. 

Soc. Photobiol. 10, 1701–1708.  



95 

 

Norris, J. L. and Caprioli, R. M. (2013). Analysis of Tissue Specimens by Matrix-Assisted Laser 

Desorption/Ionization Imaging Mass Spectrometry in Biological and Clinical Research. 

Chem. Rev. 113, 2309–2342.  

Ononye, A. E., Yao, H., Hruska, Z., and Kincaid, R. (2010). Calibration of a fluorescence 

hyperspectral imaging system for agricultural inspection and detection. Vol. 7676, 

pp76760E–76760E–11.  

Pearson, T. C. and Schatzki, T. F. (1998). Machine Vision System for Automated Detection of 

Aflatoxin-Contaminated Pistachios. J. Agric. Food Chem. 46, 2248–2252.  

Pearson, T. C., Wicklow, D. T., Maghirang, E. B., Xie, F., and Dowell, F. E. (2001). 

DETECTING AFLATOXIN IN SINGLE CORN KERNELS BY TRANSMITTANCE 

AND REFLECTANCE SPECTROSCOPY. Trans. ASAE 44.  

Pestka, J. J. and Chu, F. S. (1984). Aflatoxin B1 dihydrodiol antibody: production and 

specificity. Appl. Environ. Microbiol. 47, 472–477.  

Pitt, J. I. and Hocking, A. D. (2009). ‘Fungi and Food Spoilage’, 3rd ed. 2009 editionth ed. 

Springer, New York.  

Quintero, L. A., Hunt, S. D., and Diem, M. (2006). Denoising of raman spectroscopy signals. 

Ribeiro, J., Cavaglieri, L., Vital, H., Cristofolini, A., Merkis, C., Astoreca, A., Orlando, J., Caru, 

M., Dalcero, A., and Rosa, C. A. R. (2011). Effect of gamma radiation on Aspergillus 

flavus and Aspergillus ochraceus ultrastructure and mycotoxin production. Radiat. Phys. 

Chem., 658–663.  



96 

 

Robens, J. and Cardwell, K. (2003). The costs of mycotoxin management to the USA: 

management of aflatoxins in the United States. Toxin Rev. 22, 139–152.  

Rocha, M. E. B., Freire, F. C. O., Maia, F. E. F., Guedes, M. I. F., and Rondina, D. (2014). 

Mycotoxins and their effects on human and animal health. Food Control 36, 159–165.  

Ryder, A. G., O’Connor, G. M., Thomas J, G., and others (2000). Quantitative analysis of 

cocaine in solid mixtures using Raman spectroscopy and chemometric methods. J. 

Raman Spectrosc.  

Sato-Berrú, R. Y., Medina-Valtierra, J., Medina-Gutiérrez, C., and Frausto-Reyes, C. (2004). 

Quantitative NIR–Raman analysis of methyl-parathion pesticide microdroplets on 

aluminum substrates. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 60, 2231–2234.  

Sharma, S. K., Angel, S. M., Ghosh, M., Hubble, H. W., and Lucey, P. G. (2002). Remote pulsed 

laser Raman spectroscopy system for mineral analysis on planetary surfaces to 66 meters. 

Appl. Spectrosc. 56, 699–705.  

Shaver, J. M. (2001). Chemometrics for Raman spectroscopy. Pract. Spectrosc. Ser. 28, 275–

306.  

Sidik, S. M. and Center, L. R. (1972). ‘An improved multiple linear regression and data analysis 

computer program package.’ National Aeronautics and Space Administration.  

Smith, E. and Dent, G. (2005). ‘Modern Raman Spectroscopy: A Practical Approach’, 1
st
 editio. 

Wiley, Hoboken, NJ.  



97 

 

Stroka, J. and Anklam, E. (2002). New strategies for the screening and determination of 

aflatoxins and the detection of aflatoxin-producing moulds in food and feed. TrAC 

Trends Anal. Chem. 21, 90–95.  

Technology, C. for A. S. and (2003). ‘Mycotoxins: Risks in Plant, Animal, and Human Systems.’ 

Council for Agricultural, Ames, Iowa.  

Thirumala-Devi, K., Mayo, M. A., Reddy, G., Emmanuel, K. E., Larondelle, Y., and Reddy, D. 

V. R. (2001). Occurrence of ochratoxin A in black pepper, coriander, ginger and turmeric 

in India. Food Addit. Contam. 18, 830–835.  

Torbert, R. (2002). Special Issue: Aflatoxin/Fumonisin Elimination and Fungal Genomics 

Workshops; Phoenix Arizona, October 23-26 2001. Mycopathologia 155, 1–122.  

Torii, H., Ishikawa, A., and Tasumi, M. (1997). Electron-vibration interaction and the Raman 

intensities of a quinoid molecule. J. Mol. Struct. 413–414, 73–79.  

Tripathi, S. and Mishra, H. N. (2009). A rapid FT-NIR method for estimation of aflatoxin B1 in 

red chili powder. Food Control 20, 840–846.  

Wang, X., Niessner, R., and Knopp, D. (2014). Magnetic Bead-Based Colorimetric 

Immunoassay for Aflatoxin B1 Using Gold Nanoparticles. Sensors 14, 21535–21548.  

Wang, Z., Feng, J., Li, L., Ni, W., and Li, Z. (2011). A multivariate model based on dominant 

factor for laser-induced breakdown spectroscopy measurements. J. Anal. At. Spectrom. 

26, 2289–2299.  



98 

 

Wellner, N., Georget, D. M. R., Parker, M. L., and Morris, V. J. (2011). In situ Raman 

microscopy of starch granule structures in wild type and ae mutant maize kernels. Starch 

- Stärke 63, 128–138.  

Westland, J. C. (2007). Confirmatory analysis with partial least squares. Abregufen Am 20, 2007.  

Wold, S., Ruhe, A., Wold, H., and Dunn, I., W. (1984). The Collinearity Problem in Linear 

Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses. SIAM J. 

Sci. Stat. Comput. 5, 735–743.  

Wu, X., Gao, S., Wang, J.-S., Wang, H., Huang, Y.-W., and Zhao, Y. (2012). The surface-

enhanced Raman spectra of aflatoxins: spectral analysis, density functional theory 

calculation, detection and differentiation. The Analyst 137, 4226–4234.  

Wu, Y., Gao, Q., and Zhang, Y. (2015). A robust baseline elimination method based on 

community information. Digit. Signal Process. 40, 53–62.  

Wu, Z., Zhang, C., and Stair, P. C. (2006). Influence of absorption on quantitative analysis in 

Raman spectroscopy. Catal. Today 113, 40–47.  

Yao, H., Hruska, Z., Brown, R. L., and Cleveland, T. E. (2006). Hyperspectral bright greenish-

yellow fluorescence (BGYF) imaging of aflatoxin contaminated corn kernels. Vol. 6381, 

pp63810B–63810B–8.  

Yao, H., Hruska, Z., Kincaid, R., Brown, R., Cleveland, T., and Bhatnagar, D. (2010). 

Correlation and classification of single kernel fluorescence hyperspectral data with 



99 

 

aflatoxin concentration in corn kernels inoculated with Aspergillus flavus spores. Food 

Addit. Amp Contam. Part Chem. Anal. Control Expo. Amp Risk Assess. 27, 701–9.  

Zöllner, P. and Mayer-Helm, B. (2006). Trace mycotoxin analysis in complex biological and 

food matrices by liquid chromatography–atmospheric pressure ionisation mass 

spectrometry. J. Chromatogr. A 1136, 123–169.  

 
  



100 

 

Appendix I 
Safety precautions for aflatoxins  

Aflatoxins are highly toxic and carcinogenic substances as mentioned earlier. Thus strict 

measures were taken when handling them as enlisted below.  

 Disposable gloves, lab coats, aprons and mouth masks were always worn before handling 

aflatoxin and aflatoxin-contaminated samples as shown. 

 

 Since aflatoxins are electrostatic in nature and can disperse easily in working areas, they 

were first dissolved in Methanol before carrying out any experiment on them. AFB1 

solutions were made in the fume chamber. 

 Aflatoxins are subject to light degradation. Therefore in order to prevent our AFB1 

solution from degradation different solutions were wrapped by aluminium foil as shown 

below. 

 

 The glass vessels containing aflatoxin were kept in wooden containers packed with 

adsorbent materia1 to protect them from UV light that would have destroyed aflatoxin 



101 

 

strength and the containers were clearly labelled to avoid contaminating unsuspecting 

individuals.  

 Any accidental aflatoxin spillages were swapped with 1% sodium hypochlorite bleach 

(NaOCl) and left for 10 min before adding 5 % aqueous acetone. 

 Laboratory areas where work with aflatoxins took place was indicated and demarcated 

with warning notices such as ‘DANGER - AFLATOXIN - CARCINOGEN HANDLING 

AREA’. 

 Used laboratory coats and aprons were also soaked in 5% NaOCl solution overnight 

before normal washing took place. 

 Any contamination of working area could easily be tracked using a long-wave UV lamp 

due to fluorescence characteristics of aflatoxins. 

 In case of aflatoxin skin contamination, the affected area were immediately washed with 

5% sodium hypochlorite followed by washing the skin with soap or any skin friendly 

detergent and then rinsed thoroughly with water.  

 Contaminated waste materials (used syringes and gloves) were kept in tightly closed 

containers and were not mixed with other waste materials. They were later incinerated. 

 Eating, drinking and smoking in the laboratory were prohibited to avoid food 

contamination. 
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Appendix II  
 

Levels of AFB1 in solutions meant for developing quantification models 

Table 7.1: Different concentrations in ppb of solutions used to contaminate maize samples from Kimaeti Kenya seed for developing classification 

and quantification models  

Sample Sample group C11 C12 C13 C14 C15 C16 C17 C18 C19 C110 C111 C112 C113 C114 C115 

Conc. (ppb) C1 (0.15-0.95) 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 

Sample 

 

C21 C22 C23 C24 C25 C26 C27 C28 C29 C210 C211 C212 C213 C214 C215 

Conc. (ppb) C2 (15-95) 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 

Sample 

 

C31 C32 C33 C34 C35 C36 C37 C38 C39 C310 C311 C312 C313 C314 C315 

Conc. (ppb) C3 (150-950) 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 

Sample 

 

C41 C42 C43 C44 C45 C46 C47 C48 C49 C410 C411 C412 C413 C414 C415 

Conc. (ppb) C4 (1500-9500) 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 

Sample Sample group C116 C117 C118 C119 C120 C121 C122 C123 C124 C125 C126 C127 C128 C129 C130 

Conc. (ppb) C1 (0.15-0.95) 0.9 0.95 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.15 0.25 0.35 0.45 

Sample 

 

C216 C217 C218 C219 C220 C221 C222 C223 C224 C225 C226 C227 C228 C229 C230 

Conc. (ppb) C2 (15-95) 90 95 15 20 30 40 50 60 70 80 90 15 25 35 45 

Sample 

 

C316 C317 C318 C319 C320 C321 C322 C323 C324 C325 C326 C327 C328 C329 C330 

Conc. (ppb) C3 (150-950) 900 950 150 200 300 400 500 600 700 800 900 150 250 350 450 

Sample 

 

C416 C417 C418 C419 C420 C421 C422 C423 C424 C425 C426 C427 C428 C429 C430 

Conc. (ppb) C4 (1500-9500) 9000 9500 1500 2000 3000 4000 5000 6000 7000 8000 9000 1500 2500 3500 4500 
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Appendix III 

Partial Least Squares Regression  

  

Figure 7.1: PLSR calibration and validation models for flour samples excited at 785 nm. The models are categorized according to the 

concentration range. In (a) the calibration samples are presented while (b) shows the validation samples. The slopes are slightly 

lower than their counterpart in Figure 512.. An indication that maize kernels are good for building PLSR models. 
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Figure 7.2: PLSR calibration and validation models for maize kernels at 532 nm excitation. PLSR gives very low slope (<6) for both 

calibration and validation models in the lowest concentration range (0.15 ppb – 0.95 ppb).This confirms that 532 nm laser is limited 

in quantification of AFB1 in lower concentrations. 
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Figure 7.3: PLSR calibration and validation models for flour samples at 532 nm excitation. The models are worse than their counterpart 

in Figure 7.1. This is because the slope values for C1 (0.15 ppb – 0.95 ppb) and C2 (15 ppb – 95 ppb) ranges are poor (<6). This confirms 

that 532 nm laser is not suitable for Quantification of AFB1 in maize flour samples. In quantification AFB1 in maize using 532 nm 

excitation, it is advisable to use whole grains. 
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Appendix IV 

Multiple Linear Regression models (MLR) 

 

Figure 7.4: MLR calibration and validation models for flour samples at 785 nm excitation. The gradients of this models lower than those obtained 

from the same regression for kernel samples in Figure 7.3. 
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Figure 7.5: MLR calibration and validation models for maize kernels at 532 nm excitation. Just like in PLSR the calibration and Validation 

gradients of these models are lower than those derived from 785 nm excitation in Figures 7.3 and 7.4. 
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Figure 7.6: MLR calibration and validation models for flour samples at 532 nm excitation. This model displays the lowest gradients among all the 

models. 
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Table 7.2: The predicted concentrations in ppb for unsuspected samples with unknown concentrations. The samples were  excited at 785 nm using 

PLSR model 

Unsuspected samples 

Sample M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 

Predicted 

Conc. 

666.83

4 

687.98

4 

791.91

9 

12.053 26.591 808.94

2 

19.283 719.89

4 

91.589 28.297 814.54

1 

818.00

1 

654.17

3 

677.95

4 

281.16

3 
Deviation 1.214 3.402 7.071 0.532 0.622 3.113 0.342 8.713 2.394 0.468 3.533 1.374 2.568 1.477 3.252 

Sample M16 M17 M18 M19 M20 M21 M22 M23 M24 M25 M26 M27 M28 M29 M30 

Predicted 

Conc. 

298.95

9 

15.738 70.942 90.566 73.161 308.92

2 

507.94

5 

128.22

3 

158.32

6 

177.20

6 

281.88 306.58

6 

171.35

4 

210.75

5 

869.00

2 
Deviation 9.858 0.017 2.113 1.112 0.604 7.154 5.241 5.310 5.446 6.503 2.614 19.996 9.508 2.826 4.085 

Sample M31 M32 M33 M34 M35 M36 M37 M38 M39 M40 M41 M42 M43 M44 M45 

Predicted 

Conc. 

194.03

9 

187.34

8 

151.31

8 

168.36

3 

356.10

2 

556.46

6 

560.59

1 

641.83

8 

711.54

9 

220.14

5 

325.69

8 

717.44 838.01 650.72

2 

803.18

4 
Deviation 2.747 1.876 3.838 3.546 1.053 1.439 2.672 4.55 2.843 0.129 1.984 1.106 4.563 6.217 1.897 

Sample M46 M47 M48 M49 M50           

Predicted 

Conc. 

768.36

2 

659.99

8 

708.67

3 

51.156 161.08           

Deviation 1.146 3.013 1.868 2.129 3.085           

 

Suspected samples 

Sample N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 

Predicted Conc. 8.771E3 1.510E4 6.583E3 1.875E4 1.441E3 4.033E3 1.191E3 1.247E3 8.701E3 6.510E3 1.439E3 3.990E3 2.165E3 

Deviation 20.204 31.558 27.408 38.761 26.449 22.943 26.196 21.581 21.445 23.747 21.433 26.595 10.166 

Sample N14 N15 N16 N17 N18 N19 N20       

Predicted Conc. 3.970E3 1.702E3 5.281E3 7.972E3 6.173E3 1.359E3 3.701E3       

Deviation 28.568 20.36 25.984 26.858 28.145 21.007 38.191       
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Table7.3: The predicted concentrations in ppb for samples excited at 785 nm using MLR model 

Unsuspected samples 

Sample M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 

Predicted Conc. 728.223 758.326 877.206 181.88 206.586 971.354 110.755 961.08 94.039 617.348 451.318 568.363 666.804 

Deviation 11.31 5.446 11.503 12.614 19.996 29.508 12.826 28.085 29.747 11.876 13.838 12.546 38.214 

Sample M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 M25 M26 

Predicted Conc. 680.84 591.919 380.922 156.102 196.466 654.173 677.954 781.163 273.161 295.738 198.959 215.738 109.424 

Deviation 13.402 37.071 14.984 15.053 45.439 22.568 11.477 23.252 26.196 21.581 19.858 26.017 16.113 

Sample M27 M28 M29 M30 M31 M32 M33 M34 M35 M36 M37 M38 M39 

Predicted Conc. 405.668 373.161 308.922 307.945 798.959 915.738 709.424 905.668 873.161 808.922 807.945 851.307 464.123 

Deviation 20.11 23.604 27.154 25.241 19.858 23.252 26.196 21.581 19.858 26.017 22.568 21.407 28.292 

Sample M40 M41 M42 M43 M44 M45 M46 M47 M48 M49 M50   

Predicted Conc. 881.357 454.173 577.954 281.163 198.959 615.738 498.959 815.738 809.424 795.668 731.161   

Deviation 11.477 23.252 26.196 41.581 19.858 26.017 16.113 20.11 23.604 37.154 35.241   

 

Suspected samples 

Sample N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 

Predicted Conc. 1.842E4 1.35E3 3.70E3 3.97E3 1.70E3 560.591 641.838 711.549 1.10E3 1.18E3 

Deviation 100.872 82.365 85.225 83.568 109.36 99.672 44.55 52.843 106.129 101.984 

Sample N11 N12 N13 N14 N15 N16 N17 N18 N19 N20 

Predicted Conc. 717.44 838.01 650.722 803.184 768.362 659.998 708.673 982.533 985.716 1992.912 

Deviation 85.106 54.563 46.217 57.897 59.146 42.485 35.82 40.533 55.716 92.912 



111 

 

Appendix V 

Spectrophotometer system 

 

 

Figure 7.7: A picture image of spectrophotometer used to obtain fluorescence spectra of AFB1 (a). The 

computer is also attached to aid in data acquisition (b). Image c shows the optical part of the 

spnectrometer 

(c) 

(b) 
(a) 


