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Abstract

To improve diagnostic tools, immunotherapies and vaccine development for
trichinellosis surveillance and control there is a need to understand the host
immune responses induced during infection with Trichinella zimbabwensis, a
tissue-dwelling nematode. In this study, we sought to determine immune
responses induced in mice during T. zimbabwensis infection. The parasite strain
used (Code ISS51209) was derived from a naturally infected crocodile (Crocodylus
niloticus) and is the main Trichinella species prevalent in southern Africa. Sixty 6- to
8-week-old female BALB/c mice were randomly assigned to two equal groups:
T. zimbabwensis-infected (n = 30) and the non-infected control group (n = 30).
Levels of serum tumour necrosis factor-alpha (TNF-«), interleukin-10 (IL-10),
interleukin-4 (IL-4) as well as parasite-specific IgM, IgG, IgG1, IgG2a, IgG2b and
IgG3 antibody responses were determined using enzyme-linked immunosorbent
assay (ELISA). The cytokines and antibodies provided information on T-helper 1
(Th1)- and Th2-type, T-regulatory and antibody responses. Results showed that
during the intestinal stage of infection, higher levels of parasite-specific IgM, IgG,
IgG1 (P < 0.05) and IL-10 and TNF-a (P < 0.001) were observed in the Trichinella-
infected group compared with the non-infected control group. In the parasite
establishment and tissue migration phases, levels of IgG1 and IgG3 were elevated
(P < 0.001), while those of IgM (P < 0.01) declined on days 21 and 35 post infection
(pi) compared to the enteric phase. Our findings show that distinct differences in
Th1- and Th2-type and T-regulatory responses are induced during the intestinal,
tissue migration and larval establishment stages of T. zimbabwensis infection.

Introduction genus Trichinella (Murrell & Pozio, 2011). The disease has
been reported to occur in 66 countries and infects an
estimated 11 million people (Dupouy-Camet, 2009; Yang
et al., 2010). Scattered outbreaks of human trichinellosis
have been reported over time in Asia and Europe
(Ranque et al., 2000; Khumjui et al., 2008; European
*E-mail: bwonkoba@gmail.com Food Safety Authority, 2011; Murrell & Pozio, 2011).

Trichinellosis is a cosmopolitan foodborne zoonosis
caused by a parasitic tissue-dwelling nematode of the
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Trichinella infections are normally acquired through
ingestion of raw or undercooked infected meat (Chai
et al., 2005; Murrell et al., 2005) or food contaminated with
infective muscle larvae (ML) (Slifko et al., 2000; Dabanch,
2003; Pozio & Rossi, 2008). The ingested ML develop into
adults that, in the small intestines, release newborn larvae
(NBL) that migrate to the muscles (Gao et al., 2014).

The risk of future human T. zimbabwensis infection in
sub-Saharan Africa is increasing due to poverty, food
insecurity, climate change and failure of veterinary
controls and surveillance (De Merode ef al., 2004; Pozio
& Murrell, 2006; Gottstein et al., 2009; Magwedere et al.,
2012; Mukaratirwa et al., 2013). Furthermore, globaliza-
tion has exacerbated the risk through increased move-
ment of people, wildlife and livestock in and out of
T. zimbabwensis endemic zones of southern Africa
(Mukaratirwa ef al.,, 2013). Natural T. zimbabwensis
infections have been reported in a variety of vertebrates
(Pozio et al., 2007; La Grange et al., 2009, 2010, 2012).
In addition, experimental infections have shown that the
parasite can infect non-human primates, pigs and rodents
(Mukaratirwa & Foggin, 1999; Pozio et al., 2004;
Mukaratirwa et al., 2008). Although there have been no
cases of human infections due to T. zimbabwensis in sub-
Saharan Africa, the parasite remains a public health risk.

Trichinella infection surveillance, control and treatments
have been hampered by wide distributions of
domestic, synanthropic and sylvatic reservoirs, the lack
of a licensed vaccine and efficacious drugs against
encysted ML, and lack of reliable diagnostic tools for
screening early cases of infection (Yépez-Mulia et al., 2007;
Gruden-Movsesijan et al.,, 2008; Feng et al., 2013).
However, research continues into the testing of parasite-
derived somatic antigens and crude extracts in an effort to
develop vaccines, identifying putative molecules to be
used in the development of diagnostic tools, vaccines and
immunotherapies (Ruangkunaporn et al., 1994; Pozio
et al., 2002; Deville et al., 2005; Bien\, 2007; Frey et al., 2009;
Nagano et al., 2011; Li et al., 2013). The present study was
undertaken to determine differential immune responses
induced in mice infected with T. zimbabwensis. Trichinella
zimbabwensis is the most prevalent Trichinella species in
southern Africa, and its infectivity (Hurnikova et al., 2004;
Pozio & La Rosa, 2005; Matenga et al., 2006), host range
(Mukaratirwa ef al., 2003, 2008; Matenga et al., 2006),
biochemistry (La Rosa et al., 2003), diagnosis (Ludovisi
et al., 2013) and treatment (Mukaratirwa et al., 2015) have
been studied extensively. However, there is a paucity of
information on the immune responses induced during the
phases of its life cycle.

Materials and methods
Experimental infections in mice

Sixty female BALB/c mice aged 6-8 weeks were
sourced from the University of Cape Town, South Africa,
and maintained in pathogen-free individual ventilated
cages at the Biomedical Resources Unit of the University
of KwaZulu-Natal (UKZN), Westville Campus, South
Africa. The mice were fed with heat-sterilized rodent
pellets (Meadow feeds, Durban, Republic of South Africa)
and clean water ad libitum. The experimental mice were

randomly assigned to two groups; Trichinella-infected
(n = 30) and the non-infected control group (n = 30).

A crocodile-derived T. zimbabwensis (ISS1209) parasite
strain was used. The isolate was maintained in our
laboratory by serial passage in Sprague—Dawley rats.
Muscle larvae were obtained from infected stock rats:
whole carcasses were digested at 42 days post infection
(dpi) according to the digestion method previously
described by Kapel & Gamble (2000). Each mouse was
orally infected with 500 ML and, at 0, 7, 14, 21, 28 and
35 dpi, groups of six mice were sacrificed humanely and
blood was collected for sera.

Immunological protocols

Preparation of T. zimbabwensis antigen was performed
as described previously by Escalante et al. (2004). The ML
obtained as described earlier were sonicated at five pulses
of 100 W for 30 s each and centrifuged at 40,000 X gat4°C
for 60min. The supernatant was collected. The protein
concentration was determined by Bradford assay
(Bradford, 1976) then an anti-protease cocktail (Sigma-
Aldrich, St. Louis, Missouri, USA) was added. The
antigen was diluted to working concentration and stored
at —80°C until use.

Trichinella-specific IgG, IgM, 1gG1, IgG2a, IgG2b and
IgG3 antibodies were measured in sera collected on 0, 7, 14,
21, 28, 35 dpi by enzyme-linked immunosorbent assay
(ELISA) in both experimental and control groups.
Microplates were coated with 6.0ug/ml of crude
T. zimbabwensis larval antigen in 100wl bicarbonate
buffer (4mM Na,CO;, 8mMm NaHCO; pH 9.6) and
incubated overnight at 4°C. The microtitre plates were
blocked with 0.05% Tween 20 in phosphate-buffered saline
(PBS) containing 5% bovine serum albumin (BSA) and
incubated at 37°C for 2h. Serum samples at a dilution of
1:200 were added in triplicate wells and incubated at 37°C
for 2h. Horseradish peroxidase-conjugated goat anti-
mouse IgG and IgM (Santa Cruz Biotechnology, California,
USA) antibodies were added at a dilution of 1:2000, and
IgG1, Ig2a, IgG2b and IgG3 at a dilution of 1:1000. After 2h
of incubation at 37°C, 100 pl substrate (TMB substrate;
KPL, Gaithersburg, Maryland, USA) was added. Optical
density (OD) values were measured at 630nm using a
microplate reader (BioTek, Winooski, Vermont, USA).

Concentrations of interferon-y (IFN-y), tumour necro-
sis factor-a (TNF-a), interleukin-4 (IL-4) and IL-10 were
measured in sera by mouse cytokine-specific ELISA kits
(RnD systems, Minneapolis, Minnesota, USA) according
to the manufacturer’s guidelines. Cytokine concen-
trations were obtained from standard curves generated
by recombinant cytokines.

Data analysis

Antibody responses and cytokine concentrations at
each day of sacrifice were expressed as means *+ standard
error (SE) and analysed using a two-way analysis of
variance (ANOVA); the levels of significance were
determined by Bonferroni post-hoc test analyses using
Graph pad PRISM version 5.04 for windows (Graphpad
software, San Diego, California, USA) and a P value of
< 0.05 was considered to be significant.
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Results

Following infection, the mice were found to be
seropositive for parasite-specific IgM (fig. 1A), IgG
(fig. 1B) and IgG1 (fig. 1C) antibodies. A gradual increase
in IgM levels was observed at day 7 pi, which reached
peak levels on days 14 and 28 pi (fig. 1A). Significant
levels of IgG were observed compared to the control
group (ANOVA, F3,59=>5.01, P=0.001; Bonferroni
post-hoc P <0.01) (fig. 1B). High levels of anti-
T. zimbabwensis-specific IgG1 levels were observed at
day 14 pi (fig. 1C) and declined at day 21 pi (ANOVA,
F5,7 = 5.01, P = 0.0007; Bonferroni post-hoc P < 0.001).
Trichinella-specific IgG3 antibody levels were detected
from day 21 pi and remained elevated throughout the
course of infection (fig. 1D). A decrease in IgG, IgM and
IgG1 antibody responses was noted after day 28 pi.
Overall, the Trichinella-infected group had significantly
higher antibody responses as compared to the control
group (P < 0.001).

At day 7 pi, significant levels of TNF-a (ANOVA,
Fs43 = 181.87, P < 0.0001; Bonferroni post-hoc P < 0.001)
(fig. 2) and IL-10 (ANOVA, Fs34 =98.02, P < 0.0001;
Bonferroni post-hoc P < 0.001) (fig. 3B) were observed
in the infected group compared to the control group.
Interleukin-10 concentrations showed a gradual decline,
attaining low levels at day 21 pi (ANOVA, Fs34 = 98.02,
P < 0.0001; Bonferroni post-hoc P < 0.01). At days 28 and
35 pi, a gradual increase and decline were observed,
respectively. Significantly higher levels of IL-4 were
detected at day 21 pi (ANOVA, F4,4 = 382.91, P < 0.0001;
Bonferroni post-hoc P < 0.001) (fig. 3A), which declined
at day 35 pi to the level of the control group. Overall, there
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were significant differences in the levels of variation
amongst infection groups over the infection period for all
the parameters.

Discussion

Our findings show that the intestinal stage of
T. zimbabwensis infection was characterized by the early
production of T. zimbabwensis-specific IgM and IgG
antibodies. This implies that the host intestinal epithelial
mucosa elicits a protective innate immune response
against the NBL and adult worms (AW) in the intestinal
tract (Picherot ef al., 2007). Therefore, it is plausible to
deduce that parasite-derived antigens are released by
NBL and AW to interact with enterocytes and immune
cells influencing, in the long run, T-cell polarization and
production of parasite-specific antibodies (Yépez-Mulia
et al., 2009). The resultant molecular dialogue between the
host and the parasite results in the induction of a mixed
T-helper 1 (Th1)- and Th2-type immune response, similar
to that induced in mice with chronic T. spiralis infection
(V. Fabre et al., 2009). Our findings also show that there
was markedly enhanced production of the Thl-type
cytokine, TNF-a, and parasite-specific IgG1 (Th2-type
dependent) antibody as early as 7 dpi, which is not
the case with T. spiralis infection (Beiting et al., 2007;
M.V. Fabre et al., 2009). In chronic T. spiralis infection,
antibodies were measurable at 15 dpi, with low IgG2a
levels. Therefore, the enteric phase of T. zimbabwensis
infection majorly favoured a mixed Thl- and Th2-type
response, as opposed to T. spiralis and T. pseudospiralis
infections which favoured a low-level Thl-type response
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Fig. 1. Optical densities (mean *+ SE) of Trichinella-specific IgM (A), IgG (B), IgG1(C) and IgG3 (D) antibodies in Trichinella-infected mice
(®) and control mice (M). Levels of significance: *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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Fig. 2. Tumour necrosis factor alpha (TNF-a) concentrations

(mean * SE) in Trichinella-infected (black bars) and control mice

(white bars). Levels of significance: *, P < 0.05; **, P < 0.01;
P < 0.001.

with an earlier Th2-type response (Wakelin et al., 1994).
The role of T cells in both parasites has been fully
elucidated (V. Fabre et al., 2009) and the differences in
immune responses observed between the encapsulating
and the non-encapsulating Trichinella species may be
attributed to the challenge dose, parasite antigenic
diversity, animal-host sex and the rate of worm expulsion
(Furze & Selkirk, 2005; Fu et al., 2009; Hlaka et al., 2015).
The mixed Thl- and Th2-type responses elicited create
a pro-inflammatory and anti-inflammatory environment
that favours parasite immune evasion and establishment
(Hewitson et al., 2009; Gruden-Movsesijan et al., 2011; Ilic
et al., 2011; Sofronic-Milosavljevic et al., 2015). The
parasite-driven immunosuppression of the host regulat-
ory response offers mutual benefit to the parasite and the
host (Ilic et al., 2012; Ashour, 2013). This phenomenon has
also been reported during chronic T. spiralis infection in
mice, where there has been evidence of immune
regulatory induction enabling the parasite to survive
longer, limiting host pathology and overt inflammatory
responses (Beiting et al., 2007). These findings are
corroborated by our previous findings, where we
established that T. zimbabwensis AW persist in the
intestinal tract for up to 21 days post infection
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(Onkoba et al., 2015) as compared to other Trichinella
parasites that are eliminated in 7-18 dpi (Sadaow et al.,
2013). The differences in the persistence of AW suggest
that suppressive parasite or host factors may be at work,
or that antigenic diversity exists between the non-
encapsulating T. zimbabwensis and the encapsulating
T. spiralis parasites (Gao et al., 2012, 2014). In addition,
parasite-induced immunomodulatory responses may
also be slowing the rate at which the hosts generate
immune-mediated worm expulsion and parasite killing
(Goyal & Wakelin, 1993; Wakelin et al., 1994; Wakelin &
Goyal, 1996). Levels of the TNF-a cytokine at 7 dpi were
elevated, suggesting that a protective immune response is
initiated against T. zimbabwensis AW and NBL, which is
geared towards AW expulsion, abrogation of inflam-
mation caused by NBL or parasite killing (Harnett &
Harnett, 2010) and eventual tissue healing (Artis et al.,
1999; Maizels et al., 2009).

In the course of infection, we observed that the elevated
levels of TNF-a at 7 dpi corresponded with a decrease of
IL-4, and vice versa at 21 dpi. This implies that the
infection orchestrates down-regulation of IL-4, which is a
primary driver of the Th2-type response essential for
parasite establishment (Wakelin et al., 1994; Wu et al,,
2010). In the migrating phase of larval stages, the levels of
IL-10 and parasite-specific IgG1 and IgG3 antibodies were
significantly elevated. During T. spiralis infection, IL-10
levels have also been shown to coincide with IgG1 levels
(Beiting ef al., 2004). In both wild-type and IL-10 deficient
mice, it has been established that the inflammatory
response that occurs as a result of migrating larvae is
attenuated independently of IL-10 production (V. Fabre
et al., 2009). Similarly, during T. spiralis infection, IL-10
and transforming growth factor-g (TGF-B) have been
indicated to control inflammatory responses (Htibner
et al., 2012). However, Beiting et al. (2007) have shown that
IL-10 alone does not affect parasite survival, but that in
combination with TGF-B parasite death occurs. Thus, the
decline in the levels of IgM and IgG1 antibodies with
significant IgG3 antibody elevation shows that IL-10 in
combination with other immune cells down-regulates the
production of parasite-specific antibodies.

The mixed cytokine and antibody response shows
that the T. zimbabwensis parasite does not fully manage to
shut off the effects of innate effector cells, evident by
the presence of initial parasite-specific antibodies that
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Fig. 3. The concentrations (mean * SE) of IL-4 (A) and IL-10 (B) of Trichinella-infected (black bars) and control mice (white bars). Levels of
significance: *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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co-exist with either Thl- or Th2-type responses. There-
fore, based on our observations, T. zimbabwensis does not
seem to induce solely either Thl- or Th2-type immune
responses (Ilic et al., 2011), similar to a report of soil-
transmitted helminth (STH) infections (Anthony et al.,
2007). STHs provoke a strong CD4 + Th2-type-mediated
resistance that limits the establishment of helminthic
infections in the host and the resultant pathologies
(Yazdanbakhsh et al., 2001; Maizels et al., 2012).

In the present study, we demonstrate for the first time
that T. zimbabwensis orchestrates an immunomodulatory
response that encompasses mixed Th1l- and Th2-type and
T-regulatory responses, which are similar to those of other
intestinal nematodes during chronic infection (Else &
Finkelman, 1998). Our study was not able to elucidate
the actual role of Trichinella-derived excretory and/or
secretory products in T-cell priming, activation and
expansion. However, T. spiralis secreted products have
been shown to have an ability to induce T-cell priming
that results in expansion of regulatory T and B cells, and
dendritic cell (DC) stimulation in in vitro and murine
studies (Ilic et al., 2008; Aranzamendi et al., 2012).

In the parasite establishment phase in the striated
muscles, our results showed that the presence of ML in
the predilection site is associated with high levels of
Trichinella-specific IgM, IgG, IgG1l and IgG3 antibodies
and regulatory cytokine (IL-10). This may be as a result of
the muscular inflammation caused by encysting ML and
migrating NBL. Studies have shown that the resolution of
muscular inflammation is dependent on how successful
the enteric-phase immunoregulation was (Helmby &
Grencis, 2003). Therefore, we observed that as the number
of ML increased in striated muscles, the levels of Th1- and
Th2-type cytokines dropped. This is an indication that
the successful parasite establishes itself and initiates
induction and modulation of host effector mechanisms
(Artavanis-Tsakonas et al., 2003; Hewitson et al., 2009).
V. Fabre et al. (2009) established that nitric oxide is
involved in T. spiralis parasite killing during the chronic
phase of infection, but in the muscle phase the ML are
capable of inhibiting inducible nitric oxide synthase
(iNOS) to improve their survival and establishment.

We have shown, for the first time, that the non-
encapsulated T. zimbabwensis parasite induces a mixed
Th1- and Th2-type response with a Th2-biased immune
response in the parasite establishment phase. Therefore,
we can speculate that the NBL may be responsible for
the mixed Thl- and Th2-type and regulatory responses
in the enteric and migrating phases of the parasite life
cycle. The study was not able to elucidate extensively
the manner in which the different short-lived immune
responses are induced in the body compartments during
NBL migration. Further studies are needed to establish
the actual immune cells that are involved in anti-T.
zimbabwensis ~ immunity, immunomodulation and
establishment of parasitism.
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