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C hapter One

1.0 Background of the Study

The heat equation is an important partial differential equation 

which describes the distribution of heat (or variation in 

temperature) in a given region over time.

The heat equation has the general form

For a function U {x,y,z,t)  of three spatial variables x ,y ,z  and the time 

variable t, the heat equation is

d2u  _ dU
dx2 dt

or equivalently

where k is a constant.



The heat equation is of fundamental importance in diverse scientific 

fields. In mathematics, it is the prototypical parabolic partial 

differential equation. In statistics, the heat equation is connected 

with the study of Brownian motion via the Fokker-Planck equation. 

The diffusion equation, a more general version of the heat equation, 

arises in connection with the study of chemical diffusion and other 

related processes.

The heat equation predicts that if a hot body is placed in a box of 

cold water, the temperature of the body will decrease, and 

eventually (after infinite time, and subject to no external heat 

sources) the temperature in the box will equalize.

The heat equation is derived from Fourier's law and conservation of 

energy Cannon [1984]. By Fourier's law, the flow rate of heat energy 

through a surface is proportional to the negative temperature 

gradient across the surface,

q = — A-V u
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Where k is the thermal conductivity and u is the temperature. In one 

dimension, the gradient is an ordinary spatial derivative, and so 

Fourier's law is

q = — kux

In the absence of work done, a change in internal energy per unit 

volume in the material, aQ is proportional to the change in

temperature. That is,

AO = C p p A u

where cp is the specific heat capacity and p is the mass density of the 

material. Choosing zero energy at temperature zero, this can be 

rewritten as

Q = Cppu
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The increase in internal energy in a small spatial region of the

material

./• < v f  A x

over the time period

/ — At < r  < / I At

by the fundamental theorem of calculus. With no work done, and 

absent any heat sources or sinks, this change in internal energy in 

the interval | x-Ax,x + Ax] is accounted for entirely by the flux of heat

across the boundaries.

In the special case of heat propagation in an isotropic and 

homogeneous medium in the 3-dimensional space, this equation is

h ( II s s  I II  yy I II z z )
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Where:

u = u(x,y,z,t) is temperature as a function of time and space;

-y is the rate of change of temperature at a point over time;

uu,un.,ua are the second spatial derivatives (thermal conductions) 

of temperature in the x,y, and z directions, respectively;

it is a material-specific quantity depending on the thermal 

conductivity, the density and the heat capacity. Specifically, k=K/cp 

where k is the thermal conductivity, c is the capacity, and p the 

density.

The solutions of the unsteady heat conduction equations in 

cylindrical geometry in one and two dimensions are obtained using 

the Chebyshev polynomial expansions in the spatial domain.
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Equations are discretized in the time domain using the trapezoidal 

rule. The resulting differential equations are reduced to backward 

recurrence relations for the coefficients occurring in the Chebyshev 

polynomial expansions, which are then solved using the Tau 

method. It is shown that the Chebyshev polynomial solutions 

produce results to the machine-precision accuracy in the spatial 

domain using only a modest number of terms, and are, therefore, 

excellent alternatives to the other techniques used.

Suppose one has a function u which describes the temperature at a 

given location (x,y,z). This function will change over time as heat 

spreads throughout space. The heat equation is used to determine 

the change in the function u over time. The image above is animated 

and has a description of the way heat changes in time along a metal 

bar. One of the interesting properties of the heat equation is the 

maximum principle which says that the maximum value of u is 

either earlier in time than the region of concern or on the edge of the 

region of concern.
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This is essentially saying that temperature comes either from some 

source or from earlier in time because heat permeates but is not 

created from nothingness. This is a property of parabolic partial 

differential equations and is not difficult to prove mathematically 

Another interesting property is that even if u has a discontinuity at 

an initial time t = to, the temperature becomes smooth as soon as/>/0 

For example, if a bar of metal has temperature 0 and another has 

temperature 100 and they are stuck together end to end, then very 

quickly the temperature at the point of connection is 50 and the 

graph of the temperature is smoothly running from 0 to 100. The 

heat equation is used in probability and describes random walks. It 

is also applied in financial mathematics for this reason. It is also 

important in Riemannian geometry and thus topology: it was 

adapted by Richard Hamilton when he defined the Ricci flow that 

was later used to solve the topological Poincare conjecture.
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1.1 Statement of the Problem

It is well known that heat equations take a central place among 

possible instruments for the modeling of different processes and 

phenomena.

A considerable work has been done on investigating operation 

equations associated with heat equations Grigull and Hauf, [1966]; 

Kuehn and Goldstein, [1974], Alshahrani and Zeitoun, [2005]. 

Farinas et al. [1997] investigated the effect of internal fins on flow 

pattern, temperature distribution and heat transfer between 

concentric horizontal cylinders for different fin orientations and fin 

tip geometry for Rayleigh numbers ranging from 103 to 106. They 

employed the two fin orientations used by Chai and Patankar 

[1993].

8



Alshahrani and Zeitoun [2006] investigated the natural convection 

heat transfer between two horizontal concentric cylinders with two 

fins, at various inclination angles, attached to inner cylinder 

numerically using finite element technique.

However, little has been done to investigate the application of heat 

equations. This study therefore seeks to give a deeper insight on 

heat equations and their applicability

9



Chapter two

2.0 LITERATURE REVIEW

2.1 Introduction

This chapter discusses the literature review in the conceptual form. 

Areas addressed by this chapter include the assumptions made in 

one and two dimension heat equations. The different approaches 

used in developing one or two dimensional heat equations as well as 

the applications of heat equations.

2.2 Theoretical Background

The heat equation is an important partial differential equation 

which describes the distribution of heat (or variation in 

temperature) in a given region over time. For a function u(x, y, z, t) 

of three spatial variables (x, y, z) and the time variable t, the heat
x*. '

equation is
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The heat equation is of fundamental importance in diverse scientific 

fields. In mathematics, it is the prototypical parabolic partial 

differential equation. In statistics, the heat equation is connected 

with the study of Brownian motion via the Fokker-Planck equation. 

The diffusion equation, a more general version of the heat equation, 

arises in connection with the study of chemical diffusion and other 

related processes.

Thermal stability of superconductors under the effect of a two- 

dimensional hyperbolic heat conduction model M. As explained by 

Al-Odat, M.A. Al-Nimr, M. Hamdan,[2003J. The thermal stability of 

superconductor is numerically investigated under the effect of a 

two-dimensional hyperbolic heat conduction model. Two types of 

superconductor wires are considered, Types II and I. 1 he thermal 

stability of superconductor wires under the effect of different 

design, geometrical and operating conditions is studied.
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The Effect of the time rate of change of the disturbance and the 

disturbance duration time is investigated. Generally, it is found that 

wave model predicts a wider stability region as compared to the 

predictions of the classical diffusion model.

2.3 Importance of Heat Equations

The heat equation is of fundamental importance in diverse scientific 

fields. In mathematics, it is the prototypical parabolic partial 

differential equation. In statistics, the heat equation is connected 

with the study of Brownian motion via the Fokker-Planck equation. 

The diffusion equation, a more general version of the heat equation, 

arises in connection with the study of chemical diffusion and other 

related processes. The geothermal gases of constant wall 

temperature/concentration and constant heat/mass flux are 

electrically conducting and are affected by the presence of a 

magnetic field.
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Chamkha and Khaled [2000] have studied the effect of magnetic 

field on the coupled heat and mass transfer by mixed convection in a 

linearly stratified stagnation flow in the presence of an internal heat 

generation or absorption. EL-Hakiem [2000] studied thermal 

radiation effects on hydromagnetic free convection and flow 

through a highly porous medium bounded by a vertical plane 

surface. Borjini et al. [1999] have considered the effect of radiation 

on unsteady natural convection in a two-dimensional participating 

medium between two horizontal concentric and vertically eccentric 

cylinders. Chamkha 12000] has analyzed hydromagnetic mixed 

convection from a permeable semi-infinite vertical plate embedded 

in porous medium in heat dimension, Duwairi [2005] investigated 

radiation and magnetic field effects on forced convection flow from 

isothermal porous surfaces considering Viscous and ]oule heating. 

Hayat [20061 reported the modeling and exact analytic solutions for 

hydromagnetic oscillatory rotating flows of an incompressible 

Burgers fluid bounded by a plate.
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The problem of magnetohydrodynamic (MHD) boundary layer flow 

of an upper-convected Maxwell fluid is investigated in a channel by 

Abbas et al. [20061. Suppose one has a function u which describes 

the temperature at a given location (x; y, z). This function will 

change over time as heat spreads throughout space. The heat 

equation is used to determine the change in the function u over 

time. The image above is animated and has a description of the way 

heat changes in time along a metal bar. One of the interesting 

properties of the heat equation is the maximum principle which says 

that the maximum value of u is either earlier in time than the region 

of concern or on the edge of the region of concern.

This is essentially saying that temperature comes either from some 

source or from earlier in time because heat permeates but is not 

created from nothingness.

t
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2.4 Application on Brownian motion

Brownian motion is a seemingly random movement of particles 

suspended in a fluid (i.e. a liquid or gas) or the mathematical model 

used to describe such random movements, often called a particle 

theory. The mathematical model of Brownian motion has several 

real-world applications. An often quoted example is stock market 

fluctuations.

Brownian motion is among the simplest of the continuous-time 

stochastic (or random) processes, and it is a limit of both simpler 

and more complicated stochastic processes. This universality is 

closely related to the universality of the normal distribution. In both 

cases, it is often mathematical convenience rather than the accuracy 

of the models that motivates their study. Although the mingling 

motion of dust particles is caused largely by air currents, the 

glittering, tumbling motion of small dust particles is, indeed, caused 

chiefly by true Brownian dynamics.
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Jan Ingenhousz [1785] had described the irregular motion of coal 

dust particles on the surface of alcohol. It is believed that Brown was 

studying pollen particles floating in water under the microscope. He 

then observed minute particles within the vacuoles of the pollen 

grains executing a jittery motion. By repeating the experiment with 

particles of dust, he was able to rule out that the motion was due to 

pollen particles being 'alive', although the origin of the motion was 

yet to be explained. The first person to describe the mathematics 

behind Brownian motion was Thorvald N. Thiele [ 18801 in a paper 

on the method of least squares. This was followed independently by 

Louis Bachelier [ 1900] in his PhD thesis "The theory of speculation", 

in which he presented a stochastic analysis of the stock and option 

markets. However, it was Albert Einstein's |1905| and Marian 

Smoluchowski's [1906] independent research of the problem that 

brought the solution to the attention of physicists, and presented it 

as a way to indirectly confirm the existence of atoms and molecules. 

This is a property of parabolic partial differential equations and is
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not difficult to prove mathematically Another interesting property is 

that even if u has a discontinuity at an initial time t = tO, the 

temperature becomes smooth as soon as t > tO. For example, if a bar 

of metal has temperature 0 and another has temperature 100 and 

they are stuck together end to end, then very quickly the 

temperature at the point of connection is 50 and the graph of the 

temperature is smoothly running from 0 to 100.

The heat equation is used in probability and describes random 

walks. It is also applied in financial mathematics for this reason.

/
2.5 Modalities of Heat Equations on Particle Diffusion

The heat equation is, technically, in violation of special relativity, 

because its solutions involve instantaneous propagation of a 

disturbance.

The part of the disturbance outside the forward light cone can 

usually be safely neglected, but if it is necessary to develop a 

reasonable speed for the transmission of heat, a hyperbolic problem

17



should be considered instead -  like a partial differential equation 

involving a second-order time derivative. It is also important in 

Riemannian geometry and thus topology: it was adapted by Richard 

Hamilton when he defined the Ricci flow that was later used to solve 

the topological Poincare conjecture.

On the other hand, classical Lie symmetry method can be used to 

find similarity solutions, invariants, integrals motion, etc. 

systematically, Ibragimov, [1999] and the usefulness of this 

approach has been widely illustrated by several authors in different 

contexts such as; Yurusoy and Pakdemirli [1997] found symmetry 

reductions of unsteady three-dimensional boundary layers of some 

non-Newtonian fluids. Also, Group classification of boundary layer 

equations of a non-Newtonial fluid flow problem has been 

performed by Yurusoy and Pakdemirli, [1999] .

Recently, Soh 120051 has used Lie symmetry techniques to obtain 

all non-similar and similarity reductions of a non-linear diffusion 

equation arising in the study of the flow of a charged non-

18



Newtonian fluid over a flat plate. Soh et al. 12005J* used symmetry 

methods to obtain non-equivalent similarity reductions of the 

steady two-dimensional thermal boundary layer equations of an 

incompressible laminar flow.

Hayat et al. [2005] examined the unsteady flow of a hydrodynamic 

fluid past a porous plate by implementation of the Lie group 

method. Sivasankaran et al. [2006] studied coupled heat and mass 

transfer fluid flow by natural convection past an inclined semi­

infinite porous surface using Lie group analysis.

The flow of a third-grade fluid occupying the space over a wall is 

studied analytically using Lie group methods by Hayat et al. [2003] . 

Mohyuddin et al. [2004] applied Lie symmetry group method to 

obtain some steady as well as unsteady solutions of the equations of 

motion for incompressible Newtonian and non-Newtonian fluids.

Hayat and Mahomed [2007] obtained a new exact power law 

solution for the pipe flow of a third-grade fluid. Hayat and Kara

19



(n.d.) presented here deals with similarity solutions of the problem 

of the flow of a third grade fluid past an infinite plate which are in a 

state of rigid body rotation. Hayat et al. 120071 studied the flow 

generated in a semi-infinite expanse of an incompressible second- 

grade fluid bounded by a porous oscillating disk in the presence of a 

uniform transverse magnetic field.

El-Kabeir et al. [2007] have applied Group method to simulate 

problem of heat and mass transfer in boundary-layer flow of an 

electrically conducting fluid over a vertical permeable cone surface 

saturated porous medium in the presence of a uniform transverse 

magnetic field and thermal radiation effects. EL-Kabeir et al. [2008]
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C hapter th ree

3 .0  One and Two D im ension H eat Equation

3.1 A ssum ptions:

1) "Temperature and other scalar fields used in physics are assumed to be 

continuous, and this guarantees that if point x has temperature /4(x) and 

point z has temperature A(z) and r is a real number between /l(x) and 

A[z), then there will be a pointy spatio-temporally between x and z such 

thati4(y) = r"

Field [1980],

2) Not all mathematical properties transfer to temperatures.

3) There is no least real number but there is a lowest temperature.

4) Case study: For u[x; t) representing the temperature of point x at time t, 

we can derive the partial differential equation ,Boyce and DiPrima 

[1986].

21



3.2 One Dimensional Heat Equations

The "one-dimensional" in the description of the differential equation refers to 

the fact that we are considering only one spatial dimension. There are two 

methods used to solve for the rate of heat flow through an object. The first 

method is derived from the properties of the object. The second method is 

derived by measuring the rate of heat flow through the boundaries of the 

object.

Imagine a thin rod that is given an initial temperature distribution, then 

insulated on the sides. The ends of the rod are kept at the same fixed 

temperature; e.g., suppose at the start of the experiment, both ends are 

immediately plunged into ice water. We are interested in how the 

temperatures along the rod vary with time. Suppose that the rod has a length 

L (in meters), and we establish a coordinate system along the rod as 

illustrated below.

I-------
0
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Letw(x,0 represent the temperature at the point x meters along the rod

at time t (in seconds). We start with an initial temperature 

distribution w(x,0) = /(x) such as the one represented by the following graph

(with L = 2 meters).

The partial differential equation

u, = a2u„

is used to model one-dimensional temperature evolution. We will not discuss 

the derivation of this equation here. The most important features of this 

equation are the second  spatial derivative uxx and the first derivative with

respect to time,«,.

23



The positive constants2 represents the thermal diffusivity of the rod. It 

depends on the thermal conductivity of the material composing the rod, the 

density of the rod, and the specific heat of the rod.

The function u(xj) that models heat flow should satisfy the partial differential 

equation. However, in addition, we expect it to satisfy two other conditions. 

First, we fix the temperature at the two ends of the rod, i.e., we specify «(0,/) 

andu(Lj). In our sample problem, we will assume that both ends are kept at 0 

degrees Celsius:

u(0,t) = u(L,t) = 0 For all t> 0

This is called a boundary condition since it is imposed on the values of the 

desired function at the boundaries of the spatial domain.

The remaining condition represents the initial temperature distribution

u(x,o) = f ( x )

Where f(x) is the temperature at position x at time t=0.

24



All together, the model function'" u(x,t) that we seek should satisfy

u, = a2uu

«(0,0 = u(L,t) = 0 For all t > 0

u(x,o) = f(x)

3.3 Derivation in one dimension

The heat equation is derived from Fourier's law and conservation of energy 

fCannon 1984J. By Fourier's law, the flow rate of heat energy through a 

surface is proportional to the negative temperature gradient across the 

surface,

q =  - k V u

where k is the thermal conductivity and u is the temperature. In one 

dimension, the gradient is an ordinary spatial derivative, and so Fourier's law 

is

q -  —ku x

25



In the absence of work done, a change in internal energy per unit volume in 

the material, AQ, is proportional to the change in temperature. That is,

A Q — c.ppAu

where cp is the specific heat capacity and p is the mass density of the material. 

Choosing zero energy at temperature zero, this can be rewritten as

Q = cvpu

The increase in internal energy in a small spatial region of the material

x — Ax < £ < x 4- A t

over the time period

t -  At < t < t + At

is given by[l]

« + A i  i't-hAt w + A x f)ll
cpp / [«(£, t + At) -  u(£,t -  At)} d£ = cpp / / 7— d£dr

J x - A x  J t - A t  J x - A x  O T

where the fundamental theorem of calculus was used. With no work done, and 

absent any heat sources or sinks, this change in internal energy in the interval

26



[x -  Ax,jc + Ax | is accounted for entirely by the flux of heat across the 

boundaries. By Fourier's law, this is

rt+At c)n , chi,
—  (x +  Ax, t ) -- —  [X -- Ax, r)

Jt-At dx ox
dr

t+ A t  p x + A x  ( ) 2 u

k  /Jt-A t Jx Ax d £ 2
dr

Again by the fundamental theorem of calculus. By conservation of energy,

rt +  A t rX +  Ax  
/ / [cppUr -  ku^l d£dr =  0.

J t - A t  J x —A x

This is true for any rectangle [t-At,t + At ] * [x-Ax,x + Ax]. Consequently, the 
integrand must vanish identically;

cvpUf k u xx 0 .

k
Uf Uxxi

CpP

This is the heat equation.



3.4 Internal heat generation

The function u above represents temperature of a body. Alternatively, it is 

sometimes convenient to change units and represent u as the heat density of a 

medium. Since heat density is proportional to temperature in a homogeneous 

medium, the heat equation is still obeyed in the new units.

Suppose that a body obeys the heat equation and, in addition, generates is 

own heat per unit volume (e.g., in watts/L) at a rate given by a known function 

q varying in space and time. Then the heat per unit volume u satisfies an 

equation

28



3 .5  One D im ensional Radial and A ngular Neglects

3.5.1 Cylindrical Rod

T ' '• 1 i )

(a) Two Dirichlet boundary conditions

, T
U. dT/dx=0

(b) One Dirichlet boundary conditions

One Neumann Two boundary conditions

T, 0
t t t t

H  H
dT/dx=0

(c)One Dirichlet boundary conditions 

One Neumann boundary conditions
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3.5.2 Rectangular Slab

(d) 2 Dirichlet boundary conditions

T, dT/dx=0

(e)l Dirichlet boundary conditions 

1 Neumann boundary conditions

\ s
3 .6  One D im ensional Radial and A ngular Neglects

3.6.1 Rectangular Slab

T4 at y=L

(a)4 Dirichlet boundary conditions
30



3 6.2 Slab of Arbitrary Geometry

dT/dx =1

(b) 4 Dirichlet boundary condition on exterior boundary

Neumann boundary condition on interior boundary.

3.7 The Boundary Conditions

The heat equation is a second-order partial differential equation in the spatial 

coordinates. We need boundary conditions in order to specify how our system 

interacts with the outside surroundings.

There are three general types of boundary conditions: Dirichlet, Neumann, 

and Mixed boundary conditions.

31



3.71 Dirichlet Boundary Conditions

Dirichlet boundary conditions say that the temperature is set at the 

boundary. They have a form like this (for the one-dimensional case)

T(x = 0, t) = Tbc1{t)
( 10)

This says that at the left-hand-side boundary of our one-dimensional system, 

the temperature is a specified function of time. If the temperature is constant, 

then we have

T(x = 0,t) = Tbc1 (11)

In this case, we have the physical situation where our system is touching an 

infinite heat reservoir that maintains a constant temperature.

In a one-dimensional system, we must have two boundary conditions, one at 

the left-hand-side boundary and the other at the right-hand-side boundary. If 

our one-dimensional system is of length L in the x-direction, then our second 

Dirichlet boundary condition would be of the form:

T(x = L,t) = Tbc2(t)
(12)
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3.7.2 Neumann Boundary Conditions

Neumann boundary conditions say that the heat flux is set at the boundary. 

They have a form like this (for the one-dimensional case).

dT
dx

(x = 0, t) = dT(t)
dx bcl (13)

This says that at the left-hand-side boundary of our one-dimensional system, 

the heat flux is a specified function of time. If the heat flux is constant we have:

^ -(x  = 0,t) = ̂ -  dx dx bcl (14)

In this case, we have the physical situation where our system is touching an 

infinite heat source that maintains a constant flux of heat into the system 

regardless o f  the temperature. One end of the rod is well insulated. No heat 

leaves it. The heat flux is zero. In this case, we would use a Neumann 

boundary condition.

In a one-dimensional system, we must have two boundary conditions, one at 

the left-hand-side boundary and the other at the right-hand-side boundary.

If our one-dimensional system is of length L in the x-direction, then our

second Neumann boundary condition would be of the form:
33



dx dx bc2
(15)

3.7.3 Mixed Boundary Conditions

Mixed Boundary Conditions, as the name implies, is a mixture of the Dirichlet 

and Neumann boundary conditions. They have a form like this (for the one­

dimensional case).

^ ( x - 0 , t )  + T(x = 0,t) = Tbc1(t)+ 
dx

dT(t)
dx bc1

= f(t)
(16)

There are very relevant physical systems which require these elaborate 

boundary conditions.
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3 .8  Initial Conditions

3.81 G eneralized in it ia l condition

The heat equation is first order in time. We need to know the temperature at 

every point in our system at time equals zero. In general, this initial condition 

can be written as

T(x,y,t = 0 ) = TIC(x,y)

3.82 Constant tem perature in it ia l condition

If the temperature is constant then the initial condition becomes:

T(x,y,t = 0) = Tjc
( 22 )

3.83 Steady-state in it ia l condition

If the temperature profile is initially a steady-state (linear) profile between

T Th ttwo boundary condition temperatures bc1 and Dc", then we would have the 

formula for the linear interpolation between them, which in one-dimension 

looks like:

T(x.t -  0) -  Tbc1 + —(Tbc2 - T bc1)

35
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Chapter four

4 .0  Solution using F o u rier series

The following solution technique for the heat equation was proposed by 

Joseph Fourier in his treatise Theorie analytique de la chaleur, [1822].

Let us consider the heat equation for one space variable. This could be used to 

model heat conduction in a rod. The equation is

( 1) Uf = kuxx

where u = u[t, x) is a function of two variables t and x. Here x is the space 

variable, so x G [0 ,L], where L is the length of the rod ,t is the time variable, so

t > 0. We assume the initial condition

/' (2) u(0, x) = fix )  \fx € [0, L\

Where the function f is given and the boundary conditions

(3) u(t,0) = 0 = u(t, L) \ft >0.
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Let us attempt to find a solution of (1) which is not identically zero satisfying 

the boundary conditions (3) but with the following property: u is a product in 

which the dependence of u on x, t is separated, that is:

(4) u(t,x) = X(x)T(t).

This solution technique is called separation of variables. Substituting u back 

into equation (1),

T’(t) = X"(x) 
kT(t) X(x) '

Since the right hand side depends only on x and the left hand side only on t, 

both sides are equal to some constant value -  A. Thus:

(5) r ( t )  = -XkT(t)

and

(6) X"(x) = -XX (x).

We will now show that solutions for [6) for values of A < 0 cannot occur:

V

Suppose that A < 0. Then there exist real numbers B, C such that

X(x) = D e ^ x + C e T ^ * .
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From (3) we get

A'(0) = 0 = X (L ).

And therefore B = 0 = C which implies u is identically 0.

Suppose that A = 0. Then there exist real numbers B, C such that

X(x) = Bx + C.

From equation (3) we conclude in the same manner as in 1 that u is identically 

0.

Therefore, it must be the case that A > 0. Then there exist real numbers A, B, C 

such that

/  T(t) = Ae~xkt
%

and

X (x) =  B s'm (\/\x) + C co s(\/\x ).

From (3) we get C = 0 and that for some positive integer n,
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This solves the heat equation in the case that the dependence of u has the 

special form (4).

In general, the sum of solutions to (1) which satisfies the boundary conditions 

(3) also satisfies (1) and (3). We can show that the solution to (1), (2) and (3) 

is given by

Where
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4.01 Generalizing the solution technique

The solution technique used above can be greatly extended to many other 

types of equations. The idea is that the operator U„ with the zero boundary

conditions can be represented in terms of its eigenvectors. This leads 

naturally to one of the basic ideas of the spectral theory of linear self-adjoint 

operators.

Consider the linear operator A U = UXx The infinite sequence of functions

Moreover, any eigenvector f of A with the boundary conditions f(0)=f(L)=0 is 

of the form en for some n > 1. The functions en for n > 1 form an orthonormal 

sequence with respect to a certain inner product on the space of real-valued 

functions on [0, L].

for n > 1 are eigenvectors of A.

Indeed
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This means

Finally, the sequence {en},n G N spans a dense linear subspace of 1,2(0, L). This 

shows that in effect we have diagonalized the operator A.

4.02 Fundamental problem solution

A fundamental solution, also called a heat kernel, is a solution of the heat 

equation corresponding to the initial condition of an initial point source of 

heat at a known position. These can be used to find a general solution of the 

heat equation over certain domains; In one variable, the Green's function is a 

solution of the initial value problem

where 5 is the Dirac delta function. The solution to this problem is the 

fundamental solution

iit(x.t) -  kuxx(x, t) =  0 —oo <  x <.co,  0 <  t <  oc

u ( x J  =  0) =
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One can obtain the general solution of the one variable heat equation with 

initial condition

U(x, 0 ) = g(x) for -oo<x<oo and 0 < t< o o  by applying a convolution:

In several spatial variables, the fundamental solution solves the analogous 

problem

( «t(x , t) -  k £ " =1 u XiX.{x., t) =  0 
1 u(x,£ =  0) =  5(x)

in -oo<x(<oo, i~ l,...,n, and 0< t <oo. The n-variable fundamental solution is the 

product of the fundamental solutions in each variable; i.e.,

The general solution of the heat equation on 9?" is then obtained by a 

convolution, so that to solve the initial value problem with «(x,0) = g(x), one 

has
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The general problem on a domain £1 in 9T is

f u f ( x ,  f )  -  a* y ^=1 uXiXi(x,t)  =  o  x  e  n  o  <  / <  o g
1 u (x , t  =  0) =  g (x) x  E 0

With either Dirichlet or Neumann boundary data. A Green's function always 

exists, but unless the domain H can be readily decomposed into one-variable 

problems , it may not be possible to write it down explicitly. The method of 

images provides one additional technique for obtaining Green's functions for 

non-trivial domains. Some Green's function solutions in 1D

A variety of elementary Green's function solutions in one-dimension are 

recorded here. In some of these, the spatial domain is the entire real line (- 

oo,oo). In others, it is the semi-infinite interval (0,oo) with either Neumann or 

Dirichlet boundary conditions. One further variation is that some of these 

solve the inhomogeneous equation.

Where f is some given function of x and t.
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Initial value problem on (-00, oo)

ut = kuxx —oo < x < oo, 0 < £ < oo
u(:e,0) = g(x) 1C

Initial value problem on (0 ,oo) with homogeneous Dirichlet boundary 

conditions

u(x,t) =

0 < x < oo, 0 < t < oo
1C
DC

I ut = kuxx 
u(x, 0) = g(x) 
u(0,t) = 0

g(y)dy

Initial value problem on (0, oo) with homogeneous Neumann boundary 

conditions

I Ut = kuxx 
u(x, 0) = g(x) 
ux(0,t) = 0 "

0 < x < oo, 0 < t < oo
1C
DC

u{xJ) —
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Problem on (0, oo) with homogeneous initial conditions and non-

homogeneous Dirichlet boundary conditions

Uf — kuxx
u(x , 0) =  0 IC  
u(0 ,t) =  h(t) DC

0 < x < oo, 0 < t <  oo

u(x,t) =  /  
Jo s):

exp x
4k(t — s)

h(s) ds

Inhomogeneous heat equation Problem on (-00,00) homogeneous initial 

conditions

Uf — kuxx + f (x ,t )  
<z(i\0) = 0

—00 <  x <  00, 0 <  t < 00 

IC

, . C r00 1
u(x,t) =  ,----- f

Jo J - 00 y47rAit, s)
exp /_ (x y,s)rf

t  4 k ( t - s ) ) J KJ
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Problem on (0, oo) with homogeneous Dirichlet boundary conditions and

initial conditions

Ut = kuxx + f(x , t) 0 < x < oo, 0 < t < oo 
u(x, 0) = 0 IC

lu (0 ,0 = 0  BC

-u(x}t)
t /*CO 1

° JQ J m t  -  s)
,exp - ( j  -  yf

4 k[t-s)

\2
-exp - ( j  +  y)

4kit -  s)
f{y, s)dyds
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Chapter five

5 .0  N um erical M ethods

A numerical method for the solution of two-phase flow equations 

has been developed. The method is based on the commonly used 

principles for the solution of two-phase flow: a staggered mesh, an 

upwind treatment of the convection terms, and the implicitness of 

the transfer terms. The purpose was to develop a robust and fast 

method for the analysis of nuclear reactors. Consequently, the 

equations are solved in a one-dimensional form, but the principles 

of the method are also applicable for multidimensional solutions.

Direct methods compute the solution to a problem in a finite 

number of steps. These methods would give the precise answer if 

they were performed in infinite precision arithmetic. Examples 

include Gaussian elimination, the Quadrature factorization method 

for solving systems of linear equations, and the simplex method of 

linear programming. In practice, finite precision is used and the 

result is an approximation of the true solution (assuming stability).

In contrast to direct methods, iterative methods are not expected to 

terminate in a number of steps.
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Starting from an initial guess, iterative methods form successive 

approximations that converge to the exact solution only in the limit. 

Chapra, Steven C., Canale, Raymond P.,[1985J.

A convergence criterion is specified in order to decide when a 

sufficiently accurate solution has (hopefully) been found. Even using 

infinite precision arithmetic these methods would not reach the 

solution within a finite number of steps (in general). Examples 

include Newton's method, the bisection method, and Jacobi 

iteration. In computational matrix algebra, iterative methods are 

generally needed for large problems

However Arnoldi iteration reduces to the Lanczos iteration for 

symmetric matrices. The corresponding Krylov subspace method is 

the minimal residual method (MinRes) of Paige and Saunders. 

Unlike the unsymmetric case, the MinRes method is given by a 

three-term recurrence relation. It can be shown that there is no 

Krylov subspace method for general matrices, which is given by a 

short recurrence relation and yet minimizes the norms of the 

residuals, as GMRES does.

Another class of methods builds on the unsymmetric Lanczos 

iteration, in particular the BiCG method.
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These use a three-term recurrence relation, but they do not attain 

the minimum residual, and hence the residual does not decrease 

monotonically for these methods. Convergence is not even 

guaranteed.The third class is formed by methods like CGS and 

BiCGSTAB.

These also work with a three-term recurrence relation (hence, 

without optimality) and they can even terminate prematurely 

without achieving convergence. The idea behind these methods is to 

choose the generating polynomials of the iteration sequence 

suitably.None of these three classes is the best for all matrices; there 

are always examples in which one class outperforms the other. 

Therefore, multiple solvers are tried in practice to see which one is

the best for a given problem.

'

5 .0 1  M ethod of False T ran sien ts

he lattice Boltzmann method (LBM) was used to solve the energy 

equation of a transient conduction-radiation heat transfer problem. 

The finite volume method (FVM) was used to compute the radiative 

information. To study the compatibility of the LBM for the energy 

equation and the FVM for the radiative transfer equation, transient 

conduction and radiation heat transfer problems in 1-D planar and 

2-D rectangular geometries were considered.
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In order to establish the suitability of the LBM, the energy equations 

of the two problems were also solved using the FVM of the 

computational fluid dynamics.

The FVM used in the radiative heat transfer was employed to 

compute the radiative information required for the solution of the 

energy equation using the LBM or the FVM (of the CFD). Chai, ]., 

Patankar, V. [1993],

To study the compatibility and suitability of the LBM for the solution 

of energy equation and the FVM for the radiative information, 

results were analyzed for the effects of various parameters such as 

the scattering albedo, the conduction-radiation parameter and the 

boundary emissivity. The results of the LBM-FVM combination were 

found to be in excellent agreement with the FVM-FVM combination. 

The number of iterations and CPU times in both the combinations 

were found comparable. A method is described which permits in the 

entire practical N tu-range the numerical reduction of transient 

matrix heat transfer test data resulting from single blow 

experiments. Two particular cases are analyzed in detail:

First the idealized case Where the upstream fluid temperature 

follows a step change, and second the more realistic case where the 

upstream fluid temperature follows a decreasing exponential 

function, which is an acceptable assumption whenever a fast
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response electrical heater is employed to produce the upstream 

fluid temperature change. Discrete direct curve matching as 

formulated in this paper consists of minimizing a suitable distance 

function defined on discrete sets of data points. In an appendix to 

the present paper, the implementation of a direct curve matching 

method is presented for the more general case of an "arbitrary" 

upstream fluid temperature change

5 .0 2  Mesh Definition

The heat equation is an important partial differential equation 

which describes the distribution of heat (or variation in 

temperature] in a given region over time. For a function u(x,y,z,t) of 

three spatial variables (x,y,z) and the time variable t, the heat 

equation is

du ( d2u d2u d2u\ _
dt \ Ox2 ^ dy2 dz2)

or equivalently

du
dt

= kV 2u

Where k is a constant.
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The heat equation is of fundamental importance in diverse scientific 

fields. In mathematics, it is the prototypical parabolic partial 

differential equation. Crank, J.; Nicolson, P. [1947]. In statistics, the heat 

equation is connected with the study of Brownian motion via the 

Fokker-PIanck equation. The diffusion equation, a more general 

version of the heat equation, arises in connection with the study of 

chemical diffusion and other related processes.

5 .0 3  Finite difference ap p roxim ation

A finite-difference method for solving the time-dependent Navier 

Stokes equations for an incompressible fluid is introduced. This 

method uses the primitive variables, i.e. the velocities and the 

pressure, and is equally applicable to problems in two and three 

space dimensions. Test problems are solved, and an application to a 

three-dimensional convection problem is presented.

Equation systems describing one-dimensional, transient, two-phase 

flow with separate continuity, momentum, and energy equations for 

each phase are classified by use of the method of characteristics. 

Little attempt is made to justify the physics of these equations. Many 

of the equation systems possess complex-valued characteristics and 

hence, according to well-known mathematical theorems, are not
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well-posed as initial-value problems (IVPs). Real-valued 

characteristics are necessary but not sufficient to insure well- 

posedness. In the absence of lower order source or sink terms 

(potential type flows), which can affect the well-posedness of IVPs, 

the complex characteristics associated with these two-phase flow 

equations imply unbounded exponential growth for disturbances of 

all wavelengths.

Analytical and numerical examples show that the ill-posedness of 

IVPs for the two-phase flow partial differential equations which 

possess complex characteristics produce unstable numerical 

schemes. These unstable numerical schemes can produce 

apparently stable and even accurate results if the growth rate 

resulting from the complex characteristics remains small 

throughout the time span of the numerical experiment or if 

sufficient numerical damping is present for the increment size used. 

Other examples show that clearly nonphysical numerical 

instabilities resulting from the complex characteristics can be 

produced. These latter types of numerical instabilities are shown to 

be removed by the addition of physically motivated differential 

terms which eliminate the complex characteristics. Duwairi, H.M. 

[2005]
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5 .0 4  Stability and C onvergence

The nth iterate minimizes the residual in the Krylov subspace Kn. 

Since every subspacc is contained in the next subspace, the residual 

decreases monotonically. After m iterations, where m is the size of 

the matrix A, the Krylov space Km is the whole of Rm and hence the 

GMRES method arrives at the exact solution. However, the idea is 

that after a small number of iterations (relative to m), the vector xn 

is already a good approximation to the exact solution.

This does not happen in general. Indeed, a theorem of Greenbaum, 

Ptak and Strakos states that for every monotonically decreasing 

sequence a ],a 2,a„ ...am_r am= 0, one can find a matrix A such that the 

\\rn\\ = an for all n, where rn is the residual defined above. In particular,

it is possible to find a matrix for which the residual stays constant 

for m -  1 iterations, and only drops to zero at the last iteration.In 

practice, though, GMRES often performs well. This can be proven in 

specific situations. If A is positive definite. Where Amin(M) and 

Amax(M) denote the smallest and largest eigenvalue of the matrix M, 

respectively .Horjini, M.N., Mbow, C., Daguenet, M. [1999].
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Conclusion and Recommendations

Interactions between matter and energy began in the Big Bang and continue 

today in everything from the microscopic jiggling of atoms to the gargantuan 

collisions of galaxies. Understanding the universe therefore depends on 

becoming familiar with how matter responds to the ebb and flow of energy, it 

is evident that many physical phenomena can be modeled using partial 

differential equations in particular heat transfer. In many cases analytical 

solutions are not enough thus we rely on numerical solutions to obtain more 

information on the inherent problems .In this paper we have observed that 

the application of numerical methods are limited to the cases where the 

functions under consideration are well behaved. To have a general way of 

solution we have to device new methods of discretizing the boundary 

conditions so as we can get solutions that are in line with the experimental 

results.

Thus we need to undertake more research on this topic to further our 
knowledge so that we can effectively utilize our limited resources for the 
betterment of humanity.
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