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Abstract—In this paper, we report our ongoing investigations
of the inherent non-determinism in contemporary execution
environments that can potentially lead to divergence in state of a
multi-channel hardware/software system. Our approach involved
setting up of experiments to study execution path variability of
a simple program by tracing its execution at the kernel level.
In the first of the two experiments, we analyzed the execution
path by repeated execution of the program. In the second, we
executed in parallel two instances of the same program, each
pinned to a separate processor core. Our results show that for
a program executing in a contemporary hardware/software plat-
form, there is sufcient path non-determinism in kernel space that
can potentially lead to diversity in replicated architectures. We
believe the execution non-determinism can impact the activation
of residual systematic faults in software. If this is true, then the
inherent diversity can be used together with architectural means
to protect safety related systems against residual systematic faults
in the operating systems.

I. INTRODUCTION

Modern computing platforms that provide an execution
environment for user applications, comprising of the hard-
ware and the operating system, are becoming increasingly
complex. Contemporary processor possess features such as
pipelines, branch prediction, several levels of caches, out of
order execution, frequency scaling, and multiple cores. These
features, while making the processor architecture complex,
also introduces a certain level of perceived indeterminism
during program execution. The operating system, the system
software that manages the hardware and provide services to
user applications, are also growing in complexity, as evident
from growth in size of the GNU/Linux operating systems from
2 MLOC in 2001 to more than 9 MLOC in 2011 [1].

An increasing number of applications are now being classi-
fied as safety-related. Consider, for example, a software based
turn indicator controller, an application with simple logic that
performs some safety functions. The developer of the safety
application has several options available: She could 1) make
use of specialized hardware/micro-controller, and develop the
complete software stack consisting of the application and the
execution runtime using the prescribed process of a relevant
safety standard or 2) choose to make use of a platform
based on a modern processor architecture and an off-the-shelf
operating system such as GNU/Linux.

Suppose the developer has chosen the second option, and
the following two assumptions hold: First, the use of con-
temporary hardware is acceptable from the safety certication

perspective and secondly, the safety application is considered
correct and error free by virtue of it having been developed
and verified in accordance with the procedures and processes
of a given safety standard.

The primary challenge that the developer would be faced
with is that of ensuring that even with the presence of residual
faults in a complex operating system not developed within a
safety context, the safety application will not have dangerous
failures. We suggested a fault detection mechanism based on
redundancy and diversity that harnesses the nondeterminism
in the behavior of a complex system.

Our work is based on the premise that rather than fight com-
plexity present in the execution environment, we can exploit it
to achieve the goal of ensuring that residual faults in the soft-
ware platform do not lead to the failure of user applications.
In this respect, we propose to take advantage of the inherent
non-deterministic execution in complex execution platforms
to generate diversity at runtime in replicated homogeneous
architectures. This inherent diversity approach, together with
architectural means, could be used for fault detection in order
to provide protection for safety-related systems executing in
contemporary hardware/software platform.

Our work is guided by the safety standard IEC 61508 [2]
that, among other prescriptions, suggests the use of architec-
tural protection to provide coverage for faults during opera-
tions of safety-related systems.

The design for fault tolerance has two main aspects: building
of a redundancy structure to cope with faults and the verifica-
tion of the effectiveness of the fault tolerance mechanism [3].
At this point in our study, we focus on the first aspect, that
is the definition of a fault detection mechanism for residual
design faults in the operating system in the context of safety.
The work reported in this paper builds upon our previous
work [4], [5] on individual systems calls, by extending the
analysis to a set of system calls corresponding to some user
application task. We first present the results of analyzing the
level of variability of kernel execution paths and then give our
interpretation of the results. Specifically, we:

• Show that a code fragment executed repeatedly displays
variability of its execution path in kernel space.

• Demonstrate that replicated threads executing on separate
cores of a dual core processor follow divergent paths
through the kernel space.

• Argue that the diversity in replicated architecture due to
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nondeterminism in the execution platform can be used,
for example in 2-out-of-2 conguration, for fault detection.

The rest of the paper is organized as follows: The next
section, Section II provides a some background information
related to our work. Section III describes the methods and
procedures used in the experiments. We then follow this by
describing the experimental study (Section IV) and the results
obtained (Section V). In Section VI, we give our interpretation
of the results. Related work is discussed in Section VII. We
then offer a conclusion in Section VIII.

II. BACKGROUND

A typical user application, such as a safety-related program,
executes in an environment comprising of the operating system
and the hardware. Contemporary computing platforms are
becoming increasingly complex, making it difcult to assure
deterministic properties of an application during its execution.

The computing execution platform operate through the
interaction of its software and hardware components. The
interaction leads to coupling of the elements of the systems,
resulting into global properties that cannot be attributed to
any of the components in isolation. This leads to some level
of unpredictability in the internal behavior of an application
executing in such complex platforms with respect to the paths
and timing of system services. In the absence of errors, this
unpredictability does not impact the correctness of the system
function.

Faults activated at runtime may lead to erroneous system
states or errors, which might eventually manifest as failure at
the system level. The main approach to dealing with failures
during systems operation is the use of redundancy to achieve
fault tolerance. In addition, for failures that might lead to
catastrophic consequences, the general approach is to use fail-
safety to minimize the impact of failure.

The predominant faults in software systems can be attributed
to design faults, arising from either specification, design or
implementation. Diversity in design was suggested in the
70’s [6], [7], as a solution to common mode failures that might
arise from implementing redundancy by naive replication of
software.

However, the high cost of generating diversity at design time
has made it a preserve of only very high integrity systems.
Automated diversity techniques that removes the need for
manually generating diverse versions of software, for example
through the use of compilers, has been suggested as a means
of cost-effectively generating diversity. An in depth survey of
these and related techniques can be found in [8].

Another possibility of generating diversity is to take advan-
tage of non-determinism in the complex execution environ-
ment. This is what we refer to as inherent runtime diversity,
which provide a promising means to protect systems against
residual design faults in complex software systems.

Specically, we focus on the non-determinism in the execu-
tion path of an application in kernel space. We seek to (1)
determine if there is indeed non-determinism in the execution
environment, and (2) if it is sufficient to manifest as diversity

in a general N-out-of-M (NooM) architecture with a voting
mechanism.

III. APPROACH

The first step in our study was to develop a program that
invokes the services of the operating system. In our test
scenario, the main task of the program was to read a value
from a text le, and then write back the value read to the
same location in the file. These basic steps were performed
within a repetition loop of 1000 iterations. The pseudocode of
Listing 1 illustrates the steps of the task of the test program.
Deliberately, we do not manipulate the value read from the
le before writing it back to ensure that the same user level
input across all the iterations of the program. We chose to
implement the main task as a Posix thread in a c-language
program.

Listing 1. Pseudo Code of the Test Program

. . .
fd = open ( . . . )
w h i l e ( i t e r > 0 ) {

r e a d ( . . . )
l s e e k ( . . . )
w r i t e ( . . . )
f s y n c ( . . . )
l s e e k ( . . . )
s l e e p ( . . . )
i t e r = i t e r − 1

}
. . .

To enable us collect data on the execution path behavior of
the application when executing in kernel context, we congured
the kernel to support FTrace [9], a tracing utility that is built
into the Linux kernel. At each execution of the program, the
tracer recorded the call graphs, i.e. the set of kernel routines
that were executed when the application invoked a system call.

We designed two experiments in order to study the variabil-
ity of the execution path of the program in kernel space. In
our work, we define the path of a program as the collection
of kernel functions that are called by the set of system calls
invoked from the user space by the program. The metric that
we use to identify a path is the count of the number of kernel
functions (we also regard the system call as a function) which
we refer to as the length of the path.

There are several factors that might influence the variability
of the execution properties, such as execution time and kernel
execution path, of a program. One of these is the placement
of a program’s thread of execution on one of the available
processing units. Studies that investigate the effect of thread
placement, referred to as processor affinity strategies such
as [10], [11] tend to focus on how to ensure determinism in a
programs execution time. With our interest being on setting up
a logical 2-channel software/hardware system on a mulicore
machine, we first had to investigate the effect of thread pinning
on the kernel execution path variability.

In experiment #1, the study involved comparing the paths of
repeated execution of the program. In addition, we considered
two thread placement options: 1) No affinity, whereby the



TABLE I
EXPERIMENTAL MACHINE SPECIFICATION

HP Compaq
Processor Intel(R) Core 2 Duo E8400
No of Cores 2
CPU Speed 3.00GHz
RAM 2 GB
OS Debian 7.0, Linux Kernel 3.16.1

thread is dynamically allocated to an available processor core
by the operating system scheduler and 2) Processor affinity,
whereby the thread is pinned to a particular processor core by
the programmer. This strategy results in the creation of two
experimental groups, the “free” group and “pinned” groups
for option 1 and 2 respectively. Other than observing the
variability , we also performed statistical analysis to determine
whether the paths from the sample execution runs from the
“free” and “pinned” are drawn from the same distribution -
i.e. can be considered as practically equivalent.

In experiment #2, our primary aim was to develop an ar-
chitectural configuration with two program replicas executing
in parallel and observe the differences, if any of the kernel
execution paths of the replicas. Our approach was to have
two copies of the same thread pinned to different processor
cores executing simultaneously while recording a trace of their
executions.

We used repeated experimental approach for both experi-
ments #1 and #2. Specifically, we performed each experiment
5 times resulting in experimental runs which we labeled as
runs A, B, C, D and E.

IV. EXPERIMENTAL STUDY

A. Experimental Environment

All the programs were executed in an Intel Core 2 Duo
machine running Debian GNU/Linux, kernel version 3.16.1.
The experimental set up is shown in Table I. The kernel was
configured for tracing using the Ftrace tool.

The test program was executed in an idle system with no
load other than background daemons and the operating sys-
tem. For the repeated experiments, we rebooted the machine
before performing a new experimental run to ensure that each
experiment was conducted in a fresh execution environment.

B. Experimental Description

For experiment #1, the program described by the pseu-
docode of Listing 1 was compiled using the gcc compiler
defaults and the NPTL thread library. We then executed the
program, via trace-cmd [12], a front-end the FTrace tool to
record the traces of the kernel functions called by the executing
program. We then analyzed the call graphs of the individual
systems calls within the program task, and then the task
statements as a single unit.

To study the effect of pinning the thread to a processor core,
we modified the program by specifying the thread affinity and
repeated the experiment.

TABLE II
SUMMARY STATISTICS OF PATH LENGTHS FOR A SAMPLE RUN

Length of Paths
Shortest Longest Ave. Median Mode STDV

read 91 888 96.8 490 91 32.3
lseek 13 124 14.4 28 13 7.5
write 149 395 159.1 272 149 38.5
fsync 435 1069 505.2 649 484 73.0
lseek 13 250 13.3 132 13 7.6
rt sigprocmask 7 175 7.2 7 7 5.4
rt sigaction 3 23 3.1 3 3 1.2
rt sigprocmask 7 103 7.3 17 7 3.4
nanosleep 71 187 73.6 94 71 12.7

In experiment #2, we first modified the program to create
two instance of the thread that performs the program task.
These two threads were pinned to one of the two available
processor cores (cores [000] and [001] respectively) in the
experimental machine. We then executed the program and
recorded the kernel execution traces. For this experiment, we
did not perform analysis for individual system calls.

V. RESULTS

As mentioned in section III we used repeated experiment
methodology in our work. The values of the measurements
obtained displayed variability, as expected. For brevity, we
present only one set of results from the experimental runs
unless there is need for comparing the measurement values of
all the five runs. To avoid bias we have chosen to present, from
the possible five runs, the results of the third experimental run
(experimental run C) across the two experiments.

A. Experiment 1

The individual system calls that were invoked from the user
space by the thread’s loop are in the system call set {read,
write, lseek, fsync, nanosleep} and signals {rt sigprocmask,
rt sigaction}. We extracted the summary statistics of the “free”
experimental runs. The values of the minimum, maximum,
average, median, mode and the standard deviation of the length
of execution paths for each of the system calls and signals for
experimental run C are given in Table II.

Examining the paths of these individual system call revealed
the characteristics of different categories of systems calls.
Some of the simple system calls and signals (for example
lseek, nanosleep, rt sigprocmask, and rt sigaction), which call
a small number of kernel routines, display stable/predictable
behavior with an occasional ‘spike’ in the number of functions
called. The most common invocations of these systems calls
involved execution of the smallest set kernel routines, as
represented by the matching values of shortest and mode in
Table II. The median and average values close to the shortest
path lengths, and the small values of the standard deviation
for these system calls indicate that it is likely that when these
system calls are invoked, the execution instance would take a
‘typical’ path.

There are greater variability in the length of the execution
paths for the non-trivial system calls, such are the read(),
write() and fsync(). These system calls show a large standard



Fig. 1. Variation in the Length of Execution Path per System Call (snapshot)

deviation (last column of Table II) compared to the other
system calls. Of interest to us was the occurrence frequencies
of each path of unique length for these system calls from
the 1,000 execution instances. For example, we identified 38
unique paths for the write() system call, with the highest
occurrence frequency of 830 for the path length of 149. 35 of
the 38 paths had frequencies of 7 or less. Similarly, we looked
at the path variability of the fsync() system call. From the 154
unique paths, 129 had occurrence frequencies of 10 paths or
less. The highest frequency was 92 execution instances for
path length of 484.

In addition to analyzing the length of the execution paths
of individual system calls, we also considered the statements
in the threads task loop as single unit. The task performed
by such a unit is what is typically used to implement the
control and/or safety functions in real world applications.
Furthermore, for multi-channel systems, it is the value(s) that
are produced at the end of such a control loop, that are usually
used for adjudication.

We therefore analyzed the data to observe the variability of
the task loop statements’ execution paths. Fig. 1 is a snapshot
of the execution path of the task as a composition of the
loop statements from the individual system call, showing the
contribution of each of the system calls to the overall path
variability.

Our next task involved comparing the variability of the
kernel execution paths of the thread from the “free” and
“pinned” experimental runs. For this purpose, we plotted the
length of the paths for each iteration from the two experimental
runs. This is given in Fig. 2. The path lengths of the execution
runs from the “pinned” groups showed more variability and
spread (larger difference between the upper quartile and the
lower quartile values), but less extreme values compared to
those from the “free” group.

Further, to get a better insight of the differences between the

Fig. 2. Variations in the Length of Execution Paths for the “free” (lower
figure) and “pinned” (upper figure) Experimental Groups

Fig. 3. Probabiity Distribution for the Sample

two groups of experimental runs we generated a kernel density
distribution of the length of execution paths for the respective
experimental runs. Fig. 3 shows the graph of the sample prob-
ability distribution for the “free” and “pinned” experimental
groups for run C. The probabilty distributions displayed the
same shape, i.e. bi-modal, with varying parameters.

We performed statistical test, using the two sided test of
equivalence, to check whether at 0.05 confidence level, we can
state that two samples, one from “free” group and one from the
“pinned” group, come from the same population. The results
for the experimental run C of the “free” group compared with
the corresponding experimental run (run C) from the “pinned”
group is shown in Table III.



TABLE III
TEST OF EQUIVALENCE FOR FREE AND PINNED GROUPS - RUN C AT 95%

CI, SIMILARITY MARGIN [-393, +393]

Difference in Mean -472.55
95% Confidence Interval
Lower Limit -489.57
Upper Limit -455.53
Falls in Margin of Similarity No
Claim Not Equivalent

Fig. 4. Length of Execution Paths of Two Thread Replicas

B. Experiment 2

We plotted, for the two threads, the variation in the lengths
of the execution paths against the iteration count. For readabil-
ity, we present in Fig. 4 part of the plot for the iterations 450
to 550 for the experimental run C. We noted that in a majority
of the the execution instances, there was a difference in the
number of functions called by the corresponding threads. For
example, in the sample execution run presented, there were 5
out of the 1000 execution instances in which the corresponding
instances of the two replicas had same path lengths. The
absolute difference between the number of functions called
by corresponding execution instances ranged from 0 to 259,
with an average of 130.

VI. DISCUSSION

The experiments carried out demonstrate that there are
variations in the execution paths of a user space application
executing in kernel context. One possible way to characterize
the variability is to use the number of kernel functions called
during the execution.

The results from the execution of two replicas of the same
user applications in parallel show that there is observable
differences in the lengths of kernel execution paths of corre-
sponding execution instances. The difference in the lengths of
the execution paths indicate that one of the threads is executing
a larger set of instructions than the other in kernel context. The

corresponding execution instances thus take different distinct
paths in the kernel space, which could be attributed to the
‘different states’ of the execution environments of the threads.

Each of the system calls in the call path of the user
application has a minimum (ideal) set of kernel functions it
executes and would be common in all execution instances.
Additional functions would be executed by the system call, for
example if it requires to access exhaustible resources such as
caches, contend for a resource that is held by another process
or deal with an asynchronous interrupt. It is these sources of
nondeterminism that results in path diversity during execution.
The length of a system call path, indicated by the count of the
number of functions executed during an invocation of a system
call, captures this path diversity.

Comparisons of execution paths is useful, not at individual
system call level, but at code units corresponding to a user’s
application task. The length of the path of an execution
instance of the user space code fragment, is the sum of path
lengths of the individual system calls invoked in the codes
execution path. Used as a measure of path diversity, the length
has obvious limitations. However, it provide a good first level
indicator of the level of path nondeterminism in complex
execution platforms.

From the observations of the path occurrence frequencies of
individual system calls in our previous work [5], we claimed
that an execution path instance can categorized as either
being in the frequently taken path group and rare path group.
Further, the residual faults in complex software would be in the
statements in these rare code paths with very high probability,
since any systematic faults in the frequently taken paths would
have surfaced due to the fact that the instructions in the paths
are frequently executed. This claim has implications on the
impact of fault activation.

Let’s make an assumption that there is some unknown
design fault in the code path of one of the system calls invoked
by the user application. The fault would be in one of the rare
path since it was not uncovered during system verification. The
probability of the two threads of execution taking the same
faulty path is so much less than any one of them taking the
erroneous path. A 2-out-of-2 architectural configuration based
on inherent diversity approach describe here would be able to
detect the fault if a correct adjudication strategy is in place.

The inherent diversity approach is valid only if the taking
of the untested rare paths is an independent event. If this
independence assumption is violated, then the faults in these
paths represent common mode faults, which would require a
different detection and mitigation approach.

VII. RELATED WORK

The work reported in this paper achieves its objective of
demonstrating that there is sufficient level of nondeterminism
in program execution in kernel context through the use of
dynamic program analysis, and in particular kernel tracing.
Execution tracing has been applied in different scenarios
such as debugging, performance monitoring, and program
comprehension. In [13], kernel tracing is used with the aim



of understanding operating system behavior. The SIL4Linux
project [14] uses kernel tracing approach to determine the
variability of system calls implemented in the Linux kernel
conforming to the POSIX standard over different versions.
Our work, on the other hands uses the same techniques
and approach to investigate the nondeterminism in program
execution in kernel space.

With respect to variability of systems, [11] reports on an
experimental study on the variation of execution times of
program particularly the inuence of operating system jitter on
its variability, while [10] performed a study on the variability
of execution time in multicore architectures. These two related
work focus on execution time of user space applications
incontrast to our work on kernel execution path.

Related to our work on the basis of using non-deterministic
property of systems for protection against faults, is the IN-
DEXYS project [15], whose stated objective is to investigate
how intrinsic diversity of complex operating systems helps
in detecting faults in computing platforms. They project pro-
posers state their intension of employing architectural protec-
tion schemes to mask and/or detect random faults through
temporal relaxation. We are, however, not aware of the current
state of the project.

VIII. CONCLUSION

We carried out two experiments to analyze the variability
of the execution paths of a simple program in kernel space.
In the first of the experiments we compared the paths at
the kernel level of a code fragment when the fragment was
repeatedly executed in a loop. In the second experiment, two
replicas of the same program were pinned to different cores
of a dual core processor allowing us to compare the same
code fragment when the programs are executed in parallel.
The results achieved show that there is non-determinism in
the execution paths at the kernel level for fault-free program
execution. Further, we can say that the path taken during an
instance of execution in kernel context is not fully determined
by the applications input.

The non-determinism in execution path can be attributed to
the complexity of the hardware/software execution platform.
This execution non-determinism, as our second experiment has
shown, can manifest as diversity in replicated architectures.
We claim that the inherent diversity can be used as an
architectural means to provide coverage of residual faults in
system software such as the operating system. This is what
informs the work that we intend to carry out in the future.

In our next step, we will assess the fault detection potential
of inherent diversity. We intend, through fault injection cam-
paigns, to introduce faults in the control flow paths of system
calls invoked by a program and observe if two replicas of
the program in a dual channel conguration exhibit the same
failure. We then would follow this up with an evaluation of a
real world safety application in a 2-out-of-2 conguration and
a realistic fault load.
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