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ABSTRACT

Interaction of a dynamical system with stochastic source R(1) is studied using parabolic type
equation on a circle of length 2L. Greens function for the system is constructed and it is shown
that almost all the correlation functions F(xt) are infinitely differentiable. The problem of
spectral density of a random force is investigated and it is shown that a single random force for
the entire dynamical system is inadequate

1. Introduction

Stochastic sources play an important role not only in the study of physics, astronomy and chem-
istry but also in such practical fields of communication; in the theory of random processes [1
- 3]. In the present paper however, attention is focused on the problem of heat transfer in the
presence of random forces [4, 5]. Green’s function for such a system is constructed by employing
Gaussian integrals [6, 7] and variational methods [8]. The scope of the present communication is
limited to the consideration of heat transfer only in the x-direction of particles which are initially
non-uniformly distributed in the (y-z) plane. The transfer process is studied by the application of
an appropriate parabolic differential equation [9, 10].

2. Dynamical System

Let us consider a simple dynamical system consisting of interacting particles. The motion of
these particles is given by a heat equation on a circle of length 2L. Further, we assume that
the system is constantly under the influence of action of random sources R(#). The appropriate
differential equation describing the time evolution of the particle distribution function F(xt) for
such a system is a parabolic type equation of the form

oF(xt)  O°F(et) s 3p)

2.1
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The random function R(?) — Gaussian white noise — is assumed to be non-correlated in time.
Otherwise the state of system represented by equation (2.1) would be given by points in a space
much wider than the phase space we are concerned with. On performing Fourier transformation
to equation (1) we come to the following equation with respect to the amplitudes.

9. &)

5 Tkl )= RE) (2.2)

where

k2 =T/ (=1...N

The above equation (2.2) is a system of equation for the amplitude £, (kr) such that on the RHS
we have random function R(?). The solution of equation (2.2) at least for one specific amplitude
/, (kt) is well known [11, 12]. It yields Green’s function for the problem in the form of a transformed
Wiener measure in a space trajectory corresponding to f, (k7).

e N , . wE k,i ;
Y (1250 f5.m )=, exp {J (S ) e + 21 }550 . (2.3)

Equation (2.3) holds true only on the assumption that the spectral density of R(?) is unity.

From equation (2.1), it follows that

Skl f,=f2+k.f, forany f and therefore

Jle (=) fo@yhls, @) Jar = fi—fre 2.4)

where £ = £,(0)

=)

It is clear that the solution of the basic problem can be obtained by integrating equation (2.3)
in a rather selective manner. This is done if integration is carried with respect to only those
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trajectories corresponding to hypersurface given by equation (2.4).

For N +1 Fourier amplitudes, we obtain Green’s function in the form of the following function
integral

o ot : , .k if,, @)
o o o, t, 1 { . ) |t 2 o Tam. ¢ : m
Y(/m N O T— B H el o /N,t) —f( exp fu Itk o w ¥ 5 ! ZO \/——"Jt—_d’[
(2.5)

The problem of constructing Green’s functional is frequently met in the study of stochastic processes
and is stated in the following manner. Find the particle distribution function f¢#>0) at time ¢ >
0 given that the dynamical system has distribution f{t = 0) at time ¢t = 0. Since the functional
under consideration is Gaussian and further the problem is linear, we can apply variation principle
methods and integral (2.5) can be given an approximate expression of the form

exp{ff} (f(r)wkz;‘-)dr} (2.6)

where f(r) is an extremal of the following variational problem

min[! (f, + k. £, dv 2.7)

with the following conditions

1 =1,0)
So=Sn@®) (2.8)
Je e vk f Y =f—fret =f,  j=1,..,N 2.9)

Further we shall proceed using the following representation

n Y. 2.10)
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fi-f7e"=5, @11

Thus after simple but rather long calculations and rearrangements the power of exponent in
equation (2.6) will take the form.

/2 } 9 e det@j,m) det(B( m )
— —k = =i ’ Z.12
L) (7('5) f(’l‘))dl‘ = det(B,‘n) det(B,’-ﬁ,,) ( )
where B jm=B, .
For /,m #1
q
B, = 2/;: (2.13)
-y 2 2
Em,l :El,rn :j—/”k"—z%f‘iml' (i
i
=~ f,~1 for m#1

k:+kik;+k: ,
" S _k2+k2 fn=1,2...N. (2.15)
| 2k .

This is a quadratic form which is negatively defined. Taking into account the normalization constant
for the Green’s function (2.5), we come to the following expression.

n - ™ > ) N (m @/Jn
Y(fr:’_flo ..... o Bl I s ’»/”’t) - Jt"il P "(B(/,n)'

It is important to note that the coefficients of the quadratic form are such that A, , are obtainable from

. (2.16)

any other 4, if we simply interchange k, <> k k, <k, .

3. Random Forces

The random force R(?) is responsible for removing the system from equilibrium steady state. In order
to maintain the system in a nonequilibrium state with or without collision [13], we shall assume the
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presence of a field force that is quite independent of collision and that it has a spectral density acting on
each particle in the system.

N H WV Vz ’
RWU)=§:JGU)J5§})CXp(ww§~) 3.1
i=1 14

where y, (1) is the spectral density of the random field and H, (V') are the Hermitian polynomials.

We note further that the spectral densities are responsible for the random distribution of particles in the
system such that detailed balance principle is satisfied in the presence of collision [14]. We thus interpret

R (t) as a stochastic field or source acting as a thermostat for the dynamical system. In the absence of
random forces, our system will automatically go over to the equilibrium state.

Under these conditions we shall have transformed equation (3.1) into Langevin equation of the form

AV (xt)
Cdt

+ BV (xt) =R(1) (32)
such that ¥ denotes the velocity of the particle.

The influence of the surrounding medium on the motion of the particle is then split into two parts. One
is the systematic part BV representing the dynamical friction experienced by the particle and the second

R(?) is characteristic of the Brownian motion [15]. We assume further that the frictional term — 3V is
governed by Stoke’s law which states that the frictional force decelerates a spherical particle of radius

a and mass m is given by 6may — where n denotes the coefficient of viscosity of the surrounding fluid
and thus &

The principal assumption for the fluctuating part R(¥) is that it is independent of the velocity and it varies
extremely rapidly compared to the variation of V. In other words, though V(f) and V(¢+ A t) may differ by
negligible amount, there is no correlation whatsoever between R(f) and R(t+ A ).

Equation (3.2) is equivalent to non-linear integro-differential Boltzmann kinetic equation for a system of
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molecules of a gas with a distribution function f{ V) of the form,

% + HSJ; \J,,;go(Og){fff'-—fﬁ Java@ =R ) (3.3)

where 0(0 g) is the differential cross-section of particle defined by potential of intermolecular

interactions, 7 ":?2« is the particle density, g =V, -V, is the relative velocity. This second term on the

left is the Boltzmann collision integral.

The kinetic equation represents the evolution in time of a distribution function with the general form.
dF

—=AF 3.4
= AF /X)) (34

where 4 is a functional of distribution function.

For single particle distribution function, Bogolubov’s hierarchy has the form
dF .
7{{—‘:[Hl,lﬁhnj[gibu,Fz]dX2 (3.5)

where -4, s the two particle potential, -F, is the two particle distribution function such that in
homogeneous space

F(qpt) =f(pt) (3.6)

Our problem is therefore to compute the effective probability density of state at time ¢ > 0, W (p,t > 0)

on the assumption that at the initial moment the state W (p,7 = 0) was certainly realized. We shall apply
the method of interchanging variables in a continuum or path integral. The established functional will be

expressed as a path integral over a trajectory in phase space with the help of Smolukovsky’s expression
[16].

In general the Green’s function corresponding to equation (3.3) is the solution of some functional
equation in variational derivatives. However, in the present communication we shall construct the functional
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for a simplified linear problem directly from the Langevin equation (3.2).

3.1  Asingle random source for the dynamical system

Let us assume that the particle of mass m is much heavier compared to the gas mole m/M and further

that the velocity is never very different from the equipartion value such that v/V is always of the order of
1/2

(M/m) . Under such conditions, we can approximate the collision integral in the Boltzmann equation

(3.3) by a Fokker-Planck differential operator of the form (3.7),

d 2
I(V)— (ﬂV)+ D’ (3.7)
where D is the diffusion coefﬁcient.
On substitution of (3.4) into (3.3) we obtain a linearized Boltzmann equation of the form
Ja d
&2 (ryf-p f R, (338)

V

Now supposing that for equ11ibrium states or detailed balance, we assume that only one random source
operates on the entire dynamical system. Then equation (3.3) becomes an integral of motion of the form

ar

5 R, (1) (3.9)
such that
Rw(t)=}(l)f(t) (3.10)

where y(¢) is the spectral density of the random source.

We then expand the probability density of state f{V7) in series of Hermitian polynomials

H (V)exp( )

2

frn=Y.G, () : s (3.11)
X 2°klm
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This will transform equation (3.5) into characteristic equation of the form

V) +BV (1)=0 3.12)

whose solution has the generai form

V()= (0)exp(-p1) (3.13)

Thus equation (3.5) will take the form of the following differential equation

3/1 9’ f

CHB- Dz —f, 05 () (3.14)

Now using expression (3.11) of f{V'?) in equation (3.14) above, then multiplying the result by

H (Vo)exp{ ] /«/E”Ty;wm‘ (3.15)

and further make use of orthogonality condition for Hermitian polynomials

me(V)H,,(V)GXp[~- %}dV: i (3.16)

We obtain the following system of equations

. 3 . g . p* .2
Gn+(B+mB)G, ~“'[§(m+l)G,n+z = Gmf._z] T Yy G, (1) (3.17)

Thus, in terms of diagonal elements only equation (3.17) takes the form

T

(3.18)

J‘:(Zﬁ +8 mm_;’)dt -

m

The Green’s function we are seeking must therefore satisfy the following path integral
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rG

sl G,',,J) J€Xp[ f [ } df} T/::ir_ (3.19)

Under the condition that we integrate (3.19) along a trajectory satisfying

('; 1
rG’ .o Gm,t)~ [0 [y]’ dv ]xé[ZﬁHﬁm oy, b i Fln GO )H\/ﬁy (3.20)
=0

!

which in effect is the Green’s function for a fixed coefficient. It then follows that Green’s function for two
different coefficients n # m , the integral will be a product of 0 - functions, i.e.,

8,%6, =% o

Putting
28t+8,t=C, (3.21)
28t+ B t=C

then (S(Cm ~J: )./ dv J leads to

1

=pBQ+m)t—In g”’ | (3.22)

m

and

6(CH ~ (:y dr) giving

5

= B(2+n)t —~1ng—g (3.23)

n

This indicates that C, #C unless m = n.
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This structure of the stochastic source is inadequate for the system. Our next communication will focus
on the effects of spectral densities of random forces on the state of motion of a dynamical system [17].
For this we propose that the particles are in an external potential well P(V) that can be expanded in terms

of Hermitian polynomials such that the coefficients of expansion are the spectral densities of the random
fields.

VZ
H expl —
AP = ) p( 2)

— = y ;@) :
ot j=0 ! 2@l

(3.24)
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