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Abstract

Background: Malaria prevalence varies between regions and even w ithin the same region; there 

are variations depending on various Environmental determinants o f malaria transmission. Kilifi 

district is located in the coast province o f Kenya which is classified as a malaria endemic zone.The 

ability to identify areas with high spatial clustering of malaria is of great significance as it will 

enable targeted intervention to be employed in these areas to fight malaria. Spatial data analysis 

help identify areas with spatial clusters and also enable one identify trends th a t may be existing 

in the wider region. We try to see if there is any difference in malaria cases reported at the 

different types of health facilities. The study also tries to  see if there is any difference in malaria 

prevalance in the population of under five years and those over five years. This study tries to 

find out the various sub regions where malaria is more clustered than others in district, based on 

the number o f patients seen and treated of malaria in K ilifi district for the period 2005 to 2008. 

This study also tries to identify any spatial trends that may be present.

M ethods: In this study, we examine the local distribution pattern o f malaria using data collected 

between 2005 and 2007 from all the different types of health facilities located in the divisions 

within the district. These facilities were point-referenced. Continous spatial data analysis was 

then used to analyse the data.

Results: Malaria cases varies within the district and this can be seen from the different numbers 

in the different facilities. Analysis showed a significant association of malaria risk with elevation, 

humidity, rainfall. The resulting map broadly agreed w ith expert opinion about the variation of

x



risk in the country, and further showed marked variation even at local level. High risk areas 

were in the low-lying ocean shore regions, with the risk reducing as one moves away from the 

shores towards the high altitude region. Children under five years were at a much higher risk of 

contracting malaria as compared to those over five years. There was also no difference in the

number of patients who had malaria when analysed depending on the type of health facility they 
visited.

Conclusion: The map provided description of the geographic variation of malaria incidence in 

K'I'fi District- and might help in the choice and design of area specific interventions, which is 

crucial for reducing the burden of malaria in in Kilifi District and may be applied to the whole 

country.
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Chapter 1

Introduction

Malaria remains a leading cause o f morbidity and mortality in Kenya, especially in young children 

and pregnant women. It accounts for 33.5 percent of outpatient attendances and 19 percent of 

admissions to health facilities. Malaria is the most important cause of death in children under 5 

years of age and is estimated to cause 20 percent of all deaths in this age group. In spite of tins 

situation, malaria is a preventable and curable disease (MoH Kenya 2006 National Guidelines for 

Diagnosis, Treatment and Prevention of Malaria for Health workers in Kenya).

Malaria burden and transmission patterns vary across the country. Understanding how malaria 

varies in the community as a result of seasonal or year-to-year changes in climate and environ­

mental factors is important for the planning of national malaria control programs, as it will allow 

interventions to be adapted to specific sites or times of the year. This is essential for the effective 

control of the disease.

The aim of this project is to study the spatial malaria patterns in the district of Kilifi based on 

the number o f patients tested and treated of malaria in all government health centres and also 

study the relationship between the malaria case burden and other diseases in the health facilities.

The analysis of spatial point patterns came to prominence in geography during the late 1950s
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and early 1960s, when a spatial analysis paradigm began to take firm hold within the discipline. 

Researchers borrowed freely from the plant ecology literature, adopting techniques that had 

been used there in the description of spatial patterns and applying them in other contexts: for 

example, in studies o f settlement distributions (Dacey 1962; King 1962), the spatial arrangement 

of stores within urban areas (Rogers 1965) and the distribution of drumlins in glaciated areas 

(Trenhaile 1971). The methods that were used could be classified into two broad types (Haggett 

et al. 1977). The first were distance-based techniques, using information on the spacing of the 

points to characterize pattern (typically, mean distance to the nearest neighbouring point). Other 

techniques were area-based, relying on various characteristics o f the frequency distribution of the 

observed numbers o f points in regularly defined sub-regions o f the study area (quadrats).

The geographic information system (GIS) and global positioning system (GPS) have been widely 

applied to health and epidemiology for malaria research and control in most sub-Saharan Africa 

(White 1972). Spatial point pattern analysis may help to identify high-risk diseases areas, sources 

of diseases, and high-risk populations (Craig MH 1999). These statistical techniques are based 

on case events and count data, where known geographic locations (x-y coordinates) of disease 

cases are commonly represented as points (PAHO 2003). The disease mapping could also play an 

important role in formulating malaria control activities, evaluating changes in malaria transmission 

overtime and allocating resources to control malaria (GPY Clark 2000, Snow RW 1993) especially 

in high or persistent local malaria transmission areas (hot spots)(Gill CA 1921).
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1.1 Study Area-District Profile
Kilifi District is one of the seven districts in Coast Province of the Republic of Kenya Kilifi Town 

is its headquarters, situated 540 kilometres away from Nairobi City. It borders with Malmdi to the 

North West, Taita Taveta to the West and Mombasa and Kwale to the South. It is divided into 

seven administrative divisions namely; Kaloleni, Bahari, Choni, Kikambala, Ganze, Vitengeni, and 

Bamba. K ilifi has 36 locations and 108 sub locations. It covers an area of 4779.2sq.km The 

land rises gradually from the sea level in the East to an altitude of about 2700 ft in the South 

Western side.

This district is divided into 3 constituencies namely: Kaloleni (Kaloleni division), Ganze (Ganze, 

Vitengeni and Bamba divisions) and Bahari (Bahari, Kikambala and Chonyi divisions).

Table 1.1: Climatic profile
L o c a t io n L a titu d e s  3.21 S a n d  4 .28 S , L o n g itu d es  3 8 .4 3  E and 3 9 .9 5  E.
C l i m a t e M a in ly  trop ica l, w ith  av era g e  a n n u a l rainfall o l ll(M) m m  a lon g  

th e  c o a s ta l belt a n d  400 m m  in th e  h interland.
T h e  m ajor  rain sea so n  is b e tw e e n  M arch and  May.

R a in f a l l H ig h  - 1100m m  
L o w  - 400m m

T e m p e r a t u r e  R a n g e H igh : 2 6 .5 uc -  3 4 uc  
L ow : 2 2 .5 °c  -  2 4 .5 ° c
A v erag e: 3 0 °c  ______________________________________

A v e r a g e  r e l a t i v e  h u m id i t y 6 0  p e r c e n t _____________________________________

Table 1.2: Demography and Population Profile (2007 figures)
T o ta l P o p u la t io n 6 6 5 ,6 4 7
T o ta l N o . o f  M a les 3 2 2 ,2 4 6
T o ta l N o. F em a le s 343 ,601
Sex R a tio  (F e m a le /M a le ) 111:100
N o . of H o u se h o ld s 90,311
H ou seh o ld  s iz e 6.17
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1.2 Objectives of the study
1.2.1 Main Objective

The main objective of the study is to determine the spatial distribution pattern of malaria cases

in Kilifi district between the years 2005 and 2008.

1.2.2 Specific objectives

The specific objectives of this study are:

1. To establish the spatial clustering pattern of clinical malaria based on the reported number 

of new patients diagnosed and treated of malaria in all the government health facilities in 

the years 2005 to 2008.

2. To describe the overall malaria case burden in the health facilities in Kilifi district between 

the years 2005 and 2008.

3. To compare the malaria burden between the population under five and the over five for the 

period 2005-2008.

Expected Outcomes

The expected outcome o f this study is the malaria distribution maps representing the cumulative 

incidence o f malaria in Kilifi district for the patients over five years and those who are under five

years.
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Significance of th e  study

The study will establish the cumulative incidence o f malaria for the different regions o f the district. 

It will be possible to  establish malaria hot spots and any spatial relationship in malaria cases 

between sub regions that neighbour each other. Data will be obtained for timely and targeted 

interventions for control and management of malaria that will be applied for each specific region

and this will be helpfully in the fight against malaria as envisioned in the millennium development 
goals.
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Chapter 2

Literature Review

Malaria remains the single largest threat to child survival in sub-Saharan Africa and warrants 

long-term investment for control. This will only be possible if prediction of malaria occurrence, 

regional variation and the people at risk could be could be made.

Malaria has been prevalent in most parts of the tropical and subtropical world, including Africa, 

Asia, and Central and South America, for a long time. The disease has been the single most 

important cause of morbidity in some of these areas. W ith  resources becoming scarce, disease 

control in the future is likely, therefore, to benefit from concerted efforts, including those based 

on an understanding of the micro epidemiology of the disease in a given situation.

In Kenya, malaria accounts for 33.5 percent of outpatient morbidity.

The investigation of infectious disease clustering is receiving renewed interest, due to advances in 

geographical information systems (GIS) and spatial statistics, which allow for the quantification 

of the degree of clustering of infections. Such approaches have been used to investigate the 

spatial clustering of dengue (Morrison et al. 1998), LaCrosse encephalitis (Kitron et al. 1997) 

and sleeping sickness (Fe'vre et al. 2001), but their application to malaria has been limited 

(Schellenberg et al. 1998; Chadee and Kitron 1999; Ghebreyesus et al. 2003).
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9 .3  L e a d i n g  C a u s e s  of  outpat ient  Mor bidity

Good maps o f malaria risk have long been recognized as an important tool for malaria control. 

The production of such maps relies on modeling to predict the risk for most of the map, with 

actual observations o f malaria prevalence usually only known at a limited number of specific 

locations. Estimation is complicated by the fact that there is often local variation of risk that 

cannot be accounted for by the known covariates and because data points of measured malaria 

prevalence are not evenly or randomly spread across the area to be mapped (I Kleinnschmidt 

2000). With the changing environmental and climatic conditions, malaria prevalence is shifting 

from the traditional areas to new area that did not previously experience malaria endemics.

Malaria is an environmental disease. Anopheles mosquitoes transmit the causative agent, Plas­

modium spp., when the environmental parameters (such as water availability, temperature, and 

humidity) permit. For example, in many parts of the world where temperature is right, malaria 

transmission is highly seasonal, with peak transmission following the period o f peak rainfall (Made­

line C Thomson 1999)

Malaria not only poses a risk to  survival but also the repeated clinical consequences o f infection 

during early life place a burden on households, health services and ultimately the economic
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development of nations (Bloom and Sachs, 1998). Sachs and Warner (1997) have argued that 

the persistence of endemic malaria in the tropics, and particularly in Africa, is contributory to a 

perpetual state of depressed economic growth in these regions. These macro-estimates of burden 

and economic associations provide clear support for a renewed effort aimed at halving malaria 

mortality by the year 2010, referred to as the Roll Back Malaria (RBM) initiative (Nabarro and 

Tayler, 1998; WHO, 1998). This optimistic goal has been conceived at a time when existing, 

affordable therapeutics are rapidly failing, health service provision is breaking down, vaccines seem 

to be a pipe dream, and poverty, conflict and corruption continue to afflict many African states 

(Desowitz, 1999).

The resources targeted at malaria control will always be limited when compared with other social 

sector investment. Furthermore, not all malaria interventions will be equally appropriate for every 

setting. The challenge for the public-health sector is to  decide which interventions would be 

appropriate where and how these may be tailored to the local epidemiology to achieve maximal 

health impact for minimal investment. Clearly not all resource allocation is evidence-based but 

there is an increasing recognition among the malaria research and control communities that 

mapping risk and the projected benefits of intervention is a fundamental monitoring and decision­

informing tool. It is in this context the utility of remote sensing (RS) and geographical information 

systems (GIS) are evaluated.

An understanding of regional patterns of disease-specific mortality and disability increasingly 

drives approaches to global public health. Through the integration of high-resolution population 

and climate probability models o f P. falciparum transmission, geographical information systems 

have been used to define the spatial limits of populations exposed to the risk of malaria infection 

in Africa.

In Kenya, malaria transmission is acutely seasonal with peaks occurring 2-3 months after the 

peak rains in April-May, although the extent of the malaria burden varies considerably from year 

to year (Simon Brooker, Benson Estambale 2004).

9



The interaction between temperature and rainfall is largely responsible for the seasonal character­

istic of malaria transmission. Seasonal variation of infection risk is a common feature o f malaria 

in Sub Saharan Africa and is reflected in intra annual changes in vector densities, entomological 

inoculation rates and malaria admissions (Christie, 1959; Julvez et al., 1992; Aniedu, 1997; Hay 

et al., 1998b, 2000).

Understanding how malaria varies in the community as a result of seasonal or year-to-year changes 

in climate and environmental factors is important for the planning of national malaria control 

programs since it may allow interventions to be adapted to  specific sites or times of the year. 

This is essential for the effective control of the disease. Assessing the relationship between 

environmental parameters and malariometric indices in a quantitative manner is fraught with 

difficulties since the prevalence of malaria may vary considerably within a small area, and the 

data collected at a limited number o f points are not necessarily applicable to a broader region 

(Bjorkman A 1985). Furthermore, prevalence data collected during a limited period of time 

cannot describe the seasonal variations that occur even in areas of high endemicity (Snow RW 

1993)

Information on population distribution, health services, disease risk and seasonality should remove 

some of the barriers to providing a credible platform upon which to institute selected or targeted 

malaria control and prevention. GIS and RS provide a framework to develop high-resolution maps 

of risk, population and service delivery10.

2.1 The Life Cycle
Mosquitoes of the genus Anopheles were first identified as the vectors of human malaria in 1897 

by Sir Ronald Ross (Wernsdorfer and McGregor, 1988). Today, four species of Plasmodium are 

known to infect humans namely P. falciparum, P. malariae, P. vivax and P. ovale. P. falciparum 

is the dominant malaria parasite found in the stable endemic areas of Africa (Young, 1976;
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Gilles, 1993). The malaria parasite develops in two stages; a sexual cycle that takes place 

within the mosquito vector and an asexual cycle in the human host (Fujioka and Aikawa, 1999). 

The haematophagous adult female Anopheles seek vertebrate hosts soon after emergence. The 

ingested blood is used to support egg production and, following development and subsequent 

oviposition, the female vector seeks further blood meals to nourish future broods. It is this 

repeated feeding that facilitates the transmission of parasites between hosts. Infection of the 

human host begins when sporozoites from an infected mosquito are injected into the blood of 

a susceptible human during a blood meal. It then takes 0.5-4 hours for the sporozoites to 

invade host liver cells where they multiply and release as many as 30 000 merozoites, which, in 

turn, invade red blood cells. This asymptomatic period usually lasts about a week in tropical 

countries. The erythrocytic asexual development stage follows when the parasite develops from 

a ring form to a trophozoite that then becomes a schizont, which multiplies to produce 4-32 

merozoites. This intracellular multiplication causes red blood cells to rupture, with the resultant 

release of toxins into the blood, occurring in synchronized 48 hours cycles for P. falciparum, P. 

vivax and P. ovale and in 72 hours cycles for P. malariae. The bouts of fever associated with 

malaria correspond with these episodes of toxin release. Continued asexual multiplication with 

the invasion of further erythrocytes, as well as sexual differentiation, results in the production of 

macrogametocytes (female) and microgametocytes (male). These are the forms of the parasite 

infective to the mosquito. The parasite’s sexual cycle begins when gametocytes are ingested by a 

mosquito vector feeding on an infected individual (Beier, 1998). Fertilization of the gametocytes 

to form ookinetes takes place in the midgut of the mosquito and these lodges in the midgut outer 

wall as oocysts. Numerous sporozoites develop within the oocysts and, as the oocysts rupture, 

migrate to the mosquito's salivary gland from where they are injected into the human host during 

subsequent blood meals. Various aspects of this complex life cycle are affected by climate and 

are explored below.
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2.2 Environmental Determinants of Malaria Trans­
mission

Tem perature

Malaria is a disease of tropical and temperate countries between the latitudinal limits of 64° 

North and 57° South (Gill, 1921) with prevalence increasing towards the equator. As the parasites 

require time to  develop into infective stages, female anopheles are not immediately infective after 

feeding. This extrinsic incubation period is temperature dependent and optimum conditions have 

been defined between 25°C  and 30°C\ with development ceasing below 16°C and above 40°C 
(Russell et al., 1946; Gilles, 1993).

Rainfall

Rainfall provides surface water in which female anopheles can lay eggs. In arid areas where 

temperatures are usually suitable, malaria transmission occurs only when rainfall provides tem­

porary breeding habitat for vectors. These areas are often classified as malarious near water 

since transmission outside the rainy seasons typically occurs only along riverbeds, oases and other 

man-made surface water sites. Studies have demonstrated an association between abundance 

of An. gambiae s.l. and rainfall (Christie, 1959; White et al., 1972; Molineaux and Gramiccia, 

1980; Charlwood et al., 1995). Rainfall effects are often most apparent during epidemics when 

the rise in malaria cases is often proportional to the amount o f precipitation, among other factors 

(Christophers, 1911; Covell, 1957; Wernsdorfer and McGregor, 1988; Malakooti et al., 1998; 

Kilian et al., 1999).

C limate Seasonality

The interaction between temperature and rainfall is largely responsible for the seasonal character­

istic o f malaria transmission. Seasonal variation of infection risk is a common feature of malaria 

in Sub Saharan Africa and is reflected in intraannual changes in vector densities, entomological
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inoculation rates and malaria admissions (Christie, 1959; Julvez et al., 1992; Aniedu, 1997; Hay 

et al., 1998b, 2000).

A tm ospheric M oisture

Early documented reports of human malaria describe its association with humid swamps and 

marshes (Gill, 1921) and several authors have attempted to define optimum conditions of relative 

humidity (RH) based on such observations (Wernsdorfer and McGregor, 1988; Gilles, 1993). 

Gill (1921) was the first formally to investigate the effect of changes in RH on Culex fatigans 

and the transmission of avian malaria. Higher relative humidity was associated with increased 

vector longevity and greater frequency of feeding. RH also determined the tim ing and duration 

of daytime resting behaviour (Boyd, 1930; Russell et al., 1946; Molineaux, 1988).

A ltitud e

Altitude has long been a subject of interest among malariologists (Schwetz, 1942; Garnham, 

1948; Heisch and Harper, 1949; Covell, 1957; Roberts, 1964; Malakooti et al., 1998). Altitude 

and temperature are explicitly linked, with every 100 m increase in height corresponding to an 

approximately 0.5°C decline in temperature. The use of altitude can be confusing, however, with 

the limit for malaria transmission variously reported above 2000 m in Ethiopia (Coveil, 1957), 

1800 m in the Congo (Schwetz, 1942) and 1950 m in Kenya (Garnham, 1948). Use of the phrase 

highland malaria continues, but it is more clearly thought of as temperature-limited unstable 

transmission.

2.2.1 Research question

Is there significant difference in the cumulative incidence proportion of the malaria spread in Kilifi 

District?

13



Chapter 3

M ethodology

The ministry o f health has introduced Integrated Disease Surveillance and Response (IDSR) 

system whereby the Districts are the focus for integrating disease surveillance functions. The 

districts collect and collate data on a weekly and monthly basis, the number of patients treated 

of all the diseases in all the health facilities within the district. This data shows; the gender of the 

patients, whether over five years or under five years, total number of outpatients and in patients. 

The data also has total number of bed days for the in patients, total number of discharges and 

deaths from these facilities. At the facilities we got the catchment population per facility. This 

was obtained from the Village Health Committees (VHC) that are involved in health matters in 

each facility’s catchment area. The VHCs are responsible for a specific village and know the 

total number o f people in these villages. For each division, we get population by adding the total 

number of people in the villages that form the divion. This is the data that will be analysed.

Kilifi district was chosen as it has a new and better HMIS system that is under tria l before it is 

fully implemented in the whole country. Over time, this system has been used to collect data on 

all the number o f patients seen and treated of all the major conditions in the district.
t

Using WHO Health mapper programme, we are able to get the positioning of all the health 

facilities in the district together with the administrative boundaries (Provincial, District, Division,
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Location and sub locations). These are then used to study the spatial distribution of malaria in 

the district.

A distinction is often made between prevalence and incidence of a disease. Prevalence is a measure 

of the total number of cases of disease in a population at a point in time, while incidence rate is 

the occurrence of new cases of disease (incident number) in a population divided by the person­

time over a specified period. Thus, prevalence indicates the magnitude of disease burden whereas 

incidence conveys information about the risk of contracting malaria. In the present study, the 

measurement o f incidence is complicated by changes in the population at risk, since sometimes 

the same person may report more than once during a month to the health facility. Each episode 

of malaria roughly lasts for a week and utmost for one month in the presence o f recrudescence. 

In these circumstances, the definition of incidence is usually restricted to the first event reported 

in that month. Once a person is classified as a malaria case, he or she is no longer liable to 

become a new case within the same month. Beyond one month, the person reporting and testing 

positive at a clinic is considered a new case. Therefore, the incidence density (ID ) of malaria was 

calculated by relating the numbers of new cases to the person years at risk, calculated by adding 

together the periods during which each individual member of the population is at risk during the 

measurement period. ID is defined as: Number of new cases/Total person years at risk.

The spatial analysis is composed of a set of chained procedures whose aim is to choose an 

inferential model that explicitly establishes the spatial relationship present in the phenomenon. 

The initial procedures of analysis include the set of generic methods of exploratory analysis and 

the visualization of data, in general through maps. These techniques permit the description of 

the distribution of the variables o f study, the identification of observations that are outliers not 

only in relation to the type of distribution but also in relation to its neighbors, and to explore 

the existence of patterns in the spatial distribution. Through these procedures it is possible to 

come up with hypotheses about the observations, in a way of selecting the best inferential model 

supported by the data.
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3.1 Spatial Analysis Processes
The spatial inferential models are usually presented in three forms: continuous variation, discrete 

variation, and the point processes. The resolution of a spatial problem may involve the utilization 

of one or the interaction of some or even all of them.

3.1.1 Point processes

Point processes are a set of irregularly distributed points in a terrain, whose location was gen­

erated by a stochastic mechanism. The localization of points is the object of study, which has 

the objective o f understanding its generating mechanism. A set of points (ttl> t i2 f. . .  .un) in a 

certain region A is considered where events occurred. For example, if the phenomenon under 

study is homicides that occurred in a certain region, there may be need to verify if  there is any

geographic pattern for this kind of crime, that is, to find sub-regions in A with greater probability 

of occurrence.

3.1.2 Continuous processes

The inferential models of continuous variation consider a stochastic process Z(u), fieA, A e K  

whose values can be known In every point of the study area. Starting from a sample of one

attribute 2, collected in various p points contained in A, {z(fia),a  = 1 , 2 ........ n } ,  we aim at

inferring a continuous surface of values o f 2. The estimation of this stochastic process can be 

done in a completely non-parametric way or from kriging estimators. These classical inferential 

models of surfaces estimation are denominated geostatistics. Geostatistics uses two types of 

estimation procedures: the kriging and the stochastic simulation. In kriging, at each point p0, a 

value of the random variable Z is estimated Z([t0) .using an estimator Z' (/;„), that is a function 

of the data and of the spatial covariance structure Z (po) =  / (C , ( n ) ) . These estimators present 

some important properties, they are not biased and are optimal in the sense that they minimize
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the functions of the inferential errors.

3.1.3 Discrete processes

The inferential models o f discrete variation concern the distribution of events whose localization 

is associated to areas delimited by polygons. This case occurs much frequently when we deal with 

phenomena aggregated by municipalities, quarters or census tracts, like population, mortality and 

income. In this case, we dont have the exact locality o f the events, but value aggregated by 

area. The objective is to model the pattern of spatial occurrence of the geographic phenomenon 

under study. In this type of modeling we consider that the geographic space under study, region 

A, is a fixed set of spatial units. The most used model of distribution considers a stochastic 

process Z, : i  =  1 ,2 ,. ..  , n. composed of a set of random variables. We seek to  construct an 

approximation of the jo in t distribution of these variables Z = Z\,.. .  , Zn, where each random 

variable is associated with one of the areas and has a distribution to be estimated. If the process is 

stationary, the expected value of Zi is the global mean of the region and the covariance structure 

depend only on distance, or on the neighborhood structure between the areas.

3.2 Spatial Data Analysis
Spatial data analysis deals with the situation where observational data are available on some 

process operating in space and methods are sought to describe or explain the behavior of this 

process and its possible relationship to other spatial phenomena. Spatial data analysis is involved 

when data are spatially located and explicit consideration is given to the possible importance of 

their spatial arrangement in the analysis or in interpretation of results.

The Laplace Principle of probability theory asserts that if there is no information to indicate that 

either of two events is more likely, then they should be treated as equally likely, i.e., as having 

the same probability of occuring. That is, if we have a square divided into two parts left and

17



right and applying this principle to the case of a randomly located point in square, S , there is no 

reason to believe that this point is more likely to appear in either left half or the (identical) right 

half. So these two (mutually exclusive and collectively exhaustive) events should have the same 

probability, But if these halves are in turn divided into equal quarters, then the same argument 

shows that each of these four occupancy events should have probability If we continue in 

this way, then the square can be divided into a large number of n grid cells, each with the same 

probability,^, of containing the point. Now for any subregion (or cell ), C C S, the probability

that C will contain this point is at least as large as the sum of probabilities of all grid cells inside

C , and similarly is no greater that the sum of probabilities o f all cells that intersect C . Hence by 

allowing n to become arbitrarily large, it is evident that these two sums will converge to the same 

lim it, namely the fractional area of S inside C. Hence the probability, Pr(C\S) that a random

point in S lies in any cell C  C S is proportional to  the area of C.

Pr(C|5 ) = J g  (3.1)
since this must hold for any pair of nested regions C C S it follows that,

Pr(C\S) =  Pr(C\R).Pr(R\S) => Pr(C\R) = Pr(C\S)
Pr(R\S)

This implies that

a(C)/a(S)
a(R)/a(S)

P r^ R) =  W )

hence the square can be replaced by any bounded region, R , in the plane.

(3.2)

This fundamental proportionality result forms the basis for almost all models of spatial random­

ness.

In probability terms, this principle induces a uniform probability distribution on R, describing the 

location of a single random point. W ith respect to  any given cell, C €  R, it convenient to 

characterize this event as a Bernoulli (binary) random variable, X(C), where X(C)=1 if the point 

is located in C and X(C) =  0 otherwise. In these terms, it follows from above that the conditional
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probability o f this event (given that the point is located in R) must be

Pr[X(C) =  l | f l ]  =  (3 '3)

so that

Pr[X{C) =  0 |f l]  =  1 -  Pr[X(C) =  1|H] =  1 -  [a(C )/a(/?)]. (3-4)

3.3 Complete Spatial Randomness
The basic "reference''or "benchmark" model o f a point process is the uniform Poisson point 

process in the plane with intensity, sometimes called Complete Spatial Randomness (CSR).

Its basic properties are

.  the number of points falling in any region has a Poisson distribution with mean

.  given that there are n points inside region A, the locations of these points are independent 

and identically distributed and uniformly distributed inside A

•  the contents of two disjoint regions A and D are independent.

The uniform Poisson process is often the null model in an analysis.

There are three approaches to testing the CSR hypothesis: the quadrat method, the nearest- 

neighbor method, and the method of K-functions

3.3.1 Quadrat M ethod
n points in R. and if we let a =  a(C ), then the estimated point density A is given by

(3.5)
If there are n points

A =
a(R)
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then this common Poisson cell-count distribution has the form

=  *W = * - 0 ,1 .2 . . .  (3.6)
Moreover, since the CSR Hypothesis also implies that each of the cell counts, N, =  N(Ct)i = 

1 ,.. .  ,A, is independent, it follows that (N{ : i =  1 ,..,& ) must be an independent random 

samples from this Poisson distribution. Hence the simplest test of this hypothesis is to use the 

Pearson chi2 goodness-of-fit test. Here the expected number of points in each cell is given by 

the mean o f the Poisson above, which (recalling that a=a(R )/m  by construction) is

E (N/ A) =  a. =  —
a(R) m

Hence if the observed value of Nx is denoted by m , then the chi-square statistic

- 2 =  L
i=i

(rii — n/m )'“ 
n/m (3.7)

is known to be asymptotically chi-square distributed with m -  1 degrees of freedom, under the

CSR Hypothesis. Thus one can test this hypothesis directly in these terms. But since n/m is 

simply the sample mean, i.e.,
m

n/m =  ( l / m ) ^ m  =  ft
*=i

this statistic can also be written as

x = E
i= i

( f i i - n f  s2
— r—  =n n (3.8)

where s2 =  (ni - n )2 is the sample variance. But since the variance o f the Poisson

distribution is exactly the mean, it follows that var(N)/E(N) = 1 under CSR. Moreover, since 

s~/n2 is the natural estimate o f this ratio, this ratio is often designated as the index o f dispersion, 

and used as a rough measure of dispersion versus clustering. If s2/n < 1 then there is too little 

variation among quadrat counts, suggesting possible dispersion rather than randomness. Similarly,

\fs2/n > 1 then there is too much variation among counts, suggesting possible clustering rather 

than randomness.
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But this testing procedure is very restrictive in that it requires a rectangular region. More 

importantly, it depends critically on the size of the partition chosen. As with all applications of 

Pearsons goodness-of-fit test, if there is no natural choice of partition size, then the results can 

be very sensitive to the partition chosen. The power of the quadrat test depends on the size of 

quadrats, and falls to zero for quadrats which are either very large or very small. The power also 

depends on the alternative hypothesis, in particular on the spatial scale of any departures from 

the assumptions of constant intensity and independence of points. The choice of quadrat size 

carries an implicit assumption about the spatial scale.

3.3.2 Two-Tailed Test of CSR

The standard test of CSR in most software is a two-tailed test in which both the possibility of 

"significantly small values of dm (clustering) and significantly large values of dm (dispersion) 

are considered. The upper-tail points, zn, for the standard normal distribution is defined by 

Pr(Z  > za) =  a  for Z N(0,1). It follows that for the standardized mean in (18)

Pr(\Zm\ > za/2) =  Pr [Zm <  -Z ai2 °r(za/2 <  -Zm)]  =  01 ( 3 . 9 )

under the CSR Hypothesis. Hence if we estimates point density as above and constructs corre­

sponding estimates of the mean and standard deviation under CSR by

-  _  1 -  _  / (4 ~  *)
M _ 2 vT  ]j(rn4wX)

We can then test the CSR Hypothesis by constructing the following standardized sample mean:

If the CSR Hypothesis is true, then by (3.9) and (3.10) above, Zm should be a sample from 

N(0,1). Hence a test of CSR at the a-level of significance is then given by the rule:

Tw o-Tailed CSR Test : Reject the CSR Hypothesis if and only if \Zm\ > Za/2
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One-Tailed Test of Clustering and Dispersion

Values of dm (and hence zm ) that are too low to be plausible under CSR are indicative of patterns 

more dispersed than random. Similarly, values too large are indicative o f patterns more clustered 

than random. In many cases, one o f these alternatives is more relevant than the other. So the 

key question here is whether this pattern is significantly more clustered than random. Similarly, 

one can ask whether the pattern is significantly more dispersed than random. This leads naturally 

to one-tailed versions of the test above. First, a test of clustering versus the CSR Hypothesis at 

the a -  level o f significance is given by the rule:

C lustering versus CSR Test : Conclude significant clustering if and only if zm =  zn

The same applies when testing for dispersion versus the CSR Hypothesis at the a -  level o f 

significance where we use the rule:

Dispersion versus CSR Test: Conclude significant dispersion if and only if zm > zn In the 

one-tailed test o f clustering versus CSR above, suppose that for the observed standardized mean 

value, zm , one simply asks how likely it would be to  obtain a value this low if the CSR Hypothesis 

were true. This question is answered by calculating the probability of a sample value as low as 

zm for the standard normal distribution N(0,1) . If the cumulative distribution function for the 

normal distribution is denoted by

$ (Z )  =  P r ( Z < z )  (3.11)
then this probability, called the P-value of the test, is given by

Pr(Z < ^  =  * ( Z m) (3.12)

Unlike the significance level, a, above, the P-value for a test depends on the realized sample 

value, zm , and hence is itself a random variable that changes from sample to sample. However, 

it can be related to o by observing that if  P[Z  <  zm) <  a, then for a test of size a, one would 

conclude that there is significant clustering. More generally the P-value, (P(Z < zm)) can be
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defined as the largest level of significance (smallest value of a ) at which CSR would be rejected 

in favor o f clustering based on the given sample value, zm.

Similarly, one can define the P-value for a test of dispersion the same way. except that now for 

a given observed standardized mean value, zm, one asks how likely it would be to  obtain a value 

this large if the CSR Hypothesis were true. Hence the P-value in this case is given by

Pr(Z > Zm) =  Pr(Z  >  zm) =  1 -  Pr(Z > zm) =  1 -  * ( * „ )  (3.13)

The corresponding P-value for the general two-tailed test is given as the answer to the following 

question: How likely would it be to  obtain a value as far from zero as zm if the CSR Hypothesis 

were true? More formally this P-value is given by

P ( \ Z \ > z m) = 2 . * ( - M )  (3-14)

Here the absolute value is used to ensure that -\zm\ is negative regardless of the sign of 2m . Also 

the factor 2 reflects the fact that values in both tails are further from zero than zm.

3.4 Continuous Spatial Data Analysis
The key difference between continuous spatial data and point patterns is that there is now assumed 

to be a meaningful value, Y(s), at every location, s, in the region of interest. For example, Y(s) 

might be the malaria cases at s or the human population at s.

If the region of interest is again denoted by R, and if the value, V (5), at each location, 5 € R is 

treated as a random variable, then the collection of random variables

Y ( s ) : s e R  (3-15)

is designated as a spatial stochastic process on R (also called a random field on R ). Such 

(uncountably) infinite collections of random variables cannot be analyzed in any meaningful way 

without making a number of strong assumptions.
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There is a clear parallel between spatial stochastic processes and temporal stochastic processes,

Y(t) : t e T

where the set, T  , is some continuous (possibly unbounded) interval of time.

(3.16)

3.4.1 B asic M odeling Framework

Spatial statistical models start by decomposing the statistical variation of random variables, V^s), 

into a deterministic trend term, and a stochastic residual term, e(s) , as follows

F (s ) = //(« )  + € (5), 5 G R (3.17)

where fi(s) is taken to be the mean o f Y(s) so that by definition,

e(s) = Y(s) -  fi(s) => F[e(s)J =  F [Y (s )] -  ,z(s) (3.18)
This implies

F[c(s)J =  0, s e R

The above two equations together constitute the basic modeling framework used in the analysis. 

This framework is a convenient representation of Y(s), and involves no substantive assumptions. 

Since //(.) defines a deterministic function on R, it is useful to think o f //(.) as a spatial trend 

function representing the typical values o f the given spatial stochastic process over all R , i.e., 

the global structure of the Y -process. Similarly, since e(.) is by definition a spatial stochastic 

process on R with mean identically zero, it is useful to think of e(.) as a spatial residual process 

representing local variations about //(.), i.e., the local structure o f the Y -process.

W ithin this framework, our basic modeling strategy will be to identify a spatial trend function, 

//(.) , that fits  the Y -process so well tha t the resulting residual process, e(.), is not statistically 

distinguishable from random noise. To make this strategy precise, we must of course develop 

appropriate models of random noise (in a manner paralleling the CSR hypothesis)

24



Suppose that n points are each located randomly in region R. Then the other key assumption of 

spatial randomness is that the locations of these points have no influence on one another. Hence 

if for each i=  l,..,n , the Bernoulli variable, Xt(C), now denotes the event that point i is located in 

region C , then under spatial randomness the random variables Xt(C) : i =  1 ,. . .  n are assumed 

to be statistically independent for each region C . This together with the Spatial Laplace Principle 

above defines the fundamental hypothesis of complete spatial randomness (CSR), which we shall 

usually refer to as the CSR Hypothesis.

In terms of the individual variables, X ,(C ), the total number of points appearing in C , designated 

as the cell count, N(C) , for C , must be given by the random sum

n

N(C) =  Y ,* i ( C )  (319)
1=1

[It is this additive representation o f cell counts that motivates the Bernoulli (0-1) characterization 

of location events above]. Since the expected value of a Bernoulli random variable, X, is simply 

P{X  =  1), it follows (from the linearity of expectations) that the expected number of points in 

C must be

E[N(C)\n, ft] =  £  £ [X ,(C )|ft]  =  £  P r[X ,(C ) =  l | f l ]
1=1 1=1

a{C) a(C) 
=  2 ^ - ^  =  n ‘

(3.20)
n

A C )
^ a ( R )  ’ a(R) a(R)

Finally, it follows from expression (1) that under the CSR Hypothesis, the sum of independent 

Bernoulli variables in (2) is by definition a Binomial random variable with distribution given by

Pr[N(C) =  k/n, R] =
n\ a(C)

k\(n — k)\ \a(R.)
( } fl(c)
V a ( R )

n~k
,fc = 0, l , . . .  ,n (3.21)

For most practical purposes, this conditional cell-count distribution for the number of points in 

cell, C C R (given that n points are randomly located in R) constitutes the basic probability 

model for the CSR Hypothesis.
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The above notion of spatial randomness is derived from the principle that regions of equal area 

should have the same chance of containing any given randomly located point. More formally, 

this Spatial Laplace Principle asserts that for any two subregions (cells), C\ and C2 , in R ,

a(Ci) =  a(C2) = »  Pr[X(Cx) =  1 /R] =  Pr[X(C2) =  l/R] (3.22)

However, simple area may not always be the most relevant reference measure (backcloth). In the 

example of malaria, if malaria cases are spatially random, then each individual should have the

same chance o f contracting this disease. So here, the existing population distribution becomes 

the relevant reference measure.

To generalize this notion of spatial randomness, we need only replace area with the relevant 

reference measure, say p(C), which may be the number of houses in C or the total population of 

C. As an extension o f the above, we then have the following Generalized Spatial Laplace Principle: 

For any two sub regions (cells), Cx and C2, in R:

P(C\) =  p(C2) =>  Pr[X( C j )  =  l/R] = Pr[X(C2) =  l /R ]

3.4.3 Spatial Dependence

Spatial dependence in a collection of sample data implies that observations at location i depend 

on other observations at locations j, j ^ i .  Formally, stated as; yi = f(y j) , i =  1........ n.

Note that dependence is among several observations, as the index i can take on any value from

* = 1 ,... ,n.

3.4.2 Generalized Spatial Randomness
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3.5 Spatial Autocorrelation
Spatial autocorrelation is when the value at any one point in space is dependent on values at 

the surrounding points. That is, the arrangement of values is not just random. Positive spatial 

correlation means that similar values tend to be near each other. Negative spatial correlation 

means that different values tend to  be near each other.

3.5.1 M oran’s I

It is often used to measure the spatial autocorrelation o f ordinal, interval or ratio data. Morans 

l-for a spatial proximity matrix W  spatial correlation in attribute values is estimated as:

_  n s r . 1  £ ? - i  wd(*> -  MX*? - 1‘ ) 
l ) '  (n ££ .,(* . -  V)2)(n E "-. E U  «W)

Where /* =  ^»'=i -  ie the average o f x, over the n locations is the observed value of population 

at location i and wi} is the spatial weight measure of contiguity and is defined as 1 if location i 

is contiguous to location j and 0 otherwise.

The expected value and variance o f morans I for a sample of size n could be calculated according 

to the assumed pattern of the spatial data distribution (C liff and Ord, 1981) For the assumption 

of a normal distribution:

VAH,( l )  =
n2W\ — nw2 + 3wo 

w2Q(ti2 — 1) -  E2n(I)

For the assumption of random distribution:
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ErU) =  T
71— 1

VARr(I)  =
ti((ti2 — 3n + 3)ini — nw2 + 3wfi) -  K2((n2 — n)w\ — 2nw2 + 6w%)

w l(n  -  l)(n — 2)(n — 3) E2r(I),

where, K2 rt- f i f‘=^Xl 21*} w

E r= i(w ( * - ) + ^ ( - 0 ) 2

E n »n
»=1 Z^j=l wd> wi =  i E r = i E ”= i ( ^ ( u ) + ^ ’))2. ^2 =

iW(*0 and wi(.i) are the sum of the row i and column i o f the matrix respectively.

Negative (positive) values indicate negative (positive) spatial autocorrelation. In practice, values 

greater than 2 or smaller than -2 indicate spatial autocorrelation that is significant at the 5 

percent

Moran s I is inversely related to Geary’s C, but it is not identical. Moran's I is a measure of global 

spatial autocorrelation, while Geary’s C is more sensitive to  local spatial autocorrelation.

Hypothesis Testing

The test o f the null hypothesis that there is no spatial autocorrelation between observed values 

over the n locations can be conducted on the basis of the standardized statistics as follows:

Z(d) = m  -  E(i)
yJVAR{I)

Morans I is significant and positive when the observed values o f locations within a certain distance 

(d) tend to be similar, negative when they tend to dissimilar, and approximately zero when the 

observed values are arranged randomly and independently over space
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Generalized Spatial Linear Model
A generalized spatial linear model is an extension of the generalized linear models by incorporating 

spatial dependence into the model.

1. An error distribution for the response variable within the exponential family of distribution.

2. A monotonic link function, g(.), such that:

9(Pi) =  x f  +  1 £ " =1 CijVj'

where pt is the mean value of the response variable, is the spatial autocorrelation parameter, ctj  

represents the geographical arrangement of data values and g(.) link function.
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3.6 Application to the study
The data we have was collected from specific points (health facilities) over time. In order to 

determine the spatial clustering of malaria cases, we are going to apply the continuous spatial 

data analysis. This will allow us to see the variation o f the cases over time considering the 

catchment population for each facility and also the two classes of patients; under fives and over 

fives.

3.6.1 Brief Description of the data

The data used in this study is from the HMIS of Kilifi District. The original data contains the 

Total number o f patients seen from all the Government Health facilities in the district and the 

condition they were suffering from. This data is collected every day from each of the health 

facilities and sent to the district hospital for compilation. It is divided into patients under five 

years and those over five years. The data also contain the division within which the facilities 

are located. The catchment population for each of the facilities is obtained from Facility Health 

Committees which represent the community in the running of all these facilities. We have the 

Village Health committees who are responsible for educating the community on health matters 

and each VHC is responsible for ten homesteads and they therefore know the to ta l population 

under their watch.

3.6.2 Definition of variables
•  Facility- the name of the facility

•  Lat -the latitude of the facility

•  Long -the longitude of the facility

•  Pop05 -catchment population o f the facility for 2005
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• Pop06 -catchment population of the facility for 2006

• Pop07 -catchment population of the facility for 2007

• Division- The division in which the facility is based

• Mal04- the number of malaria cases in 2004

• Allcases04- the total number of patient who visited the facility with various conditions in 

2004

• Mal05- the number of malaria cases in 2005

• Allcases05- the total number of patient who visited the facility with various conditions 2005

• Mal06- the number of malaria cases in 2006

• Allcases06- the total number of patient who visited the facility with various conditions 2006

• Mal07- the number of malaria cases in 2007

• Allcases07- the total number o f patient who visited the facility with various conditions 2007

• Mal08- the number of malaria cases in 2008

• Allcases08- the total number of patient who visited the facility with various conditions 2008

• Mal05/allcases05- the proportion of malaria to all cases in the facility for 2005

• Mal06/allcases06- the proportion of malaria to all cases in the facility for 2006

• MalO Mal07/allcases07- the proportion of malaria to  all cases in the facility for 2007

• Mal08/allcases08- the proportion of malaria to all cases in the facility for 2008

• Prop05-proportion of malaria cases to the catchment population for 2005

•  Prop06-proportion of malaria cases to the catchment population for 2006
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• Prop07-proportion of malaria cases to the catchment population for 2007

• Prop08-proportion of malaria cases to the catchment population for 2008

• Divisions 1-Bamba, 2-Kikambala, 3-Kaloleni, 4-Chonyi, 5-Bahari, 6-Vitengeni, 7-Ganze.
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Chapter 4

R esults

This chapter present summary statistics, exploratory analysis and the results o f spatial data 

analysis. The map shows the incidence density for the patients over five years. We see that there

Figure 4.1: The incidence density for patients over five years

is high concentration around the ocean that reduces as one moves eastwards.

This figure also shows the incidence density but this time its for the patients under five years. 

We see that as one moves northward, the intensity reduces. Regions away from the ocean have 

less incidence intensity as compared to those close to the ocean.
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Figure 4.2: The incidence density for patients under five years

Figure 4.3 above gives us the summary of the variable in the data. It also shows the mean, 

standard deviation, minimum and maxium values of the variables.

The above gives us the morans I o f the year 2005. The value is 0.0242. This is less than one and 

hence there is no spatial autocorellation.

Figure 4.5 gives us the expected distribution of the health facilities within Kilifi district using the 

inhomogenous poisson process.

Figure 4.6 boxplot gives us the incidence densities in the three years from 2005 to 2007. The 

data is normally distributed apart from in 2005 when we had outliers. 2006 had the biggest range 

of 0.7.

Figure 4.7 shows the boxplot for the incidence density for the year 2005 for the different divisions. 

Two divisions, Bamba and Kaloleni had outliers.

Figure 4.8 above shows the boxplot for the incidence density for the year 2006 for the different 

divisions. The data here is generally normally distributed

Figure 4.9 shows the boxplot of the incidence density for the different divisions for the year 2007. 

Kikambala (Division two)had outliers in this year.

Figure 4.10 shows us the spatial clustering of the malaria cases for the population of the over
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five years. This is the figure without incorporating the actual Kilifi map.

Figure 4.11 shows us the spatial clustering of the malaria cases for the population of the over 

five years. This is the figure does not include the intensity of the health facilities but just shows 

the the cummulative incidences.
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The graphs in figure 4.12 above shows the K,J,G and F functions. They measure spatial clustering. 

K function measures clustering at multiple different distances, G function gives the probability 

of an observed point’s nearest neighbour appearing at any given distance r. F function gives the 

probability o f a random empty location having a nearest neighbour at a given distance r.

Table 4.1: Summary of the Incidence densities

Table 4.1 gives us a summary of the incidence densities for the two ages: over fives and the under 

fives when compared for the different years. The under fives have the highest mean of 0.3,0.36 

and 0.37 for the years 2005, 2006 and 2007 respectively.

Table 4.2: Anova Table for the different years
Year Source DF SS MS F Sig
2005 Between Groups 1 0.166 0.166 4.632 0.035

Within Groups 72 2.573 0.036
Total 73 2.739

2006 Between Groups 1 0.216 0.216 6.720 0.012
Within Groups 72 2.317 0.032

Total 73 2.533
2007 Between Groups 1 0.365 0.365 11.111 0.001

Within Groups 72 2.368 0.033
Total 73 2.733

Table 4.2 shows the difference in the different years. We see that there is significant difference 

in the years as the significance ranges from 0.001 in 2007 to  0.035 in the year 2005.

In table 4.3 we get analysis by type o f health facility visited by patients. We can see that there 

is no significant difference in the malaria incidence density as the p values for all the three years 

are above 0.05. When we compare the malaria to  total morbidity we see significant difference
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ranging from 0.01 to 0.00012.

Table 4.4 shows us the two AIC for the two possible models. We pick the one with the smallest 

AIC o f -207.721

Table 4.3: Analysis by type of Health Facility
Year District Hosp. Health Centre Dispensary Clinic P-value

Incidence density 200.')
2006
2007

0.201
0.190
0.144

0.634
0.587
0.580

0.632
0.726
0.593

0.202
0.335
0.272

0.13
0.0N0
0.102

Malaria to total morbidity 2005
2006
2007

0.255
0.461
0.508

0.3292
0.297
0.299

0.365
0.335
0.281

0.343
0.320
0.261

0.013
0.01

0.00012

lanif 4.4. i
Intercept X Y Log

(Lambd
AIC

0
Fit 1 (Non station- Fitted coefficient -48.21 1.32 0.08 -207.72
ary poisson process) for trend

Fitted regular para- -48.21 0.13 0.08
meters (theta) 
Fitted exp (theta) 0.00 0.04 0.001

Fit 2 (Stationary Uniform intensity 46.25 -207.085
poisson process)

Fitted regular para- 3.834
meters (theta) 
Fitted exp (theta) 46.25
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Figure 4.3: Sum m ary statistics
Report

Division PooQ5
PopO

6 Pod07 mal05
Allcas
esQ5 mal06

Allcas
es06 mal07

All
cases

07
1 Mean

Std.
Deviation
Minimum

Maximum

12944.25

13626.367

2945
32510

13333

14035

3033

33485

13746

14470

3127

34523

912.174869

518.682675

309.7828889
1558.59541

4812.8

4047.7

1566

10720

1212.44672

1028.42223

306.3231536

2679.14412

7542

6168

1770
16272

1407.76348

1437.79986

315.664490

3493.83312

7602.75

6622.03

1833
16907

2 Mean 17213.00 17729 18279 1485.79540 8173.8 1724.94492 10398 1645.42431 11140.0
Std.
Deviation 14841.631 15287 15761 672.738005 4062.5 731.924367 5071 1001.56000 7339.45

Minimum 5151 5306 5470 131.5436325 447 484.2589674 2425 317.233614 2318
Maximum 47924 49362 50892 2325.07773 13900 3071.57038 17415 3415.93553 22025

3 Mean 19394.33 19976 20595 1569.89588 8518.3 1956.04444 10024 1825.01185 10174.7
Std.
Deviation 19671.506 20262 20890 1154.35490 6085.3 1159.90041 4161 934.090000 4428.51

Minimum 2436 2509 2587 170.2708020 679 293.8708689 3266 730.774762 3627
Maximum 58132 59876 61732 4478.18008 23590 3899.30156 16536 3308.34560 17912

4 Mean 24119.50 24843 25613 2234.50643 10824 2276.31782 13049 2111.21537 12170.5
Std.
Deviation 20100.924 20704 21346 152.436389 256.68 824.598541 4711 183.543396 3581.50

Minimum 9906 10203 10519 2126.71763 10642 1693.23860 9718 1981.43059 9638
Maximum 38333 39483 40707 2342.29524 11005 2859.39704 16380 2241.00015 14703

5 Mean 25600.50 26369 27186 2133.70092 13871 3283.74071 15373 2890.88318 15892.8
Std.
Deviation 28014.328 28855 29749 1912.32453 12649 3452.40166 13711 2897.39044 13950.0

Minimum 6166 6351 6548 461.8078272 3029 487.4745485 3336 351.386303 3650
Maximum 67205 69221 71367 4840.33310 31822 8258.92102 34170 7005.67898 35340

6 Mean 11865.75 12222 12601 771.727897 5744.5 1358.52511 8401 1268.37695 8895.75
Std.
Deviation 8643.877 8903 9179.3 455.696049 3484.0 707.302472 2672 502.797177 2784.75

Minimum 3283 3381 3486 417.7433613 2591 636.8017170 4912 574.801556 4776
Maximum 19308 19887 20504 1438.54018 10724 2332.22940 11420 1747.31504 10712

7 Mean

Std.
15559.00 16026 16523 1318.53536 6176.0 1595.72884 10178 1818.75009 13004.0

Deviation , 1996.870 2057 2120.6 102.223217 2210.4 554.492768 294.9 951.066674 1728.17

Minimum 14147 14571 15023 1246.25263 4613 1203.64325 9969 1146.24439 11782
Maximum 16971 17480 18022 1390.81809 7739 1987.81444 10386 2491.25578 14226

Total Mean 18071.57 18614 19191 1475.33534 8310.6 1896.21570 10421 1806.40504 10872.2
Std.
Deviation 16800.979 17305 17841 1013.87575 6081.0 1414.28440 5966 1265.21024 6623.32

Minimum 2436 2509 2587 131.5436325 447 293.8708689 1770 315.664490 1833
Maximum 67205 69221 71367 4840.33310 31822 8258.92102 34170 7005.67898 35340
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Figure 4.4: M oran’s I
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F igu re  4.6: Box-plot for all years incidence density
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Figure 4.7: Box-plot for 2005 incidence density
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Figure 4.10: Spatial clustering for the  over fives
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Figure 4.11: Spatial clustering without intensity of facilities
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Figure 4.12: The K, J ,  G, and F functions
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Chapter 5

D iscussion and Conclusion

The results show tha t there is a significant difference between the cumulative incidence o f children 

under five who suffered from malaria as compared to the cummulative incidence of the population 

over five who suffered from malaria during the same years. The cumulative incidence o f the over 

fives who suffered from malaria ranged from 2.52 to 62.43 percent in 2005, 4.14 to 59.43 percent 

in 2006 and 5.26 to  57.57 percent in 2007. The cumulative incidence of the children who suffered 

from malaria ranged from 3.39 to 90.66 percent in 2005, 8.00 to 85.87 percent in 2006 and 7.75 

to 74.97 percent in 2007. The children under five years suffered highest in 2007 when the mean 

incidence was 36.996 percent while those over five years suffered the highest in 2006 when the 

incidence was 25.27 percent. This can be seen in table 4.1.

When we compare the malaria incidences in the three years; 2005,2006 and 2007, we see from 

table 4.2 that there was a significance difference in the malaria incidences in these three years 

with a pvalue of less than 0.05.

Figure 4.3 gives us a summary of the data in all the seven divisions showing the mean, standard 

deviation, minimum and maximum values.

The total malaria cases in comparison with the total diseases cases in the district for patients over
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five years ranged from 25.47 percent in 2008 to 32.89 percent in 2005. This gives an average of 

29.6 percent which compares to the national average of about 30 percent.

The malaria cases in comparison to  the total outpatient morbidity in the district for the patients 

under five ranged from 30.36 percent in the year 2007 to 37.41 percent in the year 2005. This 

has an average of 33.39 percent. This compares well with the country's average o f 30 percent. 

There is a significant difference in the proportion of malaria cases to total outpatient morbidity 

for the patients less than five years as compared to those patients over five years in the two years 

of 2005 and 2006 were the p-values were 0.006 and 0.048 respectively at 5 percent confidence.

This study therefore shows that there is a significant difference between the proportions of malaria 

cases to the total outpatient attendance for those over five as compared to those less than five 

years for the twin years of 2006 and 2007.

When we consider the cumulative incidence with the type of facility, the results are not significantly 

different. On the other hand when we analyze malaria cases as a proportion of the total morbidity 

per type of facility, we see that there is significant difference in the four types of facilities (District 

Hospital, Health centre, Dispensary and clinics). The p-value ranges from less than 0.001 in 2007 

to 0.013 in the year 2005 at 5 percent confidence level. The District hospital has the highest 

percentage followed by the dispensaries, clinics then finally the Health centres.

From figure 4.6, we see that on average, the incidence density o f malaria in the whole of kilifi 

district was on the increase from 2005 to 2007. In 2005, there were two outlier values of 0.82 

and 0.92,

Considering the incidences in 2005 per division as can be seen in figure 4.7, we see tha t divisions 

one and three had outlier values at 0.52 and 0.9 respectively. Divisions one and four did not 

have normal distribution of their data. Division five had the smallest interquartile range while 

division six had the biggest. Divison four had the highest median at 0.28 while division one had 

the smallest at 0.1.
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In 2006, we see that the data was more normally distributed except for division one and six. 

Division four had the highest median 0.42 while division one had the lowest at 0.16. Division 

three had the biggest range of 0.81 while division six had the least.

In 2007 as can be seen from figure 4.9, the data was normally distributed in all the divisions apart 

from division six. Division two had two outliers while the rest divisions did not have any outliers. 

Division three had the biggest range of 0.7. Division six had a range of 0.35.

The intensity o f the study area, which is the measure of number of points per square unit, is 

46.3. This takes into account the total number of points mapped which were 37 health facilities.

The study also shows that there is clustering of the population around the big towns like Kilifi 

and Mariakani. The population is also clustered along the coast line and along the highway.

The K function, the J function and the G function, all give us a value less than one. This indicates 

that there is spatial clustering of malaria cases. F function measures the empty space between 

cases and this is also less than one which is indicative o f spatial clustering. There is therefore no 

CSR. We therefore reject H0 that there is complete spatial randomness in malaria cases in Kilifi 

district and conclude the alternative hypothesis that there is spatial clustering of malaria cases 

in kilifi district.

For the over five population, malaria clustering is seen in regions four and six of our map which are 

Chonyi and Vitengeni divisions respectively. The specific areas are around, Bwagamoyo, Lenga, 

Dida, Mgamboni, Ribe, Junju and Giryama dispensaries. We also see that the malaria cases seem 

to be more towards the coastline and reduces as one moves towards west of Kilifi district. This 

may be due to the increase in altitude as one moves away from the coastline. It may also be due 

to the reduced amount o f rainfall towards west o f the district (average of 400mm per year) as 

compared to the areas along the coastline which receives an average rainfall of about 1100mm.

In the case of the population under five years, the analysis shows that the clustering is more 

towards the south o f the district as compared to the north of the district. The clustering is
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much more than for the population over five years. The regions with the highest concentration 

of malaria cases are two, three and four which are Kikambala, Kaloleni and Chonyi divisions 

respectively. The specific locations include areas around Dida, Mryachakwe, Vitengeni, Kizingo, 

Giryama, Jibana, Makanzani, Gotani and Mgamboni. The same reasons for the clustering of the 

over five could also be the ones causing this type of outcome. As one moves away from the 

ocean, the cases reduces.

To therefore control malaria cases in these areas with clusters, the VHCs, The public health 

officers and the medical personnel should focus on these areas in their fight to reduce malaria

cases.

Moran's I, a test of spatial autocorrelation gives us a value o f 0.0242 for 2005, 0.0467 for the year 

2006 and 0.0562 which are all less than two. This is indicative of lack of spatial autocorellation.

In model selection we see that the best model is the Non stationary poisson process as it has the 

smallest AIC. We can predict the intensity at a given point by fitting the equation

A0(x,.v) =  exp{-48.21 + 1.32x +  0.08?/).

5.1 Short-comings and recommendations
This study used health facilities and divisions as the reference points for studying clustering. In 

order to get better results one can use area reference data and maybe considering the location 

or sub location area. The reasons for clustering in the above divisions were not also explored. 

Further studies should be carried out to  explain the reasons for the pattern seen, i.e., the clustering 

that is reducing as one moves from south of the district towards the north, and also the reduced 

clustering as one move from the coastline towards the west o f the district.
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Appendix
p lo t(c (-1 2 ,1 2 ),c (-1 2 11 2 ) ,ty p e = " n " )

po lygon(r2 ,border = 1 , co l = (te rra in .co lo rs (1 2 ))[5 j)

polygon(r7, border = ( te rra in .c o lo rs (1 2 )) [ l] ,  col = ( te r ra in .c o lo rs (1 2 ) ) [ l] )

p o lyg on (rl,b o rd e r = 1 , co l = ( te rra in .c o lo rs (1 2 )) [ l])

po lygon(r3 ,border = 1 . co l = (te rra in .co lo rs (1 2 ))[5 ])

po lygon(r4 ,border = 1 , col = (te rra in .co lo rs (1 2 ))[6 ])

po lygon(r5 ,border = 1 , col = (te rra in .co lo rs (1 2 ))[3 ])

po lygon(r6 ,border = 1 , col = (te rra in .co lo rs (1 2 ))[6 ])

po lygon(r8 ,border = 1  , co l = ” w h ite ")

in pu ting  the data.

k il l= re a d .ta b le ("  F :/k ilifiunde r5yrs .csv" , h = T , s e p = ” ) 

k i l l

a tta c h ( k i l l )

x = lo n g

y = la t

p lo t(x ,y )  p loting the  fa c ility  lo ca tions  

lib ra ry (spa ts ta t)

d a ta = p p p (x ,y 1c (3 9 .2 14 0 )lc (-4 .2 ,-3 .2 ),m a rk s = P ro p 0 7 )

p lo t(d a ta )  p lo ting  the c u m m u la tiv e  incidence for the year 2007 for the  under fives

sum m ary(da ta )

p lo t(de ns ity (da ta  ,0 .165))

p lo t(d a ta ,a d d = T R U E ,c e x = 0 .0 5 )p lo tin g  the dens ity  o f  th e  p o in ts  

c o n to u r(d e n s ity (d a ta ,0 .1 6 5 ),a xe s=  FALSE) 

d a ta l= p p p (x ,y ,m a rk s = P o p 0 7 1c (3 9 .2 14 0 )1c (-4 .2 ,-3 .2 ))

s u m m a ry (d a ta l)

p lo t (d a ta l)p lo t in g  th e  ca tch m e n t po pu la tion
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p lo t(d e n s ity (d a ta  1 .0 .165)) 

c o n to u r(d e n s ity (d a ta l,0 .1 6 5 ),a x e s = F A L S E )

Q = q u a d ra tc o u n t(d a ta ,n x = 4 ,n y = 3 )  

p lo t(Q )p lo tin g  th e  quadrant co u n t o f the  fac ilitie s

w = q u a d ra t .te s t(d a ta ,n x = 4 ,n y = 3 )  Chi square testing for the  difference in the  number o f points per quadrat

w

p lo t(d a ta )

p lo t(w , add =  T R U E , cex =  2 )p lo tin g  the  cum m ula tive  prevalence on the  quadrant counts 

p lo t(d a ta )

p lo t(Q . a d d = T R U E , c e x = 2 )p lo tin g  the ca tch m e n t popu la tion on the  q u a d ra t count

k = K e s t(d a ta l)  th e  k function  fo r the data

p lo t(k )

h is t(d a ta l x, nclass =  25) p lo tin g  the nu m be r o f fac ilities  per long itude .

d a ta = (d a ta l)

emp =  d is tm a p (d a ta )

p lot(em p, main =  ”  E m pty  space distances” )

p lo t(da ta , add =  T R U E )

emp =  d is tm a p (d a ta l)

p lo t(em p, main =  "E m p ty  space distances” )

p lo t(d a ta l,  add =  T R U E )

p lo t(da ta  d a ta = (d a ta l)

p lo t(d a ta )

Fc =  Fest(data)

Fc

p lo t(F c )p lo ttin g  th e  f  function  

par(pty =  " s " )  

p lo t(F e s t(d a ta ))

p lo t(Fes t(da ta ), hazard r, main =  "H azard  ra te  o f F” )
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Gc

p lo t(G c)p lo ttin g  th e  G function

f it l= p p m (d a ta l)  g e ttin g  the model o f the observed data 

su m m a ry (fitl)

A lC ( f i t l )

f it2 = p p m (d a ta l,x - |-y )P lo ttin g  a model w ith  long itudes and la titudes 

sum m ary(fit2 )

A IC (fit2 )

f i t4 = p p m (d a ta l, l ,  covaria tes =  lis t(P rop07 ,P op07))

A IC (fit4 )

summary(fit4)
f i t5 = p p m (d a ta l, l ,  cova ria tes =  lis t(m a l05 ,P rop07,P op07))

AIC(fit5)

f itn u ll= p p m (d a ta l, l )

A lC (fitn u ll)

sum m ary(fit5 )

f it7 = p p m (d a ta l,x + y )

fit7

p lo t( fit7 ,h o w = " im a g e ") 

p re d ic t( fit7 ,ty p e = " t re n d " )  

p red ic t(fit7 , ty p e = "  c i f ' ,  n g r id = 2 5 6 ) 

coe f(fit7 ) 

vco v (fit7 )

sq rt(d ia g (v c o v (fit7 )))

Under5pop=ppp(xiyiC(39 2140)1c(-4.2,-3.2)1marl<s=div)

p lo t(U n d e r5 p o p )

Malunder5prop07=ppp(x,y,c(39.2.40).c(-4.2,-3.2).m3rkS=Prop07)

Gc =  Gest(data)
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p lo t(M a lu n d e r5 p ro p 0 7 )

sum m a ry (M a lu nd e r5p rop 07 )

co m b in e d = pp p (x ,y ,c (39 .2 ,4 0 ),c (-4 .2 ,-3 .2 ),m a rl< s= P rop0 7 ,P op )

p lo t(co m b in e d )

su m m a ry (U nd e r5 pop )

p lo t(d e n s ity (U n d e r5 p o p ,0 .175))

p lo t(U n d e r5 p o p ,a d d = T R U E ,ce x= 2 5 0 )

p lo t(de ns ity (M a lun de r5 p ro p07 ,0 .165))

p lo t(M a lu n d e r5 p ro p 0 7 ,a d d = T R U E ,ce x= 0 .0 5 )

p lo t(U n d e r5 p o p ,a d d = T R U E ,ce x= 0 .0 5 )

co n tou r(d en s ity (M a lu nde r5p rop0 7 ,0 .1 65 ),axe s= T R U E )

d a ta 3 = p p p (x ,y ,m a rks= P ro p 0 6 ,c (3 9 .2 ,4 0 ),c (-4 .2 ,-3 .2 ))

sum m ary(data3)

p lo t(da ta 3 )

p lo t(d e n s ity (d a ta 3 ,0 .1 5 ))

con tou r(dens ity (da ta3 ,0 .15 ),axes= FA LS E )

Q = q u a d ra tc o u n t(d a ta 3 ,n x = 4 ,n y = 3 )

p lo t(Q )

p lo t(X )

p lo t(Q , add =  T R U E , cex =  2) 

p lo t(d e n s ity (d a ta 3 ,10 )) 

p lo t(d a ta 3 ,a d d = T R U E ) 

j= J e s t(d a ta 3 )

p lo t( j)

g= G est(da ta 3 )

p lo t(g )

p lo t(d a ta )

p lo t(w , add =  T R U E , cex =  2)
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p lo t(Q , a d d = T R U E , c e x = 2 ) 

p lo t ( f i t l ,h o w = "  im a g e ") 

p re d ic t( f i t l , ty p e = "  tre n d ” ) 

f i t2 = p p m (d a ta l,x - fy )  

sum m a ry(fit2 )

A IC ( f it2 )  (fo r inhom ogenous poison model w ith  an an in tens ity  co rd in a ted )

p re d ic t ( f i t l , ty p e = "c if ”  ,n g r id = 5 )

c o e f ( f i t l)

f it8 = p p m (d a ta ,s lo p e ,c o v a ria te s = lis t(s lo p e = ty p )) 

f i tn u ll= u p d a te ( f i t9 , l)  

a n o v a (fitn u ll,f it9 >te s t= "  C h i" )

plot(data)
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