UNIVERSITY OF NAIROBI
COLLEGE OF ARCHITECTURE AND ENGINEERING SCHOOL OF ENGINEERING

CHARACTERIZATION OF THE MICROSTRUCTURE OF ORDINARY PORTLAND CEMENT PASTE USING AUTOGENOUS SHRINKAGE AND HEAT OF HYDRATION PARAMETERS

TERESA NG'ENDO MBOGO
BSc. CIVIL ENGINEERING - UNIVERSITY OF NAIROBI

A Thesis Submitted in Fulfillment for the Degree of Master of Science in Civil Engineering (Structures) in the Department of Civil and Construction Engineering in the University of Nairobi

JUNE 2016

DECLARATION/APPROVAL

Declaration:

This thesis is my original work and has not been presented for a degree in any other university

Name of student

Date

Approval:

This thesis has been submitted for examination with my approval as university supervisor.

Name and title of supervisor

Date

DEDICATION

This Thesis is dedicated to God, for His greater Glory. Moreover, to my late dad and late mum, for their efforts in molding me into who I am today.

ACKNOWLEDGEMENT

I wish to thank the many individuals who assisted me in the completion of this Thesis. In particular, my special thanks to my supervisor, Dr. Siphila Mumenya, for providing support, encouragements, and suggestions during this thesis preparation. Her knowledge and dedication have made this work possible.

Abstract

The main objective of this study was to characterize the microstructure of Ordinary Portland Cement paste using autogenous shrinkage and heat of hydration parameters. The relevance of the research was the need to advance the knowledge on understanding the underlying mechanism of autogenous shrinkage and heat of hydration parameters and their influence on the evolution of cement paste microstructure. This will allow Engineers to develop performance based specifications to mitigate pre mature cracking due to autogenous shrinkage and heat of hydration.

Though there are many types of cements manufactured and available in Kenya, this thesis focused on Ordinary Portland Cement paste. To limit scope and hence achieve a comprehensive research, the research was limited to cement paste and concrete mixes of water/cement (w/c) ratios of 0.35 and 0.45. Type K temperature probes and Extech Differential Temperature Data Logger were used to measure the heat of hydration of Ordinary Portland Cement paste. Strain gauge and MadgeTech Bridge/Strain data loggers were used to measure autogenous shrinkage-induced strain of hydrating Ordinary Portland Cement paste. A stereo microscope was used to evaluate the microstructure evolution of a hydrating Ordinary Portland Cement paste (as a function of pores formation and cracking).

The research findings were that samples with lower w/c ratios recorded higher autogenous shrinkage, bigger pores and increased risk of cracking than the rest of the samples. It was also found that curing in saturated conditions ensures replacement and availability of more water for hydration of Ordinary Portland Cement paste. This reduces autogenous shrinkage. Availability of water for curing reduces the temperature due to cooling aided by the presence of water.

It was recommended that further research is done to relate the development of pore structure with autogenous shrinkage. The effect of aggregates on autogenous shrinkage should be further studied. Evidence that autogenous shrinkage causes problems in concrete practice in this region should be sought.

TABLE OF CONTENTS

DECLARATION/APPROVAL I
DEDICATION II
ACKNOWLEDGEMENT III
ABSTRACT IV
TABLE OF CONTENTS V
LIST OF TABLES IX
LIST OF FIGURES X
ABBREVIATIONS XII

1. INTRODUCTION1
1.1. Background 1
1.1.1.Introduction and Study Justification 1
1.1.2. Hydration and Shrinkage of Portland Cement 2
1.1.2.1. Types and Composition of Portland Cements2
1.1.2.2. Hydration of Portland Cement 1
1.1.2.3. Shrinkage of Cement Paste 3
1.2. Problem Statement 3
1.3. Objectives of Research 5
2. LITERATURE REVIEW8
2.1. Introduction 8
2.2. Portland Cement Production 8
2.3. Concrete Practice in Kenya and East Africa Region as a Whole 10
2.4. Hydration Process 11
2.4.1.Introduction 11
2.4.2.Hydration Reactions 11
2.4.2.1. Hydration of Tricalcium silicate 12
2.4.2.2. Hydration of Dicalcium Silicate 14
2.4.2.3. Hydration of Tricalcium Aluminate and Tetracalcium Aluminoferrite 14
2.4.3. Stages in Cement Hydration 14
2.4.4. Development of Pore Structure 21
2.4.5. Heat of Hydration 22
2.5. Autogenous Deformation 23
2.5.1.Definitions 23
2.5.2. Mechanisms of Autogenous Shrinkage 25
2.5.3. Relationship between Autogenous Shrinkage and Heat of Hydration 27
2.5.4.Research Gap and Conceptual Framework 29
3. MATERIALS AND METHODS 31
3.1. Introduction 31
3.2. Materials, Curing Conditions and Mix Proportioning 31
3.3. Measurement of Heat of Hydration and Autogenous Shrinkage 33
3.4. Basic Working Principles of Strain Gauge and Temperature Data Loggers 35
3.4.1. Strain Gauge 35
3.4.2. Device Operation 36
3.4.3.Downloading Data from a Data Logger 36
3.4.4.Basic Principles of Working of Temperature Data Logger 37
3.5. Stereo Microscopy 38
3.6. Data Collection 38
3.6.1.- Samples Mixing and Setting Up Photographs 39
4. RESULTS AND DISCUSSION 42
4.1. Heat of Hydration 42
4.1.1.General 42
4.1.2. Heat of Hydration in Sample One 44
4.1.3. Heat of Hydration in Sample Two 45
4.1.4. Heat of Hydration in Sample Three 46
4.1.5. Heat of Hydration in Sample Four 47
4.1.6. Heat of Hydration in Sample Five. 48
4.1.7. Heat of Hydration in Sample Six 49
4.1.8. Heat of Hydration in Sample Seven 50
4.1.9. Heat of Hydration in Sample Eight 51
4.2. Autogenous Shrinkage Results 52
4.2.1. Introduction 52
4.2.2.Conversion from Voltage to Strain 52
4.2.3. Sample One Autogenous Shrinkage Strain 53
4.2.4. Sample Two Autogenous Shrinkage Strain. 55
4.2.5.Samples Three, Four, Five and Six: Autogenous Shrinkage Strain Data 56
4.2.6. Sample Seven Autogenous Shrinkage Strain 56
4.2.7. Sample Eight Autogenous Shrinkage Strain 57
4.2.8. Comparison of Various Samples Autogenous Shrinkage 58
4.3. Stereo Microscopy Images 60
4.3.1.General 60
4.3.2. Cracking in Hydrating Ordinary Portland Cement Paste 61
4.3.3.Pore Structure of Hydrating Ordinary Portland Cement Paste. 62
5. CONCLUSIONS AND RECOMMENDATIONS 67
5.1. Conclusions 67
5.2. Recommendations for Further Research 68
6. REFERENCES 69
7. APPENDIX A - DATA LOGGERS MANUALS 72
8. APPENDIX B - DETAILED STRAIN DATA.. 77
9. APPENDIX C:DETAILED HEAT OF HYDRATION DATA 129

LIST OF TABLES

Table 1.1: The 27 Product in the Family of Common Cements.
 1

Table 1.2: Typical composition of Portland Cement (Mindess 2003).................... 1
Table 2.1: Composition of Portland cement with chemical composition and
weight percent... 11
Table 3.1: Mix proportioning for paste ($\varphi_{A}=0 \%$) and concrete 32
Table 4.1: Sample One Strain Data... 53

LIST OF FIGURES

Figure 2.1: Flow diagram of Portland Cement production
(Http://matse1.matse.illinois.edu/concrete/prin.html) 8
Figure 2.2: Schematic diagram of rotary kiln. 9
Figure 2.3: Schematic illustration of the pores in calcium silicate through different stages of hydration 13
Figure 2.4: Rate of heat evolution during hydration of portland cement (Adapted from PCA, 2006) 15
Figure 2.5: Hydration-heat curve (Adapted from Integrated Materials andConstruction Practices for Concrete Pavement manual, 2007.............................. 20
Figure 2.6: Scanning Electron Micrograph of a C-S-H Paste (Tennis et al., 1997)21
Figure 2.7: Rate of heat evolution during the hydration of Portland cement (Http://matse1.matse.illinois.edu/concrete/prin.html) 22
Figure 2.8: Capillary tension as the mechanism of shrinkage 26
Figure 3.1: Schematic of the Test Method for the Hydration Temperature and
Deformation of Concrete 33
Figure 3.2: Photograph of the Strain Gauge Data Logger used in this study 34
Figure 3.3: Photograph of the Temperature Data Logger. 34
Figure 3.4: Strain gauge data logger 35
Figure 3.5: Mixing of Ordinary Portland Cement paste in laboratories (University of Nairobi) - 16th Feb 2015 39
Figure 3.6: Mixing Ordinary Portland Cement paste in laboratories (University of Nairobi) -2nd April 2015 39
Figure 3.7: Cutting samples using rock saw for stereo microscopy 40
Figure 3.8: Setting samples into the rock saw 40
Figure 3.9: A complete set up with loggers in place. 41
Figure 3.10: A complete set up with loggers in place for the samples to be cured under saturated conditions- 8th April 2015 41
Figure 4.1: Samples one to six temperature against date 42
Figure 4.2: Rate of heat evolution during the hydration of Portland cement (Http://matse1.matse.illinois.edu/concrete/prin.html) 43
Figure 4. 3: Sample one temperature data against time (minutes) 44
Figure 4. 4: Sample two temperature data against time (minutes) 45
Figure 4. 5: Sample three temperature data against time (minutes) 46
Figure 4. 6: Sample four temperature data against time (minutes) 47
Figure 4. 7: Sample five temperature data against time (minutes) 48
Figure 4. 8: Sample six temperature data against time (minutes) 49
Figure 4. 9: Sample seven temperature data against time (minutes) 50
Figure 4. 10: Sample eight temperature data against time (minutes) 51
Figure 4. 11: Sample one strain against time (minutes) 54
Figure 4. 12: Sample two strain against date 55
Figure 4. 13: Sample seven strain against date 57
Figure 4. 14: Sample eight strain against date 58
Figure 4. 15: Samples one and two strain against date 59
Figure 4. 16: Samples seven and eight strain against date 60
Figure 4. 17: x80 magnification location 1 - sample one 61
Figure 4. 18: x400 magnification - sample three 61
Figure 4. 19: Scanning Electron Micrograph of a C-S-H Paste (Tennis et al.,1997)63
Figure 4. 20: x1000 magnification - sample one 64
Figure 4.21: x1000 magnification - sample two 64
Figure 4.22: x200 magnification - sample three 65
Figure 4.23: x200 magnification - sample four 65
Figure 4.24: x400 magnification - sample six 66
Figure 4.25: x400 magnification - sample seven 66

ABBREVIATIONS

C : Calcium Oxide (CaO)
S: Silicon Dioxide $\left(\mathrm{SiO}_{2}\right)$
H : Water $\left(\mathrm{H}_{2} \mathrm{O}\right)$
A: Aluminum Oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$
F: Iron Oxide $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$
$\bar{S}:$ Sulfur Trioxide $\left(\mathrm{SO}_{3}\right)$
SEM: Scanning Electron Microscopy
$\mathrm{C}_{3} \mathrm{~S}$: Tricalcium Silicate
$\mathrm{C}_{2} \mathrm{~S}$: Dicalcium Silicate
$\mathrm{C}_{3} \mathrm{~A}$: Tricalcium Aluminate
$\mathrm{C}_{4} \mathrm{AF}$: Tetracalcium Aluminoferrite
C-S-H: Calcium Silicate Hydrate
CH: Calcium Hydroxide
w/c: Water to Cement Ratio

1. INTRODUCTION

1.1. Background

1.1.1. Introduction and Study Justification

The main objective of this study was to characterize the microstructure of Ordinary Portland Cement paste using autogenous shrinkage and heat of hydration parameters.

The cement paste of a modern, high-performance concrete typically shows low porosity and a discontinuous capillary pore structure. This is often obtained by keeping a low water to cement ratio (w/c) and by adding silica fume. While modern concretes can possess some advantageous properties compared with traditional concrete in terms of good workability, high strength from early ages, low permeability, and improved durability, they may also exhibit unwanted behaviour such as autogenous strain (Pietro et al., 2008).

The motivation of this research was the need to advance knowledge on understanding the underlying mechanism of autogenous shrinkage and production of heat during hydration and their influence in evolution of Ordinary Portland Cement paste microstructure. It is hoped that the study will provide a solution to prevailing concrete production problems in Kenya and allow engineers to develop performance-based specifications to mitigate pre-mature shrinkage cracking. An in depth understanding of the effect of reducing water to cement ratio should act as an eye-opener to contractors and concrete users to be more specific and careful about concrete mixing ratios especially in Kenya where the issue of concrete production is taken casually and anyone is expected to do it even though some have little understanding of the underlying mechanism of cement hydration. It is also hoped that the results of this research will enable the Authorities relevant for registration of contractors to be more stringent about the qualifications of the Contractors they register to ensure they understand that the issue of water to cement ration is sensitive despite the availability of admixtures that help solve workability issues.

1.1.2. Hydration and Shrinkage of Portland Cement

Portland cement is produced by heating a mixture of limestone and clay, or other materials of similar bulk composition and sufficient reactivity, to a temperature of about $1450^{\circ} \mathrm{C}$, at which partial fusion occurs and nodules of clinker are formed. The clinker is then mixed with a few percentages of gypsum and finely ground. There are different types of Portland Cement depending on their composition and manufacturing technology.

1.1.2.1. Types and Composition of Portland Cements

Various types of Portland Cements have been developed to meet different physical and chemical requirements for specific construction conditions. These cement types are produced by adjusting the chemical composition and the fineness of cement.

According to KS EAS 18-1: 2001 (previously Kenya Bureau of Standards — KS 1725:Part1: 2001, equivalent to EN 196), the 27 products in the family of common cements, covered by EAS 18-1 and their notation are given in Table 1 of KS EAS 18-1: 2001 . They are grouped into five main cement types as follows:

- CEM I Portland cement;
- CEM II Portland-composite cement;
- CEM III Blastfurnace cement;
- CEM IV Pozzolanic cement;
- CEM V Composite cement.

The composition of each of the 27 products in the family of common cements shall be in accordance with Table 1 of KS EAS 18-1: 2001.

Table 1.1: The 27 Product in the Family of Common Cements

Main Types	Notation of the 27 products (types of common cement)		Composition [percentage by mass ${ }^{\text {a }}$]										Minor additional
			Main constituents										
			Clinker	Blast- Furnace	Silica fume	Pozzolana		Fly ash		Burnt Shale	Lime stone		
						natural	natural calcined	Siliceous	Calcareous				
			K	S	$\mathrm{D}^{\text {b }}$	p	q	V	W	T	L	LL	
$\begin{aligned} & \text { CEM } \\ & \text { I } \end{aligned}$	Portland cement	CEM I	95-100	-	-	-	-	-	-	-	-		0 to 5
		CEM II/A-S	80-94	6 to 20	-	-	-	-	-	-	-	-	0to 5
CEM	cement	CEM II/B-S	65-79	$\begin{gathered} 21 \text { to } \\ 35 \end{gathered}$		-	-	-	-	-	-	-	0 to 5
	Portland silica fume cement	CEM I/A-D	90 to 94	-	$\begin{gathered} 6 \text { to } \\ 10 \end{gathered}$	-	-	-	-	-	-	-	0 to 5
	Portland-	CEM II/A-P	80 to 94	-	-	6 to 20	-	-	-	-	-	-	0 to 5

Main Types	Notation of the 27 products (types of common cement)		Composition [percentage by mass ${ }^{\text {a }}$]										Minor additional
			Main constituents										
			Clinker	Blast- Furnace	Silica fume	Pozzolana		Fly ash		Burnt Shale	Lime stone		
						natural	natural calcined	Siliceous	Calcareous				
			K	S	$\mathrm{D}^{\text {b }}$	p	q	V	W	T	L	LL	
	Pozzolana cement	CEM II/B-P	65 to 79	-	-	21 to 35	-	-	-	-	-	-	0 to 5
		$\begin{gathered} \text { CEM II/A- } \\ \mathrm{Q} \end{gathered}$	80 t0 94	-	-		6 to 20	-	-	-	-	-	0 to 5
		$\begin{gathered} \text { CEM II / B- } \\ \text { Q } \end{gathered}$	65 to 79	-	-	-	21 to 35	-	-	-	-	-	0 to 5
	Portland -fly	$\begin{gathered} \text { CEM II / A- } \\ \mathrm{V} \end{gathered}$	80-94	-	-	-	-	6 to 20	-	-	-	-	0 to 5
	ash cement	$\begin{gathered} \text { CEMII / B- } \\ \text { V } \end{gathered}$	65 to 79	-	-	-	-	21 to 35	-	-	-	-	0 to 5

Main Types	Notation of the 27 products (types of common cement)		Composition [percentage by mass ${ }^{\text {a }}$]										Minor additional
			Main constituents										
			Clinker	Blast- Furnace	Silica fume	Pozzolana		Fly ash		Burnt Shale	Lime stone		
						natural	natural calcined	Siliceous	Calcareous				
			K	S	$\mathrm{D}^{\text {b }}$	p	q	V	W	T	L	LL	
		$\begin{gathered} \text { CEM II/A- } \\ \text { W } \end{gathered}$	80-94	-	-	-	-	-	6 to 20	-	-	-	0 to 5
		CEMII/B-W	65 to 79	-	-	-	-	-	21 to 35	-	-	-	0 to 5
	Portland-	CEM II/A-T	80-94	-	-	-	-	-	-	$\begin{gathered} 6 \text { to } \\ 20 \end{gathered}$	-	-	
	cement	$\begin{gathered} \text { CEM II/ B- } \\ \mathrm{T} \end{gathered}$	65 to 79	-	-	-	-	-	-	$\begin{array}{\|c} 21 \text { to } \\ 35 \end{array}$	-	-	0 to 5
	Portlandlimestone	$\begin{gathered} \text { CEM II/ A- } \\ \text { L } \\ \hline \end{gathered}$	80 to 94	-	-	-	-	-	-	-	$\begin{gathered} 6 \text { to } \\ 20 \end{gathered}$	-	0 to 5

$\begin{aligned} & \text { Main } \\ & \text { Types } \end{aligned}$	Notation of the 27 products (types of common cement)		Composition [percentage by mass ${ }^{\text {a }}$]										Minor additional
			Main constituents										
			Clinker	Blast- Furnace	Silica fume	Pozzolana		Fly ash		Burnt Shale	Lime stone		
						natural	natural calcined	Siliceous	Calcareous				
			K	S	$\mathrm{D}^{\text {b) }}$	p	q	V	W	T	L	LL	
	cement	CEM II/A-L	65 to 79	-	-	-	-	-	-	-	$\begin{gathered} 21 \text { to } \\ 35 \end{gathered}$	-	0 to 5
		$\begin{array}{ll} \text { CEM } & \text { II/A- } \\ \text { LL } & \end{array}$	80 to 94	-	-	-	-	-	-	-	-	$\begin{gathered} 6 \text { to } \\ 20 \end{gathered}$	0 to 5
		$\begin{gathered} \text { CEM II/ B- } \\ \text { LL } \end{gathered}$	65 to 79	-	-	-	-	-	-	-	-	$\begin{gathered} 21 \text { to } \\ 35 \\ \hline \end{gathered}$	0 to 5
	Portland	$\begin{gathered} \text { CEM II/ A- } \\ \mathrm{M} \end{gathered}$	80-94	<--------------------- 6 to 20 --------------------->									0 to 5
	$\text { cement }^{\text {c }}$	$\begin{gathered} \text { CEM II/ B- } \\ \mathrm{M} \end{gathered}$	65 to 79	<--------------------- 21 to $35-----------------\ggg>$									0 to 5

Main Types	Notation of the 27 products (types of common cement)		Composition [percentage by mass ${ }^{\text {a }}$]										Minor additional
			Main constituents										
			Clinker	Blast- Furnace	Silica fume	Pozzolana		Fly ash		Burnt Shale	Lime stone		
						natural	natural calcined	Siliceous	Calcareous				
			K	S	$\mathrm{D}^{\text {b }}$	p	q	V	W	T	L	LL	
		CEM III/A	35 to 64	36 to 65	-	-	-	-	-	-	-	-	0 to 5
III	furnace	CEM III/B	20 to 34	$\begin{gathered} 66 \text { to } \\ 80 \end{gathered}$	-	-	-	-	-	-	-	-	0 to 5
		CEM III/C	5 to 19	81 to 95	-	-	-	-	-	-	-	-	0 to 5
CEM IV	Pozzolanic cement ${ }^{\text {c) }}$	CEM IV/A	65 to 89	-	<---------- 11 to $35-------->$					-			0 to 5

Main Types	Notation of the 27 product (types of common cement)		Composition [percentage by mass ${ }^{\text {a }}$]										Minor additional
			Main constituents										
			Clinker	Blast- Furnace	Silica fume	Pozzolana		Fly ash		Burnt Shale	Lime stone		
						natural	natural calcined	Silice	Calcareous				
			K	S	$\mathrm{D}^{\text {b }}$	p	q	V	W	T	L	LL	
		CEM IV/B	45 to 64	-	$<-------36$ to 55------->					-			0 to 5
CEN V	Composite cement ${ }^{\text {c) }}$	CEM V/ A	40 to 64	18 to 30		<----	18 to 30	--->	-	-			0 to 5
		CEM V/B	20 to 38	$\begin{gathered} 31 \text { to } \\ 50 \end{gathered}$		$<----31$ to $50--->$			-	-			0 to 5

Main Types	Notation of the 27 products (types of common cement)	Composition [percentage by mass ${ }^{\text {a }}$]										Minor additional
		Main constituents										
		Clinker	Blast- Furnace	Silica fume	Pozzola		Fly ash		Burnt Shale	Lime stone		
					natural	natural calcined	Siliceous	Calcareous				
		K	S	$\mathrm{D}^{\text {b }}$	p	q	V	W	T	L	LL	

a) The values in the table refer to the sum of the main and minor additional constituents
b) The proportion of silica fume is limited to 10%.
c)In Portland-composite cements CEM II/A-M and CEM II/B-M, in Pozzolanic cements CEM IV/A and CEM IV/B and in composite cements CEM V/A and CEM V/B the main constituents other than clinker shall be declared by designation of the cement (for example see Clause 8).

KS EAS 18-1: 2001 states that Portland cement clinker is made by sintering a precisely specified mixture of raw materials (raw meal, paste or slurry) containing elements, usually expressed as oxides, $\mathrm{CaO}, \mathrm{SiO}_{2}, \mathrm{AL}_{2} \mathrm{O}_{3} \mathrm{Fe}_{2} \mathrm{O}_{3}$ and small quantities of other materials. The raw meal, paste or slurry is finely divided, intimately mixed and therefore homogeneous. Portland cement clinker is a hydraulic material which shall consist of at least two-thirds by mass of calcium silicates $\left(3 \mathrm{CaO} . \mathrm{SiO}_{2}\right.$ and $2 \mathrm{CaO} . \mathrm{SiO}_{2}$ the remainder consisting of aluminium and iron containing clinker phases and other compounds. The ratio by mass $(\mathrm{CaO}) /\left(\mathrm{SiO}_{2}\right)$ shall be not less than 2.0. The content of magnesium oxide (MgO) shall not exceed 5.0% by mass.

Typical composition of Portland Cement is given in Table 1.2.

Table 1.2: Typical composition of Portland Cement (Mindess 2003)

Chemical Name	Chemical formula	Shorthand Notation	Weight percent
Tricalcium silicate(alite)	$3 \mathrm{CaO} \cdot \mathrm{SiO}_{2}$	$\mathrm{C}_{3} \mathrm{~S}$	55
Dicalcium silicate (belite)	$2 \mathrm{CaO} \cdot \mathrm{SiO}_{2}$	$\mathrm{C}_{2} \mathrm{~S}$	18
Tricalcium aluminate	$3 \mathrm{CaO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3}$	$\mathrm{C}_{3} \mathrm{~A}$	10
Tetracalcium aluminoferrite	$4 \mathrm{CaO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{Fe}_{2} \mathrm{O}_{3}$	$\mathrm{C}_{4} \mathrm{AF}$	8
Calcium sulfate didydrate (Gypsum)	$\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{C} \overline{\mathrm{S}} \mathrm{H}_{2}$	6

1.1.2.2. Hydration of Portland Cement

The reaction of Portland cement and water is defined as hydration; and the new solids formed through such hydration are called hydration products. The hydration of Portland cement consists of a series of exothermic reactions and is too complex to be described by simple chemical equations as is elaborated later in
the literature review chapter.
When Portland Cement is mixed with water, hydration products are formed. Calcium silicates consist of tricalcium silicate and dicalcium silicate. The two calcium silicates induce very similar hydration reactions. Equations 1.1 and 1.2 describe the hydration reaction of calcium silicates.

The principal hydration product is calcium silicate hydrate (C-S-H) and calcium hydroxide. C-S-H gel plays the role of a binder of the cement paste and eventually has an effect on the strength and durability of concrete.
$\mathrm{C}_{2} \mathrm{~S}$ and $\mathrm{C}_{3} \mathrm{~S}$ produce a C-S-H gel of about 82 percent and 61 percent, respectively. The ultimate strength and durability of high $\mathrm{C}_{2} \mathrm{~S}$ cement would be higher than for one with a high proportion of $\mathrm{C}_{3} \mathrm{~S}$.
$2 \mathrm{C}_{3} \mathrm{~S}+11 \mathrm{H} \rightarrow \mathrm{C}_{3} \mathrm{~S}_{2} \mathrm{H}_{8}(\mathrm{C}-\mathrm{S}-\mathrm{H})+3 \mathrm{CH}$ (calcium hydroxide)
Equation (1.1)
$2 \mathrm{C}_{2} \mathrm{~S}+9 \mathrm{H} \rightarrow \mathrm{C}_{3} \mathrm{~S}_{2} \mathrm{H}_{8}(\mathrm{C}-\mathrm{S}-\mathrm{H})+\mathrm{CH}$ (calcium hydroxide)
Equation (1.2)
Tricalcium aluminate $\left(\mathrm{C}_{3} \mathrm{~A}\right)$ reacts immediately with water. The rapid hydration of $\mathrm{C}_{3} \mathrm{~A}$ can be slowed down by the addition of gypsum. Therefore, the final hydration products vary with the gypsum content. The hydration products of $\mathrm{C}_{3} \mathrm{~A}$ are commonly formed into ettringite in the first stage and monosulfoaluminate later (Equation 1.3). The precipitation of ettringite contributes to stiffening, setting, and early strength development. After the depletion of sulfate, ettringite becomes unstable and is gradually converted into monosulfoaluminate (Equation 1.4). If a new source of sulfate is added, monosulfoaluminate can convert back to ettringite again. Tricalcium aluminate $\left(\mathrm{C}_{3} \mathrm{~A}\right)$ contributes little to the strength of cement paste.
$\mathrm{C}_{3} \mathrm{~A}+3 \mathrm{C} \overline{\mathrm{S}} \mathrm{H}_{2}+26 \mathrm{H} \rightarrow \mathrm{C}_{6} \mathrm{~A} \bar{S}_{3} \mathrm{H}_{32}$ (ettringite) \quad Equation(1.3)
$\mathrm{C}_{3} \mathrm{~A}+\mathrm{C}_{6} \mathrm{~A} \overline{\mathrm{~S}}_{3} \mathrm{H}_{32}+4 \mathrm{H} \rightarrow 3 \mathrm{C}_{4} \mathrm{~A} \overline{\mathrm{~S}} \mathrm{H}_{12}$ (monosulfoaluminate) Equation(1.4)
The hydration of tetracalcium aluminoferrite $\left(\mathrm{C}_{4} \mathrm{AF}\right)$ is similar to hydration products of $\mathrm{C}_{3} \mathrm{~A}$. The hydration reactions are slower and involve less heat. Two possible hydrates can form depending on the availability of gypsum (Equations
1.5 and 1.6).

$$
\begin{array}{ll}
\mathrm{C}_{4} \mathrm{AF}+3 \mathrm{C} \overline{\mathrm{~S}} \mathrm{H}_{2}+21 \mathrm{H} \rightarrow \mathrm{C}_{6}(\mathrm{~A}, \mathrm{~F}) \bar{S}_{3} \mathrm{H}_{32}+(\mathrm{F}, \mathrm{~A}) \mathrm{H}_{3} & \text { Equation(1.5) } \\
\mathrm{C}_{4} \mathrm{AF}+\mathrm{C} 6(\mathrm{~A}, \mathrm{~F}) \bar{S} 3 \mathrm{H}_{32}+7 \mathrm{H} \rightarrow 3 \mathrm{C}_{4}(\mathrm{~A}, \mathrm{~F}) \overline{\mathrm{S}} \mathrm{H}_{12}+(\mathrm{F}, \mathrm{~A}) \mathrm{H}_{3} & \text { Equation(1.6) }
\end{array}
$$

1.1.2.3. Shrinkage of Cement Paste

The volume of the hydration products is smaller than the combined volume of the reacted cement and water. This reduction in volume is partly due to chemical shrinkage of cement paste and autogenous shrinkage. This is the bulk shrinkage of cement paste in a closed isothermal system (i.e. without moisture exchange).

Another kind of shrinkage, which is usually referred to as the drying shrinkage, is caused by the loss of water during hydration due to evaporation when cement paste is exposed to the open air. There also exist other kinds of deformation, such as the thermal deformation due to temperature change; the carbonation shrinkage due to the reaction between CH in the cement paste with water and CO_{2} in the air; and the deformation due to external loads. Many investigations have been conducted on the shrinkage of cementitious materials via experiments and theoretical analysis. Thorough reviews of the autogenous deformation and its measurements can be found in Justnes et al. (1994) and Jensen and Hansen (1996, 2001). A discussion of drying shrinkage is given in Hansen (1987).

An essential relationship exists between heat of hydration and autogenous shrinkage as it pertains to cement hydration. Some researchers have reported that the magnitude and the development rate of autogenous shrinkage of the cement paste, mortar and concrete were affected by the history and magnitude of the inner temperature at early ages (Bjmperature et al. 1997; Horita et al. 2001; Loukili et al. 2000 and Shima et al. 2006).

1.2. Problem Statement

Autogenous shrinkage is the major shrinkage component of concretes that contain much less water than would be required for complete hydration. The relative surplus of cement leads to an internal drying, irrespective of whether the concrete
dries out to the ambient air or not. This process of so called self-desiccation is associated with autogenous shrinkage which, if restrained, can lead to cracks, potentially impairing in many respects of durability of the concrete. (Mechtcherine and Breitenbücher, 2010).

It was for this reason that samples with water to cement (w/c) ratios lower than the ones normally chosen for workability reasons were used (i.e. w/c ratios of 0.35 and 0.45 were used in this research). It is also worthwhile to note that low w / c ratio mixes are increasingly preferred for their higher strength and durability properties. Concrete infrastructures undergo complex chemical and physical changes due to cement hydration and exposure to the environments. These changes affect the desired service life or durability of the concrete.

There are many factors affecting the durability of cementitious materials and the importance of these factors varies with circumstances. Shrinkage is one of the major causes of cracking in bridge decks, pavements, indoor floors and other structures (Wei, 2008). Concrete develops volumetric changes due to thermal and moisture related deformations, which can be detrimental when substantial stresses occur in restrained structural elements, particularly at early ages when the concrete has a low tensile strength.

The particular aspects of degradation related to shrinkage cracking include; chemical and microbiological degradation of concrete, corrosion of reinforcing and prestressing steels, sulfate attack, alkali-silica reaction, and deterioration associated with certain aggregates(e.g. those containing reactive silica and dolomitic rocks) that leads to spalling of concrete structures.

The increasing focus on shrinkage-cracking-related durability problem requires a better understanding of the material properties to be able to adjust the concrete to the level of attack it must resist. Common concrete is intrinsically porous the degree of which depends on the grade. In addition to affecting the mechanical properties such as strength, modulus, and toughness of concrete, the porous microstructure is the main source of shrinkage (Wei, 2008).

Cement hydration leads to the formation of the vapor-filled porosity upon the percolation of the solid phase. The paste phase undergoes internal pore drying known as self-desiccation due to the consumption of moisture from pore structures for further hydration. Unlike drying that may occur from the outside of the specimen inward, self-desiccation occurs uniformly throughout the concrete microstructure and results in autogenous shrinkage which is the major source of cracking if external (adjunct structures) or internal (aggregate or anhydrous cement particles) restraints exist.

Though the phenomenon of autogenous shrinkage and its influence on structure behavior have long been recognized, the mechanism behind is not fully understood yet and no standard test method was accepted by the scientific community. Numerous researchers have investigated and contributed to a better understanding of the underlying process of autogenous shrinkage and found that the factors which influence this phenomenon include:

- The chemical compositions and physical properties of cement
- Water/cement ratio (w/c)
- Chemical and physical properties of Supplementary Cementitious Materials (SCM)
- Exposure temperature

Quantifying the autogenous shrinkage of cementitious systems, especially given the increasing and widespread utilization of high-performance concrete containing supplementary cementitious materials, becomes important in order to understand and control premature cracking in concrete structures. However, lack of data on this property which is attributed to testing challenges has hampered the development of sound prediction models for autogenous shrinkage.

1.3. Objectives of Research

The overall objective of this research was to characterize the microstructure of Ordinary Portland Cement paste as a function of autogenous shrinkage and heat of
hydration. The research focused on achieving the following specific objectives:

1. The effect of water to cement ratio on the evolution of the microstructure of hydrating Ordinary Portland cement paste using autogenous shrinkage parameter
2. The effect of curing conditions on the evolution of the microstructure of hydrating Ordinary Portland cement paste using autogenous shrinkage parameter
3. The effect of water to cement ratio on the evolution of the microstructure of hydrating Ordinary Portland cement paste using heat of hydration parameter
4. The effect of curing conditions on the evolution of the microstructure of hydrating Ordinary Portland cement paste using heat of hydration parameter

This paper focused on the following techniques to characterize the hydration and microstructure of Ordinary Portland Cement paste and concrete of w/c ratios of 0.35 and 0.45 :

1. Use of type K temperature probes and Extech Differential Temperature Data logger to measure the heat of hydration of Ordinary Portland Cement paste.
2. Use of a strain gauge and MadgeTech Bridge/Strain Data logger to measure autogenous shrinkage strain of hydrating Ordinary Portland Cement paste.
3. Use of a stereo microscope to evaluate the microstructure evolution of a hydrating Ordinary Portland Cement paste (as a function of pores formation and cracking).

To efficiently realize the objectives, the experimental investigation was limited to the following variables:

1. Although many types of cements are manufactured in Kenya, this research was only limited to CEM I (Ordinary Portland cement). Although all the

27 cement types do not behave the same, lack of enough equipments limited the number of samples that could be done as even the strain gauges were imported and were not re-usable. As such, carrying out the tests on all the 27 cement types would not only have been expensive but it would have taken a very long time than is allowed for at the MSc. level.
2. Water/cement ratios of 0.35 and 0.45 since autogenous shrinkage is predominantly present in mixes with low w/c ratios.
3. Saturated and unsaturated curing conditions as a function of age.
4. Each specimen was tested from ages zero to 10 days

2. LITERATURE REVIEW

2.1. Introduction

In this chapter, cement hydration, microstructure formation, and the existing mechanism of autogenous shrinkage were reviewed.

2.2. Portland Cement Production

Cement, is a mixture of compounds made by burning limestone and clay together at very high temperatures ranging from 1400 to $1600^{\circ} \mathrm{C}$. Although there are other cements for special purposes, this study will focus solely on Ordinary Portland Cement. The production of Portland cement begins with the quarrying of limestone (CaCO 3). Huge crushers break the blasted limestone into small pieces. The crushed limestone is then mixed with clay (or shale), sand, and iron ore and ground together to form a homogeneous powder. This powder is microscopically heterogeneous (http://matse1.matse.illinois.edu/concrete/prin.html). The mixture is heated in kilns that are long rotating steel cylinders on an incline. The kilns may be up to 6 meters in diameter and 180 meters in length.

Figure 2.1: Flow diagram of Portland Cement production (Http://matse1.matse.illinois.edu/concrete/prin.html)

The mixture of raw materials enters at the high end of the cylinder and slowly moves along the length of the kiln due to the constant rotation and inclination. At the low end of the kiln, a fuel is injected and burned, thus providing the heat necessary to make the materials react. It can take up to 2 hours for the mixture to pass through the kiln, depending upon the length of the cylinder (Http://matse1.matse.illinois.edu/concrete/prin.html).

As the mixture moves down the cylinder, it progresses through four stages of transformation. Initially, any free water in the powder is lost by evaporation. Next, decomposition occurs from the loss of bound water and carbon dioxide. This is called calcination. The third stage is called clinkering. During this stage, the calcium silicates are formed. The final stage is the cooling stage. The marblesized pieces produced by the kiln are referred to as clinker. The clinker is cooled, ground, and mixed with a small amount of gypsum (which regulates setting) to produce the general-purpose Portland cement (Http://matse1.matse.illinois.edu/concrete/prin.html).

Figure 2.2: Schematic diagram of rotary kiln.

2.3. Concrete Practice in Kenya and East Africa Region as a Whole

According to Raúl H. Figueroa Fernández (2014) in his research paper titled ' Strategies to reduce the risk of building collapse in developing countries ' , in developing countries, poor quality construction has led to spontaneous building collapse and, during earthquakes, to major disasters. While reliable building codes are widely used in design, builders in developing countries often fail to meet acceptable standards. Structural defects are frequently identified too late, often after catastrophic collapse. In Kenya, more than eighty people have been killed, an over 290 injured, by collapsed buildings, since 2006. However, Kenya is not an exception. Throughout the world, in particular in countries with developing economies and growing populations, thousands of dangerously weak buildings will be built, and millions of people will be exposed to unnecessarily higher risks for generations (Figueroa Fernandez R.H. 2014).

The data suggest that the quality control mechanisms for structural concrete currently used in Kenya are not as effective as they should be. Architects and engineers routinely certify buildings as safe for occupation based, in part, on inaccurate or false laboratory reports. These findings highlight an example of lax quality control in the construction industry that could be pervasive in East Africa, as in developing countries elsewhere. Thousands of dangerously weak buildings will be built, and unless better control systems are implemented, millions of people will likely be exposed to unnecessarily higher risks for generations. National governments and international organizations interested in safer and more sustainable cities should give high priority to improving construction quality control processes and regulation. Policymakers in government, nongovernmental organizations, and professional organizations must catalyze institutional change in the construction industry as a matter of urgency. Their efforts will be most effective if attention is given to the promotion and enforcement of prudent quality control protocols that encourage engineers and inspectors to assume less and verify more (Figueroa Fernandez R.H. 2014).

2.4. Hydration Process

2.4.1. Introduction

The composition of a typical Portland cement is listed by weight percentage in Table 2.1 (Http://matse1.matse.illinois.edu/concrete/prin.html).

Table 2.1: Composition of Portland cement with chemical composition and weight percent.

Cement Compound	Weight Percentage	Chemical Formula
Tricalcium silicate	50%	$\mathrm{Ca}_{3} \mathrm{SiO}_{5}$ (or $3 \mathrm{CaO} \mathrm{SiO}_{2}$)
Dicalcium silicate	25%	$\mathrm{Ca}_{2} \mathrm{SiO}_{4}$ (or 2 CaO SiO

2.4.2. Hydration Reactions

When water is added to cement, each of the compounds (as listed in Table 2.1) undergoes hydration and contributes to the final concrete product. Only the calcium silicates contribute to strength. Tricalcium silicate is responsible for most of the early strength (first 7 days). Dicalcium silicate, which reacts more slowly, contributes only to the strength at later stages (Http://matse1.matse.illinois.edu/concrete/prin.html). The hydration process described here takes place at room temperature and is spontaneous (i.e., does not require a catalyst).

The following are the basic reactions presenting an approximation of hydration of the constitutive clinker phases taking the addition of gypsum into account (Mounanga et al., 2004);
$2 \mathrm{C}_{3} \mathrm{~S}+10.6 \mathrm{H} \rightarrow \mathrm{C}_{3.4} \mathrm{~S}_{2} \mathrm{H}_{8}+2.6 \mathrm{CH}$
Equation (2.1)
$2 \mathrm{C}_{2} \mathrm{~S}+8.6 \mathrm{H} \rightarrow \mathrm{C}_{3.4} \mathrm{~S}_{2} \mathrm{H}_{8}+0.6 \mathrm{CH}$
Equation (2.2)
$\mathrm{C}_{3} \mathrm{~A}+3 \mathrm{C}$ S $\mathrm{H}_{2}+26 \mathrm{H} \rightarrow \mathrm{C}_{6} \mathrm{~A}_{5} \mathrm{~S}_{3} \mathrm{H}_{32}$
$2 \mathrm{C}_{3} \mathrm{~A}+\mathrm{C}_{6} \mathrm{~A} \bar{S}_{3} \mathrm{H}_{32}+4 \mathrm{H} \rightarrow 3 \mathrm{C}_{4} \mathrm{~A} \bar{S} \mathrm{H}_{12}$ Equation (2.4)
$\mathrm{C}_{3} \mathrm{~A}+6 \mathrm{H} \rightarrow \mathrm{C}_{3} \mathrm{AH}_{6}$
Equation (2.5)
$\mathrm{C}_{4} \mathrm{AF}+3 \mathrm{C} \overline{\mathrm{S}} \mathrm{H}_{2}+30 \mathrm{H} \rightarrow \mathrm{C}_{6} \mathrm{~A} \overline{\mathrm{~S}}_{3} \mathrm{H}_{32}+\mathrm{CH}+\mathrm{FH}_{3}$
Equation (2.6)
$2 \mathrm{C}_{4} \mathrm{AF}+\mathrm{C}_{6} \mathrm{~A}_{S} \mathrm{~S}_{3} \mathrm{H}_{32}+12 \mathrm{H} \rightarrow 3 \mathrm{C}_{4} \mathrm{~A} S \mathrm{H}_{12}+2 \mathrm{CH}+2 \mathrm{FH}_{3}$
$\mathrm{C}_{4} \mathrm{AF}+10 \mathrm{H} \rightarrow \mathrm{C}_{3} \mathrm{AH}_{6}+\mathrm{CH}+\mathrm{FH}_{3}$
Equation (2.8)
The principal hydration product is the calcium silicate hydrate, which is usually in gel form and of a composition that varies over a wide range. Therefore, the formula $\mathrm{C}_{3} \cdot 4 \mathrm{~S}_{2} \mathrm{H}_{8}$ is only approximate, and the designation $\mathrm{C}-\mathrm{S}-\mathrm{H}$ is more frequently used instead. Other major hydration products include calcium hydroxide (CH) and calcium sulfoaluminate hydrate that mainly consists of ettringite $\left(\mathrm{C}_{6} \mathrm{~A} \bar{S}_{3} \mathrm{H}_{32}\right)$ and monosulfoaluminate $\left(\mathrm{C}_{4} \mathrm{~A} \overline{\mathrm{~S}} \mathrm{H}_{12}\right)$, all of which are in crystal forms (Feng, 2006).

2.4.2.1. Hydration of Tricalcium silicate

The reaction for the hydration of tricalcium silicate is given by:
Tricalcium silicate + Water \rightarrow Calcium silicate hydrate + Calcium hydroxide + heat
$2 \mathrm{Ca}_{3} \mathrm{SiO}_{5}+7 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{CaO} 2 \mathrm{SiO}_{2} 4 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{Ca}(\mathrm{OH})_{2}+173.6 \mathrm{~kJ}$
Equation (2.9)
Upon the addition of water, tricalcium silicate rapidly reacts to release calcium ions, hydroxide ions, and a large amount of heat. The pH quickly rises to over 12 because of the release of alkaline hydroxide $\left(\mathrm{OH}^{-}\right)$ions. This initial hydrolysis slows down quickly after it starts resulting in a decrease in heat evolved (Http://matse1.matse.illinois.edu/concrete/prin.html).

The reaction slowly continues producing calcium and hydroxide ions until the system becomes saturated. Once this occurs, the calcium hydroxide starts to crystallize. Simultaneously, calcium silicate hydrate begins to form. Ions precipitate out of solution accelerating the reaction of tricalcium silicate to
calcium and hydroxide ions (Le Chatlier's principle). The evolution of heat is then dramatically increased. The formation of the calcium hydroxide and calcium silicate hydrate crystals provide "seeds" upon which more calcium silicate hydrate can form. The calcium silicate hydrate crystals grow thicker making it more difficult for water molecules to reach the unhydrated tricalcium silicate. The speed of the reaction is now controlled by the rate at which water molecules diffuse through the calcium silicate hydrate coating. This coating thickens over time causing the production of calcium silicate hydrate to become slower (Http://matse1.matse.illinois.edu/concrete/prin.html).

Figure 2.3 illustrates the different stages of hydration and the formation of pores as calcium silicate hydrate is formed. In part (a) of the figure, hydration has not yet occurred and the pores (empty spaces between grains) are filled with water. Part (b) represents the beginning of hydration. In part (c), hydration is seen to continue. Although empty spaces still exist, they are filled with water and calcium hydroxide. Part (d) shows nearly hardened cement paste. Note a greater proportion of space is filled with calcium silicate hydrate. The portion that is not filled with the hardened hydrate is primarily calcium hydroxide solution. Hydration will continue as long as water is present and unhydrated compounds in the cement paste (Http://matse1.matse.illinois.edu/concrete/prin.html).

Figure 2.3: Schematic illustration of the pores in calcium silicate through different stages of hydration.

2.4.2.2. Hydration of Dicalcium Silicate

Dicalcium silicate affects the strength of concrete through its hydration. Dicalcium silicate reacts with water in a similar manner compared to tricalcium silicate, but much more slowly. Dicalcium silicate is much less reactive. The heat released is less than that by the hydration of tricalcium silicate. The products from the hydration of dicalcium silicate are the same as those for tricalcium silicate (Http://matse1.matse.illinois.edu/concrete/prin.html).

Dicalcium silicate + Water--->Calcium silicate hydrate + Calcium hydroxide +heat
$2 \mathrm{Ca}_{2} \mathrm{SiO}_{4}+5 \mathrm{H}_{2} \mathrm{O}--->3 \mathrm{CaO} 2 \mathrm{SiO}_{2} 4 \mathrm{H}_{2} \mathrm{O}+\mathrm{Ca}(\mathrm{OH})_{2}+58.6 \mathrm{~kJ}$
Equation (2.10)
Equation 2.10 differs from Equation 2.9 shown earlier in that the heat of hydration is approximately one third in the hydration of Dicalcium Silicate. The heat released is less than that by the hydration of tricalcium silicate because the dicalcium silicate is much less reactive

2.4.2.3. Hydration of Tricalcium Aluminate and Tetracalcium Aluminoferrite

The other major components of portland cement, tricalcium aluminate and tetracalcium aluminoferrite also react with water. Their hydration chemistry is more complicated because it involves reactions with the gypsum as well which is not the case with Tri-calcium and Dicalcium Silicates reactions.

2.4.3. Stages in Cement Hydration

Although the hydration of each cement compound has been treated independently here, this is not completely accurate considering that the rate of hydration of a compound may be affected by varying the concentration of another. In general, the rates of hydration during the first few days ranked from fastest to slowest are:
$>$ tricalcium aluminate $>$ tricalcium silicate $>$ tetracalcium aluminoferrite $>$ dicalcium silicate

Over time, the cement hydration process due to the above minerals produces a unique heat release signature. A typical hydration process is shown in Figure 2.4 and the reaction sequence is briefly described in Table 2.2.

Table 2.2: Typical hydration process of cement (Mindess, 2003)

	Reaction Stage	Kinetics Reaction	Chemical processes
1	Initial hydrolysis	Chemical control; rapid	Dissolution of ions
2	Induction period	Nucleation control; slow	Continued dissolution of ions
3	Acceleration	Chemical control; rapid	Initial formation of hydration products
4	Deceleration	Chemical and diffusion control; slow	Continued formation of hydration products
5	Steady state	Diffusion control; slow	Slow formation of hydration products

Figure 2.4: Rate of heat evolution during hydration of portland cement (Adapted from PCA, 2006)

The data from heat of hydration studies can be used for characterizing the setting and hardening behavior of cements, and for predicting the temperature rise (Mehta, 2006).

1. In Stage I (the dissolution stage), the reaction occurs right after contact with water because ions dissolved in water react with $\mathrm{C}_{3} \mathrm{~A}$ and gypsum. The formation of ettringite produced after initial hydration reactions sharply reduces the rate of the reaction in the latter part of Stage I. This stage has little effect on concrete strength. The system then enters a dormant period (Stage II).
2. In Stage II (the induction [dormant] period), the concentration of ions in the solution gradually increases along with the solution of solid phase. Cement paste remains in the plastic state. This stage does not develop concrete strength. However, it is important for workability and transportation of concrete because this stage allows concrete to be transported and molded into the desired shape.
3. In Stage III (the acceleration stage), the alite $\left(\mathrm{C}_{3} \mathrm{~S}\right)$ and belite $\left(\mathrm{C}_{2} \mathrm{~S}\right)$ in the cement start to hydrate and release heat. In this stage concrete setting begins and heat generation is rapidly accelerated. The silicate reaches a high rate of hydration at the end of the Stage III. Concrete strength is developed in this stage in which final setting was finished and early hardening has begun. Therefore, the acceleration stage is a very important characteristic in concrete.
4. In stage IV (the deceleration stage), the rate of heat generation again decreases and shifts to a diffusion-controlled process. In this phase, the thickness of hydrated particles increases and the surface area of the unhydrated parts decreases. The layer of cement hydrates acts as a diffusion area to govern the permeability of the water and dissolved ions. Ettringite is converted to monosulfate phase which is sometimes noted as the heat contribution of $\mathrm{C}_{3} \mathrm{~A}$ hydration.
5. In stage V (the steady stage), the thicker layer of hydrates around the cement particles reduces the rate of hydration remarkably. It is difficult in this stage for hydrates to be precipitated because the space originally filled by water is covered with hydrated cement. The hydration is completely controlled by the diffusion process.

Complete hydration of cement is generally assumed to require a water/cement ratio of about 0.4 and a minimum w/c ratio of 0.42 (Mindess et al. 2003). The heat evolution rate starts to decrease as the w / c ratio decreases after a certain time (Byfors 1980).

According to Integrated Materials and Construction Practices for Concrete Pavement Manual (FHWA HIF-07-004) October 2007, there are five main stages of cement hydration as follows:

Stage 1: Mixing (Hydrolysis)

Within minutes of mixing cement and water, the aluminates start to dissolve and react, with the following results:

- Aluminate reacts with water and sulfate, forming a gel-like material (C-A-$\mathrm{S}-\mathrm{H})$. This is an exothermic reaction.
- The C-A-S-H gel builds up around the grains, limiting water's access to the grains and thus controlling the rate of aluminate reaction. This occurs after an initial peak of rapid hydration and heat generation.

Stage 2: Dormancy

For about two to four hours after mixing, there is a dormant period, during which the following reactions take place:

- The C-A-S-H gel controls the aluminate reactions. Little heat is generated, and little physical change occurs in the concrete which is in a plastic state.
- During dormancy, as silicates (alite $\left[\mathrm{C}_{3} \mathrm{~S}\right]$ and belite $\left[\mathrm{C}_{2} \mathrm{~S}\right]$) slowly dissolve, calcium ions and hydroxyl (OH) ions accumulate in solution.

Stage 3: Hardening

This stage is dominated by alite $\left(\mathrm{C}_{3} \mathrm{~S}\right)$ hydration and the resulting formation of C -S-H and CH crystals:

- When the solution becomes super-saturated with calcium ions (from dissolving alite $\left[\mathrm{C}_{3} \mathrm{~S}\right.$] primarily), fiber-like C-S-H and crystalline CH start to form. This is an exothermic reaction. Meshing of C-S-H with other
solids causes the mixture to stiffen and set.
- The increasing heat and stiffening of the cement paste mark the beginning of hydration acceleration, which lasts several hours. Initial set occurs early during this stage.
- Acceleration is characterized by a rapid rate of hydration, significant heat generation, continued hardening, and strength development.
- The rates of reaction are faster for finer cementitious materials and for systems with higher alkali contents. Slower reacting systems will react longer and will generally provide a better microstructure in the long term.
- During acceleration, aluminate and sulfate continue to react, and needlelike ettringite (C-A-S-H) crystals form.
- Final set(concrete is hard enough to support loads), occurs before heat energy peaks (before alite $\left[\mathrm{C}_{3} \mathrm{~S}\right]$ reactions begin to slow).
- After final set, tensile stresses start to develop due to temperature and drying effects, the mixture's increasing stiffness. For a slab, friction with the pavement base starts here.

Stage 4: Cooling

After final set, the rate of alite $\left(\mathrm{C}_{3} \mathrm{~S}\right)$ reactions begins to slow, and the amount of heat generated firstly starts to peak and thereafter begins to drop. This occurs because the buildup of C-S-H and CH interferes with contact between remaining water and undissolved cement grains.

During this stage, several processes are taking place simultaneously:

- The concrete gains strength, as the amount of C-S-H (and CH) increases. However, the concrete is still porous and should carry only light loads.
- Tensile stresses may be building faster than tensile strength. At some point, the stress exceeds the strength, causing cracking. Unless joints are sawed to control the crack locations, random cracking will occur.
- Sometime after the temperature peaks, sulfate, which has continued reacting with aluminate (see stages 1 and 2) gets depleted. Any remaining
aluminate will react with ettringite to form monosulfate, which may be associated with a brief increase in heat. (Monosulfate does not significantly affect concrete properties.)

Stage 5: Densification

This stage is critical for continued development of concrete strength and reduction of concrete permeability. When concrete has low permeability, water and dissolved salts cannot readily penetrate and it is less susceptible to freeze-thaw damage. The concrete must be kept moist as long as possible because:

- As long as alite $\left(\mathrm{C}_{3} \mathrm{~S}\right)$ remains and there is water in the concrete, the alite will continue to hydrate. As the volume of hydration products grows, concrete porosity (and permeability) decreases, and the concrete gains strength. Eventually, the products-particularly C-S-H—will combine into a solid mass.
- Belite $\left(\mathrm{C}_{2} \mathrm{~S}\right)$, which reacts more slowly than alite $\left(\mathrm{C}_{3} \mathrm{~S}\right)$, also produces C -S-H. After several days, in the presence of water, most of the alite has reacted and the rate of belite hydration begins to be noticeable. It is important to maintain sufficient moisture long enough for belite reactions to occur.
- Hydration products will continue to develop, permeability will continue to decrease, and strength will continue to increase slowly for days, weeks, even years, as long as cementitious material and water are present. This process is affected by factors like cement type and fineness.

Figure 2.5 illustrates the inter-relationship between the heat of hydration, time and the physical processes described in this chapter.

Figure 2.5: Hydration-heat curve (Adapted from Integrated Materials and Construction Practices for Concrete Pavement manual, 2007

2.4.4. Development of Pore Structure

With cement hydration, the solid phase (hydration products) and pore structure develop. The formation of pore structure mainly depends on degree of hydration and w / c ratios. It is generally agreed that there are mainly three types of pores (Mindess and Young, 1981): gel pores, capillary pores, and air voids, though Jennings (2004) has proposed a new classification of pore size based on the studies on mechanisms of reversible shrinkage. As part of C-S-H gel, the pores are very small with diameter of about 0.5 nm to 10 nm . Capillary pores are mesomacro pores between the gel pores and air voids, with diameter ranging from 10 nm to $10 \mu \mathrm{~m}$. Larger than the capillary pores are the air voids.

Capillary pores are considered responsible for the water and gas transport within cement paste (Mindess and Young, 1981). They are formed during cement hydration where water in the pores is removed for providing reactant for further hydration. Thus, the capillary pores depend on the degree of hydration as well as the w/c ratios.

Figure 2.6: Scanning Electron Micrograph of a $C-S-H$ Paste (Tennis et al., 1997)

Capillary pores increase with the initial w/c both in the pore volume and pore size. However, capillary pore volume and size decrease as the hydration progresses and as hydration products start filling the pores. Conversely, as more hydrated gel is formed the associated gel pore volume increases. However, the capillary pore volume decreases more rapidly than gel pore volume increases, because only a portion of the gel which fills the capillary spaces is porous. Thus, the total capillary and gel pore volume of the cement paste decreases with continuing hydration.

2.4.5. Heat of Hydration

Heat is evolved with cement hydration due to the breaking and making of chemical bonds during hydration. The heat generated is shown in Figure 2.7 as a function of time. In stage I, hydrolysis of the cement compounds occurs rapidly with a temperature increase of several degrees. Stage II is known as the dormancy period. The evolution of heat slows dramatically in this stage. During this period, the concrete is in a plastic state which allows the concrete to be transported and placed without any major difficulty. It is at the end of this stage that initial setting begins (Http://matse1.matse.illinois.edu/concrete/prin.html).

Figure 2.7: Rate of heat evolution during the hydration of Portland cement (Http://matse1.matse.illinois.edu/concrete/prin.html)

In stages III and IV, the concrete starts to harden and the heat evolution increases
due primarily to the hydration of tricalcium silicate. Stage V is reached after 36 hours. The slow formation of hydrate products occurs and continues as long as water and unhydrated silicates are present (Http://matse1.matse.illinois.edu/concrete/prin.html). During normal concrete construction, the heat is dissipated into the soil or the air and resulting temperature changes within the structure, which are not significant. However, in some situations, particularly in mass concrete structures, such as dams, mat foundations, or any element more than about a meter thick, the heat cannot be readily released. The mass concrete may then attain high internal temperatures, especially during hot weather construction, or if high cement contents are used. These temperature rises cause expansion while the concrete is hardening. If the temperature rise is significantly high and the concrete undergoes non-uniform or rapid cooling, stresses due to thermal contraction in conjunction with structural restraint can result in cracking before or after the concrete eventually cools to the surrounding temperature. Contractors often insulate massive elements to control temperature changes (Portland Cement Association, 1997)

2.5. Autogenous Deformation

2.5.1. Definitions

Most aspects of autogenous shrinkage have been known for more than fifty years and are largely undisputed, yet there still is no exact univocal definition. Furthermore, some terminological discrepancies persist. For instance, autogenous shrinkage in some publications of French origin apparently comprises the complete chemical shrinkage (Bar 1999); Bar (2005); Mou (2006); Bou (2008). A comprehensive overview of terminology is given in Jen (2001).

The autogenous shrinkage of most concretes of normal strength is negligible as no self-desiccation takes place. The interest in autogenous shrinkage significantly rose in the 1990's when high strength concrete with relatively low water-cement ratios came into wider use. Despite appropriate curing, early age cracks were
observed which could be explained only by restrained autogenous shrinkage (Bui (1980); Zie (1982); Taz (1992): Sel (1995). Subsequent to several years of research, the Japan Concrete Institute (JCI) suggested the following definition (JCI, 1996), published in English in 1999 (Taz, 1999): "Autogenous shrinkage is the macroscopic volume reduction of cementitious materials when cement hydrates after initial setting. Autogenous shrinkage does not include volume change due to loss or ingress of substances, temperature variation, application of an external force and restraint."

The following terminologies related to autogenous shrinkage are adopted from Jensen and Hansen (2001). Other definitions about autogenous shrinkage can be found in (JCI, 1999).

- Autogenous deformation: The bulk deformation of a closed, isothermal, cementitious material system not subjected to external forces.
- Autogenous relative humidity change: The change of internal relative humidity in a closed, isothermal, cementitious material system not subjected to external forces.
- Self-desiccation: Autogenous relative humidity change of a cementitious material system after setting, caused by chemical shrinkage.
- Self-desiccation shrinkage: Autogenous deformation of a cementitious material system after setting, caused by chemical shrinkage.

Note that "closed" means no exchange of water occurs between the cementitious material and the surroundings; "isothermal" requires that the temperature is kept constant. For autogenous shrinkage, changes in tension in capillary water, disjoining pressure, and surface tension of the solid gel particles are the principal mechanisms that have been suggested.

2.5.2. Mechanisms of Autogenous Shrinkage

Capillary Tension

Capillary pores are formed during cement hydration when water in the pores is removed for providing reactant for further hydration. This will cause a reduction of the relative humidity of the capillary pores, known as self-desiccation. The reduction of pore humidity is sensitive to w / c ratio. The humidity drop is very slow in a high w/c ratio system and the pore structure will probably remain filled with capillary water for a long period. However, the self-desiccation is pronounced in a low w/c ratio cement paste. For $w / c=0.3$, the pore humidity drops to 78% at 50% degree of hydration. Thermodynamic analysis by Jensen (1995) showed that the pore humidity could not drop below 75% from self-desiccation alone.

With the reduction of pore humidity, meniscus and surface tension of the liquid forms in capillary pores to maintain the equilibrium between the liquid and the vapor over the liquid. Thus, the capillary pressure develops, which is the vapor pressure minus water pressure. This capillary pressure will cause water in capillaries under depression (under tensile stress) and has to be balanced by compressive stress of the surrounding solid. This compressive stress will result in volume decrease in cement paste. Because this compressive stress is originally induced by the reduction of internal relative humidity, any drying process either from external drying or internal drying (self-desiccation) will cause shrinkage in cement paste. Further hydration decreases the relative humidity resulting in reduction of the curvature radius of the meniscus.

Assuming cylindrical capillary pores, the radius of meniscus curvature decreases with reduction of relative humidity until it equals to the radius of the capillary. Due to the size distribution effect of capillary pores, the evaporation will first take place in the big pores. Further hydration will cause the formation of meniscus in the small pores after the big pore have been emptied. Thus, in hydrating cement
paste pores that have radius lower than that of meniscus are filled with water and pores with bigger radius are empty.

Capillary menisci are unstable below about 45% pore humidity (Soroka, 1979; Mindess, 1981), and thus the capillary tension mechanism for autogenous shrinkage should be only effective in the upper pore humidity range, which is above 45%. Since the pore humidity in capillary pores is not dropping below 75% due to self-desiccation alone (Jensen, 1995), it has justification to state that capillary tension mechanism is appropriate to explain autogenous shrinkage deformation. Figure 2.8 illustrates the forces acting during the process of shrinkage.

Figure 2.8: Capillary tension as the mechanism of shrinkage

Solid Surface Tension

Solids have surface tension at their interface with other materials. Changes in the surface tension of solid hydration products could result in bulk shrinkage or expansion of the cement paste. The magnitude of solid surface tension is dependent on the thickness of the adsorbed layers of water, which lowers the surface tension of the cement gel particles and results in expansion. Conversely, removal of the adsorbed water increases the solid surface tension and creates a net
compression of the solid resulting in micro-scale shrinkage (Powers, 1968). Surface tension can induce huge compressive stresses of around 250 MPa in cement gel particles with large specific surface area (Soroka, 1979), and thus noticeable bulk shrinkage.

However, it was suggested that surface tension do not become significant until lower pore humidity (less than 50\%) where only one or two adsorbed water layers are present (Mindess, 1981). Thus, this mechanism does not apply to autogenous deformation since the relative humidity is generally above 75% from selfdesiccation alone (Jensen, 1995). Research by Hansen (1987), on the other hand, showed that solid surface tension contributes to shrinkage at higher pore humidity as well.

Disjoining Pressure

The disjoining pressure between the solid particles is the result of van der Waals forces, double layer repulsion, and structural forces (Ferraris and Wittmann, 1987). The layered structures of C-S-H particles have huge surface area which attracts water molecules at interfaces. As water moves into the layers of C-S-H particles, the repulsive forces arise and the attractive van der Waals' force decreases between the solid layers, and thus results in volume changes. This swelling pressure from the absorbed water is referred to as 'disjoining pressure'. Stresses develop in the solid microstructure to balance the reduction in disjoining pressure, resulting in macro-scale shrinkage (Grasely, 2006). The disjoining pressure varies with the pore humidity. When the pore humidity drops, the disjoining pressure is reduced, causing shrinkage. However, disjoining pressure is in debate regarding at what relative humidity range this mechanism is responsible for volume changes (Mindess and Young, 1981).

2.5.3. Relationship between Autogenous Shrinkage and Heat of Hydration

Kim et al. (2011) investigated the early-age properties and relationships between
hydration heat and autogenous shrinkage in high-strength mass concrete of different mixture proportions through analysis of the history curves of hydration heat and autogenous shrinkage. The hydration temperature and hydration heating velocity (HHV) of the concrete were found to increase with increases in specimen size and decrease when the concrete contained a retarder, fly ash (FA) and ground granulated blast-furnace slag (GGBS). Even in samples of the same mixture proportion, autogenous shrinkage was noted to become greater as the inner temperature increased. The autogenous shrinkage of high-strength mass concrete containing FA and GGBS was lower than that of ordinary Portland cement highstrength mass concrete. The autogenous shrinking velocity of concrete increased as the size of the specimen increased and decreased when the concrete contained a retarder, FA and GGBS. Finally, a close correlation was found between the hydration temperature and autogenous shrinkage at an early age: a higher HHV and a larger HHV-maturity factor led to greater autogenous shrinkage. The earlyage properties and relationships between hydration heat and autogenous shrinkage in high-strength mass concrete of different mixture proportions are investigated through analysis of the history curves of hydration heat and autogenous shrinkage. The hydration temperature and hydration heating velocity (HHV) of the concrete were found to increase with increases in specimen size and decrease when the concrete contained a retarder, fly ash (FA) and ground granulated blast-furnace slag (GGBS). Even in samples of the same mixture proportion, autogenous shrinkage was noted to become greater as the inner temperature increased. The autogenous shrinkage of high-strength mass concrete containing FA and GGBS was lower than that of ordinary Portland cement high-strength mass concrete. The autogenous shrinking velocity of concrete increased as the size of the specimen increased and decreased when the concrete contained a retarder, FA and GGBS. Finally, a close correlation was found between the hydration temperature and autogenous shrinkage at an early age: a higher HHV and a larger HHV-maturity factor led to greater autogenous shrinkage (Kim et al., 2011).

2.5.4. Research Gap and Conceptual Framework

Cracks are the result of relatively complex processes, in particular at early age when concrete properties change rapidly. A dependable assessment of the cracking risk requires comprehensive testing and a thorough understanding of the interacting parameters. Early age cracking in cementitious systems is not a new problem; cracking due to restrained drying shrinkage and thermal contraction has previously been examined at length. However, the investigation and prediction of stresses and cracks due to autogenous shrinkage brings about new challenges. The essential issue is the onset of stresses at very early age. This greatly increases the influence of creep and relaxation. Especially at stress levels close to failure, this influence is highly non-linear and difficult to quantify, experimentally as well as mathematically (Mechtcherine and Breitenbücher, 2010).

Another challenge is the fact that temperature strongly influences the autogenous shrinkage and, presumably, the cracking risk as well. From isothermal tests for different temperatures, it appears that this influence cannot be accounted for by formulas conventionally used to describe the temperature dependency of cement hydration (Mechtcherine and Breitenbücher, 2010).

The lack of clarity in quantification of autogenous shrinkage cracks in part is a consequence of a series of methodological issues, most importantly the large number of different test methods and the difficulties in defining the onset of the autogenous shrinkage. The measurement of autogenous shrinkage, yet error-prone at constant temperatures, becomes particularly demanding at realistic temperature histories. The thermal deformations that inevitably superimpose the shrinkage strains are difficult to compensate for. At present, there is no general agreement on how to measure the autogenous shrinkage under non-isothermal conditions. In brief, the current knowledge about the influence of creep and temperature on autogenous shrinkage, restraint stress and cracking is insufficient. Obviously, the experimental methods need to be improved in order to overcome the existing
deficiencies (Mechtcherine and Breitenbücher, 2010).
An experimental method was chosen in this research in an attempt to quantify the heat of hydration of cement paste as a function of pores formation and cracking. The method is described in chapter three (3) that follows.

3. MATERIALS AND METHODS

3.1. Introduction

The objectives of experimental work was to obtain data for characterizing Ordinary Portland Cement paste microstructure using heat of hydration and autogenous shrinkage parameters. In this chapter, measuring techniques, and materials used are presented. The tests included:

1. Use of type K temperature probes and Extech Differential Temperature Data logger to measure the heat of hydration of Ordinary Portland Cement paste.
2. Use of a strain gauge and MadgeTech Bridge/Strain Data logger to measure autogenous shrinkage strain of hydrating Ordinary Portland Cement paste.
3. Use of a stereo microscope to evaluate the microstructure evolution of a hydrating Ordinary Portland Cement paste (as a function of pores formation and cracking).

3.2. Materials, Curing Conditions and Mix Proportioning

Ordinary Portland Cement (OPC) was used for preparation of Ordinary Portland Cement paste and concrete mixtures. In concrete mixtures, the coarse aggregate was crushed limestone with a maximum aggregate size of 10 mm . The fine aggregate was natural river sand which was sourced from Machakos. To ensure accurate measurements, right after casting into the rig, the external drying was prevented by sealing the specimens using an impermeable sheet. Regular concrete contains maximum aggregate size of 25.4 mm and aggregate content ranging from 60% to 80% of the total mixture. It was intended to investigate the effect of aggregate content and size on autogenous shrinkage. Concrete samples with different aggregate contents (less than the normal range of aggregate content) and with small sized aggregates (maximum aggregate size of 10 mm) was used in this research.

Table 3.1: Mix proportioning for paste $\left(\varphi_{\mathrm{A}}=0 \%\right)$ and concrete

Sample no.	1 (Sealed- unsaturat ed curing)	2(Sealed- unsaturated curing)	3(Sealedunsaturated curing)	4(Sealed- unsaturated curing)	5(Sealed- saturated curing)	6(Sealed- saturated curing)	7(Sealed- saturated curing)	8(Sealed- saturated curing)
Material	$\begin{aligned} & \mathrm{w} / \mathrm{c}=0.35 \\ & \left(\varphi_{\mathrm{A}}=0 \%\right) \end{aligned}$	$\begin{aligned} & \mathrm{w} / \mathrm{c}=0.45 \\ & \left(\varphi_{\mathrm{A}}=0 \%\right) \end{aligned}$	$\begin{aligned} & \mathrm{w} / \mathrm{c}=0.35 \\ & \left(\varphi_{\mathrm{A}}=40 \%\right) \end{aligned}$	$\begin{aligned} & \mathrm{w} / \mathrm{c}=0.45 \\ & (\varphi \mathrm{~A}=40 \%) \end{aligned}$	$\begin{aligned} & \mathrm{w} / \mathrm{c}=0.45 \\ & (\varphi \mathrm{~A}=40 \%) \end{aligned}$	$\begin{aligned} & \mathrm{w} / \mathrm{c}=0.35 \\ & \left(\varphi_{\mathrm{A}}=40 \%\right) \end{aligned}$	$\begin{aligned} & \mathrm{w} / \mathrm{c}=0.45 \\ & \left(\varphi_{\mathrm{A}}=0 \%\right) \end{aligned}$	$\begin{aligned} & \mathrm{w} / \mathrm{c}=0.35 \\ & \left(\varphi_{\mathrm{A}}=0 \%\right) \end{aligned}$
Cement (kg)	1.5	1.305	0.763	0.660	0.660	0.763	1.305	1.5
Water (kg)	0.525	0.587	0.267	0.297	0.297	0.267	0.587	0.525
Limesto ne (kg)	n. a.	n. a.	0.268	0.268	0.268	0.268	n. a.	n. a.
$\begin{array}{\|l\|} \hline \text { Sand } \\ \left(\mathrm{kg} / \mathrm{m}^{3}\right) \end{array}$	n. a.	n. a.	0.763	0.763	0.763	0.763	n. a.	n. a.

n. a. = not available.

The mix proportions are shown in Table 3.1 for $\mathrm{w} / \mathrm{c}=0.35$ and 0.45 at the aggregate contents of 0% and 40% of total mix by volume. In all the concrete mixtures, the ratio of sand to coarse aggregate by volume was kept constant, however the total aggregate content varied. All the mix proportions shown in Table 3.1 were for molds of size $100 \times 100 \times 100 \mathrm{~mm}$. The effectiveness of internal curing on mitigating autogenous shrinkage and cracking was investigated as well. The following curing conditions were chosen.

1. Sealed/saturated curing using distilled water
2. Sealed/unsaturated curing

3.3. Measurement of Heat of Hydration and Autogenous Shrinkage

The schematic of the specimen and test method for the hydration temperature and deformation of Ordinary Portland Cement paste and concrete were as shown in Figure 3.1.

Figure 3.1: Schematic of the Test Method for the Hydration Temperature and Deformation of Concrete

The $100 \times 100 \times 100 \mathrm{~mm}$ specimen was cast in a mold made with impervious pve film. The inner temperature and deformation of the specimen were measured using a thermocouple and an embedded strain gauge every ten minutes after casting for 10 days per specimen. Eight specimens were tested corresponding to their w/c ratios, aggregate content and curing conditions described in the previous section 3.2. The strain gauges used had a resistance of 60 ± 0.5 ohms (Ω) and a gauge factor of $1.68 \pm 3 \%$. Figure 3.2 and 3.3 show the strain gauge and temperature data loggers used in this study.

Figure 3.2: Photograph of the Strain Gauge Data Logger used in this study

Figure 3.3: Photograph of the Temperature Data Logger

3.4. Basic Working Principles of Strain Gauge and Temperature Data Loggers

3.4.1. Strain Gauge

The Bridge101A Data Logger measures and records voltage, typically used in conjunction with strain gauges, load cells or other low-level DC voltage sources. This device is designed to accurately measure and record the output of the gauge to determine parameter levels such as stress, torque, strain, and pressure on a structure or item over a period.

The MadgeTech Data Logger Software offers user programmable Engineering Units which facilitates measurement of collected data to be presented in the established formats. Equipped with endless data analysis and reporting tools, the MadgeTech software simplifies device management and provides the user with a graph, tabular or summary reports with the capability of exporting data to 'MS Excel' as needed. Figure 3.4 show the strain gauge data logger.

Figure 3.4: Strain gauge data logger

3.4.2. Device Operation

The connecting and starting the data logger are summarized in form of the following six (6) steps:

STEP 1 - Once the software was installed and running, the interface cable was plugged into the data logger.

STEP 2 - The USB end of the interface cable was connected into an open USB port on the computer.

STEP 3 - After the device appeared in the Connected Devices list, the desired data logger was highlighted.

STEP 4 - For most applications, "Custom Start" is selected from the menu bar and the desired start method chosen. Thereafter, reading rate and other parameters appropriate for the data logging application were chosen and "Start" button checked. ("Quick Start" applies to the most recent custom start options, "Batch Start" is used for managing multiple loggers at once, "Real Time Start" stores the dataset as it records while connected to the logger.)

STEP 5 - It was ensured that the status of the device changed to either "Running"; "Waiting to Start" or "Waiting to Manual Start", depending upon the start method.

STEP 6 - The data logger was disconnected from the interface cable and placed in the environment to take measurements.

Note: The device stops recording data when the end of memory is reached or the device is stopped. At this point the device cannot be restarted until it has been rearmed using a computer.

3.4.3. Downloading Data from a Data Logger

The steps for downloading data are summarized as follows:

STEP 1 - The data logger was connected to the interface cable.
STEP 2 - The data logger was highlighted in the Connected Devices list. "Stop" on the menu bar was clicked.

STEP 3 - Once the data logger had been stopped, with the logger highlighted, "Download" was clicked. It prompted the naming of the report.

STEP 4 - The final step was downloading and saving all the recorded data to the PC, ready for analysis.

3.4.4. Basic Principles of Working of Temperature Data Logger

The features of the Extech temperature data logger used in this research are given as follows:

- 4-Channel datalogging with 6 Thermocouple types (J, K, E, T, R,S) and 2Channel datalogging with RTD (Pt100) probes;
- Displays [T1, T2, T3, T4] or differential [T1-T2] reading;
- Offset adjustment used for zero function to make relative measurements;
- Stores 99 readings manually and 20M readings via 2G SD card;
- Records readings with real date and time stamp;
- User programmable sampling rate: 1 to 3600 seconds;
- Min/Max and Data Hold functions;
- Auto power off with disable function;
- Built-in PC interface;
- Complete with 6 AA batteries, four general purpose Type K bead wire temperature probes, SD card, and hard carrying case.

3.5. Stereo Microscopy

Stereo Microscopy was undertaken to evaluate the microstructure of hydrating cement. Detection and quantification of microcracks and pores in a hydrating cement paste is a difficult task. Available techniques either lack the required resolution or may produce additional cracks that are indistinguishable from the original ones. A properly developed technique allows identification of microstructure while avoiding artefacts induced by unwanted restraint, drying, or temperature variations during sample preparation.

In the present study, microstructural evolution in a hydrating Ordinary Portland Cement paste was studied by means of a simplified, 2-dimensional model.

After the desired period of hardening in desired curing conditions, the Ordinary Portland Cement paste and concrete samples were cut using a rock saw to a small size viewable under a stereo microscope. These were then polished and viewed with a stereo microscope.

Representative images were acquired for the microstructures achieved after the duration described earlier for all the w / c ratios and all the curing conditions investigated in this study. Each image was analysed to characterize the formation of micro-cracks ad pores formation due to autogenous shrinkage and heat of hydration of Ordinary Portland Cement paste.

3.6. Data Collection

Samples were set up and left at the Civil Engineering Concrete Laboratories at the University of Nairobi (UoN) for the desired period of time per sample. The Stereo Microscopy was done at the Microscopy Laboratory in the Mechanical Engineering Department also at UoN. Data collection was by qualified Laboratory Technicians. The following section presents some of the photographs taken in the course of data collection for this study.

3.6.1.- Samples Mixing and Setting Up Photographs

Figures 3.5 and 3.6 illustrates manual mixing of materials in a laboratory environment.

Figure 3.5: Mixing of Ordinary Portland Cement paste in laboratories (University of Nairobi) - 16th Feb 2015

Figure 3.6: Mixing Ordinary Portland Cement paste in laboratories (University of Nairobi) -2nd April 2015

Figures 3.7 and 3.8 illustrates how the samples were cut using a rock saw in the laboratories for viewing in a stereo microscope.

Figure 3.7: Cutting samples using rock saw for stereo microscopy

Figure 3.8 : Setting samples into the rock saw

Figures 3.9 and 3.10 illustrate the setting up of the data loggers inserted in the samples, how the samples were sealed using an impermeable film (Figure 3.9) and how those to be cured under saturated conditions were set up (Figure 3.10).

Figure 3.9: A complete set up with loggers in place

Figure 3.10: A complete set up with loggers in place for the samples to be cured under saturated conditions- 8th April 2015

4. RESULTS AND DISCUSSION

4.1. Heat of Hydration

4.1.1. General

As discussed earlier in Chapters 1 and 2, Ordinary Portland Cement is composed largely of four types of minerals amongst others: alite $\left(\mathrm{C}_{3} \mathrm{~S}\right)$, belite $\left(\mathrm{C}_{2} \mathrm{~S}\right)$, aluminate $\left(\mathrm{C}_{3} \mathrm{~A}\right)$, and aluminoferrite $\left(\mathrm{C}_{4} \mathrm{AF}\right)$. When these minerals and water are mixed, hydration products are formed. Heat is evolved with cement hydration due to breaking and development of chemical bonds during hydration. The heat generated by the cement's hydration raises the temperature of concrete.

The heat generated can be described as a function of time as shown in figures 4.1 to 4.10 of this chapter and Appendix C representing results of samples one (1) to eight (8) as described previously in Table 3.1 of Chapter 3. Heat of hydration data was taken after every 10 minutes for 9 to 10 days. Figure 4.1 shows a combined graph for samples one to six temperature rise against time during cement pastes hydration.

Figure 4.1: Samples one to six temperature against date

The results of this research as shown in Figure 4.1 are comparable to the literature. For example, Http://matse1.matse.illinois.edu/concrete/prin.html expressed heat of hydration as a function of time as illustrated in Figure 4.2.

Figure 4.2: Rate of heat evolution during the hydration of Portland cement (Http://matse1.matse.illinois.edu/concrete/prin.html)
In stage I, hydrolysis of the cement compounds occurs rapidly with a temperature increase of several degrees. Stage II is known as the dormancy period. The evolution of heat slows dramatically in this stage. During this period, the concrete is in a plastic state which allows the concrete to be transported and placed without any major difficulty. This is particularly important for the construction trade who must transport concrete to the job site. It is at the end of this stage that initial setting begins.

In stages III and IV, the concrete starts to harden and the heat evolution increases due primarily to the hydration of tricalcium silicate. Stage V is reached after 36 hours. The slow formation of hydrate products occurs and continues as long as water and unhydrated silicates are present. (Http://matse1.matse.illinois.edu/concrete/prin.html).

Figure 4.1 which is a result of this research compares favorably with the work by Http://matse1.matse.illinois.edu/concrete/prin.html as shown in Figure 4.2. Temperature rose rapidly (Stage I) then slowed down (Dormancy Stage II). The recorded temperature rose again signifying Stages III and IV and thereafter dropped, marking Stage V.

4.1.2. Heat of Hydration in Sample One

Figure 4.3 shows temperature changes due to heat of hydration in sample one taken after every 10 minutes for 9 days. Sample one was only a cement and water mix with no aggregates. It had a water to cement ratio (w/c) of 0.35 cured under sealed but unsaturated conditions.

There was an increase of 19.6% in temperature within the first 12 hours of mixing, peaking at the $11^{\text {th }}$ hour and starting to drop by 1% at the $13^{\text {th }}$ hour. It then rose again by 5% beyond which the temperature dropped by 20% to stabilize at room temperature.

Figure 4.3: Sample one temperature data against time (minutes)

4.1.3. Heat of Hydration in Sample Two

Figure 4.4 shows temperature changes due heat of hydration in sample two taken after every 10 minutes for 10 days. Sample two was only a cement and water mix with no aggregates. It had a water to cement ratio (w/c) of 0.45 cured under sealed but unsaturated conditions. There was an increase of 13% in temperature within the first 12 hours of mixing, which dropped by 2% on the second day, beyond which, the temperature rose by an extra 8% before dropping by 11% through a series of rises and drops.

Although the general trend seems to be the same, sample two heat of hydration was noted to be lower than sample one in the first 24 hours. This can be explained by the difference in water to cement ratio (w/c). As presented in Table 3.1 under Chapter 3, sample one had w/c ratio of 0.35 which was lower than that of sample two which had a w/c ratio of 0.45 .

Figure 4.4: Sample two temperature data against time (minutes)

4.1.4. Heat of Hydration in Sample Three

Figure 4.5 shows temperature changes due heat of hydration in sample three taken after every 10 minutes for 10 days. Sample three was a concrete mix as shown in Table 3.1 in chapter 3. It had a water to cement ratio (w/c) of 0.35 cured under sealed but unsaturated conditions. There was an increase of 12% in temperature within the first 12 hours of mixing, which dropped by 1% then continued to increase by an extra 2% on the second day, beyond which, the temperature dropped by 8%.

Although the general trend seems to be the same as for the previous samples, sample two heat of hydration was noted to be lower than that of samples one and three which can be explained by the lower w/c ratios in samples one and three as compared to sample two.

Figure 4.5: Sample three temperature data against time (minutes)

4.1.5. Heat of Hydration in Sample Four

Figure 4.6 shows temperature changes due heat of hydration in sample four taken after every 10 minutes for 11 days. Sample four was a concrete mix as shown in Table 3.1 in chapter 3. It had a water to cement ratio (w/c) of 0.45 cured under sealed but unsaturated conditions. The heat of hydration trend was noted to be the same as of the previous samples in that there was an initial increase in temperature within the first 12 hours after mixing after which the temperature dropped before stabilizing at room temperature.

Samples two and sample four heat of hydration trend was noted to be very similar. This can be explained by their equal water to cement ratio. This also shows that presence of aggregates do not affect the amount of heat of hydration of a mix. It was however noted that sample four cooled a faster rate than sample two which could imply that heat as absorbed by the aggregates in sample four.

Figure 4.6: Sample four temperature data against time (minutes)

4.1.6. Heat of Hydration in Sample Five

For sample five, there was a power interruption hence only one day's heat of hydration data was collected. Figure 4.7 shows temperature changes due heat of hydration in sample five taken after every 10 minutes for 500 minutes. Sample five was a concrete mix as shown in Table 3.1 in chapter 3. It had a water to cement ratio $(\mathrm{w} / \mathrm{c})$ of 0.45 cured under sealed and saturated conditions.

The general internal temperature trend within this period was noted to be similar though lower than that of sample two which had an equal water to cement ratio. It was noted to be lower than that of sample four which and a similar mix proportion but which was not cured under saturated conditions. The lower internal temperature recorded can be explained by the fact that sample five was cured under saturated conditions as compared with sample two and four which were not cured under saturated conditions. Presence of curing water provided a cooling effect to the hydrating cement paste.

Figure 4.7: Sample five temperature data against time (minutes)

4.1.7. Heat of Hydration in Sample Six

Figure 4.8 presents internal temperature data for sample six taken after every 10 minutes for 7 days. Sample six was a concrete mix as shown in Table 3.1 in chapter 3. It had a water to cement ratio (w/c) of 0.35 cured under sealed and saturated conditions.

The general trend was observed to be lower than that of sample three which had an equal water to cement ratio and similar mix proportions but which was not cured under saturated conditions. The lower internal temperature recorded can be explained by the fact that sample six was cured under saturated conditions as compared with sample three which was not cured under saturated conditions. Presence of curing water provided a cooling effect to the hydrating cement paste.

Figure 4.8: Sample six temperature data against time (minutes)

4.1.8. Heat of Hydration in Sample Seven

There was an omission in setting the temperature logger to record within the first 26 hours. However the logger was set to record after the 26 hours and data recorded as follows.Sample seven was only a cement and water mix with no aggregates. It had a water to cement ratio (w/c) of 0.45 cured under sealed and saturated conditions.

Figure 4.9 presents inner temperature data for sample seven taken after every 10 minutes for 10 days. Although the general trend seems to be the same as for other samples, sample seven temperature trend was noted to be lower than that of sample two which had a similar mix proportions but cured under unsaturated conditions. This can be explained by the curing in saturated conditions for sample seven which provided a cooling effect.

Figure 4.9: Sample seven temperature data against time (minutes)

4.1.9. Heat of Hydration in Sample Eight

Figure 4.10 presents internal temperature data for sample eight taken after every 10 minutes for 10 days. Sample eight was only a cement and water mix with no aggregates. It had a water to cement ratio (w/c) of 0.35 cured under sealed and saturated conditions.

It was noted that the general internal temperature trend seemed to be the same as of the other samples. It was however noted that the temperature values were much less and more stable than that of sample one which had a similar mix. This can be explained by the curing in saturated conditions for sample eight as compared to sample one which was cured under unsaturated conditions.

Figure 4.10: Sample eight temperature data against time (minutes)

4.2. Autogenous Shrinkage Results

4.2.1. Introduction

A 30 mV (millivolt) Bridge/Strain101A Data logger as manufactured by MadgeTech (www.madgetech.com) was used in these experiments. This logger is made to interface with and measure strain gauges and load cells. The device provides an excitation voltage of 2.5 V and has $\mathrm{a} \pm 30 \mathrm{mV}$ (millivolt) input. (Please see Appendix A for more details on the logger).

Figures 4.11 to 4.14 show the autogenous shrinkage strain for the various samples tested as presented earlier in Table 3.1 under Chapter 3. Since the data was recorded for every 10 minutes for about 10 days, detailed results are presented in tabular form in Appendix B. However the graphs presented here are for the whole 10 days duration per sample.

4.2.2. Conversion from Voltage to Strain

The strain gauges used had a resistance of $60 \pm 0.5 \mathrm{ohms}(\Omega)$ and a gauge factor of $1.68 \pm 3 \%$ (obtained from the manufacturer's manual included as Appendix A)

A fundamental parameter of the strain gauge is its sensitivity to strain, expressed quantitatively as the gauge factor (GF). It is defined as the ratio of fractional change in electrical resistance (R) to the fractional change in length (strain) (www.ni.com):

$$
G F=\frac{\Delta R / R}{\Delta L / L}=\frac{\Delta R}{\varepsilon}
$$

Equation 4.1

If the nominal resistance of the strain gauge is designated as R , then the straininduced change in resistance, $\Delta \mathrm{R}$, can be expressed from Equation 4.1 as follows: $\Delta \mathrm{R}=\mathrm{R} \cdot \mathrm{GF} \cdot \varepsilon$ where ε is the strain.

The results obtained from the strain gauge data logger in voltage were converted to strain induced resistance expressed in $\operatorname{ohms}(\Omega)$ as demonstrated in table 4.1 for the first few hours for sample one. These were then converted to strain. Detailed
results are presented under Appendix B.

4.2.3. Sample One Autogenous Shrinkage Strain

Table 4.1: Sample One Strain Data

			Conversion of recorded voltage resistance (Ω)	
		Strain		

			Conversion of recorded voltage to			
Date	Time	Voltage (V)	resistance (Ω)		Strain	S
:---						
$2 / 4 / 2015$						

Figure 4.11 shows sample one hydration strain recorded every 10 minutes for 10 days. Immediately upon mixing, it was noted that the strain values increased, thereafter undergoing a series of increasing and decreasing strain constantly throughout the period. This can be explained by the expansion and shrinkage of the paste as hydration took place. As water was taken up by cement for hydration, shrinkage took place. As more hydration products were formed, expansion took place. Thus the positive and the negative values indicate expansion and shrinkage respectively.

Eurocode 2 states that autogenous shrinkage 'should be considered specifically when new concrete is cast against hardened concrete' and suggests that the shrinkage strain will be $2.5\left(f_{c k}-10\right) \times 10-6$, where $f_{c k}$ is the cylinder strength of the concrete.

Figure 4.11: Sample one strain against time (minutes)

4.2.4. Sample Two Autogenous Shrinkage Strain

Figure 4.12 shows sample two hydration strain recorded every 10 minutes for 10 days. Immediately upon mixing, it was noted that the strain values increased, thereafter undergoing a series of increasing and decreasing strain though out the period. The strain induced decreased with time unlike for sample one which increased and decreased constantly.

It was observed that the strain data for the hydrating sample two for the ten days was all positive implying that no shrinkage took place during this period. This can be explained by the fact that sample two had a higher water to cement ratio (0.45 for sample two as compared to 0.35 for sample one). Therefore, there was more available water for cement hydration in sample two and thus reduced selfdessication. Thus the lower the water to cement ratio, the higher the autogenous shrinkage. The decreasing strain is an indication of decreasing formation of hydration products and decreasing rate of hydration.

Figure 4.12: Sample two strain against date

4.2.5. Samples Three, Four, Five and Six: Autogenous Shrinkage Strain Data

Samples three, four, five and six were set up as described earlier in chapter three. However, the strain data logger was poorly connected and hence no data could be captured. For sample six, the connecting wire was cut hence the strain data could not be recorded.

It was however not possible to repeat these experiments in this particular research due to scarcity of strain gauges. The strain gauges used had to be imported and it would take a long time to arrive. These strain gauges were also not re-usable after being embedded into concrete and cement paste.

4.2.6. Sample Seven Autogenous Shrinkage Strain

Figure 4.13 shows the strain of a hydrating sample seven recorded every 10 minutes for 10 days. The rate of change of strain was less than for sample one and two. Since the sample was cured under saturated conditions, the lower strain values can be explained by the availability of enough water for cement hydration hence lower tension due to self-dessication. As water was taken by cement for hydration, the water was replaced by the curing water. Hence the overall volume change was minimal hence lower strain in the hydrating Ordinary Portland Cement paste.

Figure 4. 13: Sample seven strain against date

4.2.7. Sample Eight Autogenous Shrinkage Strain

Figure 4.14 shows the strain of hydrating sample eight recorded every 10 minutes for 10 days. The strain values resemble closely those of sample seven. Even though the two samples had different water to cement ratios. Since these two samples were cured under saturated conditions, the lower strain values can be explained by the availability of enough water for cement hydration hence lower rate of volume change and hence lower rate of change of strain.

Figure 4. 14: Sample eight strain against date

4.2.8. Comparison of Various Samples Autogenous Shrinkage

Autogenous shrinkage strain is the self-created bulk strain of cement paste, mortar or concrete during hydration with no moisture lost to the surrounding environment. Figures 4.15 and 4.16 show graphs of strain against time for samples one and two; seven and eight respectively. The mix and curing conditions details are as presented in Table 3.1 in Chapter 3.

As mentioned previously, positive strain values signify increase in volume while negative strain values signify shrinkage. Positive strain values in a hydrating cement paste indicate formation of hydration products and absorption of more water by the hydrating cement paste while negative strain values indicate shrinkage. For samples cured under sealed conditions with no moisture loss to the surrounding environment, this strain is autogenous shrinkage.

From table 3.1 in Chapter 3, samples one and two were similar except that sample one had a w/c ratio of 0.35 while sample two had a w/c ratio of 0.45 . Both were
cured under sealed but unsaturated conditions.

Figure 4. 15: Samples one and two strain against date

Figure 4.15 show that sample two recorded higher positive strain compared to sample one. Sample one recorded more negative strain values. This meant that there was higher autogenous shrinkage in sample one. It was noted that no negative strain was observed in sample two indicating no autogenous shrinkage within the testing period. This means that higher w / c ratio reduces autogenous shrinkage.

Even though samples seven and eight were cured under saturated conditions, autogenous shrinkage strain was still observed. According to Empha (2015), autogenous shrinkage becomes important with $w / c<0.45$ and increases with the decrease of w/c. Contrary to drying shrinkage, autogenous shrinkage occurs without any loss of moisture from the concrete. In low water-to-cement (w/c) high-performance concretes (HPC), the traditional external curing is not effective since due to a very fine structure of porosity, water provided on the surfaces is not able to penetrate the interior of the element. This explains why even in curing under sealed and saturated conditions, autogenous shrinkage was still observed in samples seven and eight.

Figure 4. 16: Samples seven and eight strain against date

Surprisingly, as observed in Figure 4.16, sample seven showed higher autogenous shrinkage strain than sample eight which had a lower w/c ratio than sample seven. This shows that curing under saturated conditions can actually make up for the low w/c ratio and lead to reduced autogenous shrinkage.

Autogenous shrinkage is the major shrinkage component of concretes that contain much less water than would be required for complete hydration. The relative surplus of cement leads to an internal drying, irrespective of whether the concrete dries out to the ambient air or not. This process of so called self-desiccation is associated with autogenous shrinkage.

4.3. Stereo Microscopy Images

4.3.1. General

Hydrated Ordinary Portland Cement paste contains pores and microcracks with size ranging from the nanometre to millimetre scales. Various samples were observed under two separate stereo microscopes and images taken under varying magnifications.

4.3.2. Cracking in Hydrating Ordinary Portland Cement Paste

Figures 4.17 and 4.18 shows microscopy images of samples one and three after hydrating under sealed and unsaturated conditions for 10 days. The darkest areas indicate the macro-pores. The difference in colour was due to use of different microscopes.

Cracks were observed in sample one and three and not at all in samples two, four, five, six and seven. As these samples were cured under sealed but unsaturated conditions, it was observed that conventional curing by sealing the surface to prevent evaporation is not enough and water curing is essential.

Figure 4.17: x80 magnification location 1 - sample one

Figure 4. 18: x400 magnification - sample three

At low water/cement ratios, as water is drawn into the hydration process, demand for more water creates very fine capillaries. The surface tension within the capillaries causes autogenous shrinkage which can lead to cracking. This can be largely avoided by keeping the surface of the concrete continuously wet. With wet curing, water is drawn into the capillaries and the shrinkage is reduced.

Out of all the Samples scanned at a resolution not greater than x1000, it was observed that only samples one and three developed some cracks. This can be explained by the lower water to cement ratio of these samples and the failure to cure under saturated conditions. At low water/cement ratios, water is aggressively drawn into the hydration process and the demand for more water creates very fine capillaries. The surface tension within the capillaries causes autogenous shrinkage which can lead to cracking.

Temperature strongly influences the autogenous shrinkage and, presumably, the cracking risk as well. Temperature rise causes expansion. This occurs at a time when the concrete/cement paste is hardening. As the temperature rises and the concrete undergoes non-uniform or rapid cooling, stresses due to thermal contraction in conjunction with structural restraint can result in cracking before or after the concrete eventually cools to the surrounding temperature.

The results indicated that curing under saturated conditions leads to a decrease in autogenous shrinkage and cracking. Curing under saturated conditions provides the necessary water required for hydration and hence reduces self-desiccation. Water also helps in cooling of the hydrating cement paste hence reduces the risk of cracking.

4.3.3. Pore Structure of Hydrating Ordinary Portland Cement Paste

The scans of the various samples as presented in this Chapter 4 show that the formation of pore structure depends on w/c ratios. Higher w/c ratios lead to reduced pore sizes as shown for samples three, four and seven as compared to the
rest of the samples with lower w/c ratios. Stereo Microscopy was done for various locations within each sample and a similar pattern as that one shown in Figure 4.19 observed.

Figure 4.19: Scanning Electron Micrograph of a $\boldsymbol{C}-\boldsymbol{S}-\boldsymbol{H}$ Paste (Tennis et al.,1997)

Higher w / c ratios provides more water for hydration hence increased formation of hydration products. Therefore the pores sizes reduce with increasing w/c ratios as hydration products occupy the pore spaces previously occupied by water. Lower w / c ratios results in taking of water for cement hydration leading to larger pores previously occupied by the water.

Figures 4.20 and 4.21 shows microscopy images of samples one and two taken at a magnification of x1000. It was observed that at equal magnification, sample one showed bigger macro-pores than sample two. Sample two showed a higher degree of hydration than sample one. This can be explained by the availability of more water for hydration in sample two than in sample one. As presented in Table 3.1 under chapter 3, sample one had a w/c ratio of 0.35 while sample two had a w/c ratio of 0.45 .

Figure 4. 20: x1000 magnification - sample one

Figure 4.21: x1000 magnification - sample two

Figures 4.22 and 4.23 shows microscopy images of samples three and four taken at a magnification of x200.As for sample one and two, sample three showed bigger macro-pores than sample four. This too can be explained by the different water to cement ratios. the lower the w / c ratio the bigger the macro-pores and the lesser the hydration products.

Images taken for samples six and seven were darker as these had been cured under saturated conditions hence the excess amount of water hindered clear viewing.

Figure 4.22: x200 magnification - sample three

Figure 4.23: x200 magnification - sample four

Figures 4.24 and 4.25 shows microscopy images of samples six and seven taken at a magnification of $x 400$. The macro-pores in sample six were observed to be bigger than those of sample seven at equal magnification. This is because sample seven and a higher w/c ratio than sample six. Also, the presence of aggregates in sample six could have led to bigger macro-pores as more water is absorbed by the aggregates. Sample seven had no aggregates.

Figure 4.24: x400 magnification - sample six

Figure 4.25: x400 magnification - sample seven

5. CONCLUSIONS AND RECOMMENDATIONS

5.1. Conclusions

It was observed in this study that the pores sizes of a hydrating Ordinary Portland Cement that contain much less water than is required for complete hydration reduce with increasing w/c ratios as hydration products occupy the pore spaces previously occupied by water. Higher w/c ratios provides more water for hydration hence increased formation of hydration products. Lower w/c ratios results in taking of water for cement hydration leading to larger pores previously occupied by the water. The risk of cracking increases with increasing autogenous shrinkage. Autogenous shrinkage has been observed in this study to be minimised by curing in saturated condition and increasing the water to cement ratio.

It was also observed that lower water to cement (w/c) ratio led to increased autogenous shrinkage as seen in comparison of autogenous shrinkage-induced strain results of sample one and two. Sample one recorded autogenous strain while sample two recorded no autogenous strain within the tested period. Sample one had a lower w/c ratio than sample two.

Mixes with higher water-cement ratios have more water and microstructural space available for hydration of the cement (more cement hydrates at a faster rate), resulting in an increased rate of heat development. Samples two and four recorded higher heat of hydration than samples one and three which had lower w/c ratios.

Curing under saturated conditions was seen to reduce autogenous shrinkage irrespective of the initial water to cement ratio.Curing in saturated conditions ensures replacement and availability of more water for hydration of Ordinary Portland Cement paste. This reduces self-dessication and thereby autogenous shrinkage. Presence of curing water thus results in less recorded pores and cracking. Availability of water for curing reduces internal temperature due to cooling aided by the presence of water.

5.2. Recommendations for Further Research

1. Autogenous shrinkage affects the pore structure of hydrating cement. Further research is recommended in this area to relate the development of pore structure with autogenous shrinkage. This can be done by mercury intrusion or other appropriate means.
2. It was initially intended in this research to also evaluate the effect of aggregates on autogenous shrinkage. However, no shrinkage data could be collected for the samples that contained aggregates due to a faulty connection of elongating wires of the strain gauge during this period. It is recommended that further research be carried out on the effect of aggregates on autogenous shrinkage.
3. Case studies are recommended to acquire practical evidence that autogenous shrinkage causes problems in concrete practice in this Kenya.

6. REFERENCES

Figueroa Fernandez R.H, (2014). Strategies to Reduce the Risk of Building Collapse in Developing Countries, Carnegie Mellon University, Theses and Dissertations, Paper 493.

Feng Lin, (2006). Modeling of Hydration Kinetics and Shrinkage of Portland Cement Paste. Submitted in partial fulfillment of the Requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences Columbia University.

Ferraris, C., and Wittmann, F.H, (1987). Shrinkage Mechanisms of Hardened Cement Paste, 17(3), pp. 453-464.

Hansen, W, (1987). Drying Shrinkage Mechanisms in Portland Cement Paste, J. Am. Ceram. Soc. 70, pp. 323-328.

Https://www.coursehero.com/file/13189404/Modeling-of-Autogenous-
Deformation-In-Cementitious-Materials-Restraining-Effect-From-Aggregate-and/ Http://matse 1.matse.illinois.edu/concrete/prin.html

Http://www.ni.com
Japan Concrete Institute, (1996). Technical committee report on autogenous shrinkage of concrete.

Jennings, H.M, (2004). Colloid model of C-S-H and implications to the problem of creep and shrinkage. Materials and Structure.

Jensen, O.M. and Hansen, P.F, (2001). Autogenous deformation and RH-change in perspective. In: Cement and Concrete Research 31 (2001), pp. 1859-1865

Jensen, O.M, (1995). Thermodynamic limitation of self-desiccation, 25(1), pp.157-164.

Jensen, O.M., and Hansen, P.F, (2001). Water-Entrained Cement-Based Materials: I. Principle and Theoretical Background, Cement and Concrete Research, Vol. 31 (4), pp. 647-654.

Justnes, H., Gemert, A.V., Verboven, F., and Sellevold, E, (1996). Total and External Chemical Shrinkage of Low w/c Ratio Cement Pastes, Adv. Cem. Res., Vol. 8 (31), pp 121-126.

Kim, Soo Geun, (2010).Effect of heat generation from cement hydration on mass concrete placement. Graduate Theses and Dissertations. Paper 11675.

Kim, G., Lee, E., Nam, J., and Koo, K., (2011). Analysis of hydration heat and autogenous shrinkage of high-strength mass concrete, Magazine of Concerete research, Volume 63 Issue 5, May 2011, pp. 377-389

Koenders, E.A.B, (1997). Simulation of Volume Changes in Hardening CementBased Materials, Delft University of Technology, Ph.D. thesis, Delft, the Netherlands.

Kovler, K., Zhutovsky, S, (2006). Overview and Future Trends of Shrinkage Research, Materials and Structures, Vol. 39, pp. 827-847.

Loukili, A., Chopin, D., Khelidj, A. and Touzo, J. L, (2000). A new approach to determine autogenous shrinkage of mortar at an early age considering temperature history, Cement and Concrete Research 30, pp.915-922.

Mehta, P. K., \& Monteiro, P. J. (2006). CONCRETE Microstructure, Properties, and Materials (Third ed.). McGraw-Hill.

Mindess, S., Young, J.F, (1981). Concrete Prentice-Hall, Inc., 671pp.
Mounanga, P., Khelidj, A., Loukili, A. and Baroghel-Bouny, V. (2004), "Predicting $\mathrm{Ca}(\mathrm{OH})_{2}$ Content and Chemical Shrinkage of Hydrating Cement Pastes Using Analytical Approach," Cement and Concrete Research, 34(2), 255265.

Pietro, L., O. M. Jensen, and J. Weiss, (2008). Cracking in cement paste induced by autogenous shrinkage

Shima, T., Matsuda, T., Koide, T., Kawakami, H., Suzuki, Y. and Nishimoto, Y, (2006). Autogenous Shrinkage Characteristic of Ultra High-Strength Concrete Cured under High Temperature (Part1. Experimental Result and Shrinkage Decrease Effect by Expansive Admixture), Proceeding of the architectural research meetings of AIJ, pp.69-70.

Soroka, I, (1979). Portland Cement Paste and Concrete. The Macmillan Press Ltd., London.

Stutzman, P.E, (2001). Scanning Electron Microscopy in Concrete Petrography, Proc. Materials Science of Concrete Special Volume: Calcium Hydroxide in Concrete, The American Ceramic Society. November 1-3, 2000, Anna Maria Island, Florida, pp. 59-72.

Wei, Y. (2008).A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Civil Engineering) in The University of Michigan

Wittmann, F.H, (1982). Creep and Shrinkage Mechanisms, in Creep and Shrinkage in Concrete Structures, Bǎzant, Z.P., Wittmann, F.H., John Wiley \& Sons, pp 129-163.

Empha,2005. http://www.empa.ch/plugin/template/empa/*/120803/---/l=2

BRIDGE101A

BRIDGE/STRAIN GAUGE
DATA LOGGER

Features

- Multiple Start/Stop Function
- Ultra High Speed Download
- 1 Million Reading Storage Capacity
- Memory Wrap
- Battery Life Indicator
- Optional Password Protection
- Programmable Alarm
- Field Upgradeable

Benefits

- Simple Setup and Installation
- Minimal Long-Term Maintenance
- Long-Term Field Deployment

Applications

- Strain Gauge
- Load Cell
- Pressure Transducer
- Torque Sensors
- Load Bolts
- Position Transducer

The Bridge101A Data Logger measures and records voltage, typically used in conjunction with strain gauges, load cells or other low-level DC voltage sources. This device is designed to accurately measure and record the output of the gauge to determine parameter levels such as stress, torque, strain, and pressure on a structure or item over a period of time.

Available in three different measurement ranges $(\pm 30 \mathrm{mV}, \pm 160 \mathrm{mV}$ or $\pm 1200 \mathrm{mV}$), the Bridge101A offers a reading rate of up to 4 Hz with memory capacity of $1,000,000$ readings (memory wrap optional). The device can be configured to start at a specified date and time up to 24 months in advance and the pushbutton start/stop feature allows the user to initiate or cease logging data in the field if desired.

The MadgeTech Data Logger Software offers user programmable Engineering Units which allows collected data to be presented in the established unit being measured. Equipped with endless data analysis and reporting tools, the MadgeTech software simplifies device management and provides the user with graph, tabular or summary reports with the ability to export data to Excel as needed.

MADGETECH DATA LOGGER SOFTWARE

Software Features:

- Multiple graph overlay
- Statistics

Digital calibration

- Zoom in/ zoom out
- Lethality equations (FO, PU)
- Mean Kinetic Temperature
- Full time zone support

Data annotation

- Min./Max./Average lines
- Data table view
- Automatic report generation
- Summary view

6 Warner Road - Warner, NH 03278
Phone: (603) 456-2011 • Fax: (603) 456-2012

BRIDGE101A SPECIFICATIONS*

Nominal Range:	30 mV	$\pm 150 \mathrm{mV}$	\#1000 m
Measurement Range:	$\pm 30 \mathrm{mV}$	$\pm 160 \mathrm{mv}$	$\pm 1200 \mathrm{mV}$
Resolution:	$1 \mu \mathrm{~V}$	$5 \mu \mathrm{~V}$	$50 \mu \mathrm{~V}$
Callbrated Accuracy:	$\pm 0.01 \%$ FSR; ± 3 Microvolts	$\pm 0.01 \%$ FSR; ± 16 Microvolts	$\begin{aligned} & \pm 0.01 \% \text { FSR; } \\ & \pm 120 \text { Micro- } \\ & \text { volts } \end{aligned}$
Input Range:	0 to 2.5V	0 to 2.5 V	to 2.5
Reference Voltage:	2.5 V	2.5	2.5 V
Reading Rate:	4 Hz to 1 every 24 hours		
Memory:	$1,000,000$ readings; software configurable memory wrap 330,000 readings in multiple start/stop		
Wrap Around:	Yes		
Start Modes:	- Immediate start - Delay start up to 24 months - Multiple pushbutton start/stop		
Stop Modes:	- Manual through software - Timed (specific date and time)		
Multiple Start/ Stop Mode:	Start and stop the device multiple times without having to download data or communicate with a PC		
Multiple Start/Stop Mode Activation:	- To start the device: Press and hold the pushbutton for 5 seconds, the green LED will flash during this time. The device has started logging. - To stop the device: Press and hold the pushbutton for 5 seconds, the red LED will flash during this time. The device has stopped logging.		
Real Time Recording:	The device may be used with PC to monitor and record data in real time		
	- Green LED blinks: 10 second rate to indicate logging 15 second rate to indicate delay start		
LED Functionallty:	- Red LED blinks: 10 second rate to indicate low battery and/or full memory 1 second rate to indicate an alarm condition		

-SPECCIICATONS ARE SUBEECTTO CHANCE WITHOUT NOTICE SPECIFIC WARRANTY REMED LIMTTATONS

Password Protection:	An optional password may be programmed into the device to restrict access to configuration options. Data may be read out without the password.
EngIneering Units:	Native measurement units can be scaled to display measurement units of another type. This is useful when monitoring voltage outputs from different types of sensors such as strain gauges and load cells.
Battery Type:	3.6 V lithium battery included; user replaceable
Battery Life:	10 months typical at a 1 minute reading rate with a 350Ω load 2 years typical at a 1 minute reading rate with a 1000Ω load
Time Accuracy:	± 1 minute/month (at $20^{\circ} \mathrm{C} / 68^{\circ}$, stand alone data logging)
Computer Interface:	USB (interface cable required); 115,200 baud
Software:	XP SP3/Vista/Windows 7 /Windows 8 (MadgeTech 4 Only)
Operating Environment:	$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$, $0 \% \mathrm{RH}$ to $90 \% \mathrm{RH}$ non-condensing
Dimensions:	1.4 in $\times 2.5$ in $\times 0.6$ in ($36 \mathrm{~mm} \times 64 \mathrm{~mm} \times 16 \mathrm{~mm}$)
Welght:	$0.8 \mathrm{oz}(24 \mathrm{~g})$
Materials:	ABS Plastic
Approvals:	CE

8. APPENDIX B - DETAILED STRAIN DATA

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
10.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	4.7619E-08	$9.52381 \mathrm{E}-08$
20.00	$9.52381 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	$4.7619 \mathrm{E}-08$	$4.7619 \mathrm{E}-08$
30.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$
40.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$
50.00	$9.52381 \mathrm{E}-08$	$3.33333 \mathrm{E}-07$	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$
60.00	$9.52381 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	0	$9.52381 \mathrm{E}-08$
70.00	$9.52381 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	0	$9.52381 \mathrm{E}-08$
80.00	$1.42857 \mathrm{E}-07$	$2.38095 \mathrm{E}-07$	$3.80952 \mathrm{E}-07$	$9.52381 \mathrm{E}-08$
90.00	$1.42857 \mathrm{E}-07$	$2.85714 \mathrm{E}-07$	$2.38095 \mathrm{E}-07$	$4.7619 \mathrm{E}-08$
100.00	$9.52381 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	$2.38095 \mathrm{E}-07$	$9.52381 \mathrm{E}-08$
110.00	$1.42857 \mathrm{E}-07$	$2.38095 \mathrm{E}-07$	$2.38095 \mathrm{E}-07$	$1.42857 \mathrm{E}-07$
120.00	$1.42857 \mathrm{E}-07$	$2.85714 \mathrm{E}-07$	$2.38095 \mathrm{E}-07$	$4.7619 \mathrm{E}-08$
130.00	$1.42857 \mathrm{E}-07$	$2.38095 \mathrm{E}-07$	$1.90476 \mathrm{E}-07$	0
140.00	$1.42857 \mathrm{E}-07$	$2.38095 \mathrm{E}-07$	$9.52381 \mathrm{E}-08$	0
150.00	$1.42857 \mathrm{E}-07$	$2.85714 \mathrm{E}-07$	$1.42857 \mathrm{E}-07$	0
160.00	$1.90476 \mathrm{E}-07$	$2.85714 \mathrm{E}-07$	$9.52381 \mathrm{E}-08$	4.7619E-08
170.00	$1.90476 \mathrm{E}-07$	$3.33333 \mathrm{E}-07$	$9.52381 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$
180.00	$1.42857 \mathrm{E}-07$	$2.38095 \mathrm{E}-07$	-4.7619E-08	$9.52381 \mathrm{E}-08$
190.00	$1.42857 \mathrm{E}-07$	$2.85714 \mathrm{E}-07$	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$
200.00	$1.90476 \mathrm{E}-07$	$2.38095 \mathrm{E}-07$	0	$4.7619 \mathrm{E}-08$
210.00	$1.90476 \mathrm{E}-07$	$2.85714 \mathrm{E}-07$	0	0
220.00	$9.52381 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	0	0
230.00	$1.42857 \mathrm{E}-07$	$3.33333 \mathrm{E}-07$	0	$4.7619 \mathrm{E}-08$
240.00	$1.42857 \mathrm{E}-07$	$2.85714 \mathrm{E}-07$	-4.7619E-08	4.7619E-08
250.00	$1.42857 \mathrm{E}-07$	$3.33333 \mathrm{E}-07$	-4.7619E-08	0

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
260.00	$1.42857 \mathrm{E}-07$	$2.85714 \mathrm{E}-07$	0	$4.7619 \mathrm{E}-08$
270.00	$1.42857 \mathrm{E}-07$	2.85714E-07	0	$9.52381 \mathrm{E}-08$
280.00	$1.42857 \mathrm{E}-07$	2.85714E-07	0	0
290.00	$9.52381 \mathrm{E}-08$	2.38095E-07	0	0
300.00	$1.90476 \mathrm{E}-07$	$3.33333 \mathrm{E}-07$	0	0
310.00	$9.52381 \mathrm{E}-08$	2.85714E-07	0	$4.7619 \mathrm{E}-08$
320.00	4.7619E-08	$2.85714 \mathrm{E}-07$	4.7619E-08	0
330.00	$9.52381 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	0	0
340.00	$1.42857 \mathrm{E}-07$	$3.33333 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
350.00	$9.52381 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	0	0
360.00	$1.42857 \mathrm{E}-07$	$2.85714 \mathrm{E}-07$	-4.7619E-08	0
370.00	$1.42857 \mathrm{E}-07$	$2.38095 \mathrm{E}-07$	0	0
380.00	$1.42857 \mathrm{E}-07$	$2.85714 \mathrm{E}-07$	0	$4.7619 \mathrm{E}-08$
390.00	$9.52381 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	$4.7619 \mathrm{E}-08$	-4.7619E-08
400.00	$9.52381 \mathrm{E}-08$	$3.33333 \mathrm{E}-07$	-4.7619E-08	0
410.00	$9.52381 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
420.00	$1.42857 \mathrm{E}-07$	$2.85714 \mathrm{E}-07$	0	0
430.00	$1.42857 \mathrm{E}-07$	$3.33333 \mathrm{E}-07$	4.7619E-08	$4.7619 \mathrm{E}-08$
440.00	$9.52381 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	0	0
450.00	$1.42857 \mathrm{E}-07$	$2.38095 \mathrm{E}-07$	0	0
460.00	$9.52381 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	0	0
470.00	$9.52381 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	0	0
480.00	$9.52381 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
490.00	$9.52381 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	$4.7619 \mathrm{E}-08$	$4.7619 \mathrm{E}-08$
500.00	$9.52381 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	4.7619E-08	0
510.00	$9.52381 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	0	4.7619E-08
520.00	$1.42857 \mathrm{E}-07$	$2.85714 \mathrm{E}-07$	0	$9.52381 \mathrm{E}-08$
530.00	$9.52381 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	-4.7619E-08	0

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
540.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	-4.7619E-08	0
550.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	0	0
560.00	$9.52381 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	0	$4.7619 \mathrm{E}-08$
570.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
580.00	$9.52381 \mathrm{E}-08$	$3.33333 \mathrm{E}-07$	$4.7619 \mathrm{E}-08$	$4.7619 \mathrm{E}-08$
590.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
600.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	$4.7619 \mathrm{E}-08$	0
610.00	$4.7619 \mathrm{E}-08$	$3.33333 \mathrm{E}-07$	0	0
620.00	$4.7619 \mathrm{E}-08$	$3.33333 \mathrm{E}-07$	-4.7619E-08	0
630.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	$4.7619 \mathrm{E}-08$	0
640.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	-4.7619E-08	0
650.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	0	0
660.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
670.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	0	0
680.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
690.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	0	0
700.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	0	0
710.00	$1.42857 \mathrm{E}-07$	$2.38095 \mathrm{E}-07$	0	$4.7619 \mathrm{E}-08$
720.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	$4.7619 \mathrm{E}-08$	0
730.00	$9.52381 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
740.00	$9.52381 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	0	0
750.00	0	$2.85714 \mathrm{E}-07$	4.7619E-08	0
760.00	0	$2.85714 \mathrm{E}-07$	$4.7619 \mathrm{E}-08$	$4.7619 \mathrm{E}-08$
770.00	$9.52381 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	$4.7619 \mathrm{E}-08$	$4.7619 \mathrm{E}-08$
780.00	$9.52381 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	0	-4.7619E-08
790.00	$9.52381 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	$4.7619 \mathrm{E}-08$	$4.7619 \mathrm{E}-08$
800.00	$9.52381 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
810.00	0	$2.85714 \mathrm{E}-07$	0	$4.7619 \mathrm{E}-08$

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
820.00	$9.52381 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	0	0
830.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	-4.7619E-08	0
840.00	$9.52381 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	-4.7619E-08	0
850.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
860.00	$4.7619 \mathrm{E}-08$	2.85714E-07	-9.52381E-08	0
870.00	0	$3.33333 \mathrm{E}-07$	0	0
880.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	-4.7619E-08	0
890.00	$1.42857 \mathrm{E}-07$	$2.85714 \mathrm{E}-07$	-9.52381E-08	$4.7619 \mathrm{E}-08$
900.00	$9.52381 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	4.7619E-08
910.00	0	3.33333E-07	-4.7619E-08	0
920.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
930.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
940.00	0	2.85714E-07	0	-4.7619E-08
950.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
960.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
970.00	4.7619E-08	$2.85714 \mathrm{E}-07$	0	-4.7619E-08
980.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
990.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
1000.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
1010.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
1020.00	0	2.38095E-07	-4.7619E-08	4.7619E-08
1030.00	$4.7619 \mathrm{E}-08$	$3.33333 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
1040.00	0	$2.85714 \mathrm{E}-07$	-9.52381E-08	0
1050.00	0	$3.33333 \mathrm{E}-07$	0	0
1060.00	4.7619E-08	$2.85714 \mathrm{E}-07$	0	4.7619E-08
1070.00	0	$2.85714 \mathrm{E}-07$	-9.52381E-08	0
1080.00	4.7619E-08	$2.38095 \mathrm{E}-07$	0	0
1090.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
1100.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	0	0
1110.00	0	2.38095E-07	-4.7619E-08	0
1120.00	$9.52381 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	-9.52381E-08	0
1130.00	$9.52381 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	0	0
1140.00	0	2.85714E-07	-4.7619E-08	0
1150.00	0	3.33333E-07	0	-4.7619E-08
1160.00	-4.7619E-08	$2.38095 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
1170.00	$4.7619 \mathrm{E}-08$	$3.33333 \mathrm{E}-07$	-4.7619E-08	0
1180.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	0	0
1190.00	$4.7619 \mathrm{E}-08$	$3.33333 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
1200.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
1210.00	$4.7619 \mathrm{E}-08$	$3.33333 \mathrm{E}-07$	-4.7619E-08	-9.52381E-08
1220.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	0	0
1230.00	$9.52381 \mathrm{E}-08$	$3.33333 \mathrm{E}-07$	-4.7619E-08	0
1240.00	0	$2.85714 \mathrm{E}-07$	-4.7619E-08	0
1250.00	4.7619E-08	$2.85714 \mathrm{E}-07$	-4.7619E-08	0
1260.00	0	$3.33333 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
1270.00	0	$2.85714 \mathrm{E}-07$	-4.7619E-08	0
1280.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
1290.00	4.7619E-08	$2.85714 \mathrm{E}-07$	-9.52381E-08	0
1300.00	0	$2.85714 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
1310.00	4.7619E-08	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
1320.00	4.7619E-08	$2.85714 \mathrm{E}-07$	-4.7619E-08	0
1330.00	4.7619E-08	$2.85714 \mathrm{E}-07$	-4.7619E-08	0
1340.00	4.7619E-08	$2.38095 \mathrm{E}-07$	-4.7619E-08	4.7619E-08
1350.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
1360.00	0	$2.85714 \mathrm{E}-07$	-4.7619E-08	0
1370.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
1380.00	0	$3.33333 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
1390.00	4.7619E-08	2.38095E-07	-4.7619E-08	$4.7619 \mathrm{E}-08$
1400.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	-4.7619E-08	0
1410.00	0	$2.85714 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
1420.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	-4.7619E-08	0
1430.00	$4.7619 \mathrm{E}-08$	2.85714E-07	0	$1.90476 \mathrm{E}-07$
1440.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	-1.90476E-07
1450.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
1460.00	4.7619E-08	$2.85714 \mathrm{E}-07$	$4.7619 \mathrm{E}-08$	0
1470.00	-4.7619E-08	$2.85714 \mathrm{E}-07$	0	$4.7619 \mathrm{E}-08$
1480.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	0	0
1490.00	0	$3.33333 \mathrm{E}-07$	0	$4.7619 \mathrm{E}-08$
1500.00	0	$2.85714 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
1510.00	$9.52381 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	-4.7619E-08	0
1520.00	$4.7619 \mathrm{E}-08$	2.85714E-07	0	0
1530.00	0	$2.38095 \mathrm{E}-07$	0	$4.7619 \mathrm{E}-08$
1540.00	4.7619E-08	$2.85714 \mathrm{E}-07$	-4.7619E-08	0
1550.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	-4.7619E-08	0
1560.00	0	$2.85714 \mathrm{E}-07$	0	$4.7619 \mathrm{E}-08$
1570.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	0	$4.7619 \mathrm{E}-08$
1580.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	0	0
1590.00	4.7619E-08	$2.38095 \mathrm{E}-07$	0	4.7619E-08
1600.00	-4.7619E-08	$2.38095 \mathrm{E}-07$	0	$4.7619 \mathrm{E}-08$
1610.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	-4.7619E-08	0
1620.00	4.7619E-08	$2.85714 \mathrm{E}-07$	-4.7619E-08	4.7619E-08
1630.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
1640.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
1650.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	0	0

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
1660.00	$4.7619 \mathrm{E}-08$	2.85714E-07	-4.7619E-08	4.7619E-08
1670.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
1680.00	0	2.85714E-07	-4.7619E-08	0
1690.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
1700.00	0	2.85714E-07	-4.7619E-08	0
1710.00	0	$2.85714 \mathrm{E}-07$	-4.7619E-08	4.7619E-08
1720.00	0	$2.38095 \mathrm{E}-07$	0	$4.7619 \mathrm{E}-08$
1730.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
1740.00	$9.52381 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-9.52381E-08	4.7619E-08
1750.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
1760.00	0	$2.85714 \mathrm{E}-07$	-4.7619E-08	0
1770.00	4.7619E-08	$2.85714 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
1780.00	0	$2.85714 \mathrm{E}-07$	-9.52381E-08	0
1790.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
1800.00	4.7619E-08	$1.90476 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
1810.00	4.7619E-08	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
1820.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	-9.52381E-08	0
1830.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
1840.00	0	$2.38095 \mathrm{E}-07$	0	0
1850.00	0	$3.33333 \mathrm{E}-07$	-9.52381E-08	4.7619E-08
1860.00	0	$2.85714 \mathrm{E}-07$	-4.7619E-08	0
1870.00	$9.52381 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	0	0
1880.00	0	$1.90476 \mathrm{E}-07$	-9.52381E-08	0
1890.00	0	$2.85714 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
1900.00	0	$2.85714 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
1910.00	4.7619E-08	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
1920.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	-9.52381E-08	0
1930.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
1940.00	0	2.38095E-07	0	-4.7619E-08
1950.00	0	$2.85714 \mathrm{E}-07$	-9.52381E-08	0
1960.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
1970.00	0	$2.85714 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
1980.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	0
1990.00	0	$2.85714 \mathrm{E}-07$	-4.7619E-08	4.7619E-08
2000.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
2010.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
2020.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-9.52381E-08	0
2030.00	0	$2.85714 \mathrm{E}-07$	-4.7619E-08	0
2040.00	0	$2.85714 \mathrm{E}-07$	-9.52381E-08	0
2050.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	0	-4.7619E-08
2060.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	0	0
2070.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	0	$4.7619 \mathrm{E}-08$
2080.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
2090.00	0	$2.85714 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
2100.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	0	-4.7619E-08
2110.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
2120.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
2130.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	0	-4.7619E-08
2140.00	$9.52381 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
2150.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
2160.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	0	$4.7619 \mathrm{E}-08$
2170.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
2180.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	0	0
2190.00	$4.7619 \mathrm{E}-08$	2.38095E-07	-4.7619E-08	0
2200.00	0	$1.90476 \mathrm{E}-07$	0	0
2210.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	0

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
2220.00	0	2.38095E-07	-4.7619E-08	0
2230.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
2240.00	0	$1.90476 \mathrm{E}-07$	0	$4.7619 \mathrm{E}-08$
2250.00	0	$2.38095 \mathrm{E}-07$	$4.7619 \mathrm{E}-08$	0
2260.00	-4.7619E-08	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
2270.00	0	$2.38095 \mathrm{E}-07$	0	0
2280.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
2290.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
2300.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
2310.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
2320.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	0	0
2330.00	-4.7619E-08	$2.85714 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
2340.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
2350.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	$9.52381 \mathrm{E}-08$
2360.00	$9.52381 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	0	-4.7619E-08
2370.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
2380.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
2390.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
2400.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
2410.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	0	-4.7619E-08
2420.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	0
2430.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
2440.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
2450.00	0	$2.38095 \mathrm{E}-07$	0	-4.7619E-08
2460.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-9.52381E-08	0
2470.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
2480.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
2490.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-9.52381E-08	0

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
2500.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	4.7619E-08
2510.00	0	$1.90476 \mathrm{E}-07$	0	-4.7619E-08
2520.00	0	$1.90476 \mathrm{E}-07$	-9.52381E-08	$4.7619 \mathrm{E}-08$
2530.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
2540.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
2550.00	$4.7619 \mathrm{E}-08$	2.38095E-07	0	$4.7619 \mathrm{E}-08$
2560.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
2570.00	0	$2.38095 \mathrm{E}-07$	0	-4.7619E-08
2580.00	$9.52381 \mathrm{E}-08$	2.38095E-07	-4.7619E-08	0
2590.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	0	0
2600.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
2610.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	4.7619E-08
2620.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	0	0
2630.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
2640.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	0	-4.7619E-08
2650.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	0	0
2660.00	-4.7619E-08	2.38095E-07	-4.7619E-08	0
2670.00	0	1.90476E-07	-9.52381E-08	0
2680.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
2690.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
2700.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
2710.00	4.7619E-08	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
2720.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
2730.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
2740.00	0	$1.90476 \mathrm{E}-07$	0	0
2750.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
2760.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
2770.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	0

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
2780.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
2790.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
2800.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
2810.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	0	-4.7619E-08
2820.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	0
2830.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
2840.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
2850.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
2860.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
2870.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	0
2880.00	4.7619E-08	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
2890.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
2900.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
2910.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
2920.00	$9.52381 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
2930.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	0
2940.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
2950.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
2960.00	0	$1.90476 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
2970.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
2980.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-9.52381E-08	0
2990.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
3000.00	4.7619E-08	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
3010.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
3020.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-9.52381E-08	0
3030.00	-4.7619E-08	$1.90476 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
3040.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	$4.7619 \mathrm{E}-08$
3050.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
3060.00	0	$1.42857 \mathrm{E}-07$	0	-4.7619E-08
3070.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-9.52381E-08	0
3080.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
3090.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-9.52381E-08	0
3100.00	$9.52381 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
3110.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
3120.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
3130.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
3140.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
3150.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
3160.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	0	0
3170.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
3180.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
3190.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	-1.42857E-07	0
3200.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
3210.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
3220.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
3230.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
3240.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
3250.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	0	-4.7619E-08
3260.00	0	$2.85714 \mathrm{E}-07$	-4.7619E-08	0
3270.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-9.52381E-08	0
3280.00	0	$1.90476 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
3290.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
3300.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
3310.00	0	$1.90476 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
3320.00	0	$1.90476 \mathrm{E}-07$	-9.52381E-08	0
3330.00	0	$2.85714 \mathrm{E}-07$	-4.7619E-08	0

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
3340.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
3350.00	0	$2.38095 \mathrm{E}-07$	0	-4.7619E-08
3360.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	0
3370.00	0	2.38095E-07	-9.52381E-08	-4.7619E-08
3380.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	0	$4.7619 \mathrm{E}-08$
3390.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
3400.00	0	$1.90476 \mathrm{E}-07$	-9.52381E-08	0
3410.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-9.52381E-08	$4.7619 \mathrm{E}-08$
3420.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
3430.00	0	$1.90476 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
3440.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
3450.00	$9.52381 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
3460.00	0	2.85714E-07	-9.52381E-08	0
3470.00	-4.7619E-08	$1.90476 \mathrm{E}-07$	-9.52381E-08	0
3480.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
3490.00	0	$2.38095 \mathrm{E}-07$	-1.42857E-07	0
3500.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	$4.7619 \mathrm{E}-08$
3510.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-9.52381E-08	0
3520.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
3530.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	4.7619E-08
3540.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
3550.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-9.52381E-08	$4.7619 \mathrm{E}-08$
3560.00	4.7619E-08	$1.90476 \mathrm{E}-07$	-9.52381E-08	0
3570.00	0	$1.90476 \mathrm{E}-07$	-9.52381E-08	0
3580.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
3590.00	0	$1.90476 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
3600.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-9.52381E-08	0
3610.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	0

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
3620.00	0	$1.90476 \mathrm{E}-07$	-1.42857E-07	-4.7619E-08
3630.00	0	$1.90476 \mathrm{E}-07$	0	0
3640.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
3650.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
3660.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
3670.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
3680.00	4.7619E-08	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
3690.00	-4.7619E-08	$2.38095 \mathrm{E}-07$	0	$4.7619 \mathrm{E}-08$
3700.00	-4.7619E-08	$2.38095 \mathrm{E}-07$	-9.52381E-08	0
3710.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
3720.00	$9.52381 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
3730.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
3740.00	$4.7619 \mathrm{E}-08$	1.90476E-07	-4.7619E-08	0
3750.00	0	$1.90476 \mathrm{E}-07$	0	-4.7619E-08
3760.00	0	$1.90476 \mathrm{E}-07$	0	0
3770.00	-4.7619E-08	$2.38095 \mathrm{E}-07$	-9.52381E-08	0
3780.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-9.52381E-08	0
3790.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
3800.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
3810.00	4.7619E-08	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
3820.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
3830.00	0	$1.42857 \mathrm{E}-07$	0	0
3840.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	0
3850.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
3860.00	-4.7619E-08	$2.38095 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
3870.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
3880.00	-4.7619E-08	$1.90476 \mathrm{E}-07$	0	0
3890.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	0	-4.7619E-08

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
3900.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-9.52381E-08	0
3910.00	$9.52381 \mathrm{E}-08$	2.38095E-07	0	0
3920.00	0	$2.38095 \mathrm{E}-07$	0	-4.7619E-08
3930.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-9.52381E-08	0
3940.00	0	$2.38095 \mathrm{E}-07$	-1.42857E-07	0
3950.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
3960.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
3970.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
3980.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	0	0
3990.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
4000.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	0	-4.7619E-08
4010.00	-4.7619E-08	$1.90476 \mathrm{E}-07$	0	$4.7619 \mathrm{E}-08$
4020.00	0	$1.90476 \mathrm{E}-07$	-9.52381E-08	0
4030.00	0	$2.38095 \mathrm{E}-07$	0	0
4040.00	-4.7619E-08	$2.85714 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
4050.00	0	$2.85714 \mathrm{E}-07$	-9.52381E-08	0
4060.00	$9.52381 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
4070.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	0	0
4080.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	0	0
4090.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
4100.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
4110.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	-4.7619E-08	-9.52381E-08
4120.00	0	$1.90476 \mathrm{E}-07$	0	-4.7619E-08
4130.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
4140.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
4150.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
4160.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	0	-4.7619E-08
4170.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
4180.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
4190.00	0	2.38095E-07	-4.7619E-08	-4.7619E-08
4200.00	0	1.90476E-07	-9.52381E-08	-4.7619E-08
4210.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	0
4220.00	0	2.38095E-07	-4.7619E-08	$4.7619 \mathrm{E}-08$
4230.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
4240.00	-4.7619E-08	$2.85714 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
4250.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	-9.52381E-08
4260.00	4.7619E-08	$2.38095 \mathrm{E}-07$	-9.52381E-08	0
4270.00	0	$2.85714 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
4280.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
4290.00	4.7619E-08	$2.85714 \mathrm{E}-07$	-4.7619E-08	0
4300.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	0
4310.00	0	$1.90476 \mathrm{E}-07$	-9.52381E-08	0
4320.00	0	$2.85714 \mathrm{E}-07$	-4.7619E-08	0
4330.00	0	$2.85714 \mathrm{E}-07$	-4.7619E-08	0
4340.00	4.7619E-08	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
4350.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	$4.7619 \mathrm{E}-08$
4360.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
4370.00	4.7619E-08	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
4380.00	0	$2.38095 \mathrm{E}-07$	0	0
4390.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
4400.00	4.7619E-08	$2.38095 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
4410.00	4.7619E-08	$2.85714 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
4420.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
4430.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
4440.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
4450.00	0	$1.90476 \mathrm{E}-07$	-1.42857E-07	-4.7619E-08

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
4460.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
4470.00	4.7619E-08	2.38095E-07	-4.7619E-08	-4.7619E-08
4480.00	0	2.38095E-07	-4.7619E-08	0
4490.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	-9.52381E-08	$4.7619 \mathrm{E}-08$
4500.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
4510.00	-4.7619E-08	$2.38095 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
4520.00	0	2.38095E-07	-4.7619E-08	0
4530.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-9.52381E-08	$4.7619 \mathrm{E}-08$
4540.00	0	$1.90476 \mathrm{E}-07$	0	-4.7619E-08
4550.00	4.7619E-08	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
4560.00	0	$2.38095 \mathrm{E}-07$	0	0
4570.00	4.7619E-08	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
4580.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
4590.00	-4.7619E-08	$2.85714 \mathrm{E}-07$	-9.52381E-08	0
4600.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
4610.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
4620.00	0	$2.38095 \mathrm{E}-07$	-1.42857E-07	$4.7619 \mathrm{E}-08$
4630.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
4640.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
4650.00	$9.52381 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	4.7619E-08
4660.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
4670.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
4680.00	0	$2.85714 \mathrm{E}-07$	$4.7619 \mathrm{E}-08$	-4.7619E-08
4690.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
4700.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
4710.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	0
4720.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
4730.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
4740.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
4750.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
4760.00	$9.52381 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
4770.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
4780.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
4790.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
4800.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	0	0
4810.00	0	$2.38095 \mathrm{E}-07$	0	0
4820.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
4830.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	-9.52381E-08	0
4840.00	$4.7619 \mathrm{E}-08$	$2.85714 \mathrm{E}-07$	-4.7619E-08	0
4850.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
4860.00	0	$1.90476 \mathrm{E}-07$	-9.52381E-08	0
4870.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
4880.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	-9.52381E-08
4890.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
4900.00	0	$1.90476 \mathrm{E}-07$	-9.52381E-08	0
4910.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
4920.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
4930.00	0	$2.38095 \mathrm{E}-07$	0	0
4940.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	4.7619E-08
4950.00	0	$1.90476 \mathrm{E}-07$	-9.52381E-08	0
4960.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
4970.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
4980.00	0	$1.90476 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
4990.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
5000.00	-4.7619E-08	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
5010.00	0	$1.90476 \mathrm{E}-07$	-9.52381E-08	0

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
5020.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
5030.00	0	2.85714E-07	-9.52381E-08	$4.7619 \mathrm{E}-08$
5040.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
5050.00	$9.52381 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
5060.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
5070.00	0	2.38095E-07	-4.7619E-08	-9.52381E-08
5080.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
5090.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
5100.00	4.7619E-08	$2.85714 \mathrm{E}-07$	-4.7619E-08	0
5110.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	0	-4.7619E-08
5120.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	0
5130.00	4.7619E-08	$2.85714 \mathrm{E}-07$	-4.7619E-08	0
5140.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
5150.00	4.7619E-08	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
5160.00	0	$1.90476 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
5170.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
5180.00	0	$1.90476 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
5190.00	-4.7619E-08	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
5200.00	4.7619E-08	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
5210.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
5220.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	0
5230.00	4.7619E-08	$2.38095 \mathrm{E}-07$	-4.7619E-08	4.7619E-08
5240.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
5250.00	4.7619E-08	$2.85714 \mathrm{E}-07$	-9.52381E-08	0
5260.00	0	$2.38095 \mathrm{E}-07$	0	0
5270.00	-4.7619E-08	$2.38095 \mathrm{E}-07$	0	$4.7619 \mathrm{E}-08$
5280.00	0	$1.90476 \mathrm{E}-07$	-9.52381E-08	0
5290.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	0

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
5300.00	0	2.38095E-07	-4.7619E-08	-4.7619E-08
5310.00	0	$1.90476 \mathrm{E}-07$	-9.52381E-08	$4.7619 \mathrm{E}-08$
5320.00	0	$1.90476 \mathrm{E}-07$	0	$4.7619 \mathrm{E}-08$
5330.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
5340.00	-4.7619E-08	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
5350.00	0	2.38095E-07	-4.7619E-08	-4.7619E-08
5360.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
5370.00	0	$1.90476 \mathrm{E}-07$	-9.52381E-08	0
5380.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
5390.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
5400.00	4.7619E-08	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
5410.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
5420.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
5430.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
5440.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
5450.00	4.7619E-08	$1.90476 \mathrm{E}-07$	0	0
5460.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
5470.00	4.7619E-08	$2.38095 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
5480.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
5490.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
5500.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
5510.00	0	$1.90476 \mathrm{E}-07$	-9.52381E-08	0
5520.00	4.7619E-08	$2.38095 \mathrm{E}-07$	-9.52381E-08	$4.7619 \mathrm{E}-08$
5530.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
5540.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-9.52381E-08	0
5550.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
5560.00	0	$1.90476 \mathrm{E}-07$	0	-4.7619E-08
5570.00	4.7619E-08	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
5580.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	0	0
5590.00	4.7619E-08	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
5600.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
5610.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-9.52381E-08	0
5620.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
5630.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	0	0
5640.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
5650.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
5660.00	0	$1.90476 \mathrm{E}-07$	-9.52381E-08	0
5670.00	0	$1.42857 \mathrm{E}-07$	-9.52381E-08	0
5680.00	4.7619E-08	$2.38095 \mathrm{E}-07$	-9.52381E-08	$4.7619 \mathrm{E}-08$
5690.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
5700.00	4.7619E-08	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
5710.00	0	$2.38095 \mathrm{E}-07$	0	0
5720.00	0	$2.38095 \mathrm{E}-07$	-9.52381E-08	0
5730.00	4.7619E-08	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
5740.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	0	0
5750.00	0	$1.90476 \mathrm{E}-07$	0	-4.7619E-08
5760.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
5770.00	-4.7619E-08	$2.38095 \mathrm{E}-07$	0	0
5780.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
5790.00	0	$2.38095 \mathrm{E}-07$	$4.7619 \mathrm{E}-08$	0
5800.00	4.7619E-08	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
5810.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
5820.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
5830.00	4.7619E-08	$1.90476 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
5840.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
5850.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
5860.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	0	0
5870.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	0	0
5880.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-9.52381E-08	0
5890.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
5900.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
5910.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
5920.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	0	-4.7619E-08
5930.00	0	$1.90476 \mathrm{E}-07$	0	0
5940.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
5950.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	4.7619E-08
5960.00	$4.7619 \mathrm{E}-08$	2.38095E-07	0	0
5970.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
5980.00	0	$1.42857 \mathrm{E}-07$	0	-4.7619E-08
5990.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
6000.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
6010.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
6020.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
6030.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-9.52381E-08	0
6040.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
6050.00	0	$1.90476 \mathrm{E}-07$	-9.52381E-08	$4.7619 \mathrm{E}-08$
6060.00	4.7619E-08	$1.42857 \mathrm{E}-07$	0	-4.7619E-08
6070.00	-4.7619E-08	$1.90476 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
6080.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
6090.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
6100.00	4.7619E-08	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
6110.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
6120.00	0	$2.38095 \mathrm{E}-07$	0	-4.7619E-08
6130.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
6140.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
6150.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
6160.00	$9.52381 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	0	0
6170.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
6180.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-1.42857E-07	0
6190.00	-4.7619E-08	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
6200.00	-4.7619E-08	$1.90476 \mathrm{E}-07$	0	-4.7619E-08
6210.00	$4.7619 \mathrm{E}-08$	$2.38095 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
6220.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
6230.00	0	$1.42857 \mathrm{E}-07$	-9.52381E-08	$4.7619 \mathrm{E}-08$
6240.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
6250.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
6260.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
6270.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
6280.00	4.7619E-08	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
6290.00	0	$1.90476 \mathrm{E}-07$	0	-9.52381E-08
6300.00	4.7619E-08	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
6310.00	0	$1.90476 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
6320.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
6330.00	4.7619E-08	$1.42857 \mathrm{E}-07$	-9.52381E-08	0
6340.00	0	$1.90476 \mathrm{E}-07$	0	0
6350.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
6360.00	-4.7619E-08	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
6370.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
6380.00	4.7619E-08	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
6390.00	0	$2.38095 \mathrm{E}-07$	-4.7619E-08	0
6400.00	0	$1.42857 \mathrm{E}-07$	0	-4.7619E-08
6410.00	0	$1.90476 \mathrm{E}-07$	0	$4.7619 \mathrm{E}-08$

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
6420.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
6430.00	-4.7619E-08	$1.90476 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
6440.00	0	$2.38095 \mathrm{E}-07$	0	0
6450.00	0	$1.90476 \mathrm{E}-07$	0	-4.7619E-08
6460.00	4.7619E-08	$1.42857 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
6470.00	0	$1.90476 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
6480.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	0	$4.7619 \mathrm{E}-08$
6490.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
6500.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
6510.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	0	-4.7619E-08
6520.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
6530.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
6540.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
6550.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
6560.00	0	$1.42857 \mathrm{E}-07$	$4.7619 \mathrm{E}-08$	-4.7619E-08
6570.00	4.7619E-08	$1.90476 \mathrm{E}-07$	0	0
6580.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	0	0
6590.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
6600.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
6610.00	0	$1.90476 \mathrm{E}-07$	-9.52381E-08	0
6620.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
6630.00	-4.7619E-08	$1.42857 \mathrm{E}-07$	0	0
6640.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
6650.00	4.7619E-08	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
6660.00	0	$1.90476 \mathrm{E}-07$	-1.42857E-07	-4.7619E-08
6670.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
6680.00	0	$1.42857 \mathrm{E}-07$	0	-4.7619E-08
6690.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
6700.00	0	$1.90476 \mathrm{E}-07$	0	0
6710.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	-9.52381E-08	0
6720.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-9.52381E-08	0
6730.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
6740.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
6750.00	-4.7619E-08	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
6760.00	-4.7619E-08	$1.90476 \mathrm{E}-07$	-9.52381E-08	-9.52381E-08
6770.00	-4.7619E-08	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
6780.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
6790.00	0	$1.42857 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
6800.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
6810.00	0	$1.42857 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
6820.00	-4.7619E-08	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
6830.00	-4.7619E-08	$1.90476 \mathrm{E}-07$	-4.7619E-08	-9.52381E-08
6840.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
6850.00	-4.7619E-08	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
6860.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
6870.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
6880.00	0	$1.42857 \mathrm{E}-07$	-9.52381E-08	0
6890.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
6900.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
6910.00	$9.52381 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-9.52381E-08	0
6920.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-9.52381E-08	0
6930.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
6940.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
6950.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
6960.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	0	0
6970.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	0

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
6980.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
6990.00	4.7619E-08	$1.42857 \mathrm{E}-07$	0	-4.7619E-08
7000.00	0	1.90476E-07	-4.7619E-08	-4.7619E-08
7010.00	0	$1.42857 \mathrm{E}-07$	-9.52381E-08	$4.7619 \mathrm{E}-08$
7020.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
7030.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
7040.00	0	$1.42857 \mathrm{E}-07$	-9.52381E-08	0
7050.00	0	$9.52381 \mathrm{E}-08$	-9.52381E-08	-4.7619E-08
7060.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
7070.00	0	$1.42857 \mathrm{E}-07$	-9.52381E-08	0
7080.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
7090.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
7100.00	-4.7619E-08	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
7110.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
7120.00	4.7619E-08	$1.90476 \mathrm{E}-07$	0	0
7130.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-1.42857E-07	0
7140.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
7150.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
7160.00	4.7619E-08	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
7170.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
7180.00	-4.7619E-08	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
7190.00	0	$1.90476 \mathrm{E}-07$	0	0
7200.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
7210.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
7220.00	0	$1.90476 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
7230.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
7240.00	0	$1.42857 \mathrm{E}-07$	-9.52381E-08	0
7250.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
7260.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
7270.00	0	$1.42857 \mathrm{E}-07$	0	0
7280.00	4.7619E-08	$1.42857 \mathrm{E}-07$	-9.52381E-08	0
7290.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
7300.00	0	$9.52381 \mathrm{E}-08$	0	0
7310.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
7320.00	0	$1.42857 \mathrm{E}-07$	-9.52381E-08	-9.52381E-08
7330.00	0	$9.52381 \mathrm{E}-08$	-9.52381E-08	-9.52381E-08
7340.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	0	-4.7619E-08
7350.00	0	$1.90476 \mathrm{E}-07$	0	0
7360.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	0	-4.7619E-08
7370.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
7380.00	4.7619E-08	$1.90476 \mathrm{E}-07$	0	0
7390.00	0	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
7400.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
7410.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
7420.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
7430.00	0	$1.42857 \mathrm{E}-07$	0	$4.7619 \mathrm{E}-08$
7440.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
7450.00	4.7619E-08	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
7460.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
7470.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
7480.00	4.7619E-08	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
7490.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
7500.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
7510.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
7520.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
7530.00	$9.52381 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
7540.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
7550.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	0	0
7560.00	$9.52381 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
7570.00	-4.7619E-08	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
7580.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
7590.00	0	$1.42857 \mathrm{E}-07$	0	0
7600.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
7610.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	0	0
7620.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	0	$4.7619 \mathrm{E}-08$
7630.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	-4.7619E-08	$4.7619 \mathrm{E}-08$
7640.00	$9.52381 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	$4.7619 \mathrm{E}-08$	0
7650.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
7660.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
7670.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
7680.00	4.7619E-08	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
7690.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
7700.00	0	$1.42857 \mathrm{E}-07$	0	-4.7619E-08
7710.00	0	$1.42857 \mathrm{E}-07$	0	0
7720.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
7730.00	0	$1.42857 \mathrm{E}-07$	0	0
7740.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
7750.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	$4.7619 \mathrm{E}-08$
7760.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
7770.00	$9.52381 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	-1.42857E-07	-4.7619E-08
7780.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
7790.00	0	$1.42857 \mathrm{E}-07$	0	-4.7619E-08
7800.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
7810.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
7820.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
7830.00	0	$1.42857 \mathrm{E}-07$	-9.52381E-08	0
7840.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
7850.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	-9.52381E-08	-4.7619E-08
7860.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	$4.7619 \mathrm{E}-08$
7870.00	$4.7619 \mathrm{E}-08$	$4.7619 \mathrm{E}-08$	-9.52381E-08	$4.7619 \mathrm{E}-08$
7880.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
7890.00	-4.7619E-08	$1.42857 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
7900.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
7910.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
7920.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	0	-4.7619E-08
7930.00	0	$9.52381 \mathrm{E}-08$	-9.52381E-08	-4.7619E-08
7940.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
7950.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
7960.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
7970.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
7980.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
7990.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
8000.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
8010.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
8020.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
8030.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
8040.00	0	$4.7619 \mathrm{E}-08$	-9.52381E-08	0
8050.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
8060.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
8070.00	0	$9.52381 \mathrm{E}-08$	-9.52381E-08	0
8080.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
8090.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	0

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
8100.00	0	$9.52381 \mathrm{E}-08$	-9.52381E-08	-4.7619E-08
8110.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
8120.00	-4.7619E-08	$1.90476 \mathrm{E}-07$	-9.52381E-08	0
8130.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
8140.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	-9.52381E-08	-4.7619E-08
8150.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
8160.00	0	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
8170.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	-9.52381E-08	-4.7619E-08
8180.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
8190.00	0	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
8200.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	0	0
8210.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
8220.00	-4.7619E-08	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
8230.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	0	-4.7619E-08
8240.00	$9.52381 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	0	-4.7619E-08
8250.00	0	$9.52381 \mathrm{E}-08$	0	$4.7619 \mathrm{E}-08$
8260.00	-4.7619E-08	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
8270.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
8280.00	4.7619E-08	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
8290.00	-4.7619E-08	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
8300.00	0	$9.52381 \mathrm{E}-08$	0	0
8310.00	-4.7619E-08	$1.90476 \mathrm{E}-07$	0	-4.7619E-08
8320.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
8330.00	0	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
8340.00	4.7619E-08	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
8350.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
8360.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
8370.00	$9.52381 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	0	-4.7619E-08

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
8380.00	-4.7619E-08	$1.42857 \mathrm{E}-07$	0	0
8390.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
8400.00	0	$4.7619 \mathrm{E}-08$	-4.7619E-08	0
8410.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
8420.00	0	$1.42857 \mathrm{E}-07$	0	$4.7619 \mathrm{E}-08$
8430.00	0	$9.52381 \mathrm{E}-08$	0	0
8440.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
8450.00	0	$1.42857 \mathrm{E}-07$	-9.52381E-08	0
8460.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
8470.00	4.7619E-08	$1.90476 \mathrm{E}-07$	0	0
8480.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
8490.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
8500.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
8510.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
8520.00	0	$1.42857 \mathrm{E}-07$	0	-4.7619E-08
8530.00	-4.7619E-08	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
8540.00	0	$9.52381 \mathrm{E}-08$	-9.52381E-08	0
8550.00	0	$1.90476 \mathrm{E}-07$	0	$4.7619 \mathrm{E}-08$
8560.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	0	0
8570.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
8580.00	0	$1.42857 \mathrm{E}-07$	-9.52381E-08	0
8590.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	0	0
8600.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
8610.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
8620.00	0	$1.42857 \mathrm{E}-07$	0	-4.7619E-08
8630.00	0	$1.42857 \mathrm{E}-07$	0	0
8640.00	0	$9.52381 \mathrm{E}-08$	0	0
8650.00	$4.7619 \mathrm{E}-08$	$1.90476 \mathrm{E}-07$	-4.7619E-08	0

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
8660.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
8670.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
8680.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
8690.00	0	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
8700.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
8710.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	0	-9.52381E-08
8720.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
8730.00	-4.7619E-08	$4.7619 \mathrm{E}-08$	-4.7619E-08	0
8740.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
8750.00	4.7619E-08	$1.42857 \mathrm{E}-07$	-9.52381E-08	0
8760.00	4.7619E-08	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
8770.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
8780.00	-4.7619E-08	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
8790.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
8800.00	0	$1.42857 \mathrm{E}-07$	0	-4.7619E-08
8810.00	0	$1.42857 \mathrm{E}-07$	0	0
8820.00	4.7619E-08	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
8830.00	0	$1.42857 \mathrm{E}-07$	0	-4.7619E-08
8840.00	0	$1.42857 \mathrm{E}-07$	0	-4.7619E-08
8850.00	0	$1.42857 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
8860.00	-4.7619E-08	$1.42857 \mathrm{E}-07$	$4.7619 \mathrm{E}-08$	0
8870.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
8880.00	4.7619E-08	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
8890.00	4.7619E-08	$1.42857 \mathrm{E}-07$	0	-4.7619E-08
8900.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
8910.00	-4.7619E-08	$1.90476 \mathrm{E}-07$	0	0
8920.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
8930.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
8940.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
8950.00	-4.7619E-08	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
8960.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
8970.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	0	0
8980.00	0	$1.42857 \mathrm{E}-07$	0	0
8990.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
9000.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
9010.00	-4.7619E-08	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
9020.00	$4.7619 \mathrm{E}-08$	$4.7619 \mathrm{E}-08$	0	0
9030.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	4.7619E-08
9040.00	-4.7619E-08	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
9050.00	0	$4.7619 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
9060.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
9070.00	0	$4.7619 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
9080.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
9090.00	-4.7619E-08	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
9100.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
9110.00	0	$1.42857 \mathrm{E}-07$	0	-4.7619E-08
9120.00	0	$1.42857 \mathrm{E}-07$	0	$4.7619 \mathrm{E}-08$
9130.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	0	0
9140.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
9150.00	$9.52381 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	0	0
9160.00	4.7619E-08	$1.42857 \mathrm{E}-07$	0	0
9170.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
9180.00	-4.7619E-08	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
9190.00	0	$9.52381 \mathrm{E}-08$	0	0
9200.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
9210.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
9220.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	0	0
9230.00	4.7619E-08	$9.52381 \mathrm{E}-08$	-1.42857E-07	-4.7619E-08
9240.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
9250.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
9260.00	0	$9.52381 \mathrm{E}-08$	0	0
9270.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
9280.00	4.7619E-08	$1.42857 \mathrm{E}-07$	0	-4.7619E-08
9290.00	0	$1.42857 \mathrm{E}-07$	0	0
9300.00	-4.7619E-08	$9.52381 \mathrm{E}-08$	0	$4.7619 \mathrm{E}-08$
9310.00	0	$1.42857 \mathrm{E}-07$	0	0
9320.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
9330.00	-4.7619E-08	$1.90476 \mathrm{E}-07$	-4.7619E-08	0
9340.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	0	-4.7619E-08
9350.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
9360.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
9370.00	0	$9.52381 \mathrm{E}-08$	0	0
9380.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
9390.00	-4.7619E-08	$1.42857 \mathrm{E}-07$	-9.52381E-08	0
9400.00	0	$1.42857 \mathrm{E}-07$	0	0
9410.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
9420.00	0	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
9430.00	0	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
9440.00	4.7619E-08	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
9450.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
9460.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	0	0
9470.00	0	$9.52381 \mathrm{E}-08$	0	$4.7619 \mathrm{E}-08$
9480.00	0	$1.42857 \mathrm{E}-07$	0	0
9490.00	0	$1.42857 \mathrm{E}-07$	0	0

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
9500.00	0	$9.52381 \mathrm{E}-08$	0	0
9510.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	4.7619E-08
9520.00	0	$9.52381 \mathrm{E}-08$	-9.52381E-08	0
9530.00	0	$1.42857 \mathrm{E}-07$	0	0
9540.00	-4.7619E-08	$1.42857 \mathrm{E}-07$	0	0
9550.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
9560.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
9570.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
9580.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
9590.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
9600.00	0	$4.7619 \mathrm{E}-08$	0	0
9610.00	4.7619E-08	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
9620.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	0	0
9630.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
9640.00	4.7619E-08	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
9650.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	$4.7619 \mathrm{E}-08$	0
9660.00	0	$9.52381 \mathrm{E}-08$	0	$4.7619 \mathrm{E}-08$
9670.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	0	0
9680.00	0	$9.52381 \mathrm{E}-08$	0	0
9690.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
9700.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
9710.00	0	$1.42857 \mathrm{E}-07$	0	0
9720.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
9730.00	-4.7619E-08	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
9740.00	0	$1.42857 \mathrm{E}-07$	0	0
9750.00	0	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
9760.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
9770.00	0	$9.52381 \mathrm{E}-08$	0	0

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
9780.00	-4.7619E-08	$9.52381 \mathrm{E}-08$	0	0
9790.00	$4.7619 \mathrm{E}-08$	4.7619E-08	-4.7619E-08	-4.7619E-08
9800.00	0	$4.7619 \mathrm{E}-08$	-4.7619E-08	0
9810.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
9820.00	0	$9.52381 \mathrm{E}-08$	0	0
9830.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
9840.00	0	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
9850.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
9860.00	4.7619E-08	$9.52381 \mathrm{E}-08$	0	0
9870.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
9880.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
9890.00	0	$4.7619 \mathrm{E}-08$	-4.7619E-08	-9.52381E-08
9900.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
9910.00	-4.7619E-08	$1.42857 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
9920.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
9930.00	0	$1.90476 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
9940.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
9950.00	0	$9.52381 \mathrm{E}-08$	0	$4.7619 \mathrm{E}-08$
9960.00	0	$1.42857 \mathrm{E}-07$	0	-4.7619E-08
9970.00	$1.42857 \mathrm{E}-07$	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
9980.00	0	$1.42857 \mathrm{E}-07$	0	-4.7619E-08
9990.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	0	0
10000.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
10010.00	0	$4.7619 \mathrm{E}-08$	-4.7619E-08	0
10020.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	$4.7619 \mathrm{E}-08$
10030.00	-4.7619E-08	$9.52381 \mathrm{E}-08$	0	$4.7619 \mathrm{E}-08$
10040.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
10050.00	0	$4.7619 \mathrm{E}-08$	-9.52381E-08	0

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
10060.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
10070.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
10080.00	$4.7619 \mathrm{E}-08$	$4.7619 \mathrm{E}-08$	-9.52381E-08	0
10090.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
10100.00	4.7619E-08	$9.52381 \mathrm{E}-08$	0	0
10110.00	0	$9.52381 \mathrm{E}-08$	0	0
10120.00	0	$4.7619 \mathrm{E}-08$	0	$4.7619 \mathrm{E}-08$
10130.00	0	$1.42857 \mathrm{E}-07$	0	-4.7619E-08
10140.00	0	$9.52381 \mathrm{E}-08$	0	0
10150.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
10160.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	0	0
10170.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
10180.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	-4.7619E-08	$4.7619 \mathrm{E}-08$
10190.00	0	$1.42857 \mathrm{E}-07$	0	-4.7619E-08
10200.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	$4.7619 \mathrm{E}-08$	$4.7619 \mathrm{E}-08$
10210.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
10220.00	4.7619E-08	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
10230.00	0	$4.7619 \mathrm{E}-08$	-4.7619E-08	0
10240.00	4.7619E-08	$1.42857 \mathrm{E}-07$	0	0
10250.00	0	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
10260.00	4.7619E-08	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
10270.00	0	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
10280.00	4.7619E-08	$1.42857 \mathrm{E}-07$	-4.7619E-08	4.7619E-08
10290.00	4.7619E-08	$1.42857 \mathrm{E}-07$	-9.52381E-08	0
10300.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
10310.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	$4.7619 \mathrm{E}-08$	0
10320.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	0	0
10330.00	0	$4.7619 \mathrm{E}-08$	-4.7619E-08	$4.7619 \mathrm{E}-08$

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
10340.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	0	0
10350.00	0	$9.52381 \mathrm{E}-08$	0	0
10360.00	0	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
10370.00	0	$1.42857 \mathrm{E}-07$	-9.52381E-08	0
10380.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
10390.00	0	$1.42857 \mathrm{E}-07$	0	$4.7619 \mathrm{E}-08$
10400.00	0	$1.42857 \mathrm{E}-07$	0	-4.7619E-08
10410.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
10420.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
10430.00	0	$4.7619 \mathrm{E}-08$	0	-4.7619E-08
10440.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
10450.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	$4.7619 \mathrm{E}-08$	0
10460.00	-4.7619E-08	$9.52381 \mathrm{E}-08$	0	$4.7619 \mathrm{E}-08$
10470.00	0	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
10480.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	$4.7619 \mathrm{E}-08$
10490.00	4.7619E-08	$9.52381 \mathrm{E}-08$	0	0
10500.00	0	$9.52381 \mathrm{E}-08$	-9.52381E-08	0
10510.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
10520.00	4.7619E-08	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
10530.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
10540.00	0	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
10550.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
10560.00	0	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
10570.00	-4.7619E-08	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
10580.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
10590.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	$4.7619 \mathrm{E}-08$
10600.00	0	4.7619E-08	0	-4.7619E-08
10610.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	0	-4.7619E-08

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
10620.00	-4.7619E-08	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
10630.00	0	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
10640.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
10650.00	0	$1.42857 \mathrm{E}-07$	0	-4.7619E-08
10660.00	0	$1.42857 \mathrm{E}-07$	0	-4.7619E-08
10670.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	0	0
10680.00	-4.7619E-08	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
10690.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
10700.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
10710.00	0	$9.52381 \mathrm{E}-08$	0	0
10720.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	$4.7619 \mathrm{E}-08$	0
10730.00	0	$9.52381 \mathrm{E}-08$	0	0
10740.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
10750.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
10760.00	0	$9.52381 \mathrm{E}-08$	0	0
10770.00	4.7619E-08	$9.52381 \mathrm{E}-08$	0	0
10780.00	0	$9.52381 \mathrm{E}-08$	0	0
10790.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	0	$4.7619 \mathrm{E}-08$
10800.00	4.7619E-08	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
10810.00	-4.7619E-08	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
10820.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
10830.00	$9.52381 \mathrm{E}-08$	$4.7619 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
10840.00	0	$1.42857 \mathrm{E}-07$	0	0
10850.00	0	$1.42857 \mathrm{E}-07$	0	0
10860.00	-4.7619E-08	$4.7619 \mathrm{E}-08$	-9.52381E-08	0
10870.00	-4.7619E-08	$9.52381 \mathrm{E}-08$	-9.52381E-08	0
10880.00	0	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
10890.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
10900.00	0	$9.52381 \mathrm{E}-08$	0	0
10910.00	0	$1.42857 \mathrm{E}-07$	0	0
10920.00	0	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
10930.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	0	0
10940.00	0	$9.52381 \mathrm{E}-08$	0	0
10950.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
10960.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
10970.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
10980.00	0	$1.42857 \mathrm{E}-07$	0	0
10990.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08
11000.00	$4.7619 \mathrm{E}-08$	$4.7619 \mathrm{E}-08$	-4.7619E-08	0
11010.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
11020.00	$9.52381 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	0	0
11030.00	0	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
11040.00	4.7619E-08	$9.52381 \mathrm{E}-08$	4.7619E-08	-4.7619E-08
11050.00	0	$9.52381 \mathrm{E}-08$	0	0
11060.00	0	$4.7619 \mathrm{E}-08$	-4.7619E-08	0
11070.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	0	0
11080.00	0	$9.52381 \mathrm{E}-08$	$4.7619 \mathrm{E}-08$	-4.7619E-08
11090.00	4.7619E-08	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
11100.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	$4.7619 \mathrm{E}-08$
11110.00	4.7619E-08	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
11120.00	0	$1.42857 \mathrm{E}-07$	0	-4.7619E-08
11130.00	$9.52381 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	0	0
11140.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
11150.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
11160.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
11170.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	-4.7619E-08	0

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
11180.00	4.7619E-08	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
11190.00	0	$4.7619 \mathrm{E}-08$	-4.7619E-08	0
11200.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	0	0
11210.00	4.7619E-08	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
11220.00	0	$9.52381 \mathrm{E}-08$	0	0
11230.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
11240.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
11250.00	0	$1.42857 \mathrm{E}-07$	-9.52381E-08	-4.7619E-08
11260.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
11270.00	4.7619E-08	$4.7619 \mathrm{E}-08$	0	-4.7619E-08
11280.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
11290.00	-4.7619E-08	$4.7619 \mathrm{E}-08$	0	0
11300.00	$9.52381 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	0	0
11310.00	-4.7619E-08	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
11320.00	0	$9.52381 \mathrm{E}-08$	0	$4.7619 \mathrm{E}-08$
11330.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
11340.00	$4.7619 \mathrm{E}-08$	$4.7619 \mathrm{E}-08$	0	0
11350.00	0	$4.7619 \mathrm{E}-08$	-4.7619E-08	0
11360.00	4.7619E-08	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
11370.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	0	-4.7619E-08
11380.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
11390.00	$4.7619 \mathrm{E}-08$	$1.42857 \mathrm{E}-07$	-4.7619E-08	$4.7619 \mathrm{E}-08$
11400.00	4.7619E-08	$4.7619 \mathrm{E}-08$	4.7619E-08	0
11410.00	0	$9.52381 \mathrm{E}-08$	0	0
11420.00	0	$4.7619 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
11430.00	0	$9.52381 \mathrm{E}-08$	0	-4.7619E-08
11440.00	4.7619E-08	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
11450.00	-4.7619E-08	$1.42857 \mathrm{E}-07$	-4.7619E-08	-4.7619E-08

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
11460.00	-4.7619E-08	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
11470.00	0	$9.52381 \mathrm{E}-08$	0	0
11480.00	0	$1.42857 \mathrm{E}-07$	-4.7619E-08	0
11490.00	0	$1.42857 \mathrm{E}-07$	-9.52381E-08	0
11500.00	0	$1.42857 \mathrm{E}-07$	$4.7619 \mathrm{E}-08$	0
11510.00	$4.7619 \mathrm{E}-08$	$9.52381 \mathrm{E}-08$	-4.7619E-08	-4.7619E-08
11520.00	0	$4.7619 \mathrm{E}-08$	-4.7619E-08	$4.7619 \mathrm{E}-08$
11530.00	0	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
11540.00	4.7619E-08	$9.52381 \mathrm{E}-08$	-4.7619E-08	0
11550.00	-4.7619E-08	$9.52381 \mathrm{E}-08$	0	0
11560.00	$4.7619 \mathrm{E}-08$		0	-4.7619E-08
11570.00	0		-4.7619E-08	-4.7619E-08
11580.00	$4.7619 \mathrm{E}-08$		0	-4.7619E-08
11590.00	4.7619E-08		-9.52381E-08	0
11600.00	0		-4.7619E-08	-4.7619E-08
11610.00	0		-4.7619E-08	$4.7619 \mathrm{E}-08$
11620.00	4.7619E-08		$4.7619 \mathrm{E}-08$	-4.7619E-08
11630.00	0		0	0
11640.00	0		-4.7619E-08	-9.52381E-08
11650.00	0		-9.52381E-08	$4.7619 \mathrm{E}-08$
11660.00	0		0	-4.7619E-08
11670.00	0		-4.7619E-08	0
11680.00	0		-4.7619E-08	-4.7619E-08
11690.00	0		-4.7619E-08	0
11700.00	4.7619E-08		-4.7619E-08	0
11710.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	-4.7619E-08
11720.00	0		0	0
11730.00	$9.52381 \mathrm{E}-08$		-4.7619E-08	-4.7619E-08

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
11740.00	4.7619E-08		0	0
11750.00	0		-4.7619E-08	0
11760.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	0
11770.00	0		$4.7619 \mathrm{E}-08$	-4.7619E-08
11780.00	$4.7619 \mathrm{E}-08$		0	0
11790.00	$4.7619 \mathrm{E}-08$		$4.7619 \mathrm{E}-08$	0
11800.00	0		0	-4.7619E-08
11810.00	$4.7619 \mathrm{E}-08$		0	0
11820.00	-4.7619E-08		0	-4.7619E-08
11830.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	0
11840.00	$4.7619 \mathrm{E}-08$		0	-4.7619E-08
11850.00	-4.7619E-08		-4.7619E-08	-4.7619E-08
11860.00	0		-4.7619E-08	-4.7619E-08
11870.00	0		-4.7619E-08	0
11880.00	0		0	-4.7619E-08
11890.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	$4.7619 \mathrm{E}-08$
11900.00	$9.52381 \mathrm{E}-08$		-4.7619E-08	-4.7619E-08
11910.00	0		-4.7619E-08	-4.7619E-08
11920.00	4.7619E-08		0	0
11930.00	0		$4.7619 \mathrm{E}-08$	0
11940.00	$4.7619 \mathrm{E}-08$		0	0
11950.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	-4.7619E-08
11960.00	$4.7619 \mathrm{E}-08$		0	-4.7619E-08
11970.00	0		0	0
11980.00	$4.7619 \mathrm{E}-08$		0	-4.7619E-08
11990.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	0
12000.00	0		-4.7619E-08	0
12010.00	-4.7619E-08		0	0

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
12020.00	0		0	-4.7619E-08
12030.00	0		0	0
12040.00	0		-4.7619E-08	-4.7619E-08
12050.00	0		0	0
12060.00	0		0	$4.7619 \mathrm{E}-08$
12070.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	0
12080.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	$4.7619 \mathrm{E}-08$
12090.00	0		-4.7619E-08	-4.7619E-08
12100.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	-4.7619E-08
12110.00	$4.7619 \mathrm{E}-08$		0	-4.7619E-08
12120.00	0		0	-4.7619E-08
12130.00	$9.52381 \mathrm{E}-08$		0	0
12140.00	0		$4.7619 \mathrm{E}-08$	-4.7619E-08
12150.00	0		0	0
12160.00	$4.7619 \mathrm{E}-08$		$4.7619 \mathrm{E}-08$	0
12170.00	0		0	0
12180.00	0		0	-4.7619E-08
12190.00	$4.7619 \mathrm{E}-08$		$4.7619 \mathrm{E}-08$	0
12200.00	$4.7619 \mathrm{E}-08$		0	0
12210.00	0		0	-4.7619E-08
12220.00	0		0	0
12230.00	0		-4.7619E-08	-4.7619E-08
12240.00	-4.7619E-08		-4.7619E-08	-4.7619E-08
12250.00	0		0	0
12260.00	0		-4.7619E-08	-9.52381E-08
12270.00	0		-4.7619E-08	0
12280.00	0		$4.7619 \mathrm{E}-08$	-4.7619E-08
12290.00	$4.7619 \mathrm{E}-08$		0	0

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
12300.00	0		-4.7619E-08	0
12310.00	0		-9.52381E-08	-4.7619E-08
12320.00	$4.7619 \mathrm{E}-08$		0	-4.7619E-08
12330.00	$4.7619 \mathrm{E}-08$		0	0
12340.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	0
12350.00	$9.52381 \mathrm{E}-08$		-9.52381E-08	0
12360.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	0
12370.00	0		0	0
12380.00	0		0	-9.52381E-08
12390.00	0		0	0
12400.00	$4.7619 \mathrm{E}-08$		0	0
12410.00	4.7619E-08		0	0
12420.00	0		-4.7619E-08	$4.7619 \mathrm{E}-08$
12430.00	4.7619E-08		-4.7619E-08	-4.7619E-08
12440.00	0		-4.7619E-08	-4.7619E-08
12450.00	$4.7619 \mathrm{E}-08$		0	0
12460.00	0		-4.7619E-08	-4.7619E-08
12470.00	0		0	-4.7619E-08
12480.00	0		-4.7619E-08	0
12490.00	0		0	-4.7619E-08
12500.00	0		0	0
12510.00	0		0	0
12520.00	0		-1.42857E-07	-4.7619E-08
12530.00	0		0	0
12540.00	0		0	-4.7619E-08
12550.00	4.7619E-08		0	0
12560.00	-4.7619E-08		0	-4.7619E-08
12570.00	0		-4.7619E-08	-4.7619E-08

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
12580.00	0		-4.7619E-08	-4.7619E-08
12590.00	-4.7619E-08		-4.7619E-08	-4.7619E-08
12600.00	0		-4.7619E-08	-4.7619E-08
12610.00	0		-4.7619E-08	0
12620.00	0		0	0
12630.00	0		-4.7619E-08	-4.7619E-08
12640.00	0		0	-4.7619E-08
12650.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	-4.7619E-08
12660.00	0		0	-4.7619E-08
12670.00	0		-4.7619E-08	0
12680.00	0		-4.7619E-08	0
12690.00	0		-4.7619E-08	0
12700.00	$4.7619 \mathrm{E}-08$		0	0
12710.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	-9.52381E-08
12720.00	0		-4.7619E-08	-4.7619E-08
12730.00	0		$4.7619 \mathrm{E}-08$	0
12740.00	$4.7619 \mathrm{E}-08$		$4.7619 \mathrm{E}-08$	0
12750.00	$4.7619 \mathrm{E}-08$		0	-4.7619E-08
12760.00	0		-4.7619E-08	0
12770.00	0		0	-4.7619E-08
12780.00	0		$4.7619 \mathrm{E}-08$	0
12790.00	0		-4.7619E-08	-4.7619E-08
12800.00	0		0	-4.7619E-08
12810.00	0		-4.7619E-08	-9.52381E-08
12820.00	0		-4.7619E-08	-4.7619E-08
12830.00	-4.7619E-08		-4.7619E-08	$4.7619 \mathrm{E}-08$
12840.00	-4.7619E-08		-9.52381E-08	-4.7619E-08
12850.00	$9.52381 \mathrm{E}-08$		-4.7619E-08	-4.7619E-08

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
12860.00	0		-9.52381E-08	0
12870.00	4.7619E-08		-4.7619E-08	0
12880.00	$9.52381 \mathrm{E}-08$		0	-4.7619E-08
12890.00	0		-4.7619E-08	0
12900.00	$4.7619 \mathrm{E}-08$		0	-4.7619E-08
12910.00	0		-4.7619E-08	-4.7619E-08
12920.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	-4.7619E-08
12930.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	-4.7619E-08
12940.00	-4.7619E-08		0	0
12950.00	-4.7619E-08		-4.7619E-08	-4.7619E-08
12960.00	0		-4.7619E-08	-9.52381E-08
12970.00	0		0	-4.7619E-08
12980.00	0		-4.7619E-08	-4.7619E-08
12990.00	4.7619E-08		-4.7619E-08	0
13000.00	$4.7619 \mathrm{E}-08$		0	-4.7619E-08
13010.00	4.7619E-08		-4.7619E-08	-4.7619E-08
13020.00	0		-4.7619E-08	0
13030.00	4.7619E-08		0	-4.7619E-08
13040.00	4.7619E-08		0	0
13050.00	0		0	0
13060.00	0		-4.7619E-08	0
13070.00	$9.52381 \mathrm{E}-08$		0	-4.7619E-08
13080.00	0		-4.7619E-08	0
13090.00	0		-4.7619E-08	-4.7619E-08
13100.00	0		0	-9.52381E-08
13110.00	0		0	0
13120.00	0		-4.7619E-08	-9.52381E-08
13130.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	0

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
13140.00	0		0	0
13150.00	0		0	0
13160.00	0		-4.7619E-08	-4.7619E-08
13170.00	$4.7619 \mathrm{E}-08$		0	0
13180.00	0		-4.7619E-08	0
13190.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	0
13200.00	0		0	$4.7619 \mathrm{E}-08$
13210.00	$4.7619 \mathrm{E}-08$		0	-4.7619E-08
13220.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	0
13230.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	0
13240.00	0		-4.7619E-08	0
13250.00	0		-9.52381E-08	-4.7619E-08
13260.00	$4.7619 \mathrm{E}-08$		0	-4.7619E-08
13270.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	0
13280.00	0		-4.7619E-08	-4.7619E-08
13290.00	0		-4.7619E-08	-4.7619E-08
13300.00	0		-4.7619E-08	0
13310.00	0		0	-9.52381E-08
13320.00	0		0	-4.7619E-08
13330.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	0
13340.00	$4.7619 \mathrm{E}-08$		0	0
13350.00	0		-4.7619E-08	-4.7619E-08
13360.00	0		-4.7619E-08	0
13370.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	-4.7619E-08
13380.00	0		-4.7619E-08	0
13390.00	-4.7619E-08		0	0
13400.00	0		-4.7619E-08	-4.7619E-08
13410.00	$4.7619 \mathrm{E}-08$		0	0

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
13420.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	-4.7619E-08
13430.00	0		-4.7619E-08	-4.7619E-08
13440.00	0		-4.7619E-08	-4.7619E-08
13450.00	0		0	-9.52381E-08
13460.00	0		0	0
13470.00	$4.7619 \mathrm{E}-08$		0	0
13480.00	0		0	-4.7619E-08
13490.00	0		0	0
13500.00	0		0	0
13510.00	$4.7619 \mathrm{E}-08$		0	-4.7619E-08
13520.00	$4.7619 \mathrm{E}-08$		0	-4.7619E-08
13530.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	0
13540.00	$4.7619 \mathrm{E}-08$		0	-4.7619E-08
13550.00	$4.7619 \mathrm{E}-08$		-9.52381E-08	-9.52381E-08
13560.00	0		0	-4.7619E-08
13570.00	$4.7619 \mathrm{E}-08$		0	0
13580.00	$4.7619 \mathrm{E}-08$		-9.52381E-08	0
13590.00	$4.7619 \mathrm{E}-08$		0	-4.7619E-08
13600.00	0		0	0
13610.00	0		0	0
13620.00	0		0	0
13630.00	-4.7619E-08		0	-4.7619E-08
13640.00	0		0	0
13650.00	$4.7619 \mathrm{E}-08$		0	0
13660.00	$4.7619 \mathrm{E}-08$		0	-4.7619E-08
13670.00	0		0	$4.7619 \mathrm{E}-08$
13680.00	0		-9.52381E-08	$4.7619 \mathrm{E}-08$
13690.00	$4.7619 \mathrm{E}-08$		-9.52381E-08	0

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
13700.00	-4.7619E-08		-4.7619E-08	-4.7619E-08
13710.00	$4.7619 \mathrm{E}-08$		0	0
13720.00	$4.7619 \mathrm{E}-08$		0	0
13730.00	-4.7619E-08		0	$4.7619 \mathrm{E}-08$
13740.00	-4.7619E-08		-4.7619E-08	-4.7619E-08
13750.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	0
13760.00	$9.52381 \mathrm{E}-08$		-4.7619E-08	0
13770.00	0		0	0
13780.00	0		-4.7619E-08	0
13790.00	0		0	0
13800.00	0		0	-4.7619E-08
13810.00	0		-9.52381E-08	-4.7619E-08
13820.00	0		0	0
13830.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	0
13840.00	0		-4.7619E-08	-4.7619E-08
13850.00	0		-4.7619E-08	0
13860.00	$4.7619 \mathrm{E}-08$		-9.52381E-08	0
13870.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	-4.7619E-08
13880.00	-4.7619E-08		-4.7619E-08	-4.7619E-08
13890.00	0		0	0
13900.00	0		-4.7619E-08	0
13910.00	0		-4.7619E-08	-4.7619E-08
13920.00	0		-4.7619E-08	-4.7619E-08
13930.00	0		-4.7619E-08	-4.7619E-08
13940.00	-4.7619E-08		0	0
13950.00	$9.52381 \mathrm{E}-08$		0	0
13960.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	0
13970.00	0		-4.7619E-08	-4.7619E-08

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
13980.00	0		0	0
13990.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	0
14000.00	-4.7619E-08		-4.7619E-08	-4.7619E-08
14010.00	0		0	0
14020.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	0
14030.00	0		-9.52381E-08	0
14040.00	-4.7619E-08		-4.7619E-08	0
14050.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	-4.7619E-08
14060.00	0		-4.7619E-08	-4.7619E-08
14070.00	0		0	-4.7619E-08
14080.00	0		-4.7619E-08	0
14090.00	0		-4.7619E-08	-4.7619E-08
14100.00	$4.7619 \mathrm{E}-08$		0	0
14110.00	$4.7619 \mathrm{E}-08$		0	0
14120.00	0		-4.7619E-08	-4.7619E-08
14130.00	$4.7619 \mathrm{E}-08$		0	0
14140.00	0		0	0
14150.00	0		-4.7619E-08	0
14160.00	0		$4.7619 \mathrm{E}-08$	-4.7619E-08
14170.00	0		0	-4.7619E-08
14180.00	0		0	-4.7619E-08
14190.00	$4.7619 \mathrm{E}-08$		-4.7619E-08	0
14200.00	-4.7619E-08		4.7619E-08	-4.7619E-08
14210.00	-4.7619E-08		0	0
14220.00	0		-4.7619E-08	-4.7619E-08
14230.00	$4.7619 \mathrm{E}-08$		0	-4.7619E-08
14240.00	0		$4.7619 \mathrm{E}-08$	0
14250.00	$4.7619 \mathrm{E}-08$		0	-4.7619E-08

Time (minutes)	Strain -one	Strain - two	Strain - seven	Strain - eight
14260.00	0		0	-4.7619E-08
14270.00	0		0	-4.7619E-08
14280.00	4.7619E-08		0	0
14290.00	$4.7619 \mathrm{E}-08$		-9.52381E-08	0
14300.00	0		0	0
14310.00	$4.7619 \mathrm{E}-08$		0	-4.7619E-08
14320.00	0		4.7619E-08	0
14330.00	0		-4.7619E-08	0
14340.00	0		-4.7619E-08	0
14350.00	0			$4.7619 \mathrm{E}-08$
14360.00	0			-4.7619E-08
14370.00	$4.7619 \mathrm{E}-08$			0
14380.00	0			-4.7619E-08
14390.00	0			0

9. APPENDIX C:DETAILED HEAT OF HYDRATION DATA

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
10	23.5	22.2	23.2	23.1	22	26.4		22.8
20	24.2	22.2	23.8	23.2	22.5	25.6		22.8
30	24.3	22.4	23.9	23.3	22.7	25.5		22.8
40	24.5	22.5	23.9	23.3	22.9	25.2		22.6
50	24.6	22.7	23.9	23.5	22.8	25.1		22.6
60	24.6	22.8	24	23.5	22.8	24.9		22.4
70	24.7	22.9	24	23.5	22.8	24.7		22.4
80	24.7	23.1	24.1	23.5	22.8	24.6		22.3
90	24.7	23.2	24.1	23.6	22.9	24.4		22.2
100	24.8	23.4	24.1	23.5	22.9	24.4		22.1
110	24.8	23.5	24.1	23.6	22.9	24.2		22.1
120	24.8	23.6	24.2	23.6	22.8	24.2		22
130	24.8	23.7	24.1	23.6	22.8	24.1		21.9
140	24.8	23.8	24.2	23.6	22.8	24		21.9
150	24.8	23.9	24.2	23.6	22.8	24		21.8
160	24.8	24.1	24.3	23.6	22.7	23.9		21.7
170	24.8	24	24.4	23.6	22.8	23.9		21.7
180	24.8	24.2	24.4	23.5	22.8	23.9		21.7
190	24.8	24.2	24.5	23.6	22.8	23.8		21.7
200	24.9	24.3	24.6	23.6	22.8	23.8		21.7
210	25	24.5	24.6	23.6	22.8	23.8		21.6
220	25	24.5	24.8	23.6	22.8	23.8		21.6
230	25.1	24.5	24.8	23.7	22.8	23.7		21.6
240	25.2	24.6	24.9	23.7	22.8	23.7		21.6
250	25.2	24.6	25	23.8	22.9	23.7		21.6
260	25.3	24.7	25	23.8	22.9	23.7		21.6

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
270	25.3	24.7	25.1	23.8	22.9	23.7		21.6
280	25.4	24.8	25.2	23.8	22.9	23.7		21.7
290	25.5	24.8	25.2	23.8	22.9	23.7		21.7
300	25.6	24.8	25.2	23.9	22.9	23.7		21.7
310	25.7	24.9	25.3	23.9	23	23.7		21.6
320	25.8	24.9	25.4	24	23	23.7		21.6
330	25.8	25	25.4	24.1	23.1	23.7		21.7
340	26	25	25.5	24.1	23.1	23.8		21.7
350	26	25	25.6	24.1	23.2	23.8		21.7
360	26.2	25	25.6	24.3	23	23.8		21.7
370	26.2	25	25.7	24.3	23.1	23.8		21.7
380	26.3	25	25.8	24.5	23.1	23.9		21.7
390	26.4	25.1	25.8	24.5	23.1	23.9		21.8
400	26.5	25.1	25.8	24.7	23.1	23.9		21.8
410	26.6	25.1	25.9	24.7	23.1	23.9		21.8
420	26.7	25.1	25.8	24.8	23.1	23.9		21.8
430	26.8	25.2	25.8	24.9	23.1	24		21.8
440	26.9	25.2	25.9	25	23.1	24		21.8
450	26.9	25.2	25.9	25.1	23.2	24.1		21.9
460	27.1	25.2	25.9	25.2	23.1	24.1		21.9
470	27.1	25.2	25.9	25.2	23.1	24.1		22
480	27.2	25.1	26	25.3	23.1	24.1		22.1
490	27.3	25.1	26	25.3	23	24.1		22.1
500	27.4	25.1	26	25.4	23	24.1		22.1
510	27.5	25.1	26	25.5		24.1		22.1
520	27.5	25.1	26	25.5		24.1		22.1
530	27.6	25.1	26	25.6		24.2		22.1
540	27.7	25.1	25.9	25.7		24.2		22.1

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
550	27.7	25.1	25.9	25.7		24.2		22.2
560	27.7	25.1	25.9	25.7		24.2		22.2
570	27.8	25.1	25.9	25.8		24.2		22.2
580	27.8	25.1	25.9	25.8		24.2		22.3
590	27.8	25.1	25.9	25.8		24.2		22.3
600	27.9	25.1	25.9	25.8		24.2		22.3
610	28	25.1	25.9	25.9		24.2		22.3
620	28	25.1	25.9	25.9		24.2		22.3
630	28	25.1	25.9	26		24.2		22.3
640	28	25.1	25.9	26		24.2		22.3
650	28	25.1	25.9	26		24.2		22.3
660	28.1	25.1	25.8	26		24.2		22.3
670	28.1	25.1	25.8	26		24.2		22.3
680	28.1	25.1	25.8	26		24.3		22.3
690	28.1	25.1	25.8	26		24.2		22.3
700	28.1	25.1	25.8	26		24.3		22.4
710	28.1	25	25.6	26		24.2		22.4
720	28.1	25	25.6	26		24.2		22.4
730	28.1	25	25.6	26		24.2		22.4
740	28.1	25	25.6	26		24.2		22.5
750	28.1	25	25.6	26		24.2		22.5
760	28.1	25	25.6	26		24.2		22.5
770	28.1	25	25.6	26		24.2		22.5
780	28.1	25	25.6	25.9		24.2		22.5
790	28.1	25	25.5	25.9		24.2		22.5
800	28	25	25.5	25.9		24.2		22.5
810	28	25	25.5	25.9		24.2		22.5
820	28	25	25.5	25.9		24.2		22.5

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
830	28	25	25.5	25.9		24.2		22.5
840	28	25	25.5	25.8		24.2		22.5
850	28	25	25.5	25.8		24.2		22.5
860	27.9	25	25.5	25.8		24.2		22.5
870	27.9	25	25.4	25.8		24.2		22.5
880	27.9	25	25.4	25.8		24.2		22.5
890	27.9	25	25.4	25.8		24.2		22.5
900	27.9	24.9	25.4	25.8		24.2		22.6
910	27.9	24.9	25.3	25.7		24.2		22.5
920	27.9	24.9	25.2	25.7		24.2		22.6
930	27.8	24.9	25.2	25.7		24.2		22.6
940	27.8	24.9	25.2	25.7		24.1		22.6
950	27.8	24.8	25.2	25.7		24.1		22.6
960	27.8	24.8	25.2	25.7		24.1		22.5
970	27.8	24.9	25.2	25.7		24.1		22.5
980	27.8	24.8	25.2	25.7		24		22.6
990	27.8	24.8	25.2	25.7		24		22.6
1000	27.9	24.7	25.2	25.7		23.9		22.6
1010	27.9	24.7	25.2	25.7		23.9		22.6
1020	27.9	24.7	25.2	25.7		23.9		22.6
1030	28	24.7	25.2	25.7		23.9		22.5
1040	28	24.7	25.2	25.7		23.9		22.6
1050	28	24.7	25.2	25.7		23.9		22.5
1060	28.1	24.8	25.2	25.7		23.9		22.5
1070	28.2	24.8	25.2	25.7		23.9		22.5
1080	28.2	24.7	25.2	25.7		23.9		22.5
1090	28.3	24.7	25.2	25.6		23.9		22.5
1100	28.4	24.7	25.1	25.6		23.9		22.4

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
1110	28.5	24.7	25.1	25.6		23.9		22.4
1120	28.6	24.7	25.1	25.7		23.9		22.4
1130	28.7	24.7	25.1	25.7		23.9		22.4
1140	28.9	24.7	25.1	25.7		23.9		22.4
1150	29.1	24.6	25.1	25.7		23.9		22.4
1160	29.2	24.7	25.1	25.7		23.8		22.4
1170	29.3	24.7	25.1	25.7		23.8		22.4
1180	29.5	24.7	25.1	25.8		23.8		22.4
1190	29.6	24.6	25.2	25.8		23.8		22.4
1200	29.6	24.6	25.2	25.8		23.8		22.5
1210	29.6	24.6	25.2	25.8		23.7		22.4
1220	29.7	24.6	25.3	25.8		23.8		22.4
1230	29.6	24.6	25.3	25.8		23.8		22.3
1240	29.5	24.6	25.3	25.9		23.8		22.4
1250	29.6	24.7	25.3	25.9		23.8		22.4
1260	29.5	24.8	25.3	25.8		23.8		22.3
1270	29.4	24.7	25.4	25.8		23.8		22.3
1280	29.2	24.7	25.4	25.8		23.8		22.3
1290	29.2	24.7	25.3	25.8		23.8		22.2
1300	29	24.8	25.4	25.8		23.8		22.2
1310	28.8	24.8	25.4	25.8		23.8		22.2
1320	28.7	24.8	25.4	25.8		23.8		22.2
1330	28.7	24.8	25.5	25.8		23.8		22.2
1340	28.6	24.8	25.5	25.7		23.9		22.2
1350	28.4	24.8	25.5	25.7		23.9		22.2
1360	28.3	24.9	25.5	25.7		23.8		22.2
1370	28.1	24.9	25.6	25.8		23.8		22.1
1380	28.1	24.9	25.6	25.7		23.9		22.1

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
1390	27.9	25	25.6	25.7		23.9		22
1400	27.8	25	25.7	25.6		24		22.1
1410	27.7	25.1	25.7	25.6		24		22.1
1420	27.6	25.1	25.6	25.6		23.9		22.1
1430	27.5	25.1	25.6	25.5		23.7		22.5
1440	27.4	25.1	25.6	25.4		23.5		22.9
1450	27.4	25.1	25.6	25.4		23.4		23.1
1460	27.2	25.1	25.6	25.4		23.3		23.2
1470	27.3	25.2	25.6	25.4		23.3	21.5	23
1480	27.1	25.2	25.5	25.5		23.2	20.8	23
1490	27.1	25.3	25.6	25.4		23.2	20.3	22.9
1500	27	25.3	25.6	25.3		23	20.2	22.8
1510	26.9	25.4	25.5	25.3		23	20.2	22.6
1520	27	25.5	25.5	25.3		23	20.1	22.6
1530	26.9	25.5	25.4	25.3		22.9	20.1	22.4
1540	26.9	25.6	25.4	25.3		22.9	20.1	22.3
1550	26.8	25.6	25.4	25.3		22.9	20.1	22.2
1560	26.7	25.7	25.4	25.1		22.9	20.1	22.1
1570	26.7	25.7	25.4	25.1		22.9	20.1	21.9
1580	26.7	25.8	25.3	25.1		22.9	20.1	21.8
1590	26.6	25.9	25.4	25.1		22.8	20.1	21.8
1600	26.5	25.9	25.3	25		22.8	20.1	21.7
1610	26.5	26	25.4	25		22.8	20.1	21.6
1620	26.5	26.1	25.3	25		22.8	20.1	21.5
1630	26.5	26.1	25.3	25		22.7	20.3	21.4
1640	26.4	26.2	25.2	24.9		22.7	20.3	21.4
1650	26.4	26.3	25.3	24.9		22.7	20.3	21.3
1660	26.3	26.3	25.3	24.9		22.7	20.2	21.2

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
1670	26.3	26.3	25.3	24.9		22.7	20.2	21.2
1680	26.3	26.4	25.3	24.8		22.7	20.3	21.2
1690	26.3	26.4	25.3	24.8		22.6	20.3	21.2
1700	26.3	26.5	25.3	24.8		22.6	20.3	21.1
1710	26.3	26.5	25.3	24.7		22.6	20.3	21.1
1720	26.2	26.5	25.3	24.7		22.6	20.3	21
1730	26.2	26.5	25.3	24.7		22.6	20.3	21
1740	26.2	26.5	25.3	24.7		22.6	20.3	21
1750	26.2	26.5	25.2	24.7		22.6	20.3	21
1760	26.2	26.5	25.2	24.7		22.6	20.4	20.9
1770	26.1	26.4	25.2	24.7		22.6	20.4	20.9
1780	26	26.4	25.2	24.7		22.6	20.4	20.8
1790	26	26.3	25.2	24.7		22.5	20.5	20.8
1800	26	26.3	25.2	24.6		22.5	20.5	20.8
1810	26	26.3	25.2	24.6		22.5	20.5	20.7
1820	26	26.2	25.1	24.6		22.5	20.5	20.6
1830	26	26.1	25.1	24.5		22.5	20.5	20.6
1840	26	26	25.1	24.5		22.5	20.4	20.6
1850	26	26	25.1	24.5		22.5	20.4	20.6
1860	25.9	26	25	24.5		22.5	20.5	20.6
1870	25.9	25.9	25	24.5		22.4	20.5	20.6
1880	25.9	25.8	25	24.5		22.4	20.5	20.6
1890	25.8	25.8	25.1	24.5		22.4	20.5	20.6
1900	25.7	25.8	25.1	24.5		22.4	20.5	20.6
1910	25.7	25.7	25	24.5		22.4	20.5	20.6
1920	25.7	25.7	25	24.5		22.4	20.6	20.6
1930	25.7	25.6	24.9	24.5		22.4	20.6	20.7
1940	25.7	25.5	24.9	24.5		22.4	20.6	20.7

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
1950	25.7	25.5	24.9	24.4		22.4	20.6	20.6
1960	25.7	25.4	24.9	24.4		22.4	20.6	20.7
1970	25.6	25.4	24.9	24.4		22.4	20.6	20.7
1980	25.6	25.4	24.9	24.4		22.4	20.6	20.7
1990	25.6	25.4	24.9	24.4		22.4	20.6	20.7
2000	25.6	25.3	24.8	24.4		22.3	20.6	20.7
2010	25.6	25.3	24.8	24.4		22.3	20.6	20.7
2020	25.6	25.2	24.8	24.4		22.3	20.6	20.7
2030	25.6	25.2	24.8	24.4		22.2	20.6	20.8
2040	25.6	25.2	24.8	24.4		22.2	20.6	20.8
2050	25.6	25.1	24.8	24.3		22.2	20.6	20.8
2060	25.6	25.1	24.8	24.3		22.2	20.6	20.8
2070	25.5	25	24.8	24.3		22.2	20.5	20.8
2080	25.4	25	24.8	24.3		22.2	20.5	20.8
2090	25.4	25	24.8	24.3		22.1	20.5	20.7
2100	25.4	24.9	24.7	24.3		22.1	20.5	20.7
2110	25.4	24.9	24.7	24.3		22.1	20.6	20.7
2120	25.3	24.9	24.7	24.3		22.1	20.6	20.7
2130	25.3	24.9	24.7	24.3		22.1	20.6	20.7
2140	25.3	24.9	24.6	24.3		22.1	20.6	20.7
2150	25.3	24.9	24.6	24.3		22.1	20.6	20.7
2160	25.3	24.9	24.6	24.3		22.1	20.6	20.6
2170	25.3	24.9	24.6	24.3		22.1	20.6	20.5
2180	25.3	24.7	24.6	24.3		22.1	20.6	20.5
2190	25.3	24.7	24.6	24.3		22.1	20.6	20.4
2200	25.3	24.7	24.6	24.3		22.1	20.6	20.4
2210	25.3	24.7	24.6	24.3		22.1	20.7	20.4
2220	25.3	24.7	24.6	24.3		22	20.7	20.4

Time (minutes)	Temperature (${ }^{\circ} \mathrm{C}$)							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
2230	25.3	24.7	24.6	24.3		22	20.7	20.4
2240	25.2	24.6	24.6	24.3		22	20.7	20.4
2250	25.2	24.6	24.6	24.3		22	20.7	20.4
2260	25.2	24.6	24.6	24.3		22	20.7	20.3
2270	25.2	24.6	24.6	24.3		22	20.7	20.3
2280	25.2	24.6	24.6	24.3		22	20.7	20.3
2290	25.2	24.6	24.6	24.3		22	20.7	20.2
2300	25.2	24.6	24.5	24.2		22	20.7	20.2
2310	25.1	24.6	24.4	24.2		22	20.7	20.2
2320	25	24.6	24.4	24.2		22	20.7	20.2
2330	25	24.6	24.4	24.3		22	20.7	20.2
2340	25	24.5	24.4	24.3		22	20.7	20.1
2350	25	24.5	24.4	24.2		22	20.7	20.1
2360	25	24.5	24.4	24.2		22	20.7	20.1
2370	25	24.5	24.4	24.2		22	20.7	20.1
2380	25	24.5	24.4	24.2		22	20.7	20
2390	25	24.5	24.4	24.2		22	20.8	20
2400	25	24.5	24.4	24.2		22	20.8	20
2410	25	24.4	24.4	24.2		22	20.8	20
2420	25	24.4	24.4	24.1		22	20.8	20
2430	25	24.4	24.3	24.2		22	20.8	20
2440	25	24.4	24.3	24.1		22	20.8	20
2450	25	24.4	24.3	24.2		22	20.8	20
2460	24.9	24.4	24.3	24.1		21.9	20.7	20
2470	24.9	24.4	24.3	24.1		21.9	20.7	20
2480	24.9	24.4	24.3	24.1		21.9	20.7	19.9
2490	24.9	24.4	24.3	24.1		21.9	20.7	19.8
2500	24.9	24.4	24.3	24.1		21.9	20.7	19.8

Time (minutes)	Temperature (${ }^{\circ} \mathrm{C}$)							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
2510	24.9	24.4	24.3	24.1		21.9	20.7	19.8
2520	24.9	24.3	24.3	24		21.9	20.7	19.8
2530	24.9	24.3	24.2	24.1		21.9	20.7	19.8
2540	24.9	24.3	24.2	24		21.9	20.7	19.8
2550	24.8	24.3	24.2	24		21.9	20.7	19.7
2560	24.8	24.3	24.2	24		21.9	20.7	19.7
2570	24.8	24.3	24.2	24.1		21.9	20.7	19.7
2580	24.7	24.3	24.2	24		21.9	20.7	19.7
2590	24.7	24.3	24.2	24		21.9	20.7	19.7
2600	24.7	24.3	24.2	24		21.9	20.7	19.7
2610	24.7	24.3	24.2	24		21.8	20.7	19.7
2620	24.7	24.3	24.2	24		21.9	20.8	19.7
2630	24.7	24.3	24.2	24		21.9	20.8	19.7
2640	24.7	24.3	24.2	24		21.9	20.8	19.7
2650	24.7	24.3	24.2	24		21.8	20.8	19.7
2660	24.7	24.3	24.2	24		21.8	20.8	19.7
2670	24.7	24.3	24.2	24		21.8	20.8	19.7
2680	24.7	24.3	24.2	24		21.8	20.8	19.7
2690	24.7	24.2	24.2	24		21.7	20.8	19.7
2700	24.7	24.3	24.1	24		21.7	20.8	19.7
2710	24.7	24.3	24.1	24		21.8	20.8	19.6
2720	24.7	24.3	24.2	24		21.8	20.8	19.6
2730	24.6	24.3	24.2	24		21.8	20.8	19.6
2740	24.6	24.3	24.1	24		21.8	20.7	19.5
2750	24.6	24.3	24.2	24		21.8	20.7	19.6
2760	24.7	24.3	24.2	24		21.7	20.7	19.6
2770	24.6	24.4	24.2	24		21.7	20.7	19.6
2780	24.6	24.4	24.2	24		21.7	20.7	19.6

Time (minutes)	Temperature (${ }^{\circ} \mathrm{C}$)							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
2790	24.6	24.4	24.2	24		21.7	20.7	19.6
2800	24.7	24.4	24.3	24		21.7	20.7	19.6
2810	24.7	24.4	24.3	23.9		21.7	20.7	19.6
2820	24.7	24.4	24.2	23.9		21.7	20.7	19.6
2830	24.6	24.5	24.3	23.9		21.7	20.7	19.6
2840	24.6	24.5	24.3	23.9		21.7	20.7	19.6
2850	23.4	24.6	24.3	23.9		21.7	20.7	19.6
2860	23.7	24.5	24.4	23.9		21.7	20.7	19.7
2870	23.6	24.5	24.4	23.9		21.7	20.6	19.7
2880	23.5	24.5	24.3	23.9		21.7	20.6	19.7
2890	23.5	24.5	24.3	23.9		21.7	20.7	19.8
2900	23.5	24.4	24.3	23.9		21.7	20.7	19.8
2910	23.5	24.4	24.2	23.9		21.7	20.7	19.8
2920	23.5	24.5	24.2	23.9		21.7	20.7	19.8
2930	23.5	24.5	24.3	23.9		21.8	20.7	19.8
2940	23.5	24.5	24.2	23.9		21.8	20.7	19.8
2950	23.5	24.5	24.2	23.9		21.8	20.6	19.8
2960	23.5	24.4	24.2	23.9		21.8	20.6	19.8
2970	23.6	24.4	24.3	23.9		21.8	20.6	19.8
2980	23.5	24.5	24.3	23.9		21.8	20.6	19.9
2990	23.6	24.5	24.3	23.9		21.7	20.5	19.9
3000	23.6	24.5	24.3	23.9		21.7	20.5	19.9
3010	23.6	24.5	24.3	23.9		21.7	20.6	19.9
3020	23.6	24.5	24.4	23.9		21.7	20.6	19.9
3030	23.6	24.5	24.3	23.9		21.7	20.6	19.9
3040	23.6	24.5	24.4	23.8		21.7	20.6	19.9
3050	23.6	24.5	24.4	23.8		21.8	20.6	19.9
3060	23.6	24.5	24.4	23.8		21.8	20.6	19.9

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
3070	23.6	24.4	24.4	23.8		21.7	20.6	19.9
3080	23.6	24.5	24.4	23.8		21.7	20.6	19.9
3090	23.6	24.5	24.5	23.8		21.7	20.6	19.9
3100	23.6	24.5	24.4	23.8		21.7	20.6	19.9
3110	23.6	24.4	24.4	23.8		21.7	20.6	19.9
3120	23.6	24.5	24.4	23.8		21.7	20.6	19.9
3130	23.6	24.4	24.4	23.8		21.7	20.6	19.9
3140	23.6	24.4	24.4	23.8		21.6	20.6	19.9
3150	23.6	24.4	24.5	23.8		21.7	20.6	19.9
3160	23.6	24.4	24.4	23.8		21.6	20.5	19.9
3170	23.6	24.4	24.4	23.8		21.6	20.5	19.9
3180	23.7	24.4	24.4	23.8		21.6	20.5	19.9
3190	23.7	24.4	24.4	23.8		21.6	20.5	19.9
3200	23.7	24.4	24.4	23.8		21.6	20.5	19.9
3210	23.7	24.4	24.4	23.8		21.6	20.5	20
3220	23.7	24.4	24.4	23.9		21.6	20.5	20
3230	23.8	24.4	24.4	23.8		21.6	20.5	20
3240	23.7	24.4	24.4	23.8		21.6	20.5	20
3250	23.7	24.4	24.4	23.8		21.6	20.5	19.9
3260	23.7	24.4	24.3	23.9		21.5	20.5	19.9
3270	23.7	24.4	24.4	23.8		21.5	20.5	19.9
3280	23.7	24.3	24.3	23.9		21.5	20.5	20
3290	23.7	24.3	24.3	23.9		21.5	20.5	20
3300	23.8	24.4	24.3	23.9		21.5	20.5	20
3310	23.8	24.3	24.3	23.9		21.5	20.5	20
3320	23.7	24.4	24.3	23.9		21.5	20.5	20
3330	23.7	24.4	24.2	23.9		21.5	20.5	20
3340	23.7	24.4	24.2	23.9		21.5	20.5	20

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
3350	23.7	24.3	24.2	23.9		21.5	20.5	20
3360	23.7	24.3	24.2	23.8		21.5	20.5	20
3370	23.7	24.3	24.2	23.9		21.5	20.5	20
3380	23.7	24.3	24.2	23.8		21.5	20.5	20
3390	23.7	24.3	24.2	23.8		21.5	20.4	19.9
3400	23.7	24.2	24.2	23.8		21.5	20.4	19.9
3410	23.7	24.2	24.2	23.8		21.5	20.4	19.9
3420	23.7	24.2	24.2	23.9		21.5	20.4	19.9
3430	23.7	24.3	24.2	23.9		21.5	20.4	19.9
3440	23.7	24.2	24.2	23.8		21.5	20.4	19.9
3450	23.7	24.2	24.2	23.8		21.5	20.4	19.9
3460	23.7	24.2	24.1	23.8		21.5	20.4	19.9
3470	23.7	24.2	24.1	23.9		21.5	20.4	19.9
3480	23.7	24.2	24.1	23.8		21.5	20.4	19.9
3490	23.7	24.2	24.1	23.9		21.4	20.4	19.9
3500	23.7	24.2	24.1	23.9		21.4	20.4	19.8
3510	23.6	24.2	24.1	23.8		21.4	20.4	19.8
3520	23.6	24.2	24	23.8		21.4	20.4	19.8
3530	23.6	24.1	24	23.8		21.4	20.4	19.8
3540	23.6	24.2	24.1	23.8		21.4	20.4	19.8
3550	23.6	24.1	24.1	23.8		21.4	20.4	19.8
3560	23.6	24.1	24	23.8		21.4	20.4	19.8
3570	23.6	24.1	24	23.8		21.4	20.4	19.8
3580	23.6	24.1	24.1	23.9		21.4	20.4	19.8
3590	23.6	24.1	24	23.8		21.4	20.4	19.8
3600	23.6	24.1	24	23.8		21.4	20.4	19.8
3610	23.6	24.1	24	23.8		21.3	20.4	19.8
3620	23.6	24.1	24	23.8		21.3	20.4	19.8

Time (minutes)	Temperature (${ }^{\circ} \mathrm{C}$)							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
3630	23.6	24.1	24	23.8		21.3	20.4	19.7
3640	23.6	24.1	24	23.8		21.3	20.4	19.7
3650	23.6	24.1	24	23.8		21.3	20.4	19.7
3660	23.6	24.1	24	23.8		21.3	20.4	19.7
3670	23.6	24.1	23.9	23.8		21.3	20.4	19.7
3680	23.6	24.1	23.9	23.8		21.3	20.4	19.7
3690	23.6	24.1	23.9	23.8		21.3	20.4	19.7
3700	23.5	24.1	23.9	23.8		21.3	20.3	19.7
3710	23.5	24.1	23.9	23.8		21.3	20.3	19.7
3720	23.5	24.1	23.9	23.7		21.2	20.3	19.7
3730	23.5	24	23.9	23.8		21.2	20.3	19.7
3740	23.5	24	23.9	23.8		21.2	20.3	19.7
3750	23.5	24	23.9	23.7		21.2	20.3	19.7
3760	23.5	24	23.9	23.7		21.2	20.3	19.7
3770	23.5	24	23.9	23.7		21.1	20.3	19.7
3780	23.5	24	23.9	23.7		21.1	20.3	19.6
3790	23.5	24	23.9	23.7		21.1	20.3	19.6
3800	23.5	24	23.9	23.7		21.1	20.3	19.6
3810	23.5	24	23.9	23.7		21.1	20.3	19.6
3820	23.5	24	23.9	23.7		21.1	20.3	19.6
3830	23.5	24	23.9	23.7		21.1	20.3	19.6
3840	23.5	24	23.9	23.7		21.1	20.3	19.6
3850	23.5	24	23.9	23.7		21.1	20.3	19.6
3860	23.5	23.9	23.9	23.7		21.1	20.3	19.6
3870	23.5	23.9	23.9	23.7		21.1	20.3	19.6
3880	23.5	24	23.8	23.7		21.1	20.3	19.6
3890	23.5	23.9	23.8	23.7		21.1	20.3	19.6
3900	23.5	23.9	23.8	23.7		21.1	20.3	19.6

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
3910	23.5	23.9	23.8	23.7		21.1	20.3	19.6
3920	23.5	23.9	23.8	23.7		21.1	20.3	19.5
3930	23.4	23.9	23.8	23.7		21.1	20.3	19.5
3940	23.5	23.9	23.8	23.7		21.1	20.3	19.5
3950	23.4	23.9	23.8	23.7		21.1	20.3	19.5
3960	23.4	23.9	23.8	23.7		21.1	20.3	19.5
3970	23.4	23.9	23.8	23.7		21.1	20.3	19.5
3980	23.3	23.9	23.8	23.7		21	20.3	19.5
3990	23.3	23.9	23.8	23.7		21	20.3	19.5
4000	23.3	23.9	23.8	23.7		21	20.3	19.5
4010	23.3	23.9	23.8	23.7		21	20.3	19.5
4020	23.3	23.8	23.8	23.7		21	20.3	19.5
4030	23.3	23.9	23.8	23.7		21	20.3	19.5
4040	23.4	23.8	23.8	23.7		21	20.3	19.5
4050	23.4	23.8	23.7	23.7		21	20.3	19.5
4060	23.4	23.9	23.7	23.7		21	20.3	19.5
4070	23.4	23.9	23.7	23.7		21	20.3	19.5
4080	23.3	23.9	23.7	23.7		20.9	20.3	19.5
4090	23.3	23.9	23.7	23.7		20.9	20.3	19.5
4100	23.3	23.9	23.7	23.7		20.9	20.3	19.4
4110	23.3	23.9	23.7	23.7		20.9	20.3	19.4
4120	23.3	23.9	23.7	23.7		20.9	20.3	19.4
4130	23.4	23.9	23.7	23.7		20.9	20.3	19.4
4140	23.4	24	23.7	23.7		20.9	20.3	19.4
4150	23.4	24	23.7	23.7		20.9	20.3	19.4
4160	23.5	24	23.7	23.8		20.9	20.2	19.4
4170	23.5	23.9	23.7	23.8		20.9	20.2	19.4
4180	23.5	24	23.7	23.8		20.9	20.1	19.4

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
4190	23.5	24	23.7	23.8		20.9	20.1	19.4
4200	23.4	24	23.7	23.7		20.9	20.1	19.4
4210	23.4	24	23.7	23.8		20.9	20.1	19.4
4220	23.4	24.1	23.7	23.7		20.9	20.1	19.4
4230	23.5	24	23.6	23.7		20.9	20.1	19.4
4240	23.5	24	23.6	23.8		20.9	20.2	19.4
4250	23.5	24	23.6	23.8		20.9	20.2	19.4
4260	23.5	24	23.6	23.8		20.8	20.2	19.4
4270	23.5	24.1	23.6	23.8		20.8	20.1	19.4
4280	23.5	24.1	23.6	23.8		20.8	20.1	19.4
4290	23.5	24.2	23.6	23.8		20.8	20.1	19.4
4300	23.5	24.2	23.6	23.8		20.8	20.2	19.4
4310	23.5	24.1	23.6	23.8		20.8	20.2	19.4
4320	23.5	24.1	23.6	23.8		20.8	20.2	19.4
4330	23.5	24.1	23.6	23.8		20.8	20.2	19.4
4340	23.6	24.1	23.6	23.8		20.8	20.2	19.4
4350	23.6	24.1	23.6	23.9		20.8	20.2	19.4
4360	23.6	24.1	23.6	23.9		20.8	20.2	19.4
4370	23.6	24.2	23.6	23.9		20.8	20.2	19.4
4380	23.7	24.2	23.6	23.8		20.8	20.2	19.4
4390	23.7	24.2	23.6	23.8		20.8	20.2	19.4
4400	23.7	24.2	23.6	23.9		20.8	20.2	19.4
4410	23.6	24.2	23.6	23.9		20.8	20.2	19.4
4420	23.6	24.2	23.6	23.9		20.8	20.2	19.4
4430	23.6	24.2	23.6	23.9		20.8	20.3	19.4
4440	23.6	24.2	23.7	23.9		20.8	20.3	19.4
4450	23.7	24.2	23.6	24		20.8	20.3	19.4
4460	23.6	24.2	23.6	24		20.8	20.3	19.4

Time (minutes)	Temperature (${ }^{\circ} \mathrm{C}$)							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
4470	23.7	24.2	23.6	24		20.8	20.2	19.4
4480	23.7	24.2	23.6	24		20.8	20.2	19.4
4490	23.7	24.2	23.6	24		20.7	20.2	19.4
4500	23.7	24.2	23.6	24.1		20.8	20.2	19.4
4510	23.7	24.2	23.6	24.1		20.7	20.2	19.4
4520	23.7	24.2	23.6	24.1		20.7	20.2	19.4
4530	23.7	24.2	23.6	24.1		20.7	20.2	19.4
4540	23.7	24.2	23.6	24.1		20.7	20.2	19.4
4550	23.7	24.2	23.6	24.1		20.7	20.2	19.4
4560	23.7	24.2	23.6	24.1		20.7	20.2	19.4
4570	23.7	24.2	23.6	24.1		20.7	20.2	19.4
4580	23.7	24.2	23.6	24.1		20.7	20.3	19.4
4590	23.7	24.2	23.6	24.1		20.7	20.3	19.4
4600	23.7	24.2	23.6	24.1		20.7	20.3	19.3
4610	23.7	24.2	23.6	24.1		20.7	20.3	19.3
4620	23.7	24.2	23.6	24.1		20.7	20.3	19.4
4630	23.7	24.2	23.6	24.1		20.7	20.3	19.4
4640	23.7	24.2	23.6	24.1		20.7	20.2	19.4
4650	23.7	24.2	23.6	24.1		20.7	20.2	19.4
4660	23.7	24.2	23.6	24.1		20.7	20.2	19.4
4670	23.7	24.2	23.6	24.1		20.7	20.2	19.4
4680	23.7	24.2	23.6	24.1		20.7	20.2	19.4
4690	23.7	24.1	23.6	24		20.7	20.2	19.4
4700	23.7	24.1	23.6	24		20.7	20.2	19.4
4710	23.7	24.2	23.6	24		20.7	20.2	19.4
4720	23.8	24.1	23.6	24		20.7	20.2	19.4
4730	23.8	24.1	23.6	24		20.7	20.2	19.4
4740	23.8	24.1	23.6	24		20.7	20.2	19.4

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
4750	23.7	24.2	23.6	24		20.7	20.2	19.4
4760	23.7	24.1	23.6	24		20.7	20.2	19.4
4770	23.7	24.2	23.6	24		20.7	20.3	19.4
4780	23.7	24.2	23.6	24		20.7	20.2	19.4
4790	23.7	24.1	23.6	24		20.7	20.3	19.4
4800	23.7	24.1	23.6	24		20.7	20.3	19.4
4810	23.7	24.1	23.6	23.9		20.7	20.3	19.4
4820	23.7	24.1	23.6	23.9		20.7	20.3	19.4
4830	23.7	24.1	23.6	23.9		20.7	20.3	19.4
4840	23.7	24.2	23.6	23.9		20.7	20.3	19.4
4850	23.7	24.1	23.6	23.9		20.7	20.3	19.4
4860	23.7	24	23.6	23.9		20.7	20.3	19.4
4870	23.7	24	23.6	23.9		20.7	20.3	19.4
4880	23.7	24	23.6	23.9		20.7	20.2	19.4
4890	23.7	24	23.6	23.9		20.7	20.3	19.4
4900	23.7	24	23.6	23.9		20.6	20.2	19.4
4910	23.7	24	23.6	23.9		20.7	20.2	19.4
4920	23.7	24	23.5	23.9		20.7	20.2	19.4
4930	23.6	24	23.5	23.9		20.7	20.2	19.4
4940	23.6	24	23.5	23.9		20.7	20.2	19.4
4950	23.6	24	23.5	23.9		20.7	20.2	19.4
4960	23.6	24	23.4	23.9		20.6	20.2	19.5
4970	23.6	24	23.5	23.8		20.7	20.2	19.5
4980	23.6	24	23.5	23.8		20.7	20.2	19.4
4990	23.6	23.9	23.4	23.8		20.6	20.2	19.5
5000	23.6	23.9	23.4	23.8		20.7	20.2	19.4
5010	23.6	23.9	23.5	23.8		20.7	20.2	19.5
5020	23.6	23.9	23.5	23.8		20.7	20.2	19.5

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
5030	23.6	23.9	23.5	23.8		20.7	20.2	19.5
5040	23.6	23.9	23.5	23.8		20.6	20.2	19.5
5050	23.6	23.9	23.4	23.8		20.6	20.2	19.5
5060	23.6	23.9	23.4	23.8		20.6	20.2	19.5
5070	23.6	23.9	23.4	23.8		20.6	20.2	19.5
5080	23.6	23.9	23.5	23.8		20.6	20.2	19.5
5090	23.6	23.9	23.4	23.8		20.6	20.2	19.5
5100	23.6	23.9	23.4	23.8		20.6	20.2	19.4
5110	23.6	23.9	23.4	23.8		20.6	20.2	19.5
5120	23.6	23.9	23.4	23.8		20.6	20.3	19.5
5130	23.6	23.9	23.4	23.8		20.6	20.2	19.5
5140	23.6	23.9	23.5	23.8		20.6	20.1	19.5
5150	23.6	23.9	23.4	23.8		20.6	20.3	19.5
5160	23.5	23.9	23.5	23.8		20.6	20.2	19.4
5170	23.5	23.9	23.4	23.8		20.5	20.2	19.4
5180	23.5	23.9	23.4	23.7		20.6	20.1	19.4
5190	23.5	23.9	23.4	23.7		20.6	20.1	19.4
5200	23.5	23.9	23.4	23.7		20.5	20.1	19.4
5210	23.5	23.9	23.4	23.7		20.6	20.1	19.4
5220	23.5	23.9	23.4	23.7		20.5	20.1	19.4
5230	23.5	23.8	23.4	23.7		20.5	20.1	19.4
5240	23.5	23.8	23.4	23.7		20.6	20.1	19.4
5250	23.5	23.8	23.4	23.7		20.5	20.1	19.4
5260	23.5	23.8	23.4	23.7		20.5	20.1	19.4
5270	23.5	23.8	23.4	23.7		20.5	20.1	19.4
5280	23.5	23.8	23.3	23.7		20.5	20.1	19.4
5290	23.5	23.8	23.3	23.7		20.5	20.1	19.4
5300	23.4	23.8	23.3	23.7		20.5	20.1	19.4

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
5310	23.4	23.8	23.3	23.7		20.5	20.1	19.4
5320	23.4	23.8	23.3	23.7		20.5	20.1	19.4
5330	23.4	23.8	23.3	23.7		20.5	20.1	19.4
5340	23.4	23.8	23.3	23.7		20.5	20.1	19.4
5350	23.4	23.8	23.3	23.7		20.5	20.1	19.4
5360	23.4	23.8	23.3	23.7		20.5	20.1	19.4
5370	23.4	23.8	23.3	23.7		20.5	20.1	19.4
5380	23.4	23.8	23.3	23.7		20.5	20.1	19.4
5390	23.4	23.8	23.3	23.7		20.5	20.1	19.4
5400	23.4	23.8	23.3	23.7		20.5	20.1	19.4
5410	23.4	23.8	23.3	23.7		20.5	20.1	19.4
5420	23.4	23.7	23.3	23.6		20.5	20.1	19.4
5430	23.4	23.7	23.3	23.6		20.5	20.1	19.4
5440	23.3	23.7	23.3	23.6		20.5	20.1	19.4
5450	23.4	23.7	23.3	23.6		20.5	20.1	19.4
5460	23.4	23.7	23.3	23.6		20.4	20.1	19.4
5470	23.4	23.7	23.3	23.6		20.4	20.1	19.4
5480	23.4	23.7	23.3	23.6		20.4	20.1	19.4
5490	23.4	23.7	23.3	23.6		20.4	20.1	19.4
5500	23.4	23.7	23.3	23.6		20.4	20.1	19.4
5510	23.4	23.8	23.3	23.6		20.4	20.1	19.4
5520	23.3	23.7	23.3	23.6		20.4	20	19.4
5530	23.3	23.7	23.3	23.6		20.4	20	19.4
5540	23.3	23.7	23.2	23.5		20.4	20	19.4
5550	23.3	23.7	23.2	23.5		20.4	20	19.4
5560	23.3	23.7	23.2	23.5		20.4	20	19.5
5570	23.3	23.7	23.2	23.5		20.4	20	19.5
5580	23.3	23.7	23.2	23.5		20.4	20	19.5

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
5590	23.3	23.7	23.2	23.5		20.4	20	19.5
5600	23.3	23.8	23.2	23.5		20.4	20	19.5
5610	23.3	23.8	23.2	23.5		20.4	20	19.5
5620	23.3	23.9	23.2	23.5		20.4	19.9	19.5
5630	23.3	23.9	23.2	23.5		20.4	20	19.5
5640	23.3	23.9	23.2	23.5		20.4	19.9	19.5
5650	23.4	23.9	23.2	23.5		20.4	19.9	19.5
5660	23.4	23.9	23.2	23.5		20.4	19.9	19.5
5670	23.3	23.9	23.1	23.5		20.4	19.9	19.5
5680	23.4	23.9	23.2	23.5		20.4	19.9	19.5
5690	23.4	23.9	23.2	23.5		20.4	19.9	19.5
5700	23.4	24	23.2	23.4		20.4	19.9	19.5
5710	23.4	24	23.2	23.4		20.4	19.9	19.5
5720	23.3	24	23.1	23.4		20.4	19.9	19.5
5730	23.3	24	23.1	23.5		20.4	19.9	19.5
5740	23.4	24	23.2	23.5		20.4	19.9	19.5
5750	23.4	24	23.2	23.5		20.4	20.1	19.5
5760	23.4	24	23.2	23.5		20.4	20.1	19.5
5770	23.4	24	23.2	23.5		20.4	20.1	19.5
5780	23.4	24	23.1	23.5		20.4	20.1	19.5
5790	23.4	24.1	23.2	23.5		20.4	20	19.5
5800	23.4	24.1	23.1	23.6		20.4	19.9	19.5
5810	23.5	24.1	23.2	23.6		20.4	20	19.5
5820	23.5	24.1	23.1	23.6		20.4	19.9	19.5
5830	23.5	24.1	23.1	23.6		20.4	20	19.5
5840	23.5	24.1	23.2	23.6		20.4	19.9	19.5
5850	23.5	24.1	23.1	23.6		20.4	19.9	19.5
5860	23.6	24.1	23.1	23.6		20.4	19.8	19.5

Time (minutes)	Temperature (${ }^{\circ} \mathrm{C}$)							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
5870	23.6	24.1	23.1	23.6		20.4	19.9	19.5
5880	23.6	24.1	23.1	23.6		20.4	19.9	19.5
5890	23.6	24.1	23.1	23.6		20.4	19.9	19.5
5900	23.6	24.1	23.1	23.6		20.3	19.9	19.5
5910	23.6	24.1	23.1	23.6		20.3	19.9	19.5
5920	23.6	24.1	23.1	23.7		20.3	19.9	19.5
5930	23.6	24.1	23.1	23.7		20.3	19.9	19.5
5940	23.6	24.1	23.1	23.7		20.3	19.8	19.5
5950	23.6	24.2	23.1	23.7		20.3	19.8	19.5
5960	23.6	24.1	23.1	23.7		20.3	19.9	19.5
5970	23.6	24.2	23.1	23.7		20.3	19.9	19.5
5980	23.6	24.2	23.1	23.7		20.2	19.9	19.5
5990		24.1	23.1	23.6		20.3	19.8	19.5
6000		24.1	23.1	23.6		20.2	19.8	19.4
6010		24.1	23.1	23.6		20.2	19.8	19.5
6020		24.1	23.1	23.6		20.3	19.8	19.5
6030		24.1	23.1	23.6		20.3	19.9	19.5
6040		24.1	23.1	23.6		20.3	19.9	19.5
6050		24.1	23.1	23.6		20.3	19.9	19.5
6060		24.1	23.1	23.6		20.3	19.9	19.5
6070		24.1	23.1	23.6		20.3	19.9	19.4
6080		24.1	23.1	23.7		20.3	19.9	19.5
6090		24.1	23.1	23.6		20.3	19.9	19.5
6100		24.1	23.1	23.6		20.3	20	19.5
6110		24.1	23.1	23.6		20.3	20	19.5
6120		24.2	23.1	23.6		20.3	20	19.5
6130		24.1	23.1	23.6		20.3	20	19.5
6140		24.1	23.1	23.6		20.3	20	19.5

Time (minutes)	Temperature (${ }^{0} \mathrm{C}$)							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
6150		24.1	23.1	23.6		20.3	20.1	19.5
6160		24.1	23.1	23.6		20.3	20.1	19.5
6170		24.1	23.1	23.6		20.3	20.1	19.5
6180		24.1	23.1	23.6		20.3	20.1	19.5
6190		24.1	23.1	23.6		20.4	20.1	19.5
6200		24.1	23.1	23.6		20.4	20.1	19.4
6210		24.1	23.1	23.5		20.4	20.1	19.5
6220		24.1	23.1	23.5		20.3	20.1	19.4
6230		24.1	23.1	23.5		20.3	20.2	19.4
6240		24.1	23.1	23.5		20.4	20.2	19.4
6250		24.1	23.1	23.5		20.3	20.2	19.5
6260		24.1	23.1	23.5		20.3	20.2	19.5
6270		24.1	23.1	23.5		20.4	20.2	19.5
6280		24	23.1	23.6		20.4	20.2	19.4
6290		24	23.1	23.5		20.3	20.2	19.4
6300		24	23.1	23.5		20.4	20.2	19.4
6310		23.9	23.1	23.5		20.3	20.2	19.4
6320		24	23.1	23.5		20.4	20.2	19.4
6330		23.9	23.1	23.5		20.4	20.2	19.4
6340		24	23.1	23.5		20.3	20.2	19.3
6350		24	23.1	23.4		20.4	20.2	19.3
6360		23.9	23.1	23.5		20.3	20.2	19.3
6370		24	23.1	23.4		20.3	20.2	19.3
6380		23.9	23.1	23.5		20.3	20.3	19.3
6390		23.9	23.1	23.4		20.4	20.3	19.3
6400		23.9	23.1	23.4		20.3	20.3	19.3
6410		23.9	23.1	23.4		20.3	20.3	19.3
6420		23.9	23.1	23.4		20.4	20.3	19.3

Time (minutes)	Temperature (${ }^{0} \mathrm{C}$)							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
6430		23.9	23.1	23.4		20.4	20.3	19.3
6440		23.8	23.1	23.5		20.4	20.3	19.3
6450		23.8	23.1	23.4		20.4	20.3	19.3
6460		23.8	23.1	23.4		20.4	20.3	19.3
6470		23.8	23.1	23.4		20.4	20.3	19.3
6480		23.8	23.1	23.5		20.5	20.3	19.3
6490		23.8	23.1	23.4		20.4	20.3	19.3
6500		23.8	23.1	23.4		20.5	20.3	19.3
6510		23.8	23.1	23.4		20.5	20.4	19.3
6520		23.8	23.1	23.4		20.5	20.4	19.3
6530		23.8	23.1	23.4		20.5	20.4	19.3
6540		23.8	23.1	23.4		20.5	20.4	19.3
6550		23.8	23.1	23.4		20.5	20.4	19.3
6560		23.8	23.1	23.4		20.5	20.4	19.3
6570		23.8	23.1	23.4		20.5	20.4	19.3
6580		23.8	23.1	23.4		20.5	20.4	19.3
6590		23.8	23.1	23.4		20.5	20.4	19.3
6600		23.8	23.1	23.3		20.5	20.4	19.3
6610		23.8	23.1	23.3		20.5	20.4	19.3
6620		23.8	23.1	23.3		20.5	20.4	19.3
6630		23.8	23.1	23.3		20.5	20.4	19.3
6640		23.8	23.1	23.3		20.5	20.4	19.3
6650		23.8	23.1	23.3		20.5	20.4	19.3
6660		23.7	23.1	23.3		20.4	20.4	19.3
6670		23.7	23.1	23.3		20.5	20.5	19.3
6680		23.7	23.1	23.3		20.4	20.5	19.3
6690		23.6	23.1	23.3		20.4	20.5	19.3
6700		23.7	23.1	23.3		20.5	20.5	19.3

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
6710		23.6	23.1	23.3		20.5	20.5	19.3
6720		23.7	23.1	23.3		20.5	20.5	19.3
6730		23.6	23.1	23.3		20.5	20.5	19.3
6740		23.7	23.1	23.3		20.5	20.5	19.3
6750		23.6	23	23.3		20.5	20.5	19.3
6760		23.7	23.1	23.3		20.5	20.6	19.3
6770		23.6	23	23.3		20.5	20.6	19.3
6780		23.6	23	23.3		20.5	20.6	19.3
6790		23.7	23	23.3		20.5	20.6	19.3
6800		23.7	23	23.3		20.5	20.6	19.3
6810		23.6	23	23.3		20.5	20.6	19.3
6820		23.6	23	23.3		20.5	20.6	19.3
6830		23.6	23	23.3		20.5	20.6	19.3
6840		23.6	23	23.3		20.4	20.6	19.3
6850		23.6	23	23.3		20.4	20.6	19.3
6860		23.6	23	23.2		20.5	20.6	19.3
6870		23.6	23	23.2		20.4	20.5	19.3
6880		23.6	23	23.2		20.5	20.5	19.3
6890		23.6	23	23.2		20.5	20.5	19.3
6900		23.6	23	23.2		20.5	20.5	19.3
6910		23.6	23.1	23.2		20.5	20.5	19.3
6920		23.6	23.1	23.2		20.5	20.5	19.3
6930		23.6	23.1	23.2		20.5	20.5	19.2
6940		23.6	23.1	23.2		20.5	20.5	19.2
6950		23.6	23.1	23.1		20.5	20.5	19.2
6960		23.7	23.1	23.2		20.5	20.5	19.2
6970		23.7	23.1	23.2		20.5	20.5	19.2
6980		23.6	23.1	23.1		20.5	20.5	19.1

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
6990		23.6	23.1	23.1		20.5	20.5	19.2
7000		23.6	23.1	23.1		20.5	20.5	19.1
7010		23.6	23.1	23.1		20.5	20.4	19.1
7020		23.6	23.1	23.2		20.6	20.4	19.2
7030		23.7	23.1	23.2		20.6	20.3	19.2
7040		23.6	23.1	23.2		20.6	20.4	19.2
7050		23.6	23.1	23.2		20.6	20.3	19.1
7060		23.6	23.1	23.2		20.6	20.2	19.1
7070		23.6	23.1	23.3		20.6	20.2	19.2
7080		23.7	23.1	23.3		20.6	20.2	19.1
7090		23.7	23.1	23.2		20.6	20.2	19.1
7100		23.7	23.1	23.2		20.6	20.2	19.1
7110		23.7	23.1	23.3		20.6	20.2	19.1
7120		23.7	23.1	23.2		20.6	20.2	19.1
7130		23.7	23.1	23.3		20.6	20.2	19.1
7140		23.7	23.1	23.3		20.6	20.1	19.1
7150		23.8	23.1	23.3		20.6	20.1	19.1
7160		23.8	23.1	23.3		20.7	20.1	19.1
7170		23.8	23.1	23.3		20.7	20	19.1
7180		23.8	23.1	23.3		20.7	20	19.1
7190		23.8	23.1	23.4		20.7	20	19.1
7200		23.7	23.1	23.4		20.7	20	19.1
7210		23.8	23.1	23.4		20.7	20	19.1
7220		23.8	23.2	23.4		20.8	20	19.1
7230		23.8	23.2	23.4		20.8	20	19.1
7240		23.8	23.2	23.4		20.8	20	19.1
7250		23.9	23.2	23.4		20.8	20	19.1
7260		23.9	23.2	23.4		20.7	20	19.1

Time (minutes)	Temperature (${ }^{\circ} \mathrm{C}$)							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
7270		23.9	23.2	23.5		20.7	20	19.1
7280		23.9	23.3	23.5		20.7	20	19.2
7290		23.8	23.3	23.5		20.7	20	19.2
7300		23.9	23.3	23.5		20.7	20	19.2
7310		23.9	23.3	23.5		20.7	20	19.2
7320		23.9	23.3	23.5		20.8	20	19.2
7330		23.9	23.3	23.6		20.8	20	19.2
7340		23.9	23.3	23.6		20.8	20	19.2
7350		24	23.3	23.6		20.8	20	19.2
7360		24	23.3	23.7		20.8	20	19.2
7370		24	23.3	23.7		20.7	20	19.2
7380		23.9	23.4	23.6		20.7	20	19.3
7390		23.9	23.4	23.6		20.7	19.9	19.3
7400		23.9	23.4	23.7		20.7	19.9	19.3
7410		23.9	23.5	23.7		20.7	19.9	19.3
7420		23.9	23.5	23.7		20.7	19.9	19.4
7430		23.9	23.5	23.7		20.7	19.9	19.4
7440		23.9	23.5	23.7		20.7	19.9	19.4
7450		23.9	23.5	23.7		20.7	19.9	19.4
7460		23.9	23.5	23.7		20.7	19.9	19.4
7470		23.9	23.5	23.7		20.7	19.9	19.4
7480		23.9	23.5	23.7		20.7	19.9	19.4
7490		23.9	23.5	23.7		20.7	19.9	19.4
7500		23.9	23.5	23.7		20.7	19.9	19.4
7510		23.9	23.5	23.7		20.7	19.9	19.5
7520		23.9	23.5	23.7		20.7	19.9	19.5
7530		23.8	23.5	23.8		20.7	20	19.5
7540		23.8	23.5	23.7		20.7	20	19.5

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
7550		23.8	23.5	23.7		20.7	20	19.5
7560		23.8	23.5	23.7		20.7	20	19.5
7570		23.8	23.4	23.7		20.7	20	19.5
7580		23.8	23.4	23.7		20.7	20	19.4
7590		23.8	23.4	23.6		20.7	20	19.4
7600		23.8	23.4	23.6		20.7	20	19.4
7610		23.8	23.4	23.6		20.7	20	19.4
7620		23.8	23.4	23.6		20.7	20	19.4
7630		23.8	23.4	23.6		20.7	20	19.4
7640		23.8	23.4	23.6		20.7	20	19.4
7650		23.8	23.4	23.6		20.7	20	19.4
7660		23.8	23.4	23.6		20.7	20	19.4
7670		23.8	23.4	23.7		20.7	20	19.4
7680		23.8	23.3	23.7		20.7	20	19.4
7690		23.8	23.3	23.6		20.7	20	19.4
7700		23.8	23.3	23.6		20.7	20	19.4
7710		23.8	23.3	23.7		20.7	20	19.4
7720		23.8	23.3	23.6		20.7	20	19.4
7730		23.8	23.3	23.6		20.7	20	19.4
7740		23.8	23.3	23.6		20.7	20	19.4
7750		23.8	23.3	23.6		20.7	20	19.4
7760		23.7	23.3	23.6		20.7	19.9	19.4
7770		23.7	23.3	23.6		20.7	20	19.4
7780		23.7	23.3	23.6		20.7	19.9	19.4
7790		23.7	23.3	23.6		20.7	19.9	19.4
7800		23.7	23.3	23.6		20.7	19.9	19.4
7810		23.7	23.3	23.6		20.7	19.9	19.4
7820		23.7	23.3	23.6		20.7	19.9	19.4

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
7830		23.7	23.3	23.6		20.7	19.9	19.4
7840		23.7	23.3	23.6		20.7	19.9	19.4
7850		23.7	23.3	23.6		20.7	19.9	19.4
7860		23.7	23.3	23.5		20.7	19.9	19.4
7870		23.7	23.3	23.5		20.7	19.9	19.4
7880		23.7	23.3	23.5		20.7	19.9	19.4
7890		23.7	23.3	23.5		20.7	19.9	19.4
7900		23.7	23.3	23.5		20.7	19.9	19.4
7910		23.7	23.3	23.5		20.7	19.9	19.4
7920		23.6	23.3	23.5		20.7	19.9	19.4
7930		23.7	23.3	23.5		20.7	19.9	19.4
7940		23.6	23.3	23.5		20.7	19.9	19.4
7950		23.6	23.3	23.5		20.7	19.9	19.4
7960		23.7	23.3	23.5		20.7	19.9	19.4
7970		23.7	23.3	23.4		20.7	19.9	19.4
7980		23.6	23.3	23.5		20.7	19.9	19.4
7990		23.6	23.3	23.4		20.7	19.9	19.4
8000		23.7	23.3	23.4		20.7	19.9	19.4
8010		23.6	23.3	23.4		20.7	19.9	19.4
8020		23.6	23.2	23.3		20.7	19.9	19.4
8030		23.7	23.3	23.4		20.7	19.9	19.4
8040		23.6	23.2	23.4		20.7	19.9	19.4
8050		23.6	23.2	23.3		20.7	19.9	19.4
8060		23.6	23.2	23.3		20.7	19.9	19.4
8070		23.6	23.2	23.3		20.7	19.9	19.4
8080		23.6	23.2	23.3		20.7	19.9	19.4
8090		23.5	23.2	23.3		20.7	19.8	19.4
8100		23.5	23.2	23.4		20.7	19.8	19.4

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
8110		23.5	23.2	23.3		20.7	19.8	19.4
8120		23.5	23.2	23.3		20.7	19.8	19.4
8130		23.5	23.1	23.3		20.7	19.8	19.4
8140		23.5	23.2	23.3		20.7	19.8	19.4
8150		23.5	23.1	23.4		20.7	19.8	19.4
8160		23.5	23.2	23.3		20.7	19.8	19.4
8170		23.5	23.1	23.3		20.7	19.8	19.4
8180		23.5	23.1	23.3		20.7	19.8	19.4
8190		23.5	23.2	23.3		20.7	19.8	19.4
8200		23.5	23.2	23.2			19.8	19.4
8210		23.5	23.2	23.2			19.8	19.4
8220		23.5	23.1	23.2			19.8	19.4
8230		23.5	23.2	23.2			19.8	19.4
8240		23.5	23.2	23.2			19.8	19.4
8250		23.5	23.2	23.2			19.8	19.4
8260		23.5	23.1	23.2			19.8	19.4
8270		23.5	23.1	23.2			19.8	19.4
8280		23.5	23.1	23.2			19.8	19.4
8290		23.5	23.1	23.2			19.8	19.4
8300		23.5	23.1	23.2			19.8	19.4
8310		23.5	23.1	23.2			19.8	19.4
8320		23.5	23.2	23.2			19.8	19.3
8330		23.5	23.2	23.2			19.8	19.3
8340		23.5	23.1	23.2			19.7	19.3
8350		23.5	23.1	23.2			19.7	19.3
8360		23.4	23.1	23.2			19.7	19.3
8370		23.5	23.1	23.2			19.7	19.3
8380		23.5	23.1	23.2			19.7	19.3

Time (minutes)	Temperature (${ }^{0} \mathrm{C}$)							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
8390		23.4	23.1	23.1			19.6	19.3
8400		23.5	23.1	23.1			19.7	19.3
8410		23.4	23.1	23.1			19.7	19.3
8420		23.3	23.1	23.1			19.7	19.3
8430		23.4	23.2	23.1			19.7	19.3
8440		23.4	23.2	23.1			19.7	19.3
8450		23.4	23.2	23.2			19.7	19.3
8460		23.3	23.3	23.2			19.7	19.3
8470		23.3	23.3	23.2			19.7	19.3
8480		23.3	23.3	23.2			19.7	19.3
8490		23.3	23.3	23.2			19.7	19.3
8500		23.3	23.3	23.2			19.7	19.3
8510		23.4	23.3	23.2			19.7	19.3
8520		23.3	23.4	23.2			19.6	19.3
8530		23.3	23.3	23.2			19.7	19.4
8540		23.3	23.4	23.1			19.7	19.3
8550		23.3	23.5	23.2			19.6	19.3
8560		23.3	23.4	23.2			19.6	19.3
8570		23.3	23.4	23.2			19.6	19.3
8580		23.3	23.4	23.2			19.6	19.3
8590		23.3	23.4	23.2			19.6	19.4
8600		23.3	23.4	23.1			19.6	19.4
8610		23.3	23.5	23.1			19.7	19.4
8620		23.3	23.6	23.1			19.7	19.4
8630		23.3	23.6	23.1			19.7	19.4
8640		23.3	23.6	23.2			19.7	19.4
8650		23.3	23.6	23.2			19.7	19.4
8660		23.3	23.6	23.2			19.6	19.4

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
8670		23.3	23.6	23.2			19.6	19.4
8680		23.3	23.6	23.2			19.6	19.4
8690		23.3	23.6	23.2			19.6	19.4
8700		23.3	23.6	23.2			19.6	19.4
8710		23.3	23.6	23.2			19.6	19.4
8720		23.3	23.6	23.2			19.6	19.4
8730		23.3	23.6	23.2			19.6	19.4
8740		23.3	23.6	23.2			19.6	19.4
8750		23.3	23.8	23.2			19.6	19.4
8760		23.3	23.8	23.1			19.6	19.4
8770		23.3	23.8	23.2			19.5	19.4
8780		23.3	23.7	23.2			19.5	19.4
8790		23.3	23.8	23.2			19.6	19.4
8800		23.3	23.8	23.2			19.5	19.3
8810		23.3	23.8	23.2			19.6	19.3
8820		23.3	23.8	23.2			19.6	19.3
8830		23.3	23.8	23.2			19.6	19.3
8840		23.3	23.8	23.2			19.6	19.3
8850		23.3	23.8	23.2			19.6	19.3
8860		23.3	23.8	23.2			19.7	19.3
8870		23.3	23.8	23.2			19.7	19.3
8880		23.3	23.8	23.2			19.7	19.3
8890		23.3	23.8	23.1			19.7	19.3
8900		23.3	23.8	23.1			19.7	19.3
8910		23.3	23.8	23.1			19.7	19.4
8920		23.3	23.7	23.1			19.7	19.4
8930		23.3	23.8	23.1			19.7	19.4
8940		23.3	23.8	23.1			19.7	19.4

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
8950		23.3	23.8	23.1			19.7	19.4
8960		23.3	23.8	23.1			19.7	19.3
8970		23.3	23.8	23.1			19.7	19.3
8980		23.3	23.7	23.1			19.7	19.3
8990		23.3	23.7	23.1			19.7	19.3
9000		23.3	23.7	23.1			19.7	19.3
9010		23.3	23.7	23.1			19.7	19.3
9020		23.3	23.7	23.1			19.7	19.3
9030		23.3	23.7	23.1			19.7	19.3
9040		23.3	23.7	23.1			19.7	19.3
9050		23.3	23.7	23.1			19.7	19.3
9060		23.3	23.7	23.1			19.7	19.3
9070		23.3	23.7	23.1			19.7	19.3
9080		23.3	23.7	23.2			19.7	19.3
9090		23.3	23.7	23.2			19.7	19.3
9100		23.3	23.6	23.2			19.7	19.3
9110		23.3	23.6	23.1			19.7	19.3
9120		23.3	23.6	23.1			19.7	19.3
9130		23.3	23.6	23.1			19.7	19.3
9140		23.3	23.6	23.2			19.7	19.3
9150		23.3	23.6	23.2			19.7	19.3
9160		23.3	23.6	23.2			19.7	19.3
9170		23.3	23.6	23.2			19.7	19.3
9180		23.3	23.6	23.2			19.7	19.3
9190		23.3	23.6	23.2			19.7	19.3
9200		23.3	23.6	23.2			19.7	19.3
9210		23.3	23.6	23.2			19.7	19.3
9220		23.3	23.6	23.2			19.7	19.3

Time (minutes)	Temperature (${ }^{0} \mathrm{C}$)							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
9230		23.3	23.6	23.2			19.7	19.2
9240		23.3	23.6	23.2			19.7	19.2
9250		23.3	23.6	23.3			19.7	19.2
9260		23.3	23.6	23.3			19.7	19.2
9270		23.3	23.6	23.3			19.7	19.2
9280		23.3	23.6	23.3			19.7	19.2
9290		23.3	23.5	23.3			19.7	19.2
9300		23.3	23.5	23.4			19.7	19.2
9310		23.3	23.5	23.3			19.7	19.2
9320		23.3	23.5	23.4			19.7	19.2
9330		23.3	23.5	23.3			19.7	19.3
9340		23.3	23.5	23.3			19.7	19.3
9350		23.3	23.5	23.3			19.7	19.3
9360		23.3	23.5	23.3			19.7	19.3
9370		23.3	23.4	23.3			19.7	19.3
9380		23.3	23.5	23.3			19.7	19.3
9390		23.3	23.4	23.3			19.7	19.2
9400		23.3	23.4	23.3			19.7	19.2
9410		23.3	23.5	23.4			19.7	19.2
9420		23.3	23.4	23.3			19.7	19.2
9430		23.3	23.4	23.3			19.7	19.2
9440		23.3	23.4	23.4			19.7	19.2
9450		23.3	23.4	23.3			19.7	19.2
9460		23.3	23.4	23.4			19.7	19.2
9470		23.3	23.5	23.4			19.7	19.2
9480		23.3	23.4	23.3			19.7	19.2
9490		23.3	23.4	23.4			19.7	19.2
9500		23.3	23.4	23.4			19.7	19.2

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
9510		23.3	23.4	23.4			19.7	19.2
9520		23.3	23.4	23.4			19.7	19.2
9530		23.3	23.4	23.4			19.7	19.2
9540		23.3	23.4	23.4			19.7	19.2
9550		23.3	23.4	23.4			19.7	19.2
9560		23.2	23.4	23.4			19.6	19.2
9570		23.2	23.4	23.4			19.6	19.2
9580		23.3	23.3	23.4			19.7	19.2
9590		23.2	23.3	23.4			19.6	19.2
9600		23.2	23.3	23.4			19.6	19.2
9610		23.2	23.3	23.4			19.6	19.2
9620		23.2	23.3	23.4			19.6	19.2
9630		23.2	23.3	23.4			19.6	19.2
9640		23.2	23.3	23.4			19.6	19.1
9650		23.2	23.3	23.4			19.6	19.1
9660		23.2	23.3	23.4			19.6	19.1
9670		23.2	23.3	23.4			19.6	19.1
9680		23.2	23.3	23.4			19.6	19.1
9690		23.2	23.3	23.4			19.6	19.1
9700		23.2	23.3	23.4			19.6	19.1
9710		23.2	23.3	23.5			19.6	19.1
9720		23.2	23.3	23.4			19.6	19.1
9730		23.1	23.3	23.4			19.6	19.1
9740		23.2	23.3	23.5			19.6	19.1
9750		23.1	23.3	23.4			19.6	19.1
9760		23.1	23.3	23.4			19.6	19.1
9770		23.2	23.2	23.4			19.6	19.1
9780		23.2	23.3	23.4			19.6	19.1

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
9790		23.1	23.3	23.3			19.6	19.1
9800		23.1	23.3	23.3			19.6	19
9810		23.1	23.3	23.3			19.6	19
9820		23.2	23.3	23.3			19.6	19
9830		23.2	23.4	23.3			19.6	19
9840		23.2	23.4	23.2			19.6	19
9850		23.2	23.4	23.2			19.6	19
9860		23.2	23.4	23.2			19.6	19
9870		23.2	23.5	23.2			19.6	19
9880		23.3	23.4	23.2			19.6	19
9890		23.3	23.4	23.2			19.5	19
9900		23.3	23.4	23.2			19.5	19
9910		23.3	23.5	23.2			19.5	19
9920		23.3	23.5	23.2			19.5	19
9930		23.3	23.5	23.2			19.6	19
9940		23.3	23.5	23.2			19.6	19.1
9950		23.3	23.5	23.2			19.5	19.1
9960		23.3	23.5	23.2			19.5	19
9970		23.3	23.6	23.2			19.5	19
9980		23.3	23.6	23.2			19.5	19
9990		23.4	23.6	23.2			19.5	19.1
10000		23.4	23.6	23.2			19.5	19
10010		23.4	23.6	23.2			19.5	19.1
10020		23.4	23.6	23.2			19.5	19
10030		23.4	23.6	23.2			19.5	19
10040		23.4	23.7	23.2			19.5	19
10050		23.4	23.7	23.2			19.5	19
10060		23.4	23.7	23.2			19.5	19

| Time
 (minutes) | Sample
 one | Sample
 two | Sample
 three | Sample
 four | Sample
 five | Sample
 six | Sample
 seven | Sample
 eight |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | 23.4 | 23.7 | 23.1 | | | 19.5 | 19 |
| | | 23.4 | 23.7 | 23.2 | | | 19.5 | 19 |
| | | 23.4 | 23.7 | 23.1 | | | 19.5 | 19 |
| | | 23.4 | 23.7 | 23.2 | | | 19.5 | 19 |
| | | 23.4 | 23.8 | 23.1 | | | 19.5 | 19 |
| | | 23.4 | 23.8 | 23.2 | | | 19.5 | 19 |
| | | 23.4 | 23.8 | 23.1 | | | 19.5 | 19 |
| | | 23.4 | 23.8 | 23.1 | | | 19.6 | 19 |
| 10150 | | 23.5 | 23.9 | 23.2 | | | 19.6 | 19 |
| 10160 | | 23.5 | 23.9 | 23.2 | | | 19.5 | 19 |
| 10170 | | 23.5 | 23.8 | 23.2 | | | 19.5 | 19 |
| 10180 | | 23.5 | 23.9 | 23.2 | | | 19.5 | 19 |
| 10190 | | 23.5 | 23.9 | 23.2 | | | 19.5 | 19.1 |
| 10200 | | 23.5 | 23.9 | 23.2 | | | 19.5 | 19.1 |
| 10210 | | 23.5 | 23.9 | 23.3 | | | 19.5 | 19.1 |
| 10220 | | 23.5 | 23.9 | 23.3 | | | 19.5 | 19.1 |
| 10230 | | 23.5 | 23.9 | 23.3 | | | 19.5 | 19.1 |
| 10240 | | 23.5 | 23.9 | 23.3 | | | 19.5 | 19.1 |
| 10250 | | 23.5 | 23.9 | 23.3 | | | 19.5 | 19.1 |
| 10260 | | 23.5 | 23.9 | 23.3 | | | 19.5 | 19.1 |
| 10270 | | 23.5 | 23.9 | 23.3 | | | 19.5 | 19.1 |
| 10280 | | 23.5 | 23.9 | 23.3 | | | 19.5 | 19.1 |
| 10290 | | 23.5 | 23.9 | 23.2 | | | 19.5 | 19.1 |
| 10300 | | 23.5 | 23.9 | 23.2 | | | 19.5 | 19.1 |
| 10310 | | 23.5 | 23.9 | 23.3 | | | 19.6 | 19 |
| 10320 | | 23.5 | 23.9 | 23.2 | | | 19.5 | 19.1 |
| 10330 | | 23.9 | 23.3 | | | 19.6 | 19.1 | |
| | | | | | | 19.6 | 19.1 | |

| Time
 (minutes) | Sample
 one | Sample
 two | Sample
 three | Sample
 four | Sample
 five | Sample
 six | Sample
 seven | Sample
 eight |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | 23.5 | 23.8 | 23.3 | | | 19.6 | 19.1 |
| | | 23.5 | 23.8 | 23.3 | | | 19.6 | 19.1 |
| | | 23.6 | 23.8 | 23.3 | | | 19.6 | 19.1 |
| | | 23.6 | 23.9 | 23.3 | | | 19.6 | 19.1 |
| | | 23.6 | 23.9 | 23.3 | | | 19.6 | 19.1 |
| | | 23.6 | 23.9 | 23.3 | | | 19.6 | 19.1 |
| | | 23.6 | 23.9 | 23.3 | | | 19.6 | 19.1 |
| | | 23.6 | 23.9 | 23.2 | | | 19.6 | 19.1 |
| 10430 | | 23.5 | 23.9 | 23.2 | | | 19.6 | 19.1 |
| 10440 | | 23.5 | 23.8 | 23.2 | | | 19.6 | 19.1 |
| 10450 | | 23.5 | 23.8 | 23.2 | | | 19.6 | 19.1 |
| 10460 | | 23.6 | 23.8 | 23.1 | | | 19.6 | 19.1 |
| 10470 | | 23.5 | 23.8 | 23.2 | | | 19.5 | 19.1 |
| 10480 | | 23.6 | 23.8 | 23.2 | | | 19.5 | 19.1 |
| 10490 | | 23.5 | 23.8 | 23.2 | | | 19.5 | 19.2 |
| 10500 | | 23.5 | 23.8 | 23.2 | | | 19.5 | 19.2 |
| 10510 | | 23.6 | 23.8 | 23.2 | | | 19.5 | 19.1 |
| 10520 | | 23.5 | 23.8 | 23.2 | | | 19.5 | 19.2 |
| 10530 | | 23.6 | 23.8 | 23.2 | | | 19.5 | 19.2 |
| 10540 | | 23.5 | 23.8 | 23.2 | | | 19.5 | 19.2 |
| 10550 | | 23.5 | 23.8 | 23.2 | | | 19.5 | 19.2 |
| 10560 | | 23.5 | 23.7 | 23.2 | | | 19.5 | 19.2 |
| 10570 | | 23.5 | 23.7 | 23.2 | | | 19.5 | 19.2 |
| 10580 | | 23.4 | 23.7 | 23.3 | | | 19.5 | 19.2 |
| 10590 | | 23.5 | 23.7 | 23.3 | | | 19.5 | 19.2 |
| 10600 | | 23.4 | 23.7 | 23.3 | | | 19.5 | 19.2 |
| 10610 | | 23.7 | 23.3 | | | 19.5 | 19.2 | |
| | | | | | | 19.5 | 19.2 | |

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
10630		23.4	23.7	23.3			19.5	19.1
10640		23.4	23.7	23.3			19.5	19.2
10650		23.4	23.7	23.3			19.6	19.1
10660		23.4	23.7	23.3			19.6	19.1
10670		23.4	23.7	23.3			19.6	19.1
10680		23.5	23.7	23.3			19.6	19.1
10690		23.4	23.7	23.3			19.6	19.1
10700		23.4	23.7	23.3			19.6	19.1
10710		23.4	23.7	23.3			19.6	19.1
10720		23.4	23.6	23.3			19.6	19.1
10730		23.4	23.7	23.3			19.6	19.1
10740		23.4	23.6	23.3			19.6	19.1
10750		23.4	23.6	23.3			19.6	19.1
10760		23.4	23.5	23.3			19.6	19.1
10770		23.4	23.6	23.4			19.6	19.1
10780		23.4	23.6	23.4			19.6	19.1
10790		23.4	23.5	23.4			19.6	19.1
10800		23.3	23.5	23.4			19.6	19.1
10810		23.3	23.5	23.4			19.6	19.1
10820		23.3	23.5	23.4			19.6	19.1
10830		23.3	23.5	23.4			19.6	19.1
10840		23.3	23.5	23.4			19.6	19.1
10850		23.3	23.5	23.4			19.6	19.1
10860		23.3	23.5	23.4			19.6	19.1
10870		23.3	23.5	23.4			19.6	19.1
10880		23.3	23.5	23.4			19.6	19.1
10890		23.3	23.5	23.4			19.6	19.1
10900		23.3	23.5	23.4			19.6	19.1

| Time
 (minutes) | Sample
 one | Sample
 two | Sample
 three | Sample
 four | Sample
 five | Sample
 six | Sample
 seven | Sample
 eight |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | 23.3 | 23.5 | 23.4 | | | 19.6 | 19.1 |
| | | 23.3 | 23.5 | 23.4 | | | 19.6 | 19.1 |
| | | 23.3 | 23.5 | 23.4 | | | 19.6 | 19.1 |
| | | 23.3 | 23.5 | 23.4 | | | 19.6 | 19.1 |
| | | 23.3 | 23.5 | 23.4 | | | 19.6 | 19.1 |
| | | 23.3 | 23.5 | 23.4 | | | 19.6 | 19.1 |
| | | 23.3 | 23.5 | 23.5 | | | 19.6 | 19.1 |
| | | 23.3 | 23.5 | 23.4 | | | 19.6 | 19.1 |
| 10990 | | 23.3 | 23.4 | 23.4 | | | 19.6 | 19.1 |
| 11000 | | 23.2 | 23.4 | 23.5 | | | 19.6 | 19.1 |
| 11010 | | 23.2 | 23.4 | 23.4 | | | 19.6 | 19.1 |
| 11020 | | 23.2 | 23.4 | 23.5 | | | 19.6 | 19.1 |
| 11030 | | 23.2 | 23.4 | 23.5 | | | 19.6 | 19.1 |
| 11040 | | 23.2 | 23.4 | 23.5 | | | 19.6 | 19.1 |
| 11050 | | 23.2 | 23.4 | 23.5 | | | 19.5 | 19.1 |
| 11060 | | 23.2 | 23.4 | 23.5 | | | 19.5 | 19.1 |
| 11070 | | 23.2 | 23.4 | 23.5 | | | 19.5 | 19.1 |
| 11080 | | 23.2 | 23.4 | 23.5 | | | 19.5 | 19.1 |
| 11090 | | 23.1 | 23.4 | 23.4 | | | 19.5 | 19.1 |
| 11100 | | 23.1 | 23.4 | 23.4 | | | 19.5 | 19.1 |
| 11110 | | 23.1 | 23.4 | 23.4 | | | 19.5 | 19.1 |
| 11120 | | 23.1 | 23.4 | 23.4 | | | 19.5 | 19.1 |
| 11130 | | 23.1 | 23.4 | 23.4 | | | 19.5 | 19.1 |
| 11140 | | 23.1 | 23.4 | 23.4 | | | 19.5 | 19.1 |
| 11150 | | 23.1 | 23.4 | 23.3 | | | 19.5 | 19.1 |
| 11160 | | 23.2 | 23.4 | 23.3 | | | 19.5 | 19.1 |
| 11170 | | 23.3 | 23.3 | 23.4 | | | 19.5 | 19.1 |
| 1180 | | | | | | 19.5 | 19.1 | |

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
11190		23.1	23.3	23.3			19.5	19.1
11200		23.2	23.3	23.3			19.5	19.1
11210		23.2	23.3	23.3			19.5	19.1
11220		23.2	23.3	23.3			19.5	19.1
11230		23.2	23.4	23.2			19.5	19.1
11240		23.2	23.3	23.2			19.5	19.1
11250		23.2	23.3	23.2			19.5	19.1
11260		23.2	23.4	23.2			19.5	19.1
11270		23.2	23.4	23.2			19.5	19.1
11280		23.2	23.4	23.2			19.5	19.1
11290		23.3	23.4	23.2			19.5	19.1
11300		23.2	23.4	23.2			19.4	19.1
11310		23.2	23.4	23.2			19.4	19.2
11320		23.3	23.5	23.1			19.4	19.2
11330		23.3	23.5	23.2			19.4	19.2
11340		23.4	23.5	23.1			19.4	19.2
11350		23.4	23.5	23.1			19.5	19.2
11360		23.4	23.5	23.1			19.5	19.2
11370		23.4	23.5	23.1			19.5	19.2
11380		23.4	23.6	23.1			19.4	19.2
11390		23.4	23.6	23.1			19.4	19.2
11400		23.4		23.1			19.4	19.2
11410		23.4		23.1			19.4	19.2
11420		23.4		23.1			19.4	19.2
11430		23.4		23.2			19.4	19.2
11440		23.4		23.1			19.4	19.2
11450		23.4		23.1			19.4	19.2
11460		23.4		23.1			19.4	19.2

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
11470		23.4		23.1			19.4	19.2
11480		23.4		23.1			19.5	19.2
11490		23.4		23.1			19.5	19.2
11500		23.4		23.2			19.5	19.3
11510		23.4		23.2			19.5	
11520		23.4		23.2			19.5	
11530		23.4		23.2			19.5	
11540		23.5		23.3			19.5	
11550		23.5		23.2			19.5	
11560		23.5		23.3			19.5	
11570		23.5		23.3			19.5	
11580		23.6		23.3			19.5	
11590		23.6		23.3			19.5	
11600		23.5		23.3			19.5	
11610		23.5		23.3			19.5	
11620		23.5		23.3			19.5	
11630		23.6		23.3			19.5	
11640		23.6		23.4			19.5	
11650		23.6		23.4			19.5	
11660		23.6		23.3			19.5	
11670		23.6		23.3			19.5	
11680		23.6		23.3			19.5	
11690		23.6		23.4			19.5	
11700		23.6		23.4			19.5	
11710		23.6		23.3			19.5	
11720		23.6		23.3			19.5	
11730		23.7		23.3			19.5	
11740		23.7		23.3			19.6	

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
11750		23.7		23.3			19.6	
11760		23.7		23.3			19.5	
11770		23.7		23.2			19.5	
11780		23.7		23.3			19.5	
11790		23.7		23.3			19.5	
11800		23.7		23.3			19.5	
11810		23.7		23.3			19.5	
11820		23.7		23.3			19.6	
11830		23.6		23.3			19.6	
11840		23.6		23.3			19.6	
11850		23.6		23.3			19.6	
11860		23.6		23.3			19.6	
11870		23.6		23.2			19.6	
11880		23.6		23.2			19.6	
11890		23.6		23.2			19.6	
11900		23.6		23.2			19.6	
11910		23.6		23.2			19.6	
11920		23.6		23.2			19.6	
11930		23.6		23.2			19.6	
11940		23.6		23.2			19.6	
11950		23.6		23.2			19.6	
11960		23.6		23.1			19.6	
11970		23.6		23.1			19.6	
11980		23.6		23.1			19.6	
11990		23.6		23.1			19.6	
12000		23.6		23.1			19.6	
12010		23.5		23.1			19.6	
12020		23.6		23.1			19.6	

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
12030		23.5		23.1			19.6	
12040		23.5		23.1			19.6	
12050		23.5		23			19.6	
12060		23.6		23			19.6	
12070		23.5		23.1			19.5	
12080		23.5		23			19.5	
12090		23.5		23			19.5	
12100		23.6		23			19.5	
12110		23.5		23			19.5	
12120		23.5		23.1			19.5	
12130		23.5		23.1			19.5	
12140		23.5		23.1			19.5	
12150		23.5		23			19.5	
12160		23.5		23			19.5	
12170		23.5		23			19.5	
12180		23.5		23			19.5	
12190		23.5		23			19.5	
12200		23.5		23			19.5	
12210		23.5		23			19.5	
12220		23.4		23			19.5	
12230		23.4		23			19.5	
12240		23.4		23			19.5	
12250		23.4		23			19.5	
12260		23.4		22.9			19.5	
12270		23.4		22.9			19.5	
12280		23.4		22.9			19.5	
12290		23.4		22.9			19.5	
12300		23.4		22.9			19.5	

Time (minutes)	Temperature (${ }^{\circ} \mathrm{C}$)							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
12310		23.4		22.9			19.5	
12320		23.4		22.9			19.5	
12330		23.4		22.9			19.5	
12340		23.4		22.9			19.5	
12350		23.4		22.9			19.5	
12360		23.4		22.9			19.5	
12370		23.3		22.9			19.5	
12380		23.3		22.9			19.5	
12390		23.3		22.9			19.5	
12400		23.3		22.9			19.5	
12410		23.3		22.9			19.5	
12420		23.3		22.9			19.5	
12430		23.3		22.9			19.5	
12440		23.3		22.9			19.5	
12450		23.3		22.8			19.4	
12460		23.3		22.8			19.4	
12470		23.3		22.8			19.4	
12480		23.3		22.8			19.4	
12490		23.3		22.8			19.4	
12500		23.3		22.8			19.4	
12510		23.3		22.8			19.4	
12520		23.3		22.8			19.4	
12530		23.3		22.8			19.4	
12540		23.3		22.8			19.4	
12550		23.3		22.8			19.4	
12560		23.3		22.8			19.4	
12570		23.3		22.8			19.4	
12580		23.3		22.8			19.4	

Time (minutes)	Temperature (${ }^{\circ} \mathrm{C}$)							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
12590		23.3		22.8			19.4	
12600		23.3		22.8			19.4	
12610		23.2		22.8			19.4	
12620		23.2		22.8			19.4	
12630		23.2		22.8			19.4	
12640		23.2		22.8			19.3	
12650		23.2		22.8			19.3	
12660		23.2		22.8			19.4	
12670		23.2		22.8			19.4	
12680		23.2		22.8			19.3	
12690				22.8			19.3	
12700				22.7			19.3	
12710				22.8			19.3	
12720				22.7			19.3	
12730				22.7			19.3	
12740				22.7			19.3	
12750				22.7			19.4	
12760				22.7			19.4	
12770				22.7			19.4	
12780				22.7			19.4	
12790				22.7			19.4	
12800				22.7			19.4	
12810				22.7			19.4	
12820				22.7			19.4	
12830				22.7			19.4	
12840				22.7			19.4	
12850				22.7			19.4	
12860				22.7			19.4	

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
12870				22.7			19.4	
12880				22.7			19.4	
12890				22.7			19.4	
12900				22.6			19.4	
12910				22.6			19.4	
12920				22.6			19.5	
12930				22.6			19.5	
12940				22.6			19.5	
12950				22.6			19.5	
12960				22.6			19.5	
12970				22.6			19.5	
12980				22.6			19.5	
12990				22.6			19.5	
13000				22.6			19.5	
13010				22.6			19.5	
13020				22.6			19.5	
13030				22.6			19.5	
13040				22.6			19.4	
13050				22.6			19.4	
13060				22.6			19.5	
13070				22.6			19.5	
13080				22.6			19.5	
13090				22.6			19.5	
13100				22.6			19.5	
13110				22.6			19.5	
13120				22.6			19.5	
13130				22.6			19.5	
13140				22.6			19.6	

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
13150				22.6			19.6	
13160				22.6			19.6	
13170				22.6			19.6	
13180				22.6			19.6	
13190				22.6			19.6	
13200				22.6			19.6	
13210				22.6			19.6	
13220				22.6			19.6	
13230				22.6			19.6	
13240				22.6			19.6	
13250				22.6			19.6	
13260				22.6			19.6	
13270				22.6			19.6	
13280				22.6			19.6	
13290				22.6			19.6	
13300				22.6			19.6	
13310				22.6			19.6	
13320				22.6			19.6	
13330				22.6			19.6	
13340				22.6			19.6	
13350				22.6			19.6	
13360				22.6			19.6	
13370				22.6			19.6	
13380				22.6			19.5	
13390				22.6			19.5	
13400				22.6			19.5	
13410				22.6			19.5	
13420				22.6			19.5	

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
13430				22.6			19.5	
13440				22.6			19.5	
13450				22.6			19.5	
13460				22.6			19.5	
13470				22.6			19.5	
13480				22.6			19.5	
13490				22.6			19.5	
13500				22.6			19.5	
13510				22.6			19.5	
13520				22.6			19.5	
13530				22.6			19.5	
13540				22.6			19.5	
13550				22.6			19.5	
13560				22.6			19.5	
13570				22.6			19.5	
13580				22.6			19.5	
13590				22.6			19.5	
13600				22.6			19.5	
13610				22.6			19.5	
13620				22.6			19.5	
13630				22.6			19.5	
13640				22.6			19.5	
13650				22.6			19.5	
13660				22.6			19.5	
13670				22.6			19.5	
13680				22.6			19.5	
13690				22.6			19.5	
13700				22.6			19.5	

Time (minutes)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
13710				22.6			19.5	
13720				22.6			19.5	
13730				22.6			19.5	
13740				22.6			19.5	
13750				22.6			19.5	
13760				22.6			19.5	
13770				22.6			19.5	
13780				22.6			19.5	
13790				22.6			19.5	
13800				22.6			19.5	
13810				22.6			19.5	
13820				22.6			19.5	
13830				22.6			19.5	
13840				22.6			19.5	
13850				22.6			19.5	
13860				22.6			19.5	
13870				22.6			19.5	
13880				22.5			19.5	
13890				22.6			19.5	
13900				22.6			19.5	
13910				22.6			19.5	
13920				22.6			19.5	
13930				22.6			19.5	
13940				22.5			19.5	
13950				22.6			19.5	
13960				22.5			19.5	
13970				22.5			19.5	
13980				22.5			19.5	

Time (minutes)	Temperature $\left({ }^{0} \mathrm{C}\right)$							
	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
13990				22.5			19.5	
14000				22.5			19.5	
14010				22.5			19.5	
14020				22.5			19.5	
14030				22.5			19.5	
14040				22.5			19.5	
14050				22.5			19.5	
14060				22.5			19.5	
14070				22.5			19.5	
14080				22.5			19.5	
14090				22.6			19.5	
14100				22.6			19.4	
14110				22.5			19.4	
14120				22.5			19.4	
14130				22.5			19.4	
14140				22.5			19.4	
14150				22.5			19.4	
14160				22.6			19.4	
14170				22.6			19.3	
14180				22.6				
14190				22.6				
14200				22.6				
14210				22.6				
14220				22.6				
14230				22.6				
14240				22.6				
14250				22.6				
14260				22.6				

	Temperature (${ }^{0} \mathrm{C}$)							
Time (minutes)	Sample one	Sample two	Sample three	Sample four	Sample five	Sample six	Sample seven	Sample eight
14270				22.6				
14280				22.6				
14290				22.9				

