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Context. In order to manage any animal species well, the knowledge
and understanding of how abundant they are in their habitats and
their spread around the same habitat ought to be as accurate as pos-
sible. However, this is not easy given the nature of large carnivores
being nocturnal and their poor relationship with human beings.
Aims. The main objective of the project is to estimate accurately the
current population density and total of Tsavo National Park in terms
of Lions and other large carnivores using playback recordings as the
main method of luring them to be counted.
Methods. Applying mixing distributions to construct a distribution
for the number of counts. Justify the use of Bayesian methods to by-
pass mathematical intractability of many mixtures arising from nat-
ural and biological processes. Construct an algorithm for estimating
the various parameters of the model(s) by MCMC process in Win-
BUGS. Compare lion densities and total counts by habitat.
Key results. A model for estimating the number of lions in Tsavo
was constructed as an MCMC algorithm in WinBUGS after it was
evident that constructing a mathematically tractable equations fol-
lowing the conditions available was not possible. This served to both
help estimate the lion density and justify the use of Bayesian meth-
ods. The model produced consistent results for parameter estimates
making it the best alternative for evaluating the population density
under the prevailing conditions.
Conclusions. Bayesian methods as implemented with MCMC algo-
rithm provides the best alternative approach to parameter estimation
especially in cases where the exact distributions are not known but
their general characteristic behaviors are available as was the case
here.
Implications. Provided the general characteristics of a phenomenon
is known, MCMC sampling can be effectively used to estimate the
best possible parameters. However, this needs to be checked if it
is in agreement with the nearest available mathematically tractable
model equations and be used as reference points.. . .
Key words. Bayesian inference, MCMC sampling, WinBUGS, popu-
lation density, carnivore, lion.
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Chapter 1

Introduction

1.1 Background

Ecological dynamics are a great influence on the population of any
species. That explains why some animals have caved an ecological
niche for themselves. The lion is the king of the jungle for instance.
There are other ecosystems where there is no clear king but many
of the animals in those niches share the habitat with each caving its
own domain and in return respecting the other’s domains. Dorazio
and Connor (2014) correctly asserts that the desire to understand pat-
tern variation in species abundance in any habitat has always been
the driving force behind ecological research. A clear understanding
of the interaction between various occupants of any given ecosystem
breeds a balance and ensures that harmony prevails. Take the food
chain for instance, large carnivores are basically at the top. To make
it more interesting, there are several of them. By being many of them
in the same category means they share the available resources. There
can only be so much prey in any given habitat. This means that the
number of the predators must be kept in check to prevent a scenario
where they have fed on all available prey and remain to starve to
death. Yirga et al. (2014) suggest that the population of large carni-
vores worldwide has been on the decline due to a conglomerate of
factors among them action of human ‘persecution’ and degradation
of habitats. The situation is doubly tricky for circumstances where
the habitat is limited by other factors. Limited habitats include na-
tional parks and game reserves even though the whole earth itself
is a limited resource. On the other hand, the human factor in these
dynamics is not to be assumed or underrated. Dolrenry et al. (2014)
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states that the population of African lion in Kenya and Tanzania is
shrinking because of encroachment that human beings are doing on
their habitats. It is only when these human wildlife conflicts are re-
duced to the bare minimum that we can hope to conserve the quickly
dwindling large carnivore species Thorn et al. (2013). It’s at this point
that we focus more on this bound habitats. Being resources that are
closely monitored and under careful management, those tasked with
such are to be utterly aware of the dynamics of population change
among the animals they are managing in those ecosystems. Large
carnivores among them lions, hyenas, leopards and cheetahs being
at the top of the food chain become candidates for great interest by
all and sundry in ecology and animal conservation studies Young-
Overton, Funston, and Ferreira (2014). Because many tourist are at-
tracted to viewing large carnivores in their free ranging habitats Borg
et al. (2016), those kinds of habitats must be conserved by any coun-
try and state interested in attracting such caliber of tourists. And in
most African countries, tourism is still a major determinant of eco-
nomic growth and development. The national parks and game re-
serves have been source of income for many African nations for a
long time. Tourists from both within the country/continent and out-
side visit the parks to enjoy a view of the charismatic animals Win-
terbach, Whitesell, and Somers (2015). They go ahead to argues that
the tourism aspect acts as an incentive to incite the conservation of
the wildlife. Others also visit for trophy hunting. Studies may fo-
cus on abundance of prey which helps manage endangered species
Ariefiandy et al. (2013). Other studies just focus on estimating the
abundance of the species of interest without much reference to the
prey factor. Irrespective of the approach, the management of the na-
tional parks and game reserves have to be able to estimate the num-
ber of animals in those ecosystems they are in charge of. In order to
manage any animal species well, the knowledge and understanding
of how abundant they are in their habitats and their spread around
the same habitat ought to be as accurate as possible. This is quite an
uphill task unless substantial research work is done to come up with
some of the effective methods of estimating population size which in
effect is just the culmination of abundance and distribution. Cozzi
et al. (2013) argues that despite the importance of getting accurate
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estimates especially of the large carnivores for effective habitat man-
agement, it is challenging to obtain. Ariefiandy et al. (2013) tries to
find environmental drivers of the variations in population of lions
and hyenas in Kruger National Park. Their focus is the effects of
rainfall on behavior of the underscored carnivores.

1.2 Statement of the Problem

The concern is how best to determine the population of large car-
nivores in the national parks and game reserves. These being na-
tional resources under management especially for purposes of keep-
ing the ecosystem and for financial gains as tourist attraction cen-
ters. Of course tourism has crawled into a major foreign exchange
earner in Kenya Revord Larkin (2014). Its importance cannot be
overemphasized. Revord Larkin (2014) argues that the conflict be-
tween human and wild animals can only make the industry grow
from bad to worse. Even though most of the conflict arise when the
large carnivores encroach on livestock, Osano et al. (2013) shows that
the tourism income equals and to some extend exceeds income from
the said livestock. The large carnivores though have been shown to
encroach on livestock only when the wild prey in those parks have
reduced to the utter minimum Khorozyan et al. (2015). This explain
the importance of knowing the numbers so as to prevent the conflict
that will arise due to lions and hyenas going out of their way to at-
tach livestock because of famine in the parks. With such facts at hand
there is need to know exactly how many of the species there are so as
to put in place proper strategies for taking care of them and remain
in business as a tourist attraction center. There has been a consistent
decline in the large carnivore population as was shown by Lamprey
and Reid (2004). With all that said and known, it is therefore impor-
tant for appropriate ways to properly estimate the number of large
carnivores.
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1.3 Significance of the study/justification

Calling animals to call station by playback recordings is among the
most effective methods of assessing density and distribution of the
elusive carnivores Cozzi et al. (2013). This is due to the fact that these
carnivores shy away from human beings who have been known to
persecute them Borg et al. (2016) for one reason or another but mostly
through conflict arising from the carnivores encroaching on livestock
Khorozyan et al. (2015) or through the famous trophy hunting Cozzi
et al. (2013) which has been shown to negatively impact the popu-
lation of wild life especially the lions. Well known methods of esti-
mating wildlife population have been in use. Methods like capture-
mark recapture, roar counts, aerial counts, individual identification
for total counts, setting up camera traps etc. have been in use for
a very long time. However, they exhibit a lot of limitations includ-
ing but not limited to underestimating the abundance of carnivores,
low encounter rates in woodlands, time consuming for large areas
to be covered, unusually expensive, carnivores like lions having no
defined routes for cameras to capture them etc. Kiffner et al. (2008),
Mills, Juritz, and Zucchini (2001), and Ogutu and Dublin (1998). The
researches above also showed that playback sounds are quick and
cheap to carry out, they do not need intensive and expertise training,
are less invasive on the animals’ environment and most importantly
can allow for determination of habitat specific population densities.

1.4 Assumptions

Even though research has shown that environmental confounders af-
fect the behavioral responses of lions to any spotting, Young-Overton,
Funston, and Ferreira (2014) makes the assumption that any environ-
mental variations present during the time of experiment are not so
extreme as to alter the expected responses. Although not all lions in
the response area approximated to be circle of radius 2.5km which
was the lower bound for the calibration experiment in Kruger Na-
tional Park by Ferreira and Funston (2010) responded to calls due to
various reasons including but not limited to those already having a
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carcass, mothers nursing their cubs, sick etc. the response probabil-
ity of the same animals ought to take care of such non-response cases
and reasons Mills, Juritz, and Zucchini (2001).

1.5 Objectives

The main objective of the project is to estimate accurately the current
population density and total of Tsavo National Park in terms of Lions
and other large carnivores like Hyenas, jackals, cheetahs, using play-
back recordings as the main method of luring them to be counted.
This will be achieved by;

• Applying mixing distributions to construct a distribution for
the number of counts.

• Justify the use of Bayesian methods to bypass mathematical in-
tractability of many mixtures arising from natural and biologi-
cal processes.

• Construct an algorithm for estimating the various parameters
of the model(s) by MCMC process in WinBUGS.

• Compare lion densities and total counts by habitat.

1.6 Research Questions/Hypotheses

Considering the task of estimating the number of lions in Tsavo Na-
tional Park, there are many questions that need to be answered by
this project. In conjunction with our objectives, the following re-
search questions will be assessed;

• Does the parameter phi- the response probability for lions to
any calling station- from MCMC process agree with that from
calibration experiment Ferreira and Funston (2010) which is
our reference at 5% confidence?

• Does the response probability vary from lions to hyenas as sug-
gested by the works of Young-Overton, Funston, and Ferreira
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(2014), Mills, Juritz, and Zucchini (2001), Ogutu and Dublin
(1998), and Ferreira and Funston (2010)?

• Are the mixing distributions used in constructing the model the
only available options or can there be other alternatives?

• Is the algorithm constructed the best alternative for deriving
the parameters of the models?

• Does the response probability remain the same or vary by habi-
tat?

• In which habitat is the population density highest?

Following the objectives and the research questions stated above, the
main hypotheses of the project are;

• Due to their biological and social structure differences, lions
respond differently to call stations on hearing the sounds than
any other animals. This implies that the response probability
phi will be different for each and every different carnivore.

• The response probability is the same for all habitats in agree-
ment with other studies.

• The algorithm arrived at is the best alternative out of many oth-
ers.

• Population density varies by habitat since lions prefer some
ecological environments to others.
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Chapter 2

Literature Reviews

2.1 Introduction to Literature

Literature review was looked at in three different categories to effec-
tively assess the available material to necessitate the construction of
the models in this paper and effectively justify the choice

2.2 Method Literature

A lot has been done in terms of using sound playback to attract car-
nivores to a call in station so that the abundance of the species can
be estimated. Ogutu and Dublin (1998) estimated the population of
lions in Masai Mara national reserve-Kenya. The main focus was
what other factors may have affected the response of the lions. The
response probability from the calibration experiment only showed
about 25 percent of lions responding. They used sampling design
approach and not the model approach.
Mills, Juritz, and Zucchini (2001) applied the same approach to lure
spotted Hyenas in Kruger national park- South Africa. Using a model
approach instead of sampling design approach. They employed mix-
ture modelling using the gamma distribution. Making assumption of
uniformity in habitats, mathematical tractability was achieved. Un-
like Ogutu and Dublin (1998),they did calibration experiment for the
response range but employed maximum likelihood profiling to esti-
mate the response probability for the Hyenas.
Kiffner et al. (2008) focused on what experimental principles to ad-
here to in order to achieve the best results with sound playback as a
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method for estimating population density and size for spotted hye-
nas and lions. The study is carried out in Katavi national park- Tan-
zania. The focus of the study was investigating the effect of time of
playback, phase of the moon and presence or absence of other species
on the response of spotted hyenas and lions. They also sought to
test the assumptions that the animals were lured from a circular plot
and that all the lured animals are observed. They found that time of
night and phase of the moon did not sufficiently affect the luring of
lions. Because of the choice of open places for stations, all animals
lured must have been detected and the model based approach satis-
fied most if not all carnivore characteristics hence was proved to be
efficient.
In a slightly different perspective,Ferreira and Funston (2010) eval-
uates the population variables on the lion population in Kruger na-
tional park- South Africa and especially the perceived effects of bovine
Tuberculosis. The actual aims were to calibrate call-up stations and
define survey effort needed to get estimates with known precision,
and extract from them age structures and survival rates estimates,
to estimate number of lions and then to evaluate impact of bovine
tuberculosis (bTB) on lion density and survival estimates. The ap-
proach used is using call-up stations to estimate selected population
variables and evaluated the perceived threat of bTB in landscapes of
varying prey biomass in the Kruger National Park. The main results
were as follows;

• The size of the lion population was stable, although long inter-
vals between present and historical estimates limit this conclu-
sion.

• Density and survival rates associated positively with prey biomass,
and a positive association was detected between the survival
rate and bTB prevalence, with survival being higher in areas
that had high prevalence of bTB.

• Male survival was lower than female survival, disregarding the
effects of prey biomass or bTB prevalence.

• Body condition of lions was high, with scores lower at low to
medium prey density.

Simalarly, Bauer (2007) on determining the status of lions population
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in Bouba Ndjida National Park, Cameroon uses sound playback to
lure the lions from their dens. From the hypothesis that the region
being stadied has been affected by infiltration of varied human ac-
tivities, the results confirm the same as only nine lions are observed.
Because of the extreme low biomass density, the calibration exper-
iment could not be done despite the recommendation. The result
was that the response range and probability had to be assumed from
previous works by Mills, Juritz, and Zucchini (2001) and Ogutu and
Dublin (1998) that effective response range is 2.5km and 3.2km re-
spectively with the response probability of 26% for lions. To com-
plete their work, they had to postulate a response probability of 75%
and response range of 2.5km.
Also the works of Ogutu, Bhola, and Reid (2005) on how pastoral-
ism in protected areas affect the population density and distribution
of large carnivores and their prey use sound playback to attract the
animals for counts. The hypothesis of pastoralism and protection in-
fluence carnivore density and distribution in the Mara ecosystem of
Kenya was tested by:

1. estimating the density and size of lions, spotted hyenas and
jackals;

2. characterizing their spatial distribution inside and outside the
reserve and

3. establishing the extend to which land management influences
carnivore population levels and spatial distribution by control-
ling for the effects of grass height, elevation and prey biomass
density

The result of the study was as follows;

• Lions never responded to playbacks in the ranches, so the po-
tential shift in lion behavioural response for different land use
zones is another potential explanation for the patterns found
here.

• A real shift in lion populations is a better explanation than a be-
havioural change in relation to playbacks based on additional
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data from independent systematic and intensive censuses and
playback surveys conducted in the ranches.

• Lion populations in the pastoral ranches seemed headed for
extinction, probably owing to conflicts with pastoralists, neces-
sitating urgent conservation interventions that integrate pas-
toral economic welfare with large carnivore conservation goals
to foster long-term viability of lion populations in the pastoral
systems.

2.3 Mathematical Literature

Mixture modelling provides a more flexible way of modelling data
that is heterogeneous Jasra, Holmes, and Stephens (2005) and be-
cause they can be used to approximate large class of functions, they
have been employed to describe nonstandard distributions. They go
ahead to argue that mixture modelling in the frequentist approach of
maximum likelihood has the disadvantage of remaining unbounded
for location scale component models. However, the advent of MCMC
processes introduced in the Bayesian approach helps bypass that im-
passe using what is known as the reversible jump MCMC algorithm.
Mixture modelling has had many applications, for instance Kupzyk
and Unit (2011) in his lectures uses mixture modelling to assess link
types in trajectories and in fact determine homogeneity in develop-
mental arrays from data collected over time. Some of his conclusions
are;

• Can help identify at-risk individuals.

• Flexible (can use categorical or continuous outcome and pre-
dictor variables; model cross-sectional or longitudinal data.

• Useful for condensing a large amount of information in order
to see patterns in data.
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• Useful for when groups are unknown.

• Avoids some of the problems of traditional clustering methods.

Similarly, Sawatzky and Richardson (2009) uses mixture models to
explore the density of a sample utilizing information of latent vari-
ables. They concluded that most of the variation in the latent variable
remained unexplained. Also categorization of the latent variable was
consistent in all the models.
Theobald, Chatterjee, and Horgan (2012) in constructing a model for
analyzing dietary records uses mixture modelling. First, they consid-
ered how finite mixture models could be used in cases where data
appears as repeated records, and then apply a Bayesian version of
one such extension to data on the consumption. They also illustrate
how factors such as sex and age may be included in the model. The
approach of mixture-modelling provided better estimates as com-
pared to the alternative methods of the probability distributions of
daily consumptions and of maximum consumption over a number
of days.
In estimating the abundance of carnivores with remote camera traps-
a mark re-sight approach- Alonso et al. (2015) uses mixture mod-
elling to compare the traditional method mark recapture with the
new method mark re-sight. This led to the conclusion that the new
estimator may be particularly useful for estimating abundance of
uniquely identifiable species that are difficult to sample using cam-
era traps alone.
On the same note, Buckland et al. (2014) on determining the effects of
the invasion of the giant Madagascar day gecko on the four endemic
Mauritian day geckos, uses binomial mixtures in their species distri-
bution models. An ensemble forecasting approach was used to pre-
dict the spatial distribution and hierarchical binomial mixture mod-
els with repeated visual estimate surveys to calculate the abundance.
Their conclusion was that species distribution modelling, together
with the breadth metrics, predicted that Madagascar day gecko can
partly share the equivalent niche with endemic species and survive
in a range of environmental conditions. We provide strong evidence
that smaller endemic geckos are unlikely to survive in sympatry with
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Madagascar day gecko.
Abas (2013) On determining efficient finite mixture models with com-
pact and essential components for clustering data proposes an algo-
rithm that can be used effectively to evaluate and determine the best
finite mixture model for clustered data. His results is that the pro-
posed algorithm EMCE is superior to all other algorithms in the lit-
erature, especially with small data sets that are sparsely distributed
or generated from overlapping clusters.

2.4 Algorithm Literature

Fryback, Stout, and Rosenberg (2001) does an elementary introduc-
tion to Bayesian computing using WinBUGS. They aimed to pro-
vide an elementary tutorial of WinBUGS to enable performance of
Bayesian Statistical analysis.They also provided a background on the
computational methods used by the software. They scripted sim-
ple algorithms that can be used by novices as they start out creating
their own. They also provided few working examples which could
be implemented by a learner. They were able to provide a schematic
overview of how the program works.
Sturtz, Ligges, Gelman, et al. (2005) introduced an R package for run-
ning WinBUGS. They assists in giving directions of how to write R
scripts in a language that the WinBUGS program can understand.
Their argument of implementing in R is justified by the fact that R-
GUI provides the necessary tools to do further analysis on the output
from WinBUGS
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Chapter 3

Materials and Methods

3.1 Description of Survey

The description below follows in the footsteps of the work of Mills,
Juritz, and Zucchini (2001). A 6 min long tape of sounds known to at-
tract lions was made. Sounds used included the bleating of a wilde-
beest (Connochaetes taurinus) calf, hyenas mobbing lions, and lions
competing on a kill. This combination of sounds was used in order
to attract lions under a range of conditions; i.e., not only when they
might be hungry, but also when, even satiated, social circumstances
would be expected to attract them. The sound was played through a
4000 Report-L tape recorder attached to a 12 V mobile amplifier and
two 45.7 cm, 8 ohm, horn speakers, connected in series and pointing
in opposite directions. One survey was conducted, between X and
Y dates. On the basis of the landscapes, the TNP was consolidated
into six habitats. Each habitat was sampled roughly in proportion
to its area. Prior to the first survey, randomly chosen routes along
the extensive road system in the TNP were drawn onto a map, so
that the entire 20,000 km2 TNP was sampled. Each night of the sur-
vey a route of approximately 100 km was driven. At approximately
10 km intervals along the route the vehicle was stopped at a suit-
able point and the tape was played. We selected as open an area as
possible so as to obtain the best visibility. In some habitats this was
not always easy, but crossroads which gave good four-way visibil-
ity as well as slightly elevated stretches of road often helped. Thirty
minutes was spent at each station. After 3 min of playing, the speak-
ers were turned through 90. Approximately 5 min after the end of
the first playing the tape was replayed and again the speakers were
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turned 90 after 3 min. If lions were heard in the vicinity, but did not
appear, the tape was played a third time.

Two or three observers, each armed with a spotlight, stood on the
open back of the vehicle, a small truck, so that eye height was about
3 m above the ground. From time to time the observers scanned
the vicinity with the spotlights. Lions are easy to see with a spot-
light as the light is reflected in their eyes and their characteristic gait
can quickly be identified. Any lions or other carnivores that were
located were carefully monitored so as to prevent double counting.
Environmental conditions were held as constant as possible, partic-
ularly with regard to wind, and call-ups were not done if the wind
exceeded 2 on the Beaufort wind scale. On each night a different
and non-overlapping area was sampled. Consecutive calling stations
were at least 10 km apart and the drive between them took at most
40 min. These facts make the chances of double counting extremely
remote.

3.2 Response Range and Probability

Many studies have been done to establish the most appropriate re-
sponse range for lions and hyenas to calling stations using playback
sound recordings. In this study, the results of Ferreira and Fun-
ston (2010) will be used. They found the optimal response range as
4.2km. However, the lower bound of 2.5km will be most appropriate
to avoid the likelihood of the model overestimating the population
size of the lions and hyenas in Tsavo national park. However, for the
response probability, the use of independent experiments will not
be possible hence the MCMC algorithm constructed will be used to
evaluate best approximation of this parameter phi, the probability of
spotting an animal.
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FIGURE 3.1: Map of Tsavo



16 Chapter 3. Materials and Methods

3.3 Data

There were 116 calling stations spread out in the vast areas subdi-
vided into 6 different habitats. Out of all that lions turned up at 22
stations (18.96%) and hyenas turned up at 70 stations (60.34%). The
number at each station ranged from 0- 5 and 0- 16 for lions and hye-
nas respectively. Hyenas turned at 13 out of 22 stations (59.09%) were
lions turned up and they were mostly equal in number or slightly
more than the lions.

TABLE 3.1: Summary of Habitat Totals

Habitats Min of Area (KM2) Sum of Lion Sum of Hyena Count of Call_stn
CDF 89.87 0 10 2
CG 5913.15 12 65 24
CL 3349.79 2 34 19
DSST 1145.1 0 25 7
OG 1137.85 0 12 7
OGSS 8117.81 31 116 57
Grand Total 89.87 45 262 116

3.4 Model for Count Data

The number of lions and hyenas that responded to the different call-
ing stations varied widely. There may have been many reasons for
that but chief among them will be distribution of animals in their
respective habitats Mills, Juritz, and Zucchini (2001). As they sug-
gested and has been the case, this is made lighter by setting up sta-
tions in specific habitats so some kind of strata are created. The
model therefore is fitted and tested per habitat. At any given ran-
dom calling station, there may have been Y lions who were called.
But due to many reasons mentioned early, not all of them responds.
Therefore, let’s say only X lions respond. The interest is determining
how the lions are distributed in the entire park and therefore the dis-
tribution of Y and especially its mean will be key to this. Of course
only the values of X are observed and not the values of Y.
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From Unwin (2012) who defines Bayes’ Rule as a consequence of con-
ditional probability as follows;
Assuming that both P (A) > 0 and P (B) > 0 we can rewrite the defi-
nition of conditional probability as

P (A ∩B) = P (A/B)P (B)

or equivalently as

P (A ∩B) = P (B/A)P (A)

Setting the right-hand sides of the above equations equal to each
other we have

P (B/A)P (A) = P (A/B)P (B),

which yields the formula originally discovered by Bayes

P (B/A) = P (A/B)P (B)
P (A)

In the same accord therefore,

P (X = x) =
∞∑
y=x

P (X = x/Y = y)P (Y = y) (3.1)

Moving forward, there is need to define appropriate distributions for
the total population Y and also for the conditional of X on Y. Consid-
erations here are whether or not mathematically tractable results is
possible and more importantly is the physical circumstances of the
study. The two are sufficient to guide proper models choices. From
the data, both lions and hyenas are turning up in varying numbers at
the calling stations and different habitats. Therefore, the thought of
the animals being uniformly distributed in the entire Tsavo national
park may be inappropriate. The number of lions near any calling sta-
tions chosen at random has to have a distribution of sorts. Just like
Mills, Juritz, and Zucchini (2001) the choice taken here is Poisson dis-
tribution with mean lambda.

P (Y = y) =
λye−λ

y!
Wherey = 0 1 2 . . . λ > 0 (3.2)
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Since as observed from the data, the mean and variance λ seems to
vary from station to station and habitat to habitat, there is need to
allow the λ to have its own distribution. Finding an appropriate
mixing distribution for the Poisson is therefore necessary. As Suk-
saengrakcharoen and Bodhisuwan (2014),states, the mixture distri-
bution is one of the most important ways to obtain new probability
distributions in applied probability and several research areas. Con-
sidering the properties and characteristics of λ, another of candidate
distributions exist;

1. Gamma(α, β)as in Mills, Juritz, and Zucchini (2001)

2. Exponential(β)which will be considered in this paper given its
close relationship with the Gamma.

3. The Log-Normal distribution.

f(λ) = βe−(βλ), whereλ, β > 0 (3.3)

This means that,
Given that the mixing distribution is continuous, the distribution of
Y is therefore given by

P (Y = y) =

∫ ∞
0

P (Y/λ)P (λ)dλ

=

∫ ∞
0

e−λλy

y!
βe−λβdλ

=
β

y!

∫ ∞
0

e−λ(1+β)λydλ

Letting R = (1 + β)λ and hence dλ = 1
1+β

R

P (Y = y) =
β

y!

∫ ∞
0

e−RRy

(
1

1 + β

)(y+1)

dR

=
β

1 + β

1

y!

∫ ∞
0

e−RR(y+1)−1dR

=

(
β

1 + β

)(
1

1 + β

)y
Γ(y + 1)

y!
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Whereby from the definition of the Γ function,

Γ(α) =

∫ ∞
0

e−xx(α−1)dx

Therefore,

P (Y = y) =

(
β

1 + β

)(
1

1 + β

)y
(3.4)

Which means that
Y ∼ geom

(
β

1+β

)
Going back to equation [1.1], which is the main focus here and hav-
ing analytically acquired a distribution for Y, then we need to make
an assumption concerning the distribution of X conditioned on Y to
be binomial since X is capped by the Y i.e the number of lions actu-
ally observed is only a fraction of the actual number of lion within
any given calling station. Also we are going to take the probability
of success in this binomial to be the response probability (π).
Therefore, we have,

P (X = x) =
n∑
i

(
yi

xi

)
πxi(1− π)yi−xi

(
β

1 + β

)(
1

1 + β

)yi
(3.5)

On simplification, we have

P (X = x) = (
β

1 + β
)

n∑
i=1

(
yi

xi

)(
1− π
1 + β

)yi−xi( β

1 + β

)xi
(3.6)

At this point, the assumption of the parameter β is assumed to be
sufficiently small to allow the binomial-like component of the equa-
tion [6] to be equivalent to 1 making.

P (X = x) =
β

1 + β
,∀β 6= 1, x = 0, 1, 2 . . . (3.7)

So that X ∼ unif
(

1+β
β

)
With the interest to determine the E(X),which basically should be
the same as the E(E(X/Y )). In this case however, the assumption
causes the two expressions to be different.
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E(X) 6= E(E(X/Y ))

Since the expression of equation [1.6] generally appears like a bi-
nomial with the exact parameters unknown then its necessary to
find a way around determining the most appropriate parameters
of this particular binomial. This can be best achieved by employ-
ing MCMC processes. From the work of Mills, Juritz, and Zucchini
(2001) whereby they used a distribution for λ in equation [1.3] as

f(λ) =
βα

Γ(α)
λα−1e−βλ (3.8)

And using it as a mixing distribution for P (Y = y/λ). This enabled
the distribution of Y to be derived as;

P (Y = y) =

∫ ∞
0

e−λλy

y!

βα

Γ(α)
λα−1e−βλdλ (3.9)

Which on simplification became;

P (Y = y) =
βα

y!Γ(α)

∫ ∞
0

e−λ(1+β)λ(y+α−1)dλ

=
βα

Γ(α)

Γ(y + α)

(1 + β)y+α

(3.10)

By the definition of the gamma function and appropriate substitu-
tion. The outcome was that Y was found to be negative binomially
distributed with parameters α and β Using equation [1.2] and equa-
tion [1.10] as the mixing distribution with the same assumptions that
X conditioned on Y is binomially distributed with π as the response
probability. This enabled them to get that;

P (X = x) =
n∑
i=1

(
yi

xi
)πxi(1− π)yi−xi

βα

Γ(α)

Γ(yi + α)

(1 + β)yi+α
(3.11)

Despite the original requirement that λ has a distribution and is not
rather constant, they had to assume that π = 1 which implies that
yi = xi

Which simplified the distribution of X to;

P (X = x) =
n∑
i=1

πxi
βα

Γ(α)

Γ(xi + α)

(1 + β)xi+α
(3.12)
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And simplifying the sums yielded

P (X = x) =

(
yi

xi

)(
βπ

1 + βπ

)α(
1

1 + βπ

)xi
(3.13)

Therefore the distribution of counts was found to be
X ∼ negbin

(
α, βπ

1+βπ

)

Considering the unrealistic nature of the assumptions made my Mills
and the ones made in this project in an attempt to make an analytic
evaluation of the mixture of distributions. This still shows how im-
portant it is to revert to MCMC sampling processes to evaluate the
parameters for the appropriate distribution of the observed number
of lions.

3.5 Development OF MCMC algorithm

Both approaches outlined and summarized into equations [1.6] and
[10] point to a binomial-like structure in the distribution of the num-
ber of observed counts. Fryback, Stout, and Rosenberg (2001) gives
an outline on model specification in WinBUGS. Following the cue
therefore, we propose that the distribution of X be binomial but with
both parameters unknown which will incite a reason to find an ap-
propriate distribution for both both p and k in the X ∼ bin(p, k).
The probability of success p, is the measure of response rate for li-
ons to the calling stations. Since it is a continuous variable between
0 and 1, then we suggest that to use a better distribution hence p ∼
dunif(π, 1) where π is the actual response rate that are interested in.
However, there is a possibility of modeling p as a beta distributed
random variable but the challenge is that the beta distribution does
not provide us with an opportunity to insert the response probabil-
ity π in its specification as readily as the uniform distribution does.
On the other hand the appropriate distribution for k should consider
its discrete nature and since the previous definitions as outlined in
equation [2] above allows two routes that it can take. Then we will
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implement both routes and find the most appropriate. First, if the re-
sponse probability was assumed uniform then; k ∼ dpois(λ) would
be the choice of its distribution. However, if the response proba-
bility is not constant, then the derivations of equations [4] and [9]
suggest geometric and negative binomial respectively. Assuming
that k ∼ dgeom(α), no algorithm acceptably runs. For the case of
k ∼ dnegbin(α, β) , the choice of the appropriate prior distributions
for both α and β is very important to enable the model to compile
and run.
Case 1
Let the case involve X binomially distributed with parameters p and
k. And followed by p being uniformly distributed containing the
response probability π and k Poisson distributed with parameter λ,
then the following WinBUGS codes for the models are used.
for i in 1 : N {

x(i) ∼ dbin(p(i), k(i))

p(i) ∼ dbeta(δ, θ)

k(i) ∼ dnegbin(α, β)

}

The prior distributions for λ and π are such that they are non-informative
Candidate distributions for π are continuous uniform (0, 1) or beta,
whereas those for λ are gamma or Log-normal. The choice of the dis-
tribution for the parameters π and λ and the subsequent initial values
assigned to it will determine the compilation of the distribution of X.
More so, the model must have the appropriate environment for ini-
tiation of the MCMC process. That explains why some distributions
cannot be candidates for the various parameters. Similarly, the distri-
butions of the various parameters can also be informed by whether
the expected behavior of the parameter. For instance, π is expected
to be continuous ranging from 0 to 1 since it is a probability. This
leaves only uniform and beta distributions as the only candidates.
On the other hand, the parameter λ is continuous ranging from 0 to
∞. This leaves only gamma, exponential, Weibull and log-normal as
the candidates. The model now needs the specifications of the priors
to be complete. For the above case we have,
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{

p(i) ∼ dunif(0.0, 1.0)

k(i) ∼ dgamma(10, 10)

}
The final step would be to write down the data in a form that Win-
BUGS do recognize. The simplest being writing as a list. The same
goes for the appropriate initial values that will enable the MCMC
process to start. The complete model statement therefore appears as

Model
{
for i in 1 : N {

x(i) ∼ dbin(p(i), k(i))

p(i) ∼ dbeta(δ, θ)

k(i) ∼ dnegbin(α, β)

}

π ∼ dunif(0.0, 1.0)

λ ∼ dgamma(10, 10)

}
On running the model, its goodness is measured by a number of
things namely;

• Checking its density graph shows how well the simulation as-
similates the actual distribution of the parameter in question.

• The estimate of the parameter is provided together with its
standard deviation. In addition, the best way to check for the
goodness of fit of the estimated value of the parameter is the
MCMC error which requires to be a small as possible.

• As the process iterates, the simulation plots a curve. Observ-
ing if the curve shows a sign of convergence provides another
check on how well the estimate fits the distribution for the pa-
rameter in question.
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Provided below are an alternative model that were created to test
Model
{
for i in 1 : N {

x(i) ∼ dbin(p(i), k(i))

p(i) ∼ dbeta(δ, θ)

k(i) ∼ dnegbin(α, β)

}

λ ∼ dgamma(10, 10)

π ∼ dbeta(100, 100)

}
Case 2
Let the case involve X having binomial distribution with parameters
p and k. And followed by p being uniformly distributed containing
the response probability π and k distributed as negative binomial
with parameters α and β, then the following winBUGS codes for the
models are used.
Model
{
for i in 1 : N {

x(i) ∼ dbin(p(i), k(i))

p(i) ∼ dbeta(δ, θ)

k(i) ∼ dnegbin(α, β)

}
The same procedure as above is followed and since the parameters
π and α are measures of probability, their non-informative priors
can only take on the candidature of uniform and beta distributions.
However, the parameter β could take on the candidatures of uni-
form, Poisson and gamma distributions with proper specifications.
Below are the possible complete model specifications that were cre-
ated in an attempt to get the best
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MODEL 1

Model
{
for i in 1 : N {

x(i) ∼ dbin(p(i), k(i))

p(i) ∼ dunif(π, 1)

k(i) ∼ dnegbin(α, β)

}

α ∼ dunif(0.0, 1.0)

β ∼ dgamma(10, 10)

π ∼ dbeta(100, 100)

}
MODEL 2

Model
{
for i in 1 : N {

x(i) ∼ dbin(p(i), k(i))

p(i) ∼ dunif(π, 1)

k(i) ∼ dnegbin(α, β)

}

α ∼ dunif(0.0, 1.0)

β ∼ dgamma(100, 100)

π ∼ dunif(0.0, 1.0)

}
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MODEL 3

Model
{
for i in 1 : N {

x(i) ∼ dbin(p(i), k(i))

p(i) ∼ dbeta(π, 1)

k(i) ∼ dnegbin(α, β)

}

α ∼ dbeta(100, 100)

β ∼ dunif(5, 25)

π ∼ dbeta(100, 100)

}

MODEL 4

Model
{
for i in 1 : N {

x(i) ∼ dbin(p(i), k(i))

p(i) ∼ dunif(π, 1)

k(i) ∼ dnegbin(α, β)

}

α ∼ dunif(0.3, 1.0)

β ∼ dunif(7, 22)

π ∼ dbeta(3.0, 3.0)

}
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MODEL 5

Model
{
for i in 1 : N {

x(i) ∼ dbin(p(i), k(i))

p(i) ∼ dunif(π, 1)

k(i) ∼ dnegbin(α, β)

}

α ∼ dunif(0.0, 1.0)

β ∼ dgamma(100, 100)

π ∼ dbeta(100, 100)

}

MODEL 6

Model
{
for i in 1 : N {

x(i) ∼ dbin(p(i), k(i))

p(i) ∼ dunif(π, 1)

k(i) ∼ dnegbin(α, β)

}

α ∼ dunif(0.0, 1.0)

β ∼ dpois(20)

π ∼ dbeta(2.0, 2.0)

}
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MODEL 7

Model
{
for i in 1 : N {

x(i) ∼ dbin(p(i), k(i))

p(i) ∼ dunif(π, 1)

k(i) ∼ dnegbin(α, β)

}

α ∼ dbeta(100.0, 100.0)

β ∼ dpois(100)

π ∼ dbeta(100, 100)

}

MODEL 8

Model
{
for i in 1 : N {

x(i) ∼ dbin(p(i), k(i))

p(i) ∼ dunif(π, 1)

k(i) ∼ dnegbin(α, β)

}

α ∼ dunif(0.0, 1.0)

β ∼ dgamma(10, 10)

π ∼ dbeta(100, 100)

}
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Case 3
There is this option of X having a beta-binomial distribution whereby
the distribution of lions and hyenas in the TNP is generally binomi-
ally distributed but the probability of encountering an animal is un-
known and hence takes on the beta distribution. The result of the
mixture is beta-binomial and its model is expressed as follows
MODEL 9

Model
{
for i in 1 : N {

x(i) ∼ dbin(p(i), k(i))

p(i) ∼ dbeta(δ, θ)

k(i) ∼ dnegbin(α, β)

}

α ∼ dbeta(100.0, 100.0)

β ∼ dgamma(10, 10)

δ ∼ dgamma(100, 100)

θ =∼ dgamma(100, 100)

π = δ
δ+θ

}

All the models apart from model 9 helps to directly estimate the pa-
rameter π the response rate of the lion or hyena. However, in model
9 the estimate of π is indirectly estimated as a proportion using the
parameters θ and δ respectively as
π = δ

δ+θ
.

In either case, the objective is determining E(X) = µπ whereby
µ = E(Y ) and π- the response rate. Therefore the estimate of µ can
be obtained for each habitat or be generalized for the whole park
depending on whether or not the estimates for π can be taken to be
constant for all habitats.





31

Chapter 4

DATA ANALYSIS

Using the data below, each of the models are tested to find the most
appropriate one. The data was collected over the whole of Tsavo
national park which is divided into East and West. The number of
carnivores observed during data collection were as follows:

TABLE 4.1: Species Totals

Species Number observed
Cheetah 6
Genet 3
Hyena 262
Jackal 7
Lion 45
Leopard 0
Grand Total 283

The distribution of the animals per each habitat was as follows
It appears that because the open grassland with sparse shrubs has

TABLE 4.2: Total counts per Habitat

Habitats Area (KM2) Sum of Lion Sum of Hyena Call_stn
CDF 89.87 0 10 2
CG 5913.15 12 65 24
CL 3349.79 2 34 19
DSST 1145.1 0 25 7
OG 1137.85 0 12 7
OGSS 8117.81 31 116 57
Grand Total 19753.57 45 262 116

the largest area, it explains why the largest population of observed
lions and hyenas are found there. However, the closed deciduous
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forest has the least area yet as many animals were observed there as
they were observed in open grassland despite open grassland hav-
ing over 12 times as much area. This means the size does not directly
imply numbers even though the OGSS is the most expanse and pop-
ulous. The mean per habitat is follows;
Each of the nine models were ran and the estimates for the param-

TABLE 4.3: Habitat Means and Density

Habitat Sum of lion Mean of lion Sum of hyena Mean of hyena Total area
CDF 0 0 10 5 89.87
CG 12 0.5 65 2.7083 5913.15
CL(>50%) 2 0.1053 34 1.3158 3349.79
DSST 0 0 25 3.5714 1145.1
OG 0 0 12 1.7143 1137.85
OGSS 31 0.5439 116 2.0351 8117.81
Grand Total 45 0.3879 262 2.2586 19753.57

eters were compared based on least standard deviations and least
MC errors to determine which estimate to be used. Considering the
conditions for the best estimates, model 9 seems to have provided
the best set of estimates which are very consistent throughout the
changes in the value of N. The model also provides the smallest and
most consistent std deviations and MC errors. This will therefore be
used to estimate the population of lions and hyenas as

µ̂ =
ˆ̄x

π̂

Because of the inflation of zeros in the data caused by some habitats
recording no observation in all the call stations, the overall estimate
will be used for lions. However, for hyenas the individual habitat
estimates will be focused on.

The table values in Appendix B indicate that models 3,7 and 9 have
the best estimates of π across the habitats. They are also supported by
very small values of standard deviations and the minimal MC errors.
However, unlike for the other parameters α and β, the parameter π
does not show convergence for models 3 and 7. The graphs below
show the history extract from WinBUGS
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FIGURE 4.1: iteration history comparison
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TABLE 4.4: Summary of Lion Data

Habitat Mean of lion µ̂ for lion Density R=2.5 km Total pop.
CDF 0.00 0.00 0.00 0.00
CG 0.50 1.01 0.05 304.50
CL(≥50%) 0.11 0.22 0.01 36.80
DSST 0.00 0.00 0.00 0.00
OG 0.00 0.00 0.00 0.00
OGSS 0.54 1.09 0.06 448.90
Grand Total 0.39 0.82 0.04 820.76

TABLE 4.5: Summary of Hyena Data

Habitat Mean of hyena µ̂ of hyena Density of Hyena Tot. pop
CDF 5.00 9.90 0.31 27.66
CG 2.71 5.05 0.16 928.42
CL(50%) 1.32 2.59 0.08 269.17
DSST 3.57 6.91 0.21 246.03
OG 1.71 3.40 0.11 120.22
OGSS 2.04 3.64 0.11 918.26
Grand Total 2.26 3.67 0.11 2252.28

In addition, since each of the models are compiled as single chains,
using test statistics like Gaweke, Raftery or Heidelberger for single
chains and Gelman for multiple chains Raftery and Lewis (1992);Dong
(2015),Smith (2007),Sahlin (2011),Cowles and Carlin (1996). It is pro-
posed that a convergence diagnostic for Markov chains be such that
the first and last part of the Markov chain have equal means(by de-
fault the first 10% and the last 50%). Drawing samples with the two
means equal shows they are from the stationary distribution of the
chain,l and Geweke’s statistic has an asymptotically standard normal
distribution Cowles and Carlin (1996) and Sahlin (2011). The impli-
cation is that the value should be as close to zero as possible.
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TABLE 4.6: Model 3

MODEL 3
Fraction in
1st window = 0.1
Fraction in
2nd window = 0.5
alpha beta deviance phi
-0.6482 0.1718 0.764 -1.3788

TABLE 4.7: Model 7

MODEL 7
Fraction in
1st window = 0.1
Fraction in
2nd window = 0.5
alpha beta deviance phi
-0.08045 1.68164 0.80875 -1.36732

TABLE 4.8: Model 9

MODEL 9
Fraction in
1st window = 0.1
Fraction in
2nd window = 0.5
alpha beta deviance phi
-1.36028 -0.27076 2.3717 -0.08052
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Model 9 indicates the best convergence of the three model alterna-
tives. The test statistic can be looked at as Two-sample (X1andX2) T-
test of mean (unequal variance)

T =
(X̄1 + X̄2)

2

√
(
s21
n

+
s22
m

)

The D.F for T can be treated roughly as min(n− 1,m− 1). When
n,m → ∞, T can be approximated using the standard normal Z.
However, there is need to adjust the sample variances since they are
not independent.
Geweke’s diagnostics estimate for the sample variances use spectral
densities Cowles and Carlin (1996)and Sahlin (2011).
Simialarly, the Raftery-Lewis test approves that model 9 outperforms
all the others as shown below

TABLE 4.9: R-L Test Model 3

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95

Burn-in(M) Total(N) Lower bound
(Nmin )

Dependence
factor(I)

alpha 6 11379 3746 3.04
beta 6 14079 3746 3.76
deviance 6 11598 3746 3.1
phi 132 155892 3746 41.6

TABLE 4.10: R-L Test Model 7

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95

Burn-in(M) Total(N) Lower bound
(Nmin )

Dependence
factor(I)

alpha 6 4500 3746 1.2
beta 6 6405 3746 1.71
deviance 12 15429 3746 4.12
phi 93 101697 3746 27.1
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TABLE 4.11: R-L Test Model 9

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95

Burn-in(M) Total(N) Lower bound
(Nmin )

Dependence
factor(I)

alpha 6 7656 3746 2.04
beta 8 9526 3746 2.54
deviance 8 8452 3746 2.26
phi 5 6184 3746 1.65

The best model should have the Raftery-Lewis statistic as close to 1
as possible. This gives model 9 an edge over the others since its π es-
timate has R-L value of 1.65 as compared to 27.1 and 41.6 for the oth-
ers. Indeed, the MCMC process has totally converged for the model
9. Even though this R-L statistic is not exactly 1, its close enough
since it is not possible to exactly pin point convergence as correctly
stated in Cowles and Carlin (1996) The approach is based on two-
state Markov chain theory, with binomial variance of standard sam-
ples. Since N is based on binomial variance leads to the negative
result that more iterations are required for estimating quantiles near
the median than extreme quantiles to obtain the same degree of ac-
curacy. This approach may be applied to the output of any MCMC
algorithm as stated by Cowles and Carlin (1996) & Sahlin (2011)

In addition, the total iterations N needed for the convergence to take
place helps to suggest how close the MCMC process is to conver-
gence. When N >> A where A= the actual total iterations ran, then
the process has not reached convergence otherwise it most likely has
converged. On that note therefore, model 9 above has converged
while models 3 and 7 have not. It’s worth noting that the kernel den-
sity does not give a clear distinction between the models as can be
seen below. They all appear equally good because of the large num-
ber of iterations involved.
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FIGURE 4.2: kernel density comparison
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Chapter 5

Conclusions and
Recommendations

5.1 Conclusions and Discussions

The estimate of the response probability of lions π = 0.4754±0.0341(95%CI)

which is key in estimating population mean µ both per habitat and
generally was determined by using the algorithm in model 9 which
happened to be the best alternative out of all the possible candidates
especially for the sake of the other parameters of the model.
However, this estimate seems to be the same for both models 3 and
7 with the difference being that the estimate varies across habitats
for models 3 and 7 and only settles at 0.4754 for the whole study ar-
eas whereas its virtually the same all-through for all habitats when
it comes to model 9. This estimate is quite in agreement with the
reference calibration experiment by Ferreira and Funston (2010) The
estimate for the response of Hyenas is π = 0.616±0.029(95%CI) also
falls within the reference calibration experiment by Mills, Juritz, and
Zucchini (2001) and Ogutu and Dublin (1998) There is a significant
difference between the response rate of lions and hyenas in agree-
ment with calibration experiments of Ferreira and Funston (2010)
The table above shows clearly that the lions and even hyenas are

Habitat Counts Mean of Lion Mu for Lion Density R=2.5 Total Pop Total Area
CDF 0 0 0 0 0 89.87
C G 12 0.5 1.012 0.0515 305 5913.15
CL(>50%) 2 0.1053 0.2157 0.01099 37 3349.79
DSST 0 0 0 0 0 1145.1
O G 0 0 0 0 0 1137.85
OGSS 31 0.5439 1.086 0.0553 449 8117.81
Grand Total 45 0.3879 0.8159±4.4E − 3 0.04155±2.1E − 4 821±4 19753.57

TABLE 5.1: lion analysis
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distributed differently per habitat. The lions are found almost as
many in the open grassland with sparse shrubs as they are in the
closed grasslands. While the absence of observed numbers in the
open grasslands, closed deciduous forests and deciduous shrubland
with sparse trees gives an impression that lions are not found in those
habitats, which may not be absolutely true. This informed the use of
the overall density for the whole study zone of TNP instead of the
individual habitat densities. This is because out of the total area of
2372.82sq. km of land, only 514.72 sq. km was under observation
constituting a mere 22%. There is no sufficient evidence to dismiss
the whole of this area as having no lions at all. In order to make
use of this area therefore the whole area density of 4 lions in every
100sq. km of land was used. All this was on the assumption of a
response radius of 2.5 km which was the minimum response radius
in the work of Mills, Juritz, and Zucchini (2001) and later confirmed
by Ferreira and Funston (2010)

Concerning Hyenas, their distribution also varies by habitat. Ig-
noring closed deciduous forests for the limited size and calling sta-
tions used, deciduous shrubland with sparse trees in the most pop-
ulous at about 21 hyenas in every 100sq. km and cropland being the
least populous with just about 8 hyenas in every 100sq. km. With
or without including the closed deciduous forests, this brings the
total population of Hyenas to about 2500 in the expanse TNP. For
the case of hyenas there is evident various between using overall
data for the whole study region of TNP and individual habitat es-
timates. This is due to the fact that hyenas are found in all habitats
with varying density and each habitat has different size. The indi-
vidual habitat estimates are as shown It is important to note that the

Habitat pihat (95% CI) Mean of Hyena Muhat for hyena (95% CI) Density R=3.2(95% CI) Total Pop (95% CI) Total Area
CDF 0.505±0.0351 5 9.901±0.048 0.3078±0.0015 28±0 89.87
CG 0.5362±0.0335 2.7083 5.051±0.020 0.1570±0.0006 928±4 5913.15
CL 0.5091±0.0347 1.3158 2.585±0.012 0.0804±0.0004 269±1 3349.79
DSST 0.5167±0.0347 3.5714 6.912±0.031 0.2149±0.0009 246±1 1145.1
OG 0.5043±0.0348 1.7143 3.399±0.017 0.1057±0.0004 120±1 1137.85
OGSS 0.5592±0.0322 2.0351 3.639±0.012 0.1131±0.0004 918±3 8117.81
Total 0.1270±0.0005 2509±11 19753.57

TABLE 5.2: Hyena analysis

whole idea of using MCMC sampling to estimate the parameters π,α
and β arise due to the fact that it was not possible to analytically
determine them. The approaches used by Mills Mills, Juritz, and
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Zucchini (2001) ended up being mathematically intractable just like
the one used in this paper save for the assumptions by Mills that
π ≈ 1 which brought a virtual tractability owing to the fact that the
need for employing mixture distributions arose from the fact that
the response probability was not a constant across all the habitats.
Similarly, the alternative approach used in this paper ends up being
intractable save for the assumption that β → 0 that brings forth a
kind of tractability even though most of the original assumptions are
violated by this new assumption. The actual states of equations [6]
and [11] cannot be simplified, implying that the equations [7] and
[13] cannot be justified in a strict sense. At the same time, it could
be noted that equation [6] and even [11] has a binomial like struc-
ture. This prompted the ideas that it was likely that the distribution
of the animals in the study area had a kind of binomial structure with
the parameters p and n unknown. Evidently, the only feasible way
to try estimate those parameters was to scramble Bayesian meth-
ods and simulate samples that could efficiently help estimate them.
This justified the employment of MCMC sampling as implemented
in WinBUGS. However, to enable further analysis of the samples the
MCMC generates, the use of R was imperative hence the whole MC
was implemented in R-GUI using the package R2WinBUGS. In addi-
tion, under R-GUI, it’s much feasible to determine if estimates from
the models of choice has converge using the Gaweke, Raftery-Lewis
and Heidelberger statistics for all single chain simulations and Gel-
man statistic for multiple chain simulations. With all diagnostics con-
firming convergence of the estimate of π, which indeed agrees with
calibration experiments, it is found to be a prudent approach and a
robust one since it is capable of producing very good estimates with-
out the need to carry out the experiments which are an extra financial
burden to the research process.
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5.2 Recommendations

The MC algorithm used in this project is robust enough to be applied
to any similar situations where the density of rare species like the lion
and other carnivores is required. It is worth noting that the prevail-
ing conditions are generally the same in all protected areas like Parks
and game reserves. This means that the application of this approach
will give rise to desired results. This research also recommends look-
ing into the spatial distribution of lions and hyenas in the TNP if
anything to complement the claimed distribution per habitat. The
same should be extended to study the trends in population declined
as asserted in most lion studies like most recently Goldman, Roque
De Pinho, and Perry (2010), Nelson, Lindsey, and Balme (2013), Rig-
gio et al. (2013), and Schuette, Creel, and Christianson (2013)

On mixture distributions, this project has used the exponential distri-
bution as the mixing distribution for the Poisson and Mills employed
the gamma distribution. It may be important to try out the Log-
Normal as a third alternative in an attempt to find the distribution
for the count data that is mathematically tractable. Concerning mod-
els for data analysis, it was noted that the lion data was full of zeros.
There were habitats where there were totally no observed lions like
closed deciduous forests among others. This paper proposes further
work in the same field to find alternative approaches of handling
data with unusually many zeros especially using Zero-inflated Pois-
son or Zero-inflated Negative Binomial. A good alternative which
this research intends to look into in the future is small area estimation
as works of Rao and Molina (2015), Chambers and Tzavidis (2006),
and Jiang, Lahiri, and Nguyen (2016) & Jiang and Lahiri (2006).
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Chapter 6

Appendices

6.1 Appendix A

Model 1
N=2
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.7142 0.2133 0.002285 0.2254 0.7571 0.9902 4006 16995
beta 0.9476 0.3078 0.002506 0.4467 0.9161 1.635 4006 16995
phi 0.4951 0.1102 0.001282 0.2829 0.4953 0.7118 4006 16995
N=7
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.8457 0.1364 0.001857 0.4953 0.8842 0.9958 4001 17000
beta 0.9198 0.2995 0.002521 0.4278 0.8883 1.587 4001 17000
phi 0.4963 0.1083 0.003102 0.2824 0.4971 0.7045 4001 17000
N=19
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.8016 0.1115 0.00171 0.5345 0.8218 0.96 4001 17000
beta 0.895 0.301 0.003006 0.4107 0.8578 1.571 4001 17000
phi 0.4844 0.1166 0.007461 0.2675 0.4829 0.7084 4001 17000
N=24
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.494 0.1234 0.002586 0.2498 0.4966 0.7257 4001 17000
beta 0.7607 0.2589 0.003617 0.3517 0.7286 1.35 4001 17000
phi 0.46 0.1038 0.006438 0.262 0.4583 0.6606 4001 17000
N=57
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.5224 0.098 0.002715 0.322 0.5265 0.7015 4001 17000
beta 0.8786 0.2603 0.004566 0.4617 0.8454 1.468 4001 17000
phi 0.4833 0.1266 0.01064 0.2152 0.4923 0.7403 4001 17000
N=116
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.4731 0.09131 0.002154 0.2971 0.4722 0.6524 4001 17000
beta 0.69 0.1969 0.00418 0.3792 0.6645 1.146 4001 17000
phi 0.2709 0.0787 0.006559 0.1393 0.2606 0.4285 4001 17000

TABLE 6.1: Model 1
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Model 2
N=2
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.719 0.2073 0.002546 0.2487 0.759 0.9897 4001 17000
beta 0.9943 0.09968 7.67E-04 0.8094 0.9907 1.202 4001 17000
phi 0.4714 0.2921 0.009555 0.02046 0.4566 0.9708 4001 17000
N=7
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.8581 0.1234 0.002205 0.5408 0.8917 0.996 4001 17000
beta 0.9928 0.09948 7.77E-04 0.8065 0.989 1.2 4001 17000
phi 0.399 0.2564 0.01485 0.01856 0.3693 0.9014 4001 17000
N=19
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.8465 0.08444 0.002503 0.6411 0.861 0.9666 4001 17000
beta 0.9873 0.09778 8.26E-04 0.8051 0.9835 1.191 4001 17000
phi 0.7157 0.3097 0.02652 0.03631 0.8615 0.9897 4001 17000
N=24
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.5495 0.09801 0.003393 0.3553 0.5508 0.7358 4001 17000
beta 0.973 0.09978 9.13E-04 0.7895 0.9691 1.179 4001 17000
phi 0.2658 0.2194 0.0173 0.006239 0.2087 0.7646 4001 17000
N=57
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.5358 0.07261 0.003421 0.3915 0.5375 0.6724 4001 17000
beta 0.9854 0.09742 0.001056 0.8005 0.9826 1.182 4001 17000
phi 0.2977 0.2171 0.01854 0.009612 0.2493 0.7057 4001 17000
N=116
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.5621 0.05669 0.00196 0.4486 0.5632 0.6699 4001 17000
beta 0.9493 0.09664 0.001199 0.7699 0.9462 1.149 4001 17000
phi 0.09851 0.08627 0.007118 0.002501 0.07251 0.3087 4001 17000

TABLE 6.2: Model 2
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Model 3
N=2
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.5272 0.03447 2.53E-04 0.4598 0.5272 0.5942 4053 16948
beta 5.821 0.8221 0.01061 5.021 5.57 8.029 4053 16948
phi 0.4999 0.03509 3.27E-04 0.4308 0.4999 0.5681 4053 16948
N=7
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.5755 0.03214 2.56E-04 0.5114 0.576 0.6381 4001 17000
beta 5.276 0.2833 0.004146 5.007 5.187 6.033 4001 17000
phi 0.4986 0.03512 4.84E-04 0.43 0.4986 0.5681 4001 17000
N=19
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.6549 0.02751 2.51E-04 0.5996 0.6552 0.7078 4001 17000
beta 5.136 0.1367 0.001896 5.003 5.093 5.511 4001 17000
phi 0.4968 0.03505 7.52E-04 0.4289 0.4966 0.5655 4001 17000
N=24
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.6597 0.02601 2.33E-04 0.6074 0.6599 0.7101 4001 17000
beta 5.133 0.132 0.001779 5.004 5.091 5.488 4001 17000
phi 0.5012 0.03462 9.49E-04 0.4341 0.5009 0.5693 4001 17000
N=57
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.741 0.01939 1.70E-04 0.7023 0.7412 0.7781 4001 17000
beta 5.095 0.09618 0.001302 5.002 5.065 5.356 4001 17000
phi 0.5117 0.03469 0.001632 0.4443 0.512 0.5798 4001 17000
N=116
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.8192 0.0138 1.11E-04 0.7913 0.8195 0.8452 4005 16996
beta 5.071 0.07227 8.89E-04 5.002 5.049 5.265 4005 16996
phi 0.5059 0.03539 0.002627 0.4422 0.5044 0.579 4005 16996

TABLE 6.3: Model 3
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Model 4
N=2
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.9603 0.04119 3.89E-04 0.8493 0.9737 0.999 4002 16999
beta 13.15 4.301 0.03917 7.207 12.52 21.36 4002 16999
phi 0.4987 0.1923 0.003249 0.1402 0.4992 0.853 4002 16999
N=7
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.9882 0.0129 1.08E-04 0.9526 0.9922 0.9997 4001 17000
beta 13.1 4.272 0.03931 7.208 12.44 21.43 4001 17000
phi 0.5078 0.1926 0.009071 0.1517 0.5059 0.8681 4001 17000
N=19
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.9865 0.009196 9.23E-05 0.9622 0.9887 0.9977 4001 17000
beta 13.03 4.275 0.04332 7.201 12.29 21.34 4001 17000
phi 0.5434 0.2056 0.0161 0.1751 0.5278 0.9524 4001 17000
N=24
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.9522 0.01967 3.01E-04 0.9072 0.9551 0.9814 4001 17000
beta 12.14 4.141 0.06412 7.123 11.05 21.11 4001 17000
phi 0.6408 0.1474 0.01163 0.317 0.651 0.8841 4001 17000
N=57
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.9499 0.0173 3.92E-04 0.9142 0.9514 0.977 4001 17000
beta 11.92 4.099 0.0954 7.121 10.75 20.98 4001 17000
phi 0.8337 0.06387 0.005441 0.672 0.8474 0.9191 4001 17000
N=116
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.9598 0.01183 2.80E-04 0.9374 0.9594 0.9813 4001 17000
beta 10.43 3.501 0.08826 7.062 9.15 19.95 4001 17000
phi 0.8469 0.05586 0.00486 0.7126 0.8585 0.9257 4001 17000

TABLE 6.4: Model 4



6.1. Appendix A 53

Model 5
N=2
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.7231 0.205 0.002057 0.2561 0.7639 0.9897 4001 17000
beta 0.9944 0.0994 8.84E-04 0.8098 0.9908 1.197 4001 17000
phi 0.4968 0.1094 0.001253 0.2865 0.4961 0.71 4001 17000
N=7
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.8671 0.1147 0.001314 0.5734 0.8985 0.9957 4001 17000
beta 0.9927 0.1009 8.22E-04 0.8062 0.9891 1.199 4001 17000
phi 0.4934 0.106 0.002833 0.2885 0.4936 0.6976 4001 17000
N=19
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.8332 0.08599 0.001308 0.6346 0.846 0.9626 4004 16997
beta 0.9882 0.09944 8.48E-04 0.8041 0.9851 1.192 4004 16997
phi 0.4857 0.1122 0.006505 0.2642 0.4863 0.6949 4004 16997
N=24
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.5849 0.08883 0.001738 0.4057 0.5872 0.7523 4002 16999
beta 0.9698 0.09685 8.42E-04 0.7901 0.9675 1.165 4002 16999
phi 0.4812 0.1148 0.00761 0.2608 0.4778 0.7052 4002 16999
N=57
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.5707 0.06225 0.001402 0.4456 0.5716 0.6889 4001 17000
beta 0.9789 0.09743 8.90E-04 0.7993 0.9756 1.178 4001 17000
phi 0.5032 0.09154 0.007349 0.3172 0.5068 0.6713 4001 17000
N=116
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.6183 0.05157 0.001432 0.5133 0.6201 0.7142 4001 17000
beta 0.9382 0.09613 0.001074 0.7602 0.9345 1.136 4001 17000
phi 0.3801 0.09345 0.007939 0.2215 0.3774 0.6273 4001 17000

TABLE 6.5: Model 5
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Model 6
N=2
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.9732 0.02758 2.08E-04 0.8976 0.9817 0.9994 4001 17000
beta 18.93 4.462 0.03157 10.69 18.73 28.24 4001 17000
phi 0.4891 0.2264 0.004346 0.0878 0.4863 0.8993 4001 17000
N=7
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.992 0.008485 6.96E-05 0.9699 0.9947 0.9998 4001 17000
beta 18.96 4.48 0.03521 10.67 18.81 28.16 4001 17000
phi 0.5052 0.2243 0.01194 0.09759 0.5095 0.9089 4001 17000
N=19
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.9912 0.005836 5.01E-05 0.9764 0.9924 0.9984 4001 17000
beta 18.92 4.436 0.03963 10.65 18.77 28.06 4001 17000
phi 0.577 0.2332 0.01863 0.1343 0.5809 0.9425 4001 17000
N=24
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.9687 0.01289 1.81E-04 0.9367 0.9711 0.9861 4001 17000
beta 18.22 4.64 0.0575 9.644 18.07 27.74 4001 17000
phi 0.6525 0.1984 0.01632 0.2211 0.6893 0.9383 4001 17000
N=57
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.9681 0.01071 1.90E-04 0.9413 0.9701 0.9828 4001 17000
beta 18.25 4.528 0.07655 9.778 18.08 27.53 4001 17000
phi 0.9181 0.03061 0.002603 0.8488 0.9227 0.9661 4001 17000
N=116
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.8913 0.189 0.01555 0.3513 0.9747 0.9865 4001 17000
beta 14.08 7.582 0.5513 0.3202 15.53 26.27 4001 17000
phi 0.7262 0.2115 0.01849 0.1188 0.7916 0.932 4001 17000

TABLE 6.6: Model 6
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Model 7
N=2
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.6469 0.03425 3.45E-04 0.5779 0.648 0.7109 4001 17000
beta 42.21 7.781 0.08393 27.8 41.99 58.28 4001 17000
phi 0.5 0.03529 3.58E-04 0.4314 0.5 0.5699 4001 17000
N=7
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.5361 0.04057 4.93E-04 0.4582 0.5356 0.6166 4018 16983
beta 2.443 1.629 0.02784 0.2152 2.102 6.429 4018 16983
phi 0.497 0.03524 4.65E-04 0.4263 0.4975 0.5658 4018 16983
N=19
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.5191 0.03667 3.12E-04 0.4465 0.5193 0.5902 4002 16999
beta 0.7166 0.3702 0.005453 0.09232 0.6779 1.581 4002 16999
phi 0.4942 0.03513 8.44E-04 0.4253 0.4941 0.5638 4002 16999
N=24
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.5139 0.03643 3.66E-04 0.4433 0.5136 0.586 4002 16999
beta 0.9879 0.3789 0.00505 0.4792 0.9256 1.894 4002 16999
phi 0.4977 0.0356 9.66E-04 0.4283 0.4974 0.5685 4002 16999
N=57
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.5162 0.03594 4.02E-04 0.4464 0.5159 0.5873 4001 17000
beta 0.9433 0.2403 0.003485 0.5544 0.9176 1.495 4001 17000
phi 0.4919 0.03514 0.001999 0.4194 0.4931 0.5576 4001 17000
N=116
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.5056 0.03345 4.14E-04 0.4412 0.5056 0.5709 4001 17000
beta 0.6388 0.1217 0.001931 0.4308 0.6193 0.9247 4001 17000
phi 0.4789 0.03533 0.002681 0.4105 0.4796 0.5435 4001 17000

TABLE 6.7: Model 7
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Model 8
N=2
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.7231 0.205 0.002057 0.2561 0.7639 0.9897 4001 17000
beta 0.9944 0.0994 8.84E-04 0.8098 0.9908 1.197 4001 17000
phi 0.4968 0.1094 0.001253 0.2865 0.4961 0.71 4001 17000
N=7
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.8671 0.1147 0.001314 0.5734 0.8985 0.9957 4001 17000
beta 0.9927 0.1009 8.22E-04 0.8062 0.9891 1.199 4001 17000
phi 0.4934 0.106 0.002833 0.2885 0.4936 0.6976 4001 17000
N=19
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.8332 0.08599 0.001308 0.6346 0.846 0.9626 4004 16997
beta 0.9882 0.09944 8.48E-04 0.8041 0.9851 1.192 4004 16997
phi 0.4857 0.1122 0.006505 0.2642 0.4863 0.6949 4004 16997
N=24
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.5849 0.08883 0.001738 0.4057 0.5872 0.7523 4002 16999
beta 0.9698 0.09685 8.42E-04 0.7901 0.9675 1.165 4002 16999
phi 0.4812 0.1148 0.00761 0.2608 0.4778 0.7052 4002 16999
N=57
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.5707 0.06225 0.001402 0.4456 0.5716 0.6889 4001 17000
beta 0.9789 0.09743 8.90E-04 0.7993 0.9756 1.178 4001 17000
phi 0.5032 0.09154 0.007349 0.3172 0.5068 0.6713 4001 17000
N=116
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.6183 0.05157 0.001432 0.5133 0.6201 0.7142 4001 17000
beta 0.9382 0.09613 0.001074 0.7602 0.9345 1.136 4001 17000
phi 0.3801 0.09345 0.007939 0.2215 0.3774 0.6273 4001 17000

TABLE 6.8: Model 8

Model 9
N=2CDF
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.5034 0.03474 3.18E-04 0.4352 0.5033 0.5717 4001 17000
beta 0.9928 0.09884 8.72E-04 0.8063 0.9899 1.197 4001 17000
phi 0.4984 0.03534 3.21E-04 0.4297 0.4985 0.5676 4001 17000
N=7DSST/OG
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.509 0.03494 2.71E-04 0.4408 0.5088 0.577 4001 17000
beta 0.9777 0.09832 7.64E-04 0.7922 0.9748 1.179 4001 17000
phi 0.494 0.03545 3.09E-04 0.4251 0.4938 0.5635 4001 17000
N=19 CL
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.5167 0.03429 3.96E-04 0.449 0.517 0.5835 4001 17000
beta 0.9577 0.09569 8.65E-04 0.7788 0.9549 1.153 4001 17000
phi 0.4881 0.03508 3.09E-04 0.4197 0.488 0.5564 4001 17000
N=24 CG
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.4989 0.03327 3.84E-04 0.4349 0.4985 0.5649 4001 17000
beta 0.9828 0.09746 9.19E-04 0.802 0.9792 1.181 4001 17000
phi 0.4941 0.03479 3.60E-04 0.4261 0.4942 0.5612 4001 17000
N=57 OGSS
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.4952 0.03127 4.54E-04 0.433 0.4952 0.5561 4001 17000
beta 1.002 0.09533 9.97E-04 0.8236 1.001 1.196 4001 17000
phi 0.5008 0.03418 4.77E-04 0.4332 0.5011 0.5668 4001 17000
N=116
node mean sd MC error 2.50% median 97.50% start sample
alpha 0.509 0.0306 4.76E-04 0.4483 0.5091 0.5682 4001 17000
beta 0.9453 0.08865 0.001006 0.7784 0.9419 1.127 4001 17000
phi 0.4754 0.03413 6.21E-04 0.4085 0.4754 0.542 4001 17000

TABLE 6.9: Model 9
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model comparison
N mean sd MC error 2.50% median 97.50% start sample
2 0.4951 0.1102 0.001282 0.2829 0.4953 0.7118 4006 16995
7 0.4963 0.1083 0.003102 0.2824 0.4971 0.7045 4001 17000

model 1 19 0.4844 0.1166 0.007461 0.2675 0.4829 0.7084 4001 17000
24 0.46 0.1038 0.006438 0.262 0.4583 0.6606 4001 17000
57 0.4833 0.1266 0.01064 0.2152 0.4923 0.7403 4001 17000
116 0.2709 0.0787 0.006559 0.1393 0.2606 0.4285 4001 17000
N mean sd MC error 2.50% median 97.50% start sample
2 0.4714 0.2921 0.009555 0.02046 0.4566 0.9708 4001 17000
7 0.399 0.2564 0.01485 0.01856 0.3693 0.9014 4001 17000

model 2 19 0.7157 0.3097 0.02652 0.03631 0.8615 0.9897 4001 17000
24 0.2658 0.2194 0.0173 0.006239 0.2087 0.7646 4001 17000
57 0.2977 0.2171 0.01854 0.009612 0.2493 0.7057 4001 17000
116 0.09851 0.08627 0.007118 0.002501 0.07251 0.3087 4001 17000
N mean sd MC error 2.50% median 97.50% start sample
2 0.4999 0.03509 3.27E-04 0.4308 0.4999 0.5681 4053 16948
7 0.4986 0.03512 4.84E-04 0.43 0.4986 0.5681 4001 17000

model 3 19 0.4968 0.03505 7.52E-04 0.4289 0.4966 0.5655 4001 17000
24 0.5012 0.03462 9.49E-04 0.4341 0.5009 0.5693 4001 17000
57 0.5117 0.03469 0.001632 0.4443 0.512 0.5798 4001 17000
116 0.5059 0.03539 0.002627 0.4422 0.5044 0.579 4005 16996
N mean sd MC error 2.50% median 97.50% start sample
2 0.4987 0.1923 0.003249 0.1402 0.4992 0.853 4002 16999
7 0.5078 0.1926 0.009071 0.1517 0.5059 0.8681 4001 17000

model 4 19 0.5434 0.2056 0.0161 0.1751 0.5278 0.9524 4001 17000
24 0.6408 0.1474 0.01163 0.317 0.651 0.8841 4001 17000
57 0.8337 0.06387 0.005441 0.672 0.8474 0.9191 4001 17000
116 0.8469 0.05586 0.00486 0.7126 0.8585 0.9257 4001 17000
N mean sd MC error 2.50% median 97.50% start sample
2 0.4968 0.1094 0.001253 0.2865 0.4961 0.71 4001 17000
7 0.4934 0.106 0.002833 0.2885 0.4936 0.6976 4001 17000

model 5 19 0.4857 0.1122 0.006505 0.2642 0.4863 0.6949 4004 16997
24 0.4812 0.1148 0.00761 0.2608 0.4778 0.7052 4002 16999
57 0.5032 0.09154 0.007349 0.3172 0.5068 0.6713 4001 17000
116 0.3801 0.09345 0.007939 0.2215 0.3774 0.6273 4001 17000
N mean sd MC error 2.50% median 97.50% start sample
2 0.4891 0.2264 0.004346 0.0878 0.4863 0.8993 4001 17000
7 0.5052 0.2243 0.01194 0.09759 0.5095 0.9089 4001 17000

model 6 19 0.577 0.2332 0.01863 0.1343 0.5809 0.9425 4001 17000
24 0.6525 0.1984 0.01632 0.2211 0.6893 0.9383 4001 17000
57 0.9181 0.03061 0.002603 0.8488 0.9227 0.9661 4001 17000
116 0.7262 0.2115 0.01849 0.1188 0.7916 0.932 4001 17000
N mean sd MC error 2.50% median 97.50% start sample
2 0.5 0.03529 3.58E-04 0.4314 0.5 0.5699 4001 17000
7 0.497 0.03524 4.65E-04 0.4263 0.4975 0.5658 4018 16983

model 7 19 0.4942 0.03513 8.44E-04 0.4253 0.4941 0.5638 4002 16999
24 0.4977 0.0356 9.66E-04 0.4283 0.4974 0.5685 4002 16999
57 0.4919 0.03514 0.001999 0.4194 0.4931 0.5576 4001 17000
116 0.4789 0.03533 0.002681 0.4105 0.4796 0.5435 4001 17000
N mean sd MC error 2.50% median 97.50% start sample
2 0.4968 0.1094 0.001253 0.2865 0.4961 0.71 4001 17000
7 0.4934 0.106 0.002833 0.2885 0.4936 0.6976 4001 17000

model 8 19 0.4857 0.1122 0.006505 0.2642 0.4863 0.6949 4004 16997
24 0.4812 0.1148 0.00761 0.2608 0.4778 0.7052 4002 16999
57 0.5032 0.09154 0.007349 0.3172 0.5068 0.6713 4001 17000
116 0.3801 0.09345 0.007939 0.2215 0.3774 0.6273 4001 17000
N mean sd MC error 2.50% median 97.50% start sample
2 0.4984 0.03534 3.21E-04 0.4297 0.4985 0.5676 4001 17000
7 0.494 0.03545 3.09E-04 0.4251 0.4938 0.5635 4001 17000

model 9 19 0.4881 0.03508 3.09E-04 0.4197 0.488 0.5564 4001 17000
24 0.4941 0.03479 3.60E-04 0.4261 0.4942 0.5612 4001 17000
57 0.5008 0.03418 4.77E-04 0.4332 0.5011 0.5668 4001 17000
116 0.4754 0.03413 6.21E-04 0.4085 0.4754 0.542 4001 17000

TABLE 6.10: Model comparison
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