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ABSTRACT

Titanium dioxide attracts great attention as a wide band gap transition metal oxide due
to its n-type semiconducting property which makes it to have many applications in in-
dustry, an area that has not been fully investigated. This study therefore focuses on the
investigation of the structural properties and electronic band structures of the two phases
of TiO2, the rutile and anatase using ab-initio methods. The structural properties were
obtained using generalized gradient approximation (GGA) employing pseudo-potentials
and plane wave basis sets.

For the two TiO2 phases the calculated equilibrium lattice constants, bulk mod-
uli and bond lengths were found to agree with a number of other recent theoretical
calculations and also with experimental findings. The electronic properties were also
investigated. Perfect bulk rutile and anatase gave band gaps of 2.09 eV and 2.48 eV
respectively under ground state conditions. Valence band width (VB) of 1.65 eV and
conduction band with (CB) of 5.917 eV were observed for rutile, TiO2 while V B of
3.98 eV and CB of 2.05 eV were observed for anatase TiO2 all in agreement with ex-
perimental values.
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CHAPTER ONE

INTRODUCTION

1.1 Background

Titanium dioxide attracts great attention as primary material in several applications in-

cluding white pigment preparation, photocatalysis, dye sensitized solar cells and nano-

scale electronic devices. The rutile phase of TiO2 has the simple and best known struc-

ture. It easily yields to a perfect rutile matrix after sputtering and annealing by varying

temperatures which directly determine the physical and chemical behaviour of TiO2.

Transition metal oxides are some of the most difficult classes of solids on which to

perform theoretical predictions using first principle calculations. This is due to their

complex crystal structures and the fact that they usually exhibit a wide range of prop-

erties including insulating, semiconducting and super conducting, as well as being fer-

roelectric and magnetic materials. As a prototypical semiconducting transition metal

oxide, TiO2 is the focus of extensive theoretical and experimental studies for over four

decades due to its numerous technological applications [6].

1.2 Titanium Dioxide Phases

Titanium dioxide crystallizes in many phases [18]. The three major phases are rutile,

Anatase and Brookite. [7]. Out of the three major phases, only rutile and anatase are

currently being used for various known applications, thus extensive studies both ex-

perimental and theoretical with interesting physical and chemical properties have been

harnessed on the bulk structures and literature on both bulk and surfaces is available[10].

Rutile is the most thermodynamically stable except for the nanometer scale and possibly

at very low temperatures for which anatase is known to be stable[15]. It is reported that

at temperature between 400− 1000oc, anatase transforms to rutile.

The two main structure phases of TiO2 (rutile and anatase), are tetragonal structures

characterized by two complementary TiOxOy building block representation.
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Figure 1.1: Three major phases of TiO2

The key difference between rutile and anatase comes from the connection of its

octahedra, where in rutile they share two edges with other octahedral while in anatase

they share four edges.

Table 1.1: Properties of rutile and anatase

Property Rutile Anatase

Crystal Structure Tetragonal Tetragonal

Space Group P42/mnm I41/mnm

Lattice Constants(Å) a = 4.5934, c = 2.9585 a = 3.784, c = 9.516

Atoms per unit cell 6 12

Phase Transformation No Rutile (400− 1000oC)

Density (g/cm3) 4.25 3.89

Melting Point(oC) 1855 Turns to Rutile

Permittivity (εr) 90(c− axis), 170(a− axis) 38(c− axis), −
Ti−O bond length(Å) 1.949(dax), 1.980(deq) 1.965(dax), 1.937(deq)

Band gap (eV ) 3.0 3.23

Reflectance,%(at 400oC) 47− 50 88− 90

UV light A at 360nm (%) 90 67

α (10−6/K) 7.14 10.2

2



1.3 Problem statement

Stoichiometric titanium dioxide which has been studied since the 1950s is known to be

an insulator whose band gap is 3.0 eV (rutile) and 3.23 eV (anatase). However, most of

the available literature revolves to a large extent around rutile phase, thus leaving a big

information gap on another important phase, anatase. This is especially on its electronic

properties. Similarly, information available on cross band gap transition is still not very

enriching.

1.4 Significance of the study

The application of TiO2 in industry are many as stated in the introduction, provides a

great driving force in research of titanium dioxide. Band gap determination of the two

phases of TiO2 by calculating their electronic properties, provide an insight of observed

electrical properties of this industrially and technologically important material. This is

so since band gap of materials determine most of its properties hence their applicability.

The results of this study therefore, which has been done using computer modelling will

supplement information already provided by experimentalists. Additionally, this results

will provide more information on the anatase phase. Similarly, it will provide salient

information about the possible states responsible for the cross band gap transition.
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1.5 Objectives

The following are the objectives under investigation in this study:

1. To determine the structural properties of bulk Rutile and Anatase TiO2.

2. To determine the electronic properties of both bulk Rutile and Anatase TiO2.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

Titanium dioxide, which is one of the most important transition metal oxide and exten-

sively studied both experimentally and theoretically. Various empirical and first prin-

ciple methods calculations have predicted important properties that agrees well with

experimental results. In this section, some of the applications of TiO2 such as in photo

catalysis, mainly photo catalytic air purification, photo catalytic sterilization, self clean-

ing surfaces, decomposition of organic compounds, superhydrophilicity, anti-fogging

surfaces, solar energy applications and photo catalytic cancer therapy are reviewed [9].

2.2 Material Modelling

Modelling is a fundamental quantitative method for understanding complex systems

and phenomena. Important aspects of materials such as transmittance, thermo-chromic,

mechanical and electronic properties play important roles in the functionality of these

materials but their manufacture cost greatly influences the consumer costs [19]. The

objective of computational materials design is to apply the best scientific understanding

to facilitate decisions concerning the optimal trade offs that meet intended needs in the

convenient time and resource in efficient manner [8].

Computational materials design has gone along way in addressing these problems

because of its flexibility to investigate and control the fabrication of materials of modest

complexity. Computer aided molecular designs play a major role by providing the sig-

nificant structural and energetic properties of atoms that built up the materials [16]. In

exploiting its potentials, computer modelling and design combines disciplines such as

solid state physics (theoretically), statistical mechanics as well as quantum physics and

chemistry. A concise understanding of the fundamental concepts, strengths and limita-

tions is important for designers to fully benefit from these computational methods.
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Most theoretical calculations use other empirical and semi-empirical methods such

as tight binding and Mott-Littleton methods, molecular dynamics (MD), simulations

and more theoretically rigorous first principles approaches are the third class which in-

clude: Hartree-Fock (HF) methods and density functional theory (DFT) methods. When

modelling a material for energy application as for TiO2, it is more likely that knowledge

with good accuracy of one or more of the following properties; electronic band gap, gap

level alignment and optical gap comes in handy.

Theoretical and experimental findings of TiO2, based on their structural, electronic,

optical and magnetic properties have been well reported and documented. However,

much of the available data is on rutile phase since most crystal growth techniques yields

rutile. Additionally, rutile is the most stable form of TiO2 since it has the simplest

structure. The direct band gap reported for rutile is desirable for the semiconductor

applications [4].
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CHAPTER THREE

COMPUTATIONAL THEORY

3.1 Introduction

Electronic properties calculations, i.e. ground and excited states, are important aspects

in material science. However, the fundamental limitation is the theoretical study of

these electronic properties. It is therefore necessary to understand the behaviour of

materials i.e atoms, molecules and nano-structures. Electrons and nuclei of materials

determine most properties of condensed matter. They provide information about bulk,

magnetic, electronic and optical properties. However, it is an uphill task in many system

theory when solving the Schrödinger equation for a system of m interacting electrons

in the external coulomb field created by a collection of atomic nuclei and other external

fields. The exact solution can be achieved solely in the case of the uniform electron gas,

atoms with a minimal number of electrons and for a few small molecules. A number of

structure methods have been developed in the recent past the key ones will be discussed

.

3.2 Theories

3.2.1 Many-Body System

The determination of properties of materials from ab-initio studies involves the solu-

tion of a quantum many–system interacting problem for atomic nuclei and electron co-

ordinates,

ĤΨ({Ri}, {ri, δi}) = EΨ({Ri}, {ri, δi}) (3.1)

3.2.2 Born Oppenheimer approximation

Majority of the properties of material science can be determined by investigating inter-

action of the outermost electrons with relative slow–moving atomic ionic cores, and the

7



interaction of outermost electrons amongst themselves. [5].

The nucleus and electrons are attracted to each other with the same magnitude of

electric charge, thus they exert the force and momentum while exerting the same kind

of momentum, the nucleus with a larger mass in comparison to the electrons, will have a

relatively small velocity and considered negligible thus, motion of the nucleus is ignored

in solving of Schrödinger equation. The electrons are much less massive than nuclei and

therefore electrons respond simultaneously to the motion of nuclei. Thus the energy

for a given nuclear configuration will be that of the ground state of electrons in that

configuration. The equation that should be solved is therefore;

ĤΨ = EΨ (3.2)

where Ψ is the many–system wave function and E is total energy. The simplest version

of the many body Hamiltonian Ĥ , is given by,

Ĥ =
∑
i

− ~2

2Mi

∇2
i +

1

2

∑
i,j

ZiZje
2

|Ri −Rj|
−

∑
k

~2

2me

∇2
rk +

1

2

∑
k,l

e2

|rk − rl|
−
∑
k,l

Ze2

|rk −Rl|
.

(3.3)

Principally, the equation above may be mathematically calculated to arbitrary ac-

curacy by representing it as a direct product wave function (BOA) and diagonalizing

the Hamiltonian. However, the cost of this calculation scales proportionally with the

number of electrons in the system and is intractable for all but the smallest of systems.

3.3 Wave Function Based Method

The eigenfunction of a quantum mechanical operator depends on the co-ordinates upon

which the operator acts. A Hamiltonian operator, Ĥ in QM is the quantum mechanical

operator corresponding to the total energy (K.E and P.E) of the systems whose partic-

ular eigen function operator is the wave function which is a function that describes the
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quantity of states of an isolated system of one or more particles.

3.3.1 Hartree Approximation

The importance of the Hartree method is an introduction to the solution of the many-

body systems and to the concepts of self-consistency and of the self-consistent field. In

equation (3.4) the K.E. and the nucleus–electron interaction terms are sums of single-

particle operators. Each of them act on a single electronic co-ordinate. Similarly,

electron-electron interaction term is a pair of interaction acting on pair of electrons.

The initial ansatz is that the many-body wave function may be written as ,

Ψ(r1, r2, ........., rn) = Ψ1(r1)Ψ2(r2)Ψ3(r1)..........Ψn(rn) (3.4)

from which it follows that the electrons are independent and interact only via the mean–field

coulomb potential. This yield one electron Schrödinger equation of the form,

~2

2m
∇2ψ1(r) + V (r)ψ1(r) = ε1ψ1(r) (3.5)

where V(r) is the potential in which the electron moves, this includes both the nuclear

electron interaction.

Vnucleus(r) = −Ze2
∑
R

1

|r−R| (3.6)

and the mean field arising from the N-1 other electrons. Other electrons are smeared

out into a smooth negative charge density ρ(r’) leading to a potential of the forms

Vnucleus(r) = −e
∫
dx

′
ρ(r

′
)

1

|r− r′ | (3.7)

9



where, ρ(r) =
∑

i |ψ(r)|2.

Although these Hartree equations are numerically tractable via self–consistent field

methods, the approximation fails to capture elements of the essential physics i.e the

Pauli exclusion principle which demand that the many–body wave function be antisym-

metric with respect to interchange of any two electron co-ordinates. This exchange

condition can be satisfied by forming a slatter determinant of single particle orbitals.

3.3.2 Hatree–Fock Approximation

The Hartree–Fock (HF) methods treats electron interactions at a mean field level, with

the Hartree and exchange interactions. The simple product of the wave functions in

eq. 3.4 does not satisfy the principle of indistinguishability. This does not satisfy anti-

symmetry, which states that a fermion wave function changes sign under odd permuta-

tions of the electronic variable.

3.4 Density Functional Theory

Due to insufficient predictions of chemical bonds and molecular properties met by HF

approximation and the high numerical price of wave function approaches, it is impor-

tant to seek alternative methods that needs to represent the many–body electronic wave

function. DFT is one of the most frequently used, computational tools for studying

and predicting the properties of materials. Being a ground-state theory, it emphasizes

on charge density as the relevant physical quantity. DFT has successfully described

structural and electronic properties in most of the materials. For these reasons DFT has

become a useful tool in first–principle calculations focused at describing and predict-

ing the properties of molecular and condensed matter systems. Another advantage of

DFT is that it can be used in the study of both periodic and non-periodic systems of

infinite sizes [14]. Despite recent improvements there are shortcomings in using density

functional theory to properly describe intermolecular interactions especially dispersion,

charge transfer excitations, transitional states, global potential energy surfaces, dopant

interactions and some other strongly correlated system, and in calculations of the band

10



gap (underestimation of the band gap) and ferro magnetism in semiconductors.

3.4.1 The Hohenberg-Kohn Theorem

DFT is made possible by the existence of simple theorem put forth by Hohenberg and

Kohn in 1964. H-K, using the first theorem proved that for a system of N interacting

particles in an external potential, Vext(r) the density is uniquely determined i.e the ex-

ternal potential is a unique functional of the density. Variational principle states that no

wave function can give an energy that is less the energy of Vext(r) for Ĥext(~r) and by

assuming the ground state is non-degenerate then;

n(r) = N

∫
|ψ(r1, r2, ....., rN |2dr1dr2.....drN (3.8)

where, ψ is the ground state wave function. The result of the H-K theorem is that

ground-state energy, E, is uniquely determined by the ground-state charge density,

E[n(r)] = F [n(r)] +

∫
n(r)Vext(r)dr (3.9)

where the internal energy F[n(r)] is a universal functional of the charge density n(r)

and not of Vext(r). In this manner, DFT exactly simplifies the N-body problem to the de-

termination of a three-dimensional function n(r) which minimizes a functional E[N(r)].

3.4.2 Kohn-Sham Equation

In 1965, Kohn and Sham redefined the many body problem in an elaborate and fa-

miliar form which paved way to practical applications of DFT. The Kohn–Sham (K-

S) equation is the Schrödinger equation of a non-existing system of non-interacting

particles that generate the same density as any given system of interacting particles.

The Kohn–Sham equation is defined by a local effective (fictitious) external potential

in which the non-interacting particles move, typically denoted as Vs(~r) or Veff (~r) ,

called the Kohn–Sham potential. Within the framework of K-S DFT, the intractable

many-body problem of interacting electrons in a static external potential is reduced to
11



a tractable problem of non-interacting electrons moving in an effective potential. The

effective potential includes the external potential and the effects of the Coulomb inter-

action between the electrons, i.e the exchange and correlations interactions.

3.4.3 Exchange-Correlation Energy

The exchange-correlation energy E(n) is responsible for the change between the exact

ground state energy and the energy calculated in HF approximation and using the non-

interacting kinetic energy.

Exc(n) = T (n)− To(n) + Uxc (3.10)

T (n) and To(n) are exact and non interacting kinetic energy functionals respectively,

whereas Uxc is the interaction of the electrons with their own exchange–correlation hole.

Exc[n(r)] =
1

2

∫∫
drdr

′ [n(r)nxc(r, r
′
)]

|r − r′|
(3.11)

Approximations are sought for E ′
xc(n) which though it contains also contributions

from the kinetic energy, it is usually just called Exchange-correlation functional writ-

ten as Exc(n). The following subsections explain some typical approximations for the

exchange correlation functional that are commonly employed in practical DFT codes.

3.4.3.1 Local Density Approximation (LDA)

LDA revolves around the idea of uniform electron gas. LDA forms the basis of all ap-

proximate exchange-correlation functionals. It makes an assumption that the exchange

correlation energy at a point r is simply equal to the exchange–correlation energy of a

uniform gas that has the same density at a point r.

Despite its simplicity, LDA works better in systems where the charge density is

rapidly varying. However, it tends to under predict atomic ground state energies and
12



ionization energies, while over predicting binding energies. It is also known to overly

favour high spin state structure. LDA is also known to predict the wrong magnetic struc-

ture of iron. Similarly it incorrectly predicts the band gap of semiconductor materials.

3.4.3.2 Local Spin Density Approximation (LSDA)

LSDA is the generalization of the LDA which includes electron spin. Here the exact

spin-scaling is known, but for correction, further approximation is employed. A spin

polarized system in DFT employs two spin densities [n↑] and [n↓],

ELDA
xc [n↑, n↓] =

∫
δrn(r)εex(n↑, n↓) (3.12)

The exact result of the exchange energy is known in terms of the spin unpolarized func-

tional,

ELDA
xc [n↑, n↓] =

1

2
{Ex[2n↑] + Ec[2n↓]} (3.13)

and the spin-dependence of the correlation energy is approached by introducing the

relative spin polarization,

ζ(r) =
[n↑(r)− n↓(r)]
[n↑(r) + n↓(r)]

(3.14)

3.5 Pseudopotentials

Practical solutions to the self-consistent(SC) Kohn-Sham (KS) equation are subject to

a number of approximations, thus various methods are subject to a number of approxi-

mations, thus various have been developed to be cost effective i.e. cause a rapid conver-

gence but without compromising the calculation outcome. Ab initio pseudo-potentials

method takes into account only valence electrons leaving the deep inner core states and

the strong potential binding them to the nuclei making the calculation relatively cheaper
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compared to full potential method. It is generally understood that ion cores (deep inner

electrons and nuclei) plays a minimal role on the properties of solids, but their proper

inclusion into pseudo potentials creates room for sufficient use of plane-K-Points wave

basis sets in electronic structures calculation.

Figure 3.1: Comparison of the wave-function of Coulomb potential of nucleus (blue) to one in
pseudo-potential (red). Real and pseudo wave-function and similar potential at certain cut-off
radius, rc

First introduced in 1934 by Hans Hellmann, Pseudo–potentials attempts to replace

the complicated effects of the motion of the ion core thus the Schrödinger equation is

modified with an effective potential term instead of the Coulomb potential. Pseudo-

potentials simply tend to mimic the behaviour of the ion cores of an atom, thus the core

states are eliminated and the valence electrons are described by pseudo-wave function

with significant fewer nodes.

Although the general ideas behind pseudo-potential approach are similar, several

procedures are applied in the construction of these pseudo potential leading to existence

of several types of pseudo potentials. Norm-Conserving (NC) and ultra–soft(US) forms

the most common forms of pseudo-potentials used in plane-wave electronic structure

codes and allows a basis-set with significantly lower cut-off to be used to describe the

electron wave function and so allows proper numerical convergence with reasonable

computing resources.
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Projector augmented wave (PAW) pseudo-potential (PP) first proposed by Peter E.

Bloch in 1994, is a method for reformulating an ordinary Kohn-Sham problem with

numerically inconvenient behaviour into more computationally digestible form, which

involves a different Kohn-Sham problem plus certain corrections. It is a unique way

of determining the electron structure of materials since it describes well the nodal be-

haviour of valence electrons wave function and at the same time allowing the inclusion

of the upper core states into the SC interaction procedures. It is a generalization of

the PP and linear augmented–plane–wave (LAPW) methods, and allows for DFT cal-

culations to be performed with greater computational efficiency. In this study, norm-

conserving pseudo-potentials were used to represent the inner core electrons and the

nuclei.
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CHAPTER FOUR

METHODOLOGY

4.1 Introduction

The DFT calculations were done within the plane wave basis pseudo-potential ap-

proach as performed in the quantum ESPRESSO (QE) code, which is multi-purpose,

multi-platform software for first principle calculations for periodic and non-periodic

condensed matter systems.

DFT is a technique used commonly to study important properties of materials accu-

rately using a computational method [17]. In this study bulk and electronic properties

of TiO2 (rutile) and TiO2 (anatase) have been studied using ab-initio pseudo-potential

plane wave method within the DFT. Norm conserving pseudo-potentials were used to

model the core-valence interactions for bulk calculations.

4.2 K-Point Optimization

The K-points were optimized using the experimental lattice parameter. The K.E cut

off was set at 80 Ry for both rutile and anatase an average value not to make the cal-

culations computationally expensive. The special k-mesh points were generated using

the Monkhorst-pack scheme that ensures that the irreducible part of the Brillouin zone

(IBZ) is integrated over a mesh of (2 × 2 × 2) to a dense one of (12 × 12 × 12). The

dense mesh was required since transition metals like titanium are known to require large

k-points grids.

The values of minimum energies obtained with respect to the corresponding k-point

grids were plotted for both rutile and anatase phases of TiO2 (see appendix A, figures

6.1 and 6.5). A (6×6×6) and (6×6×8) mesh of Monkhorst-pack special k-points was

selected for rutile and anatase, respectively, since the structures were well converged at

this k-points mesh. The k-point were used for all calculations to ensure their accuracy in

this study. Figures 4.1 show the k-path that was used for both rutile and anatase phases
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of TiO2.

Figure 4.1: High Symmetry Points used in this study.

4.3 Plane Wave Energy Cut-off Optimization

The converged k-point grid was used to calculate the plane wave cutoff energies (Ecut).

In this study k-points mesh and lattice parameters were set at their optimized values

throughout the calculations. The cutoff energy was varied between 20 Ry and 200 Ry

for both rutile, and anatase, (see figures 6.2 and 6.6). The optimized cutoff energy for

both rutile and anatase was 80 Ry. Bulk properties were calculated after optimizing

k-points and the cut-off energy.

4.4 Modelled and Relaxed Rutile and Anatase TiO2

Bulk properties of TiO2 were studied to understand its most basic properties. This was

in line with the intention to study the bond lengths, formation energies, band gaps and

other properties of interest. Bulk titanium dioxide has the tetragonal structure for rutile

and anatase which is specified by a lattice parameter a and the ratio c
a

of the vertical axis

to one of the horizontal axis. Rutile TiO2 has tetragonal symmetry and is in space group

D14
4h -P42/mnm. Anatase has tetragonal symmetry and is in space group D19

4h -I41/mnm.
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Starting from basics of energetics, every system tries to be in a state of minimum energy

(ground state), which is obtained by minimizing equation 3.12 to self consistency w.r.t

a set of orbitals ψi, and to an accuracy of 10−8 Ry.

4.5 Structural Optimization

The choice of pseudopotential cut-off energy (Ecut) for the plane wave basis and k-

points for the Brillouin zone (BZ) are the two most important factors that determine the

quality of the numerical calculations. Reliable results can only be obtained if accurate

plane wave cut-offs and dense /c-points are used. (Ecut) purely depends on the chemical

elements used in the calculations. In this study structural optimization was done using

convergence tests for k-point mesh and the total energy cut-off. Structural parameters

for both rutile and anatase phases of TiO2 were optimized by relaxing the atoms in x,

y and z directions until the systems achieved the minimum energy positions as per the

set convergence criteria. The relaxed atomic positions were then used to optimize both

the plane wave energy cut-off and the k-point grid. Optimal values of the plane wave

cut-off energy and the k-points were used to minimize the total energy as a function of

the cell volume.

The structural properties such as lattice equilibrium constant, bulk modulus Bo and

ground state energy Eo were obtained from the total energy and fitted to the equation

of state (EoS). The converged k-point mesh was then used to calculate the total cut-off

energies (Ecut) and volumes (V). The values of minimum energies obtained with respect

to the corresponding k-point grids were then plotted for both rutile and anatase. These

values of k-points were used in all subsequent calculations.

18



CHAPTER FIVE

RESULTS AND DISCUSSIONS

This chapter presents the findings that were obtained from this study i.e. structural

findings, electronic properties, and their respective discussions.

5.1 Structural Optimization

The table 5.1 below give the calculated lattice constants of tetragonal rutile phase of

TiO2. The details of optimization are given in Appendix A. The values are compared

with those in literature obtained using different theoretical and experiment approaches.

Table 5.1: Calculated DFT-LDA Lattice parameters for perfect rutile TiO2, compared with
experimental values.

Property Calculated Exp Value Theory Theory % dev Ref

Cell Vol (Å)3 63.026 62.434 64.840 62.220 +0.948
ao (Å) 4.630 4.594 4.653 4.584 +0.784 [1, 11, 12]

c
a

0.635 0.644 0.637 0.637 -1.400
Bo(GPa) 214.0 216.0 209.3 226.7 -0.926

Table 5.2: Calculated DFT-LDA Lattice parameters for perfect anatase TiO2, compared with
experimental values.

Property Calculated Exp Value Theory Theory % dev Ref

Cell Vol (Å)3 140.87 136.24 139.84 138.27 +3.30
ao (Å) 3.789 3.784 3.763 3.785 +1.32 [3, 20]

c
a

2.601 2.515 2.618 2.550 +3.42
Bo(GPa) 176.2 179.0 172.11 173.4 -2.23

The values in tables 5.1 and 5.2 show clearly that there is a close relation between

calculated and experimental values for both phases (rutile and anatase). The cell vol-

umes were found to very close to the experimental value. On the other hand, the cal-

culated bulk properties of both rutile and anatase were found to be in agreement with

those of other theoretical studies and this confirms the results of this study.
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(Å

)
B

on
d

A
ng

le
s

(o
)

Pr
is

tin
e

1.
95

90
A
x

2.
00

60
E
q

99
.9

5 T
i−

O
−
T
i

13
1.

94
O
−
T
i−

O
1.

95
63

A
x

2.
05

02
E
q

10
3.

81
T
i−

O
−
T
i

15
2.

39
O
−
T
i−

O

E
xp

.V
al

ue
1.

98
20

A
x

1.
94

70
E
q

98
.9

3 T
i−

O
−
T
i

13
0.

01
O
−
T
i−

O
1.

96
50

A
x

1.
93

70
E
q

99
.9

3 T
i−

O
−
T
i

13
1.

04
T
i−

O
−
T
i

20



Figure 5.1: Optimized Rutile TiO2 unit cell.

Table 5.3 gives calculated bond lengths and angles for both rutile and anatase. The

values obtained in this study are ground-state results and do not differ much from the

experimental results obtained at room temperature because TiO2 is a solid and a small

change in temperature do not affect the structure of solids significantly because their

atoms are closely packed. The obtained bond lengths are in agreement with experimen-

tal values and other theoretical works.

Looking at table 5.3, dax reduces by 2.5% while deq increases by also 2.5% that is

for rutile after optimization (relax) when compared to unrelaxed system. For anatase

TiO2, the decrease in deq is larger than the increase observed in dax. The shortening of

bond implies strengthening of the bonds due to relaxation. If we compare these findings

with the experimental values in table 5.3, for rutile, dax was less by 1.14%, while deq

was more by 2.9%. In the case of anatase, deq was underestimated by 1.15% and the

deq was more (overestimated) by 5.9%.
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Figure 5.2: Optimized Anatase TiO2 unit cell.
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5.2 Electronic Properties

5.2.1 Band Structure for Perfect Bulk Rutile Crystal

The figure 5.3 below gives the calculated band structure and density of states (DOS) of

bulk rutile TiO2 while the projected density of states (PDOS) are shown in figure 5.4.

The electronic band structure was obtained along the high symmetry path Γ – X – M

– Γ – Z – R – A – Z – R – A as indicated in figure 5.3. The plot shows a direct band

gap of 2.09 eV, at Γ, which is the underestimated when compared with the experimental

value of 3.0 eV. A wide valence bands width (VB) of 5.9 eV was calculated and a

narrow conduction bandwidth (CB) of 1.65 eV was obtained. These results compares

well with other theoretical calculations where valence and conduction band-widths of

5.62 eV were calculated. The value of the valence bandwidth was also in agreement

with experimental VB value of 5.4 eV.

Figure 5.3: Band Structure & DOS for Rutile TiO2.
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Figure 5.4: Band Structure & PDOS for Rutile TiO2.

From the graph 5.4 of the projected density of states, it is observed that the valence

band was dominated by, Ti-2p, Ti-3d and O-2p states while the conduction band was

dominated mainly of Ti-3d and O-2p states, an indication that across band gap transition

involves O-2p and Ti-3d orbitals in rutile TiO2. These hybridized Ti-3d and O-2p states

are responsible for the strong bonding observed in rutile. The states at high binding

energies were mainly Ti-1s and O-1s.
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5.2.2 Band Structure for Perfect Bulk Anatase Crystal

The electronic band structure and density of states of bulk anatase is shown in fig 5.5

while the PDOS are shown in 5.6. The band structure was obtained along the high

symmetry path Γ – X – R – Z – M – A – Z. The plot shows an indirect band gap of

2.48 eV along Γ – M which is underestimated when compared with the experimental

value of 3.23 eV. This underestimation is attributed to the approximations made in the

DFT formalism and can be corrected by using hybrid pseudo-potentials, GW method of

DFT+U approaches.

Figure 5.5: Band Structure & DOS for Anatase TiO2.

25



Figure 5.6: Band Structure & PDOS for Anatase TiO2.

The number of bands of anatase phase of TiO2 are more than those of rutile phase.

Anatase phase was found to have a valence bandwidth of 4.70 eV while the conduction

band was narrower with a width of 2.1 eV. The experimental value for valence band-

width for anatase is 4.75 eV which agrees with the findings of this study. From the

projected density of the states of anatase, it was observed that the valence band was

dominated by O-(2p) and a little hybridization by Ti-(3d) while, the conduction band

was dominated by Ti-(3d) and a little hybridyzation by O-2p states. This is a clear indi-

cation that across band gap transition involves both O-2p and Ti-3d orbitals in anatase

TiO2. Similarly, there is an indication that states at high binding energies were mainly

Ti-(1s) and O-(1s).
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CHAPTER SIX

Conclusions and Recommendations

6.1 Conclusion

Results of first principle studies of the structural and electronic properties in both anatase

and rutile phases of titanium dioxide have been investigated in this study using Quan-

tum ESPRESSO code applying norm-conserving pseudo-potentials. The results have

been compared with experimental results where available. For ground state properties,

a number of important electronic parameters that is band gaps and density of states have

been obtained. Except for the band gap values the ground state properties for the two

phases are close to experimental values. The rutile structure was found to have a narrow

band gap of 2.09 eV while anatase had an indirect band gap of 2.48 eV. The calculated

results i.e lattice constant and bulk modulus were found to be consistent with experi-

mental findings and comparatively in good agreement with theoretical predictions. The

present calculation has been based on the density functional theory which is strictly

valid for ground state. The underestimation of band gaps for semiconductors and insu-

lators is because, a single exchange-correlation potential is inadequate for an insulating

system where the exchange-correlation potential is likely to be discontinuous across the

gap.

6.2 Recommendation

This study has dealt with only structural and electronic properties of Titanium dioxide.

There is need to study the optical properties of the same material since it gives a band

gap which is closer to the experimental value.
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APPENDIX

Convergence Tests of Rutile and Anatase

Figure 6.1: Graph of total energy against k-points of bulk anatase phase.
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Figure 6.2: Graph of total energy against cut-off energy of bulk anatase phase.

Figure 6.3: Graph of total energy against lattice parameter of bulk anatase phase.
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Figure 6.4: Graph of total energy against c
a of bulk anatase phase.

Figure 6.5: Graph of total energy against k-points of bulk rutile phase.
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Figure 6.6: Graph of total energy against cut-off energy of bulk rutile phase.

Figure 6.7: Graph of total energy against lattice parameter of bulk rutile phase.
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Figure 6.8: Graph of total energy against c
a of bulk rutile phase.
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Pseudo-Potentials Used in this Study.

Table 6.1: Pseudo-potentials used for both rutile and anatase TiO2.

Type of Atom Pseudo-Potential Type

Titanium Ti.pbe-mtfhi.UPF
Oxygen O.pbe-mtfhi.UPF

Titanium

Generated on 10-07-2012 using FH198PP and converted with fhi2upf.x v.5.0.1. The

pseudo-potential was generated with a Non-Relativistic Calculation. Its L component

and cut-off radius for the Local Potential was 10.0000. The pseudo-potential type is SL.

Table 6.2: Titanium pseudo-potentials.

nl pn l occ Rcut Rcut US E pseu

4s 4 0 2.00 0.000 0.000 0.000000
4p 4 1 2.00 0.000 0.000 0.000000
3d 3 2 0.00 0.000 0.000 0.000000
4f 4 3 0.00 0.000 0.000 0.000000

Ultrasoft Pseudopotential US
Nonlinear Core Correction F

PBE Exchange-Correlation Functional SLA, PW, PBE
Local Potential Cut-off Radius 0.000000000000000E+000

Z Valence 4.0000000000000000
Total Energy 0.00000000000000E+000

Number of Points in Mesh 515
Max Angular Momentum Component 3

Number of Wavefunctions 4
Number of Projectors 3
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Oxygen

Generated on 10-07-2012 using FH198PP and converted with fhi2upf.x v.5.0.1. The

pseudo-potential was generated with a Scalar Relativistic Calculation. Its L component

and cut-off radius for the Local Potential was 20.0000. The pseudo-potential type is SL.

Table 6.3: Oxygen pseudo-potentials.

nl pn l occ Rcut Rcut US E pseu

2s 2 0 2.00 0.000 0.000 0.000000
2p 2 1 4.00 0.000 0.000 0.000000
3d 3 2 0.00 0.000 0.000 0.000000
4f 4 3 0.00 0.000 0.000 0.000000

Ultrasoft Pseudopotential US
Nonlinear Core Correction F

PBE Exchange-Correlation Functional SLA, PW, PBE
Local Potential Cut-off Radius 0.000000000000000E+000

Z Valence 6.0000000000000000
Total Energy 0.00000000000000E+000

Number of Points in Mesh 473
Max Angular Momentum Component 3

Number of Wavefunctions 4
Number of Projectors 3
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