
1

 UNIVERSITY OF NAIROBI

 SCHOOL OF COMPUTING AND INFORMATICS

 SYSTEM INTEROPERABILITY WEB DATA-EXCHANGE SERVICE BUS

 FOR INTEGRATING HEALTH INFORMATION SYSTEMS

 BY

 JONATHAN MWAI

 Registration Number: P58/64026/2011

Submitted for the partial fulfillment for the requirements of Masters of Science

in Computer Science

JUNE 2016

ii

DECLARATION

I Jonathan Mwai declare that this project research, is my own original work and has not been

presented anywhere for the purpose of an academic award.

Signature: ____________________________________

Jonathan Mwai N

P58/64026/2011

Supervisor:

Professor Peter Wagacha Waiganjo

University of Nairobi, School of Computing and Informatics

Signature: ____________________________________

iii

ACKNOWLEDGEMENT

I would like to gratefully take this opportunity to thank my Almighty God for his care, grace

and good health He offered to me throughout the Master of Science course.

I would also like to express my heartfelt gratitude to Professor Peter Wagacha (Supervisor)

for your insights, exemplary guidance, valuable feedback and constant encouragement

throughout the duration of the project have been outstanding, Thank you.

iv

ABSTRACT

Given the need to manage increasing information and knowledge within Kenya‟s health

sector, developments in information technology have become more crucial to meet the

required demand. Healthcare providers especially government hospitals have made huge

investments towards infrastructure improvement and development/purchase of new required

health management information systems. Despite the government and private healthcare

providers having invested considerably more in the acquisition of various systems, these

systems cannot generate expected outcomes if not integrated to achieve common national

goals like measuring of health service delivery, morbidity control, etc. A fundamental

concern in health management is the integration of health information across distributed,

heterogeneous and disparate information systems. Lack of interoperable health systems is

one of the major barriers to the use of health information.

DHIS 2 is a national health information system (HIS) that was deployed in the country by the

government of Kenya in 2010, its function is monitoring health, and evaluating and

improving the delivery of health-care services and programs in the country. It is also used for

reporting, analysis and dissemination of health data obtained from health facilities and

hospitals nationwide. Thus the processed and analysed information from DHIS2 is used for

national Health Decision Making by the government health managers, stakeholders and

donors for resource allocation. However untimely, incomplete and inaccurate data are the

main challenges that have faced the national HIS since the health reporting is paper based

dominated and also due to lack of integration between the fragmented health information

systems that could submit health data electronically and automatically without using the

paper reporting tools.

In this work through literature review, the research is based on a need for a software

infrastructure that will enable integration of the national DHIS2 with the other existing

disparate HISs used in health facilities in order to promote interoperability between the

systems. Service-Oriented Computing (SOC) is a new computing paradigm that utilizes

services as the basic constructs in development of rapid, low-cost and easy composition of

distributed system. Service Oriented Architecture (SOA) was adopted as the application

framework in designing, building and implementing the service-based solution. Enterprise

Service Bus (ESB) a layer of middleware through which a set of core (reusable) services are

made widely available, this approach was used in development of a web data exchange

service bus for integrating the HISs thus facilitating interoperability of the different systems

across platforms, enhance communication and data exchange.

After the development and evaluation of the Web Data Exchange Bus that enabled an

instance of DHIS2 Kenya to interoperate with other Partner-HISs, it is evident that SOA

enabled-infrastructure is the most ideal method of integrating systems compared to others

methods like point-to-point integrations (through Application Programming Interfaces -

APIs) which provides no flexibility of systems changes without impacting on each other. The

study demonstrated that Service Bus can be used to integrate new Web Service (WS) based

systems with legacy systems that do not have APIs functionalities.

v

TABLE OF CONTENT

Declaration ... ii
Acknowledgement .. iii

Abstract ... iv
List of Figures ... viii
List of Abbreviations .. ix

Key Terminologies.. xi
1.0 CHAPTER ONE: INTRODUCTION ... 1

1.1 Background Information ... 1
1.2 Problem Statement .. 2
1.3 Purpose of the Project ... 3

1.4 Objectives.. 3
1.5 Significance of the Study .. 3

1.6 Research Outcomes... 3
1.7 Assumptions and Limitations ... 4
2.0 CHAPTER TWO: LITERATURE REVIEW .. 5

2.1 Types of interoperability pertinent to health... 5
2.2 Levels of interoperability .. 6

2.3 Interoperability standards.. 7
2.3.1 Categories of standards used in healthcare: ... 7
2.3.2 Standards development organizations.. 9

2.4 Health Interoperability Standards ... 10
2.4.1 Health Level 7 (HL7) ... 11

2.4.2 Reference Information Model (RIM)... 12
2.4.3 What are Services... 16
2.4.4 Types of Service... 17

2.4.5 What is SOA?... 17
2.4.6Basics of SOA ... 18

2.5Service-Oriented Architecture (SOA)[11] ... 18
2.5.1SOA Model ... 18
2.5.2Advantages of SOA .. 20

2.6 Web Service .. 21
2.6.1Components of Web Services [12] ... 22

2.6.2Security Concerns ... 23
2.6.3 How Web Services Work[12] .. 24
2.7Evolution of Enterprise Application Integration Architectures ... 27

2.7.1Point to Point Topology .. 27
2.7.2 Hub and Spoke Topology .. 28

2.7.3 Bus Topology .. 29
2.8 Enterprise Service Bus ... 30
2.9 Overview of Web Services and their applications .. 34

Related works.. 35
2.9.1 A SOA based architecture to promote ubiquity and interoperability among HISs 35

2.9.2 Web Service-Based Integrated Healthcare Information Systems (WSIHIS) 36
2.9.3 Artemis ... 38
3.0 CHAPTER THREE: METHODOLOGY... 40

3.1 Introduction ... 40
3.2Web services development methodology .. 41

vi

4.0 CHAPTER FOUR: SYSTEM ANALYSIS, DESIGN & IMPLEMENTATION 44
4.1Software Tool used for development ... 44

4.1.2User requirements ... 45
4.1.3 Use case diagram ... 46

4.1.4 The Integration Approach .. 48
4.1.5The Interoperability Process of the Web Service Data Exchange Bus 50
4.1.6 The interoperability process consist of following main stages ;- 51

4.1.7Data Exchange Service Bus Data Flow .. 52
4.1.8The Web Data Exchange Bus Activity Diagram .. 53

4.1.9Canonical Data Format ... 54
4.2.0Non-Functional Requirements .. 55
5.0 CHAPTER FIVE: RESULTS AND DISCUSSION ... 63

5.1 There are desirable characteristics in interoperability achieved the system. 63
5.2 Comparison between Web services and API Integrating Approaches 64

5.3 Conclusion .. 65
5.4 Recommendation for Future Work ... 66
References .. 67

Appendices ... 70
Sample of MOH 711 Register Reporting Form .. 70

Sample code .. 72

vii

LIST OF TABLES
Table 1:Comparison between Web services and API integrating approaches 65

viii

LIST OF FIGURES

Figure 1: HL7 layers of data transmission ... 12

Figure 2: HL7 v3 information refinement process ... 14
Figure 3: SOA model ... 19

Figure 4: Web Services – the SOA implementation .. 22
Figure 5: Web Service Technologies ... 25
Figure 6: Interaction between applications/consumers and Web services. 26

Figure 7: Point To Point Topology .. 27
Figure 8: Hub and Spoke Topology ... 28

Figure 9: Bus Topology.. 29
Figure 10: Enterprise Service Bus Architecture[30] .. 32
Figure 11:Web Services Development Workflows.. 40

Figure 12:Web Service Development Methodology (extending Agile Methodology.) 41
Figure13:Diagram of the Web Data Exchange Service Bus for HIS 45

Figure 14: Use Case of the Web Data Exchange Service prototype 47
Figure 15: The layer architecture for health information systems ... 48
Figure 16: Usage of the Interoperability Layer by the Health Information Systems 50

Figure 17:Interoperability process.. 50
Figure 18:Data Exchange Service Bus Data Flow ... 52

Figure 19:Data Exchange Service Bus Activity Diagram.. 53
Figure 20: Transformation process... 55
Figure 21:Login user interface of the prototype - BUS ... 57

Figure 22:Login user interface to the recipient system - DHIS2 ... 57
Figure 23:Interface of the prototype after gaining connection to Service ProviderDHIS2 58

Figure 24:Interface of prototype and listing health facilities ... 58
Figure 25: Interface affording user options for sourcing data .. 59
Figure 26:User options to load a text file with the values to be consumed by another HIS. . 60

Figure 27:Harvested HIS data values but not mapped them to DHIS2 data elements 60
Figure 28:Interface for mapping data values to the data elements. .. 61

Figure 29:Specify location/ip-address of the remote host, database connection credentials . 61
Figure 30:Before data was received by the recipient DHIS2 system 62
Figure 31:Data received by recipient system DHIS2 ... 62

Figure 321: Sample of MOH 711 Register Reporting Form.. 72

ix

LIST OF ABBREVIATIONS
ANSI - American National Standards Institute

API - Application Programming Interface

CDA - Clinical Document Architecture

CCOW - Clinical Context Object Workgroup

CEN - ComitéEuropéen de Normalisation

CHRIO - County Health Records Information Officer

CORBA - Common Object Request Broker Architecture

D-MIM - Domain Message Information Model

DHIS2 - District Hospital Information System2

DICOM - Digital Imaging and Communications in Medicine

EAI - Enterprise Application Integration

EMRS - Electronic Medical Record System

EHR - Electronic Health Record

ESB - Electronic Service Bus

FTP – File Transfer Protocol

HIS - Health Information System

HISA - Healthcare Information Systems Architecture

HL7 - Health Level Seven

HTTP - Hypertext Transfer Protocol

HTTP - Hypertext Transfer Protocol Secure

HMD - Hierarchical Message Description

HMIS - Health Management Information System

IEEE - Institute of Electrical and Electronic Engineering

IETF - Internet Engineering Task Force

ISO - International Standards Organization

JMS - Java Message Service

JSON - JavaScript Object Notation

LOINC -Logical Observation Identifiers Names and Codes

MOH - Ministry of Health

RMIM - Refined Message Information Model

RMI - Remote Method Invocation

RIM - Reference Information Model

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=0ahUKEwj0_Na9lMzJAhXKXRQKHafTADkQFgg0MAQ&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FJava_Message_Service&usg=AFQjCNF4n8SilDmG_yC8nlBFKRlPucM6Aw&sig2=KG2D245I1qL_iHyf4Gwdrw

x

SDO - Standards Development Organizations

SNOMED CT -Systematized Nomenclature of Medicine Clinical Terms

SOAP - Simple Object Access Protocol

SSL - Secure Socket Layer

TCP - Transmission Control Protocol

MOM - Message Oriented Middleware

UDDI - Universal Description, Discovery, and Integration

WS - Web Service

WSDL - Web Services Description Language

WWW - World Wide Web

W3C - World Wide Web Consortium

XDR - Cross-Enterprise Document Reliable Interchange

XML - eXtensible Markup Language

xi

KEY TERMINOLOGIES

MOH 711

It is a register designed to capture service delivery data provided to persons who visited

health facilities to consult, counseled, tested or treated etc. on Integrated RH, HIVAIDS,

Malaria, TB& Nutrition on a monthly basis. The register is designed to aggregate units of

data elements used for reporting. (Sample MOH 711 register attached at appendices)

County Health Records Information Officer (CHRIO)

Health or hospital officers deployed by the government at County level hospitals who are

custodian of records information in the facility and are also responsible of receiving reporting

data from all the health facilities in that specific sub-county and entering the data into

DHIS2.

1

1.0 CHAPTER ONE: INTRODUCTION

1.1 Background Information

With the emerging of IT technologies and increasing demands for computerizing medical-

related information, health institutions have developed systems to manage and process the

large amount of medical information. Exchange of clinical information and medical records

amongst health providers would provide safe and reliable healthcare this depends on access

to, and the use of, information that is accurate, valid, reliable, timely, relevant, legible and

complete.

For example, when giving a patient a drug, a nurse needs to be sure that they are

administering the appropriate dose of the correct drug to the right patient and that the patient

is not allergic to it. Similarly, lack of up-to-date information can lead to the unnecessary

duplication of tests – if critical diagnostic results are missing or overlooked, tests have be

repeated unnecessarily and, at best, appropriate treatment is delayed or at worst not given.

Health information has a key role to play in healthcare planning decisions – where to locate a

new service, whether or not to introduce a new national screening programme and decisions

on best value for money in health and social care provision.

In order to achieve information exchange and medical knowledge sharing, hospitals and

healthcare providers have intended to integrate their systems‟ functions and data. This has

raised some concerns, such as, data security, data transmission, network limitation and so on.

 Among these issues, the issue of system and data interoperability are most obvious barrier

for the integration of functions and data of different systems.

Nowadays health information systems have been developed using different languages (e.g.

Java, Visual Basic, C#, etc.) different system platforms (e.g. Microsoft Windows, Linux,

etc.) and Database Management Systems (e.g. Microsoft SQL server, Oracle, PostgreSQL,

Sybase, etc), these differences between systems are the major factors leading to system

interoperability where the valuable data stored in disparate systems cannot be exchanged

across platforms and be used by any health stakeholder who needs the information.

The need of exchange of electronic health information has been felt in whole sector of

healthcare across the world and this has prompted international organizations to set standards

for all aspects of health information to allow seamless sharing of the information across

organizational boundaries, the standards are commonly referred to as interoperability

standards. The Interoperability standards that have been developed provide a standardized

2

approach to facilitate flawless exchange of information between health information systems.

Different organizations have developed models, frameworks, service and information

representations and approaches in-order to address interoperability issues.

Web services have emerged as the next generation of integration technology. Based on open

standards, the Web services technology allows any piece of software to communicate with

each other in a standardized XML messaging systems. It solves and eliminates problems of

DCOM/CORBA distributed middleware technologies. Microsoft .Net framework and C

language are important part of solution for the interoperability as they are language neutral.

The main objective of the proposed project is to research on the issues of system and

language interoperability and develop a Web Data-exchange service for Integrated Health

Information Systems.

1.2 Problem Statement

Currently the District Health Information System (DHIS2) deployed nationally at county

level, Health Management Information System (HMIS) deployed in most health facilities,

Electronic Medical Record System (EMRS) and others are health information systems that

contain very valuable patients‟ medical data that is accessed by health providers at health

facilities. Due to the fact that the information systems used by the health institutions are

independent there is difficulty in accessing the required patients‟ prescriptions, past health

history for the purposes of appropriate treatment especially if the patient is seeking treatment

in a different health facility from the he/she is used to. Lack of the systems interoperability

has hindered ease of access to medical data/records leading to risks of erroneous treatments,

inefficient and poor quality healthcare.

For a better decision-making process, especially in a critical area as healthcare, fast and

reliable access of a patient‟s medical history is of utmost importance (Maass et al, 2008;

Revere et al, 2007), even though the information is located in a different information system

geographically distant from de information system in use in a given situation.

There is an urgent need for the creation of integration mechanisms among the different health

information systems that exists today in different healthcare units, like what happens in other

areas of activity (Manpaa et al, 2009).

An environment that allows exchange and sharing of the medical records, healthcare

knowledge and information would enhance efficiency and quality of healthcare in kenya.

3

1.3 Purpose of the Project

This research will explore a web data exchange service interoperability system to enhance

quality, effectiveness and safety in healthcare by enabling sharing for data and information

within health information. To provide cost-effective health information system integration

solution, this research proposes implementation of a prototype that helps us to share not only

the data in these HISs but also the data management platform in order to promote efficiency

in decision making by hospital managements. This research proposal will evaluate the Web

Service approach as an appropriate methodology to achieve health information system

interoperability.

1.4 Objectives

i. Identify the relevant existing data interoperability technologies and standards.

ii. Identify the problems and the solutions related to data exchange between disparate

Hospital Information Systems (HISs).

iii. To understand how a data sharing platform/interoperability system can be implemented

iv. To develop a data exchange prototype using Web Services technologies that will enhance

data exchange between the major Health Information Systems and the disparate HISs.

1.5 Significance of the Study

This study proposes developing of a prototype that helps to exchange and share the data and

information in HISs. For health professionals and patients will benefit from efficiency in

access of data anytime and anywhere e.g. the medical records and past treatments of patients.

The study will improve access and availability to health record data and health information

anytime, anywhere, thus enhancing quality and safety of care by improving data exchange,

the quality of data flow and access to information by health professionals thereby potentially

reducing errors.

1.6 Research Outcomes

The deliverables for this study will be a prototype that will help the healthcare professionals

to access valuable medical data and information from other crucial health information

systems. After this study, the deliverables will include contribution of knowledge and a well

published paper.

4

1.7 Assumptions and Limitations

This study assumes that there is a functional database in each and every healthcare institution

that can be queried to find records and to extract information. This research study will also

assume that there are computers and the health information systems in all health which are

internetworked via intranets and Internet.

This study assumes that the HL7 version 3 standards have been adopted for representation

and recording of medical content in electronic documents across all information systems

nationally. This proposal involves development of a prototype system that implements the

proposed solution to demonstrate its application in a real-world setting.

There are numerous hospitals (private and public) that have developed proprietary

Information Systems that are dependent, it is very difficult to realize interconnection of the

all these systems. We will limit our research on sharing and exchange of data between the

three major health information systems namely DHIS2, HMIS and EMRS

5

2.0 CHAPTER TWO: LITERATURE REVIEW

Interoperability the ability of two or more systems or components to exchange

information and to use the information that has been exchanged (IEEE Glossary).[1]

Being able to accomplish end-user applications using different types of computer

systems, operating systems, and application software, interconnected by different types

of local and wide area networks(O'Brien J, Marakas G)[2]

2.1 Types of interoperability pertinent to health

Interoperability issues can be considered from three different viewpoints to

maximize business benefit:[3]

a. Technical interoperability is the exchange of data between computer system A and

computer system B. The computers do not know about the meaning of what is exchanged.

For example, emails transmitted from one computer to another generally contain content

information that is not understood by the sending or receiving computer.

b. Semantic interoperability guarantees that computer system A and computer system B

understand the meaning of data in the same way and use and interpret the data that is

exchanged. Semantic interoperability is central to healthcare interoperability. For example, a

laboratory information system transmits results to a practice management system at a GP

practice. The practice management system recognizes the structure, format, units and

meaning of the result sent by the laboratory system. In order to achieve this, both systems use

a common terminology or language to communicate.

c. Process interoperability incorporates business processes. It is important that business

processes also interoperate and the people involved share a common understanding to enable

computer system A and computer system B to work together. For example, healthcare

professionals must standardize business rules to ensure that health information is recorded in

a uniform and timely manner such that the transfer of information between systems is

consistent and complete.[3]

To support interoperability between systems and meaningful sharing of data, health

information standards must cover both the syntax (structure) and semantics (meaning) of the

data exchanged. Interoperability standards are guidelines that technology developers can use

to develop health information systems that will be inherently compatible with other systems

adhering to these same standards.[4]

6

The use of interoperability standards delivers key benefits in a number of areas: standards

enable and support health service improvements, deliver economic benefits and, most

importantly, result in benefits for individuals through safety improvements in service

delivery. In the area of implementation, standards acts as the middle ground where

coordination between different software systems is needed. [5]

Interoperability greatly benefits all involved in the delivery and receipt of healthcare:

i. Patients can benefit from enhanced quality and safety of treatments received, delivery

of healthcare when and where it is required.

ii. The electronic transfer of prescriptions (ETP) can be enabled through interoperability

of pharmacy systems with primary care information systems facilitating a reduction

in the potential for harmful drug interactions and transcription errors.

iii. Healthcare professionals can potentially improve the quality and safety of the care

they provide through strengthened coordination across the various points of care

delivery.

iv. Individuals and healthcare professionals can benefit from efficiency gains due to a

reduction in duplication of data entry, such as recording of the same demographic

information at multiple locations.

v. Interoperability standards can benefit the software industry by enabling a single

market for digital healthcare, thereby reducing the cost of developing health

information systems and opening up competition in the market.

vi. Efficiency gains brought about by the implementation of healthcare interoperability

standards can benefit the health officers and patients facilitating faster access to care,

diagnosis and treatment of disease, thereby reducing costs significantly.[3]

2.2 Levels of interoperability

There are four levels of interoperability, each demonstrating a level of sophistication

and standardization of health information interoperability:[6]

1. Non-electronic information – there is minimal use of technology to share data and most

health information is recorded and shared on paper. For example, referral from primary care

to secondary care by paper-based referral letter sent via standard postal service.

2. Machine transportable information – transmission of non-standardized data using basic

information technology. This data cannot be electronically manipulated. For example,

sharing of paper-based health information via fax or email attachment.

7

3. Machine organisable information – transmission of structured electronic messages

containing non-standardized data. This means that information can be shared electronically.

However, an interface is required between one or more systems to translate the data from the

structure used by the sending system to the structure used by the receiving system.

4. Machine interpretable information – transmission of structured messages containing

standardized and coded data. This means that systems exchange health information

electronically using a format and vocabulary that is readable and interpretable by the receiver

without the requirement for an interface to decode the information. For example, a discharge

summary is transmitted electronically from the hospital information system to the primary

care electronic record of the patient in a structured and coded format that is used by both

systems, such as HL7 Clinical Document Architecture (CDA) and SNOMED CT.[6]

2.3 Interoperability standards

Standards for healthcare interoperability exist to allow health information systems to

communicate in the same way across system, organizational, regional and national

boundaries. interoperability can also be categorized into various levels, each indicating a

level of complexity of health information exchange. In order to facilitate complex levels of

interoperability, a number of standards development organizations (SDOs) exist. These

organizations develop adoptable standards for the various types or categories of

interoperability, many of which can operate in tandem to allow functional and semantic

interoperability.

2.3.1 Categories of standards used in healthcare :

a. Messaging standards – messaging standards outline the structure, content and data

requirements of electronic messages to enable the effective and accurate sharing of

information. The term „message‟ refers to a unit of information that is sent from one

system to another, such as between a laboratory information system and a GP‟s

clinical information system. Examples of messaging standards include HL7 v2.x for

administrative data and Digital Imaging and Communications in Medicine (DICOM)

for radiology images. [3]

b. Terminology standards – terminology standards provide specific codes for

terminologies and classifications for clinical concepts such as diseases and

medications. Terminology systems assign a unique code or value to a specific disease

or entity, for example, the ICPC-2 code for „asthma‟ is R96.

8

Terminologies are used primarily to capture clinical information at the point of care.

As such, they are highly detailed, have predefined relationships and are fine grained.

c. Document standards – document standards indicate the type of information included

in a document and also the location of the information. Examples of document

standards include the paper-based Subjective, Objective, Assessment, Plan (SOAP)

standard and also HL7 Clinical Document Architecture (CDA) for electronic sharing

of clinical documents. HL7 have developed document-standard specifications for a

continuity of care document (HL7 CCD) and a discharge summary (HL7 DS).

d. Conceptual standards – conceptual standards allow the transmission of information

between systems without any loss of the meaning or context of that information. For

example, the HL7 Reference Information Model (RIM) provides a framework for

describing health information and the context around it, i.e. who, what, when, where

and how.

e. Application standards – application standards determine the implementation of

business rules for software systems to interact with each other. For example,

application standards can allow a single user to log in to multiple information systems

in one environment allowing efficient access to the required health information. This

can facilitate the simultaneous viewing of health information across multiple

databases that are not electronically integrated.

f. Architecture standards – architecture standards define a generic model for health

information systems. They allow the integration of health information systems by

providing guidance to aid the planning and design of new systems and also the

integration of existing systems. This is achieved by defining common data elements

and business logic between systems. For example, the CEN standard ENV12967

(Healthcare Information Systems Architecture or HISA) provides an open

architecture that is independent of technical specifications and applications. This

standard enables integration of common data and business logic between systems,

which is achieved via a middleware § layer allowing

information exchange between different systems.[3]

9

2.3.2 Standards development organizations

There are a number of international standards development organizations (SDOs) that have

developed interoperability standards to facilitate the exchange of health information that have

achieved widespread adoption around the world..

a. International Standards Organization (ISO)

ISO/TC215, was established for the area of health informatics with the scope of:

standardization in the field of information for health, and health information and

communications technology to achieve compatibility and interoperability between

independent systems. ISO/TC215 collaborates with a number of other SDOs including

ComitéEuropéen de Normalisation (CEN) and HL7. [3]

b. Comité Européen de Normalisation (CEN)

CEN, or the European Committee for Standardization, is involved in developing

multidisciplinary standards including standards for healthcare systems and interoperability.

TC 251 is the health informatics technical committee in CEN with responsibility for

publishing standards addressing aspects of health information representation including

messaging, electronic health records and eHealth initiatives.

c. Health Level Seven (HL7)

The organization is an SDO accredited by the American National Standards Institute (ANSI)

with the purpose of developing and publishing healthcare-specific standards. It publishes

messaging standards for healthcare interoperability that aim to enhance care delivery,

knowledge transfer and optimize workflow. HL7 products include HL7 version 2.x (v2.x),

HL7 version 3 (v3) messaging standard, Clinical Document Architecture (CDA), Clinical

Context Object Workgroup (CCOW) and Arden Syntax.

Other major organizations that have been mandated to develop healthcare standards are

OpenEHRand Integrating the Healthcare Enterprise (IHE).

Internationally HL7v3 is by far the most widely used standard for exchanging healthcare

messages. OpenEHR and CEN13606 are similar but neither has reached critical mass in

terms of adoption.

10

2.4 Health Interoperability Standards

i. Health Level 7 (HL7)

HL7 is a collection of message formats and related clinical standards that define an ideal

presentation of clinical information, and together the standards provide a data exchange

framework. HL7 is a standard for healthcare specific data exchange between computer

applications. The name comes from "Health Level 7" (top layer of the Open Systems

Interconnection layer protocol for the health environment.

ii. Continuity of Care Record (CCR)

CCR is an XML - based standard for the movement of "documents" between clinical

applications. Furthermore, it responds to the need to organize and make transportable a set of

basic information about a patient's health care that is accessible to clinicians & patients.

iii. Clinical Context Object Workgroup (CCOW)

CCOW is an HL7 standard protocol designed to enable disparate applications to synchronize

in real-time and at the user-interface level. It is vendor independent and allows applications

to present information at the desktop and/or portal level in a unified way.

iv. Clinical Document Architecture (CDA) HL7

CDA uses XML for encoding documents and breaks down the document in generic,

unnamed, and non-templated sections. Documents may include discharge summaries,

progress notes, history and physical reports, prior lab results, etc. HL7's CDA defines a very

generic structure for delivering "any document" between systems. CDA was previously

known as the Patient Record Architecture (PRA).

v. Digital Imaging and Communications in Medicine Committee (DICOM)

DICOM is a standard for handling, storing, printing, and transmitting information in

medical imaging. It includes a file format definition and a network communications

protocol. The communication protocol is an application protocol that uses TCP/IP to

communicate between systems. DICOM files can be exchanged between two

systems that is capable of receiving image and patient data in DICOM format.

11

vi. Cross-Enterprise Document Reliable Interchange (XDR)

XDR used the exchange of health documents between health enterprises using a web-based,

point-to-point push network communication, permitting direct interchange between EHRs,

PHRs and other systems without the need for a document repository.

Example: A nurse at Hospital A enters a patient's information in the local EHR, and then

sends the CCD (a clinical document exchange standard) directly to Hospital B's system.

vii. Logical Observation Identifiers Names and Codes (LOINC)

LOINC applies universal code names and identifiers to medical terminology related to the

EHR and assists in the electronic exchange and gathering of clinical results (laboratory tests,

clinical observations, outcomes management, research) [8]

2.4.1 Health Level 7 (HL7)

HL7 Provides standards for data exchange to allow interoperability between healthcare

information systems and focuses on the clinical and administrative data. Key goal is

ofsyntactic and semantic interoperability . Over 90% of US hospitals have implemented

some version of HL7 messages.

i. In healthcare, HL7 has been used since the 80s (pre internet era)

ii. It used the Unix pipe (|) as a data delimiter. The current internet standard for

document markup is XML, which uses "<>" as a data delimiter.

iii. The data delimiters are used to structure the data

iv. Without a data dictionary to translate the contents of the delimiters, the data remains

meaningless. While there are many attempts at creating data dictionaries to associate

with these data packaging mechanisms, none have been practical to implement.

v. This has perpetuated the ongoing data inability to exchange data with meaning. [8]

What does HL7 Mean

"Level seven" refers to the highest level of the International Standards Organization's (ISO)

communications model for Open Systems Interconnection (OSI) - the application level. The

application level addresses definition of the data to be exchanged, the timing of the

interchange, and the communication of certain errors to the application.

12

[8]

Figure 1: HL7 layers of data transmission

The goal of HL7

i. HL7 V3 is a standard for exchanging messages among information systems in

healthcare

ii. To accomplish this, HL7 uses an object-oriented development methodology and is

based on a Reference Information Model (RIM) to create messages

iii. The goal of HL7 is semantic interoperability

Standards the HL7 has developed

 Conceptual standards (e.g., HL7 RIM)

 Messaging standards (e.g., HL7 v2.x and v3.0)

 Application standards (e.g., HL7 CCOW)

 Document standards (e.g., HL7 CDA)[8]

2.4.2 Reference Information Model (RIM)

RIM is the cornerstone of the HL7 Version 3 development process. It is the fundamental

model from which all v3 messages are derived is referred to as the Reference Information

Model (RIM)

 RIM follows object oriented methodology based on a UML model

 The RIM is a generic, abstract model that expresses the information content of all

health areas

 Defines all the information from which the data content of HL7 messages are drawn

13

 Forms a shared view of the healthcare domain and is used across all HL7 messages

independent of message structure

 RIM model is color coded based on the backbone class

 It is based on classes and their structural attributes[9]

RIM expresses the data content needed in a specific clinical or administrative context and

provides an explicit representation of the semantic and lexical connections that exist between

the information carried in the fields of HL7 messages.

RIM is an information model An information model is a structured specification of the

information in a specific domain of interest.

An Information Model consists of

i. classes, their attributes, and relationships between the classes;

ii. data types for all attributes and vocabulary domains for coded attributes;

iii. state transition models for some classes.

HL7 information models are based upon the Unified Modeling Language (UML)*, and may

be represented graphically using the UML style.

UML is a modeling language based on object-oriented modeling methods

HL7 version 3 (HL7 v3) uses

Reference Information Model (RIM), an object model that is a large class diagram

representation of the clinical data and identifies the life cycle of events that a message will

carry, and applies object-oriented development methodology on RIM and its extensions to

create messages. In the following, two HL7 concepts, i.e.,

a. Message Structure and

b. Refinement Process

are briefly discussed; these concepts are the basis of our translation process [4, 10].

Message Structure. At the highest level, an HL7 version

3 message is composed of two parts:

14

Figure 2: HL7 v3 information refinement process

• HL7 Transmission Wrapper includes information needed by a sending application or

message handling service to package and route the v3 messages to the designated receiving

applications or message handling services.

• HL7 Transmission Content contains core data at-tributes for the message such as a

prescription order or dispense event. It also includes information about the business event

that initiated the sending of this message, which sent it and other associated business

information.

 Refinement process - HL7 methodology uses RIM, HL7-specified Vocabulary Domains,

and version 3 Data Type Specification as its starting point. It then establishes

the rules for refining these base standards to arrive at the in-formation structures that specify

Message Types and equivalent structures in v3.

The strategy for development of version 3 messages and related information structures is

based upon the consistent application of constraints to a pair of base specifications,

i.e., HL7 RIM and HL7 Vocabulary Domains, and upon the extension of those specifications

to create representations constrained to address a specific healthcare requirement. Figure 1

shows the refinement process specified in HL7 methodology, where the different parts are

discussed below.

15

•Domain Message Information Model (DMIM) is a subset of the RIM that includes a fully

expanded set of class clones, attributes and relationships that are used to create messages for

any particular domain.

• Refined Message Information Model (R-MIM)is used to express the information content for

one or more messages within a domain. Each R-MIM is a subset of

the D-MIM and contains only those classes, attributes and associations required to compose

the set of messages.

•Hierarchical Message Description (HMD) is a tabular representation of the sequence of

elements (i.e., classes, attributes and associations) represented in an R-MIM. Each HMD

produces a single base message template from which the specific message types are drawn.

•Message Type represents a unique set of constraints that are presented in both grid and table

view as well as an Excel spreadsheet.

HL7 version 3 will be used to achieve Semantic Interoperability and Syntactic

Interoperability. The use of HL7 v3 open standards and RIM model for sharing of the data

information model allows the overcoming of the Syntactic interoperability.

Technical interoperability is obtained by use of standard communication protocols

(HTTP, SOAP etc.) and by definition of standardized communication interfaces (WSDL

services). The web services offer the promises and hopes of integrating disparate applications

in a seamless fashion and solve the integration problems for the business enterprises.

Traditionally, solutions of interoperability normally involve developing middleware

applications to communicate the non-interoperable applications using the messages, of which

the technology is also named as the distributed middleware technology. CORBA and DCOM

are two most typical distributed middleware technologies. Nevertheless, CORBA or

DCOM is a fairly complex, a task requiring special expertise. Quite often, the

achievement of a good interoperability strategy is significantly constrained by many

implementation restrictions in CORBA or DCOM[9]

.Web services have emerged as the next generation of integration technology. Based on open

standards, the Web services technology allows any piece of software to communicate with

each other in a standardized XML messaging systems Web services are modular self-

describing and self-contained applications that can be published, located and dynamically

invoked across the Web.

16

2.4.3 What are Services

Service is a self-contained, platform- independent computational element that support rapid,

low-cost and easy composition of loosely coupled distributed software applications [10].

The functionality provided by a service can range from answering simple requests to

executing sophisticated processes requiring peer-to-peer relationships between multiple

layers of service consumers and providers.

Services help integrate applications that were not written with the intent to be easily

integrated with other applications and define architectures and techniques to build new

functionality while integrating existing application functionality. Service-based applications

are developed as independent sets of interacting services offering well-defined interfaces to

their potential users. This is achieved without the necessity for tight coupling of applications

between transacting partners, or for pre-determined agreements to be put into place before

the use of an offered service is allowed.[20]

Some Characteristics of Services:

i. Supports open standards for integration - Although proprietary integration

mechanisms may be offered by the SOA infrastructure, SOA‟s should be based on

open standards. Open standards ensure the broadest integration compatibility

opportunities.

ii. Loose coupling -The consumer of the service is required to provide only the stated

data on the interface definition, and to expect only the specified results on the

interface definition. The service is capable of handling all processing (including

exception processing).

iii. Stateless - The service does not maintain state between invocations. It takes the

parameters provided, performs the defined function, and returns the expected result. If

a transaction is involved, the transaction is committed and the data is saved to

the database.

iv. Location agnostic/transparent - Users of the service do not need to worry about the

implementation details for accessing the service. The SOA infrastructure will provide

standardized access mechanisms with service-level agreements.

v. Have a network-addressable interface

vi. Have a coarse-grained interfaces

vii. Self-contained and modular

17

2.4.4 Types of Service

Topologically, services can come in two flavors: (simple) informational or complex services.

Each of these two models exhibits several important distinguishing characteristics that are

briefly described below.

a. Informational servicesare services of relatively simple nature. They either provide

access to content interacting with an end-user by means of simple request/response

sequences, or alternatively they may expose back-end business applications to other

applications. Informational services can be of various kinds:

i. Pure content services, which give programmatic access to content such as simple

financial information, stock quote information, design information, news items and so on.

ii. Seamless aggregation services, which provide seamless aggregation of information

across disparate systems and information sources including back-end systems.logistic

services, where automated services are the actual front-ends to fairly complex physical

organizational business processes.

iii. Information syndication services, which are services offered by a third-party and run

the whole range from commerce-enabling services, such as logistics, payment, fulfillment,

and tracking services, to other value-added commerce services, such as rating services.

b. Complex services typically involve the assembly and invocation of many pre-existing

services, possibly found in diverse enterprises, to complete a multi-step business

interaction called a business process.[20]

2.4.5 What is SOA?

Service Oriented Architecture (SOA) represents a popular architectural paradigm for

applications, with Web Services as probably the most visible way of achieving an SOA.

Web Services implement capabilities that are available to other applications via industry

standard network and application interfaces and protocols. SOA advocates an approach in

which a software component provides its functionality as a service that can be leveraged by

other software components.

Components (or services) represent reusable software building blocks. SOA allows the

integration of existing systems, applications and users into a flexible architecture that can

easily accommodate changing needs. Integrated design, reuse of existing IT investments and

above all, industry standards are the elements needed to create a robust SOA.

18

2.4.6 Basics of SOA

Traditional distributed computing environments have been tightly coupled in that they do not

deal with a changing environment well. For instance, if an application is interacting with

another application, how do they handle data types or data encoding if data types in one

system change? How are incompatible data-types handled? How are incompatible data-types

handled?

The service-oriented architecture (SOA) consists of three roles: requester, provider, and

broker.

• Service Provider: A service provider allows access to services, creates a description of a

service and publishes it to the service broker.

• Service Requestor: A service requester is responsible for discovering a service by

searching through

the service descriptions given by the service broker. A requester is also responsible for

binding to services provided by the service provider.

• Service Broker: A service broker hosts a registry of service descriptions. It is responsible

for linking a requestor to a service provider.

2.5 Service-Oriented Architecture (SOA)[11]

SOA stands for Service-Oriented Architecture (Sun Microsystems, 2004). It is the

architectural style which supports communicating between collections of software services

which are available in the network and independent of their implementation and platform. A

service is a unit of work done by a service provider to achieve desired end results for a

service consumer. The communication of SOA can involve two or more services

coordinating some activity or simple data passing. It defines how the two computing entities,

such as programs, interact in such a way as to enable one entity to perform a unit of work on

behalf of another entity.

Service interactions are defined using a description language. Each interaction is self-

contained and loosely coupled, so that it is independent of any other interaction. It is

the style of building reliable distributed systems that deliver functionality as services,

with the additional emphasis on loose coupling between interacting services.

2.5.1 SOA Model

The simple model of SOA contains three entities such as Service Requestor,

Service Registry and Service Provider, and three operations such as find(), bind()

19

and publish ().

[11]

Figure 3: SOA model

The Service Requester is an application that wants to receive a service from another

application. It uses the find() operation to find a service description published to one or more

service registries by other applications called service provider. The service requester does not

need to know where the service is located and how it is implemented, it only gets the service

description with the find() operation and uses it to bind to or invoke the services hosted by

the service providers.

Any consumer of the services is considered as service requester, it is basically the client side

of the communication of SOA.

The Service Registry is responsible for storing the service description published to it by

service provider and for allowing service requesters to search the collection of service

description contained within it. Based on the search criteria that has been submitted by a

service requester in find() operation, it provides the description of the service to the

requester. The service description contains the contact information for services. Once the

service requestor gets the service description which also contains service connection details,

the service registry is no longer needed in the picture, the rest of the interaction is directly

occurs between the service requestor and service provider. The service requester uses the

connection details to bind() to the service provider. Once bound, they can send messages and

receive responses.

The Service Providers creates the service description and publishes it to one or more service

registries using the publish() operation. It also receives the service invocation messages from

one or more service requestors and sends responds to them after being bound. The service

provider works like the server in the client-server architecture.

20

Besides Web Service, there are many other protocols that can be used to implement the SOA.

Such as DCOM (Distributed Component Object Model, which is Microsoft specific),

RMI(Remote Method Invocation) and JINI (which are Java specific), and OMG's CORBA

(Common Object Request Broker Architecture, which is platform and language

independent). CORBA has been successfully applied in various areas ranging from

telecommunications, e-commerce, to healthcare etc. However, the biggest challenge faced by

CORBA is that it is hard to find a unique RPC middleware to support all the programming

languages and all the platforms at a reasonable price [9]. CORBA only supports for UNIX

and Windows platform, and Visual Basic does not provide any support for CORBA and

therefore limits its usage.

2.5.2 Advantages of SOA

SOA provide several significant benefits for distributed enterprise systems. The most notable

benefits of SOA include: interoperability, efficiency, and standardization. We will briefly

explore each of these.

i Interoperability

Interoperability is the ability of software on different systems to communicate by sharing

data and functionality. SOA/Web Services are as much about interoperability as they are

about the Web and Internet scale computing. Most companies will have numerous business

partners throughout the life of the company. Instead of writing a new addition to your

applications every time you gain a new partner, you can write one interface using Web

service technologies like SOAP. So now your partners can dynamically find the services they

need using UDDI and bind to them using SOAP. You can also extend the interoperability of

your systems by implementing Web services within your corporate intranet. With the

addition of Web services to your intranet systems and to your extranet, you can

reduce the cost integration, increase communication and increase your customer base.

ii Efficiency

SOA will enable you to reuse your existing applications. Instead of creating totally new

applications, you can create them using various combinations of services exposed by your

existing applications.

They will not have to spend a lot of time learning every new technology that arises. For a

manager this means a reduction in the cost of buying new software and having to hire new

developers with new skill sets. This approach will allow developers to meet changing

21

business requirements and reduce the length of development cycles for projects. Overall,

SOA provides for an increase in efficiency by allowing applications to be reused, decreasing

the learning curve for developers and speeding up the total development process.

iii Standardization

For something to be a true standard, it must be accepted and used by the majority of the

industry. One vendor or small group of vendors must not control the evolution of the

technology or specification.

Most if not all of the industry leaders are involved in the development of Web service

specifications. Almost all businesses use the Internet and World Wide Web in one form or

another. The underlying protocol for the WWW is of course HTTP. The foundation of Web

services is built upon HTTP and XML. Although SOA does not mandate a particular

implementation framework, interoperability is important and SOAP is one of the few

protocols that all good SOA implementations can agree on.

2.6 Web Service

A Web Service is an interoperable unit of application logic that transcends programming

languages, operating systems, network communication protocols, and data representation

dependencies and issues.

Web Services are based on the following industry standards:

a. eXtensible Markup Language (XML);

b. Simple Object Access Protocol (SOAP);

c. Web Services Description Language (WSDL);

d. Universal Description, Discovery, and Integration (UDDI).

Web service is the specific implementation of the SOA in which service interfaces are stored

using Web Services Description Language (WSDL), data is transmitted using Simple Object

Access Protocol (SOAP) over Hypertext Transfer Protocol (HTTP or HTTPS), and Universal

Description Discovery and Integration (UDDI) is used as the service registry (Lewis

&Wrange, 2004).

22

Figure 4: Web Services – the SOA implementation

It is an infrastructure for developing and deploying distributed applications. Web services are

typically intended for applications consumption, in contrast with contemporary web

applications which are meant for human users (Loughran, Gudivada & Kalavala, 2005). The

implementation of SOA using web services is shown in Figure 2 (Barry, 2007).

2.6.1 Components of Web Services [12]

Web services are built on foundation of different, but cooperating specifications and

standards. web services are comprised of the specifications and standards of HTTP, XML,

SOAP, WSDL, UDDI etc. in its definition. They are the key components of web services and

the brief descriptions of these components are as follows:

a. Hyper Text Transfer Protocol (HTTP)

is the workhorse of the web. The purpose of HTTP is to provide a protocol to move requests

and responses between web clients and servers. It carries any information that is placed in it

without regard for its data type. As a result, it is popular way to transport SOAP messages

between client and web services.

b. eXtensible Markup Language (XML)

XML has become the common language of the computing environment. An XML document

is well-formed if it conforms to the basic syntax rules of XML, and is valid if it is well-

formed and also conforms to the rules defined in the XML Schema. Parsers are needed to

work with XML document validation, and act as an interface for traversing and accessing the

document.

23

c. Simple Object Access Protocol (SOAP)

SOAP is a message transmission protocol that enables method calls to be sent in an XML

format from one computer to another in a decentralized, networked environment and permits

a communication in heterogeneous universe. It also can send an entire XML document or

data instead of a method calls. It is protocol which it is light, simple, easy to deploy,

extensible and open.

A SOAP message travels between SOAP nodes on a SOAP message path from an initial

sender through one or more intermediate nodes to an ultimate receiver. The message body is

processed by the ultimate receiver.

d. Web Service Description Language (WSDL)

WSDL is a specification that describes web service information such as what methods are

available, what parameters they take, where it resides and how to invoke it. A WSDL

document is an XML document that contains all the information that the service requestor

need to contact and invoke a service. In addition, it is a platform and language neutral.

WSDL separates the description of the abstract functionality offered by the service from the

concrete details like how and where this functionality is offered. WSDL is extensible and

easy to consult over the Internet. A programmer or program is able to read this document and

create an unambiguous message that can call a method or methods in this service.

e. The Universal Description, Discovery, and Integration (UDDI)

UDDI is a XML specification. It describes a special type of registry that lists web services in

which the service requestor might potentially be interested. UDDI is a catalogue that contains

the services offered by the enterprises over their web sites. This catalogue can contain quite a

bit of information such as description, specification (contract), classification, usage history,

test results, performance metrics, documentation etc.

This information allows the web services to be searchable based on various criteria.

It uses special classification schemes called taxonomies that categorize a web service in ways

that are meaningful to potential clients.

2.6.2 Security Concerns

If an organization uses the advantages of web services, it must trust the security of the web

services. To use the web services for its information systems needs, a firm must provide

access to its information assets. This action can become an attractive target for malicious

24

hackers, industrial espionage and fraud. The assurance of security of web services is

necessary for the organization to be willing to adopt a security technology.

Web Services Security Requirements

The requirements for information security (i.e. Confidentiality, Authorisation and

Authentication, Integrity) remain the same for web services. To ensure persistent security,

SOAP messages must include information about the message‟s security requirements.

i Web Services Security Technology

SOAP technology is built on XML, a reasonable approach to Web Services would assure

the information security requirements for an XML message. This section presents an

overview of the information security technologies available to assure the security of an

XML message.

ii Confidentiality for Web Services

 XML encryption, a specification produced by the World Wide Web Consortium (W3C), is

used to encrypt portions of XML documents. XML encryption assures confidentiality in the

case of any security context beyond a simple HTTP/SSL connection.

iii Integrity for Web Services

XML signature, a specification produced jointly by W3C and the Internet Engineering Task

Force (IETF). An XML signature is the XML equivalent of a digital signature. It is used to

digitally sign selected portions of an XML document thereby ensuring integrity.

iv Authentication and Authorization Web Services

A web services user can request services from any number of different service providers.

That user should be authenticated on each service provider‟s system. This authentication can

then be used to determine the resources that a user is authorized to access on a particular

service provider‟s system.

2.6.3 How Web Services Work [12]

The Web-services framework is divided into three areas – communication protocols, service

descriptions and service discovery, of which each is specified by an open standard [26].

25

Figure 5: Web Service Technologies

Figure 1 In general, web services consist of two major technologies (XML – eXtensible

Markup Language and SOAP –Simple Object Access Protocol) and two assistant

technologies (WSDL – Web Services Description Language and UDDI – Universal

Description, Discovery and Integration).

* Firstly, service providers would make use of WSDL to describe their web services.

Following the above step, service providers would register and publish their services in

UDDI

* Applications or service consumers find services via UDDI which would direct service

consumers to relevant services according to the description of web services

* Regarding to previous step, applications or service consumers are able to invoke relevant

web services using SOAP transmitted via HTTP on the Internet. Web services encoded in

XML, SOAP provides a way to communicate between applications developed with

different programming languages and running on different operating systems. In fact,

Web services provide a distributed computing technology for integrating applications on

the Internet using open standards and XML encoding. The use of standard XML

protocols makes Web services platform-,Language- and vendor-independent, thus an

ideal solution for use in application integration.

Figure 6 depicts how applications work with Web Services.

26

Figure 6: Interaction between applications/consumers and Web services.

With respect to Fig.5, applications send requests and responses to and from Web services via

SOAP.

When a program invokes a Web-service method, the request and all relevant

information are packed in a SOAP message and sent to the appropriate destination.

When the Web service receives the SOAP message, it begins to process the contents

(called the SOAP envelop), which specifies the method that the client wishes to

execute and the arguments the client is passing to that method. After the Web service

receives this request and parses it, the proper method is called with the specified

arguments (if there are any) and the response is sent back to the client in another SOAP

message. The client parses the response to retrieve the result of the method call, Service

provider and the Service registry occur in SOAP over HTTP or HTTPS using the WSDL

interface and this particular instance of SOA is considered as web service.

Web services define a set of specifications that provide an open XML-based platform for the

description, discovery, and interoperability of distributed, heterogeneous applications as

services. It provides information to applications rather than to humans, through an

application-oriented interface. As the information is structured in XML, it can be parsed and

processed easily by the application.

27

2.7 Evolution of Enterprise Application Integration Architectures

Application Integration Architectures are middleware software topologies that help different

systems communicate with each other. There are three topologies for integrating applications

we will have a look at and their advantages and disadvantages. Point-to-point topology which

was firstly used and seen as the most basic solution, hub-and-spoke topology administered

from a system that is center of integrations, bus topology which is the architecture of

enterprise service bus.

2.7.1 Point to Point Topology

Most of integration projects are the results of the need for communication between two

systems. The most practical way of providing this communication is to utilize Point-to-Point

Connection. In point-to-point connection only one receiver get one particular message

providing that the system knows where that particular message to be delivered. The sending

system usually has to transform the message into the format which could be understood by

the receiving point.

Figure 7: Point To Point Topology

In point-to-point connections, the addresses of all nodes or points that need to be linked are

determined by the system. If there are changes in target addresses or protocol details, an

update is required for the systems. Furthermore, if the integration network grows larger and

at the same time changes become recurrent, it is likely that operational cost of maintaining

system adopting this approach becomes notable.

In most of the integration projects, data is expected to be transformed between the source

system and the target system. Moreover, developers sometimes may want to make use of

some conditional logic while customizing message routing. In point-to-point connections, a

28

duplication of aforementioned logic is present on each server in need of transformation and

routing yet writing a duplication code might be costly, hard to maintain and to test [23].

Advantages

a. Integration is the simplest of all and tightly bound

b. Enables better integration with small number of systems.

Disadvantages

a. There is limited flexibility and constant need for updates.

b. The more integration points to take care of the more complex it gets.

2.7.2 Hub and Spoke Topology

In Hub-and-Spoke topology, there is a centralized broker which is called a hub and there are

adapters, namely, spokes which enable applications to connect the Hub and they convert the

formats of the application data to that of the Hub recognizes, or vice versa. The Hub deals

with all messages, their transformation processes into the format that destination application

understands and the routing. Spokes get data from the origin application as relay messages to

the Hub, then the Hub passes those messages to a subscribing adapter and it send those over

to the target application.

Figure 8: Hub and Spoke Topology

To create a central location for control, hub topology is very helpful and the

source sends the messages to the central hub. Hub topology is very effective provided

that enterprise events are not dependent and if a single vendor provides the Message

Oriented Middleware (MOM). The source application here forms a message in a particular

format and the hub re-forms and sends it to the spokes linked to the hub [24].

Advantages

29

a. Enables integrations via central management.

b. Less complexity compared to point to point.

c. Business process is controlled and mapping in data layer is provided

d. There is more scalability.

Disadvantages

a. All system is susceptible to single point of failure.

b. There is limited scalability for technologic infrastructure

c. The available hubs cannot generally deal with the incoming transaction duties

from other sources except the middleware they work on.

d. Integration processes with multiple sources and destinations are hard to manage.

e. In need of a database, processing or routing bottlenecks crowd the hub since volumes

grow and integration rules get more complex.

2.7.3 Bus Topology

Messages from source applications are put onto a system-wide logical software bus that other

applications can access. That‟s why, bus topology is beneficial for relaying information to

multiple destinations. Messages on the bus can be particularly subscribed by multiple

applications and the data relay may not have to pass through the central switching point,

which is possible only in publish and subscribe middleware.

The glitch of bottlenecks is, however, overcome by bus topology.

Figure 9: Bus Topology

A central messaging bus is utilized for the distribution of messages by bus architecture and

the messages are published by applications to the bus using adapters.

The message bus takes these messages to the subscribing applications which contain

adapters taking the messages and re-forming them into the required format [25].

30

Advantages

a. Enables integration of loosely coupled services.

b. Enables infrastructure for shared communication

c. Service Meditation

Disadvantages

a. It is hard to control all messages on bus

b. It is hard to adapt systems to loosely coupled services

c. Latency period is increased compared to point-to-point integrations

Before touching upon the definition of Enterprise Service Bus (ESB), it is essential to clarify

what Service Oriented Architecture (SOA) is and what features it provides since in order to

elaborate more, it is useful to define Enterprise Service Bus first.

2.8 Enterprise Service Bus

“An Enterprise Service Bus (ESB) is software infrastructure that enables SOA by acting as

an intermediary layer of middleware through which a set of reusable business services are

made widely available.”[22] Mike Gilpin, Forrester Research, August 2004

Enterprise Service Bus (ESB) is a platform that gathers messaging, web services, data

transformation and intelligent routing in a way that links numerous different applications

across an organization and its partners and coordinate them while keeping transactional

integrity. It makes use of the features provided by Service Oriented Architecture (SOA),

Enterprise Application Integration (EAI), Business-to-Business (B2B), and web services,

thus making itself an integrated platform enabling essential interaction and communication

services that complicated software applications need via an event driven and standards-based

messaging engine, or bus, built with middleware infrastructure product technologies. By

insulating the link established among a service and a transport medium, it is utilized to

realize the needs of service-oriented architecture (SOA) [26].

ESB is the message-based integration architecture containing SOA features and supporting

its infrastructure:

i. Agility

ii. Flexibility

iii. Reusability

31

Basic features of SOA, form the foundation of the advantages provided by the ESB

architecture. These three are the features that are targeted and benefitted as much as possible

by the infrastructure that is the focal point in my thesis. SOA can also be seen as an

architectural format that backs weakly coupled services in providing flexibility in businesses

in a way that enables interoperability in an multiple-technology environment. SOA is

comprised of a complex group of business-aligned services enabling the actualization of

adaptable and customizable business processes by utilizing interface-based service

descriptions [27].

The aim of getting SOA to deepen IS and business activity, and to ameliorate IT-business

alignment in multi-atmosphere business conditions is not very explicit in the definition. SOA

differs from other ITs in that it accentuates more on IS agility thus ameliorating business

agility. The closer the link between IT and business, the more quickly an organization can act

to alter IS applications according to business needs.

SOA provides methods for systems development and integration where systems group

functionality around business processes and package these as an interoperable service [28].

An organization can make use of these services by re-using them or these might also be

commercially on the market. Thus, SOA separates functions into distinct units, or services,

which developers make accessible over a network in order that users can combine and reuse

them in the production of business applications. [29]Between these services, there is always a

strong communication which consists of data exchange, and enables coordination of an

activity processed in two or more services.

Data transfer between reusable services and cross domains is easily achieved. Reusable

services reduce integration costs in SOA architecture and facilitate the integration of end

points to the system. Many end points in SOA architecture contain single service

availability for use. That‟s why each implemented service is designed and developed

independent of business flows, other enterprises or technologies. Services which are on SOA

architecture and can be called from more than one place, by increasing the reusability,

become available for the use of multiple external systems at the same time, and enable

updating of the changes on the whole system with a single move when there is a need for

change.

32

Mediation

Transformation

Security

Enterprise Service Bus

Services Infrastructure Connectivity

Routing

Service

Provider

Service

Consumer
Service

Consumer

Service

Consumer

Service

Provider

Service

Provider

Figure 10: Enterprise Service Bus Architecture[30]

In our research we see an ESB as an integration infrastructure which is used to

facilitate SOA. An ESB combines service hosting, message transformation, protocol bridging

and routing to connect and coordinate the interaction of a significant number of diverse

applications across extended enterprises [31].

ESB greatly enhances the usage of SOA with a virtual bus to connect many disparate systems

and services together (Chappell, 2004; Schmidt et al., 2005; Menge, 2007; Bygstad and

Aanby, 2010). ESB is message-based bus architecture which consists of a set of software

components called service containers (Menge, 2007; Bygstad and Aanby, 2010). Service

containers are interconnected over a reliable and secure messaging channel. A service

container connects one or many software services or systems through service adapter(s)

(Menge, 2007). A system or service sends request messages directly to its connected service

container which inturn processes and routes the messages to a destination (requested) service

container. The destination service container processes and forwards the messages to its

connected destination (requested) service or system through a service adapter[31].

A service container contains several modules namely: connectivity adapter module,

mediation module, message routing module, security module, and management module. Each

module is responsible for specific tasks.

33

I. Routing – its routes a request to particular service provider based on a static or

variable routing criteria example of types of routines:

a. Static routing

b. Content Based Routing

c. Complex Rules based routing

Determines appropriate end consumer based on preconfigured rules or dynamic created

request.

II. Message Transformation– converts the structure and the format of the incoming

service request to the structure and format of the outgoing message that will be

consumed by the service provider. Data transformation between canonical data

formats and specific data formats required by each ESB connector. An example of

this would be transforming between CSV, Cobol copybook or EDI formats to either

SOAP/XML or JSON. Canonical data formats greatly simplify the transformation

requirements associated with a large ESB implementation where there are many

consumers and providers, each with their own data formats and definitions.

Examples

a. text >> xml

b. text >>json

c. edr>> xml

d. Db table record >>json/xml

III. Security – provides protection to enterprise services from unauthorized access by

implementing security standards and policies including:

a. Authentication

b. Authorization

c. Encryption

d. Auditing

e. Intrusion detection

This module includes adapters for connecting services that are provided by the ESB via the

Service Hosting module. The ESB can be assumed to provide a set of adapters from the

ground up, and also has the option for customers or third-party developers to develop

additional adapters for customer-specific requirements.

34

IV. Connectivity/Transportation – Services or Systems connect to each other via

endpoints - uniform, unique "addresses". Messages dispatched between endpoints are

using unified transport (method/protocol that encapsulates message's payload).

Applications that natively use different transport, need to connect to ESB via suitable

adapter - service that will provide necessary transport conversion. Transport protocol

conversion. ESB seamlessly integrate applications that use different transport

protocols (JMS, HTTP/S, pure TCP, etc.)

V. Mediation – also refers to data mapping, maps data elements from the source data

system to the destination data system usually before transformation occurring. This

module contains individual processing units that perform a specific function, such as

validating, filtering of messages etc. [31].

2.9 Overview of Web Services and their applications

The term Web Services describes a standardized way of integrating Web based applications

using XML, SOAP, WSDL and UDDI open standards over the Internet protocol backbone.

Under the web services, a program could viewed as the building block for a more complex

program and this continues in a recursive fashion. It indicates a distributed technology, which

entails bridging across different technologies, platforms and enterprises. They are neutral

with respect to object models and types, and provide synchronous communication of high-

level, semantically rich, XML business documents.

Web services has today diversified into various e-business (for instance e-bay API, Amazon

API), searching tools (Google API) and even programming assignment cheat checker

developed by UC, Berkley).

 One can search http://www.uddi.org or http://www.methods.com for web services currently

implemented by various individual/companies, sorted categorically. Other simple web

services that one could easily find on the web include web service return the current time

from the UTC and web services to validate US Bank routine number.

The disparate hospital information systems need to be interconnected in order to promote

sharing of the required data, web services have been used to provide a remarkable solution.

Below are examples of systems that use web services to enhance interoperability between the

unrelated systems.

https://en.wikipedia.org/wiki/Data_element
http://www.uddi.org/
http://www.methods.com/

35

Related works

2.9.1 A SOA based architecture to promote ubiquity and interoperability among Health

Information Systems in Portuguese (2011)

The Portuguese healthcare system is divided into two main areas, primary care,

represented by health centers, and differentiated care, represented by hospitals and other

healthcare institutions. Primary care is the primary source of care and the patients should

consult them first, in general care and proximity with the community, routine consults,

monitoring and follow up of chronic patients, along the patient's life.[14]

 The access to differentiated care is usually performed by the intervention of primary care

health professionals or in case of emergency. This type of care is more specialized than those

in primary care and they are used when the primary care can't give an adequate response in

specific situations like surgery or oncology patients.

The healthcare professional in a hospital is unable to access the information created in a

health center. As a rule a patient starts to take medication by indication of the primary care

physician, but when the patient needs to go to a hospital, for whatever reason, the hospital's

health professional doesn't know if the patient is on any medication and what is the

medication, unless the patient informs him.

The medical information created in a hospital is not accessible from a health center and vice-

versa.

To promote interoperability among heterogeneous health information systems and the

inclusion of mobile devices in health care, two approaches have been followed. a procedural

approach and a documental approach. The procedural approach uses web services to promote

the integration of applications using specifications such as Simple Object Access Protocol

(SOAP), Web services Definition Language (WSDL) and Universal Description, Discovery

and Integration (UDDI). The documental approach tries to describe in detail the elements of

the exchange of information among the different systems.(Mykkanen et al, 2007).

 The Total Health Enriching Mobile U-health Service System (THE-MUSS) is a system

for ubiquitous solutions to the area of healthcare. The system consists of a Business Process

Management System (BPMS), mobile devices, biosensors and a set of primitives defined

using web services.

There is also iCabiNET system that monitors medication intake in outpatients, the

system is a mobile application that communicates with a server, where the health information

system is running, using web services Representational State Transfer (REST), SOAP or Java

36

Remote Method Invocation (RMI), the communication is bidirectional, the system warns the

patient when is necessary to take a medication and what medication, the application confirms

the medication‟s intake or not the communication takes place via

Bluetooth or the Internet.

The Hospital (H), Primary Care (PC) and Medical Emergency (ME) subsystems represent the

hospitals, health centers and medical emergency respectively. The GLOBAL subsystem is

where the patient can access his medical and personal information. The subsystems of the

different institutions replicate the information in their databases with the GLOBAL

subsystem database on a daily basis. The health professional, namely emergency medical,

may quickly access all of the patient's information, present in GLOBAL, through a mobile

device, using the access interface(web service) for mobile devices (WSM). To update the ME

subsystem one must access the services provided by him. The H, CS and ME subsystems

already existing were not modified, to promote interoperability between them another piece

was created, the BROKER. The BROKER encapsulates the interface and its operations that

a subsystem uses to obtain information from another subsystem.

The prototype the architecture provides interoperability in three specific cases, consultations

in the CS subsystem, surgery/hospitalization in the H subsystem, and an emergency situation

outside a health institution in the EM subsystem.

For example if a patient was submitted to a surgery, the medical information create during

that procedure will be stored in de subsystem H and will be accessible to the other

subsystems through the operations provided by the BROKER. The same happens with the

information stored in the other subsystems.

The focus of the prototype implementation was the BROKER in the H, PC and ME

subsystems and in the communication between them as well as the access to the GLOBAL

and ME subsystems using a mobile device. To promote interoperability between the different

subsystems were used specifications such as WSDL and SOAP.

2.9.2 Web Service-Based Integrated Healthcare Information Systems (WSIHIS) –

OPRA Project Queen Marry Hospital, UK (2009)

A scheme called OPRA (OsseointegrationProgramme for Rehabilitation Amputee) was

developed at Sweden that consists of patients‟ selection and recruitment, surgical plan after

surgeon retirement and rehabilitation. The whole procedure of Osseointegration from the

operation to the rehabilitation of patients lasts years. [13]Overall, this process would involve

37

doctors, patients, surgeons, prosthetic clinician and rehabilitation clinician. All relevant

information must be recorded and documented for progress review. Patients‟ files are also

required if the infection is developed in later stage. They would require an information

system to manage and process these massive health data, as the patient, the hospital

and the rehabilitation centre and prosthesis are normally not in same location. The data

exchange between them would be very important.

Consequently, WSIHIS was implemented by National Program for IT (NpfIT) to

computerize all documents and data, and offer a secure and stable environment for the

communication between doctors and patients across the Internet. WSIHIS would be required

to link with various medical-relevant people (e.g. GP, Surgeon, prosthetic clinician and

rehabilitation clinician), who might be using different systems on their desktops to access to

WSIHIS for different purposes.

Web service plays as the role of middleware that hides all these differences in system

platforms, programming languages and database systems to users and developers.

Accordingly, from users‟ perspective, they get the access to WSIHIS regardless of their

different system platforms. From developers‟ perspective, they can invoke or reuse

applications of WSIHIS in their systems with the support of web services.

WSIHIS is built upon Microsoft .Net platform, and Web service plays a role of middleware.

Web services can be exposed from and consumed by any platform that can

format and parse an XML message because using XML for the formatting of requests and

responses. This allows XML-based Web services to bring together disparate pieces of

functionality – existing or new, internal or external to an organization – into a coherent

whole. Core technologies of Web service are XML and SOAP. Once Web services receive

requests from applications, web services would retrieve data from different DBMSs (e.g.

SQL server, Microsoft Access, Oracle, etc.) into datasets according to requirements of

applications. All datasets would be written in XML messages, in additions, SOAP would act

as an XML envelop to wrap those XML-based datasets into SOAP messages. And then

these SOAP messages would be transmitted back to applications via HTTP. SOAP in Web

service-based middleware provides a way to communicate between applications developed

with different programming languages and running on different operating systems.

Additionally, Microsoft .Net platform is another important part of solution for the

interoperability in WSIHIS. It is language neutral. It is best thought of as an open

38

programming platform into which a variety of languages can be plugged. It is achieved by

translating all different programming languages into a common language called Intermediary

Language (IL).

Major benefits from the achievement of interoperability are firstly, for existing HISs, medical

data and functions can be easily shared and exchanged between different HISs, additionally,

systems would be accessible to people using different operating systems. Secondly, for those

HISs under the expansion and improvement, new technologies can be easily plugged into

original systems. Finally, for those HISs under the development, they can reuse functions

from other HISs to reduce the development time scale and cost.

2.9.3 Artemis

ARTEMIS is a STREP project supported in the 6th Framework by the European Commission.

ARTEMIS aims to develop a semantic Web Services based interoperability framework for

the healthcare domain. Artemis addresses the interoperability problem in healthcare domain

in two respects: [15]

First, in Artemis infrastructure healthcare institutes keep their proprietary systems and expose

their medical applications as Web services. Web services provide functional interoperability

through well accepted standards like SOAP and WSDL.

Secondly, Artemis provides the interoperability at the semantic level through semantic

annotation of service messages and functionalities through OWL-S and ontology mediation.

Artemis has a peer-to-peer architecture in order to facilitate the discovery of healthcare web

services. In Artemis, healthcare institutes are represented as peers.

Artemis peers provide interfaces to the healthcare information systems to enable them

to discover and consume the Web services provided by the other peers.

In order to facilitate the discovery of the Web services, there is a need for semantics

to describe what the service does, in other words what the service functionality

semantics is in the domain. For example, in the healthcare domain, when a user is

looking for a service to admit a patient to a hospital, he should be able to locate such a

service through its meaning, independent of what the service is called and in which

language.

In Artemis, HL7 categorization of healthcare events are used to annotate Web service

functionality since HL7 exposes the business logic in the healthcare domain. OWL-S

Release 1.1 also indicates that service characterization must effectively position a

39

service within the broad array of services that exists within some domain, or perhaps

in the world at large10. OWL-S proposes to construction of a “Service Profile

hierarchy”, with inheritance of properties by subclasses as a technique for this kind of

service characterization. In the same manner, we have created the HL7 event based

Artemis Functionality Ontology as a “Profile Hiearchy”. If further ontologies are

developed for this purpose, they can easily be accommodated in the Artemis

architecture through ontology mapping.

When invoking a Web service, there is also a need to know the meaning associated with the

messages or documents exchanged through the Web service. In other words, service

functionality semantics may suffice only when all the Web services use the same message

standards. For example, a “GetClinicalInformation” Web service may include the messages

to pass information on diagnosis, allergies, encounters and observation results about a

patient. Unless both the sending and the receiving ends of the message conform to the same

EHR standard, interoperability can not be achieved.

For this purpose in Artemis, the input and output parameters of the Web services defined in

OWL-S are annotated through message ontologies. In Artemis Message Exchange

Framework (AMEF) 2, the messages which may be in EDI or XML are normalized to

messages represented by the messages in OWL. The most powerful aspect of AMEF is that

the healthcare organizations are not expected to conform to a single commonly agreed

messaging format. Artemis Architecture provides an OWL mapping tool, called OWLmt11,

to handle ontology mediation by mapping the OWL ontologies in different structures and

with an overlapping content one into other. In Artemis architecture, healthcare institutes

define the mapping between their own message ontology and one of the “Clinical Concept

Ontologies” available in Artemis P2P Network. “Clinical Concept Ontologies” are designed

based on the prominent EHR based healthcare standards such as HL7 CDA, CEN ENV

13606 1.

 Such mappings are defined graphically between source and target ontologies and the

mapping definitions produced are advertised to the Mediators in the P2P network. When a

peer wishes to invoke a web service, the mediator hosting the OWL mapping engine

mediates the web service input and output parameters from the source ontology instances to

target ontology instances automatically using the previously stored mapping definitions.

40

3.0 CHAPTER THREE: METHODOLOGY

3.1 Introduction

In order to accomplish the objectives specified in chapter one, a number of activities were

carried out as outlined below:

i. Literature review on health information systems and Web services technology

ii. Gather user requirements.

iii. Analyze business components to be reused or create new service.

iv. Design the Web Service (WS).

v. Develop WS by implementing business logic with the used of interface and

implementation classes.

vi. Build WS by wrapping component into WS.

vii. Deploy WS to the target web server based on the deployment script .

viii. Test and debug WS using web service client

ix. Publish WS if publishing to service registry is required.

The development is depicted in the diagram below.

Figure 11:Web Services Development Workflows

i. Literature review on health information systems and Web services technology

A brief literature review of the health information systems was carried out with a view to

gain thorough understanding of the underlying needs, challenges and desired operations

level of health information interoperability systems. This review guided the process of

41

compiling the requirements document. The study identifies the use of Web services

development methodology to specify, analyze, design and implement the system.

3.2 Web services development methodology

Web service development methodology defines a set of common practices that create a

method-independent framework, which can be applied for developing Web Service

applications. The realization of SOA is centered on Web Services (WS), the SOA application

development involves developing software components (services) for software reuse and

wrapping software components as Web Services for end user applications or other services

consumptions. The WS methodology is a detailed process for specifying, designing,

and implementing services oriented systems.

According to analysis done by (S. Poh Lee et al, 2007) on gaps of existing software

development methodologies (e.g. they do not include the design and development factors

specific for Web Services etc) and study of Web Services characteristics, forms our basis of

extending the existing agile software methodology with Web Services. The transition

through the development phases will be iterative and incremental in nature to accommodate

revisions in situations where the scope cannot be completely defined up front.

[16]

Figure 12:Web Service Development Methodology (extending Agile Methodology.)

42

Although the phases are described in a sequential fashion it is acknowledged that like most

Software Engineering methodologies, practice involves revisiting earlier phases as one works

out the details.

Bottom-up development approach will be used as it involves creating a Web service interface

from the application programming interface (API) of the application that implements the

Web service. Using this approach a new service interface is developed for existing

application(s). Bottom is well suited for an environment that includes several heterogeneous

technologies and platforms or uses rapidly evolving technologies. An overview of the

methodology, including its phases, deliverables, and intermediate products, is depicted

below.

The following is description of the phases and deliverables.

A. Requirements Phase consists of the following activities:

 To understand the organizations requirements/needs and translating them into WS

requirement in terms of the features, the functional and non-functional requirements,

and the WS constraint.

 Identifying Web Services, categorizing the needs into Web Services and the features

 required for the respective Web Services.

 Define use case models for the respective Web Services.

B. Analysis Phases consists of the following activities:

 To refine the requirements further and translate the requirements into conceptual

models.

 Architecting analysis is done to define high-level structure and identify the Web

Services interfaces contracts.

 Analyzing the granularity of Web Services interface contracts.

 Selecting technology platform for implementation framework.

 Defining Web Services candidate architecture.

 Identify architectural components to be exposed as WSs and specify major

information exchanged with client.

C. Design Phase consists of the following activities:

 To detail design of Web Service and refine further the WS interface.

 The interaction of between the service and the client, e.g. asynchronous/synchronous

or rpc/document is considered.

43

. D. Implementation Phase consists of the following activities:

 Do the actual coding of Web Services. The wrapping of components APIs to Web

Services interface is done.

 The generations of UDDI, WSDL and WS test client are produced. The WS will be

deployed to the target application server.

E. Testing Phase consists of the following activities:

 Conduct a complete test for Web Services including functional and non-functional

requirements.

 Testing the coded services and processes for functional correctness and completeness

as well as for interoperability

F. Deployment Phase consists of the following activities:

 To ensure Web Service is properly deployed to the targeted application server.

 To validate proper deployment of WS, the server specific WS client is used to

conduct the deployment.

 Specify if the publishing of their web services is required for internal organization, or

extended to their trading partners or external used.

 This leads to the decision whether to have a private or public service registry to serve

their company‟s needs. If there is a need to publish to a service registry, then activity

for gathering additional information for registry publishing is considered for the

phase

 Execution and monitoring of Web services. This phase includes the actual binding

and run-time invocation of the deployed services as well as managing and monitoring

their lifecycle.

44

4.0 CHAPTER FOUR: SYSTEM ANALYSIS, DESIGN & IMPLEMENTATION

In this chapter, we shall describe the system prototype in detail, the processes and

mechanisms employed in the prototype in order to achieve the functionalities. We then,

describe the bus use case in detail using flowcharts, use case diagrams and activity diagrams.

We have relied heavily on open source tools for the development of prototype.

4.1 Software Tool used for development

 Operating System

 Linux Platform e.g. Kubuntu (kernel version 2.6++)

Relational Database Management

 MySQL (version 5++)

Programming Language

 PHP (version 5++)

Running and Testing Environment

 Standard Web browser e.g. Mozilla Firefox or any browser

Web server

 Apache

45

4.1.1 Diagrammatic representation of the system

 Public Network

Web Data Exchange Service Bus
Web Data Exchange Service Bus

National District

Hospital Information

System -

DHIS2 Kenya

Health Information

System

(Private Hospitals)
EMR Repositories

Health Information

System

(Public Hospitals)

Publish/Subscribe

 Web Services

Interface

Adapter Adapter

Interface

Adapter

Interface

Adapter

Interface

Partner
Health

Information
Systems

SOAP/Restful Interface

Adapter

Figure13:Diagram of the Web Data Exchange Service Bus for HIS

4.1.2 User requirements

User requirements specify what the user wants to achieve from the proposed system. These

are the problems which the proposed system should solve. The following are the user

requirements

i. Provision of secure access to the system

ii. The prototype will remotely login and gain secure access to the National Health

Reporting System – DHIS

iii. It will enable the user to view and specify the required parameters available in DHIS

for submitting information of a health center.

iv. Name of the health center e.g. St. Mulumba Hospital in Kiambu County Thika

district.

46

v. Period which the health information was collected e.g. month of January

vi. Data set or reporting tool to be used e.g. MOH 711, MOH 730

vii. Allows user to specify way of sourcing reporting information i.e. provide parameters

to connect remotely to Partner Health Information: Host Internet Protocol Address or

hostname, database name, SQL statement querying the database for the information.

viii. User will source data to the prototype from an excel sheet file by browsing for the file

received from a health center.

ix. The user will harvest or pull information from a remote host and initially map the

data values to the data elements sourced in a real-time way from the DHIS system.

x. The system will allow the user to send the reporting information from a partner HIS

to the National Health System – DHIS.

4.1.3 Use case diagram

The proposed Web Data Exchange Bus for enhancing interoperability between disparate

health information systems will enable the users login into bus and specify parameters of the

health facility and information to be reported. The system entails a number of use cases

which include County Health Record Information Officers (CHRIOs), Web Data Exchange

Service Bus (WDESB) system and DHIS2 system. The main users of the system are CHRIOs

who receive health aggregated data/summary reports every month from the health facilities

located in a county. The summary reports are in form of manually filled data sheets e.g.

MOH 710, MOH 711, MOH 730 etc. The data on the summary reports are keyed in into the

national DHIS2 system.

The proposed system will be used to extract data directly from heterogeneous information

systems used by the health facilities or receive the data in form of a excel worksheet. The

system mediates between consumption of the Web Services provided national instance of

DHIS2 and the partner Health Information System(HIS).

The use case diagram in figure below shows the interaction of the system and its

stakeholders.

47

Figure 14: Use Case of the Web Data Exchange Service prototype

Login into the Web Data Ex. Bus

Login into the DHIS2- Kenya

View all Health Facil ities in Kenya

Select a Health Facil ity Authenticate and
AuthorizeUsers

County
Health
Record

Information
Officer
(CHRiO)

/

Hospital
Staff

Web Data Exchange

Service Bus
(WDESB) system

DHIS2 system

View all Data Sets in DHIS2
Kenya

Select a Data Set

View all months for reporting

Select a month for reporting

Select a data source e.g. Remote Host,
Spreadsheets, SQL fi le, Text fi le

Harvest Data Values from the data source

View all Data values from HIS and Elements
in DHIS2- Kenya for the selected Data set

Statically Map HIS Data values against the Data

Elements in DHIS2- Kenya. System retains
mapping configurations dynamically

Initialize transformation and Submit Reporting
data to DHIS2- Kenya Web Service

<<include>>

Load a data fi le or specify Data source (remote

host-ip-address, DB connection parameters and
query statement of a remote HIS). System
retains routing configurations dynamically.

48

4.1.4 The Integration Approach

A multi-tier architecture was employed in devising the solution. The architecture consists of

the database layer, health information systems layer, middleware/ bus, and presentation layer.

U
s

e
r

 L
a

y
e

r
A

p
p

li
c

a
ti

o
n

L
a

y
e

r

C
o

m
m

u
n

ic
a

ti
o

n

L
a

y
e

r

In
te

ro
p

e
ra

b
il
it

y

L
a

y
e

r

D
a

ta

L
a

y
e

r

Laptop PC

CHRiO Hospital Data Administrator

Health Information Systems

District Hospital

Information System

(DHIS2)

EHR Information

Systems

Private/Public

Hospital information

Systems

In
fr

a
s

tr
u

c
tu

re

L
a

y
e

r

Transformation

Mediation

Connectivity
Services

Infrastructure

Routing Security

Postgre

SQL
OracleMySQL

Operating Systems

Computer Hardware

Internetwork Infrastructure

Different Relational Database Management Systems

Hospital Staff

Tablet

Mongo DB

Smartphone

Figure 15: The layer architecture for health information systems

The database and health information systems layer reside at the service client and service

providers‟ ends. The database information would be made available to requestors through the

data access layer, while the health information systems layer is where the interoperability

rules that determine how data is created, stored and accessed are implemented. The database

technologies and interoperability implementations vary across service requesters and the

service providers. As a result of the service-oriented architecture being implemented,

external access to these databases is provided via services. The services are implemented

49

using web service technology. The choice of web services technology is due to its support for

open technologies and protocols such as HTTP (hypertext transfer protocol), XML

(extensible markup language), and WSDL (web service definition language) among others.

These open technologies provide a desired level of interoperability and easy means of access.

The web services provide functionality to access the databases while implementing the

integration rules at the backend. The individual services are registered in a repository from

where they can be accessed. Users can access services directly in repositories; in this case,

access will be through a middleware. The data exchange bus is the middleware between

service requestors and the services providers.

Since the requestors cannot consume the services directly from the service repository, the bus

performs the task of mediating between the requestor and provider. The WDEB performs

service orchestration. Service consumers cannot access the Web Services directly so a further

interface is required.

Service consumers request services via an array of devices ranging from desktop computers

and laptops to mobile devices such as smart phones and tablets. A universal mode of access

is required for all these devices hence the choice of a web interface. Most modern devices

contain a web browser that can be used to access web content irrespective of operating

platforms. As a result, a web server is required to provide a presentation layer in

form of web pages to the consumers via which they can access the services and view results.

This choice of architecture is effective because it provides access to a wide range of

consumers and devices as a result of the ubiquitous technologies employed in the

presentation layer while also providing a high level of separation of concern. However, the

consumers are loosely coupled to the individual services. This provides flexibility because

the service providers can switch database technologies or business logic implementation

without affecting the consumer as long as the exposed services conform to a predefined

contract that the consumer is accustomed to. Implementation of services by providers is also

relatively cheap as services can be built on existing infrastructures without restructuring the

whole system.

Infrastructure Layer consists of the computer hardware (Servers, desktops, peripheral

devices, UPS, etc.); civil infrastructure designed for (server rooms, control centers, etc.) and

internetwork infrastructure (Structured cabling, switchers, routers, fiber optic channels, etc).

50

The Data Layer is composed of different proprietary relational databases i.e. MySQL, Oracle,

PostgreSQL and others; the integration layer exposes functions to both external and inter

users. The Application Layer integrates functions into modules which is made available

to communication carriers define in the communication layer. Users Layer represent users

of the system.

Consumer Interoperability Layer Service Provider

 Input

 Deliver Input

 Response

 Deliver Response

Figure 16: Usage of the Interoperability Layer by the Health Information Systems

4.1.5 The Interoperability Process of the Web Service Data Exchange Bus

Receive Adapter

Receive Pipeline

Routing

 and

Mapping

Send Adapter

Send Pipeline

Routing

 and

Mapping

Web Services

Publish/

Subscribe

Transformation

Data

Extraction Data Received

Temporal

Storage

Figure 17:Interoperability process

51

4.1.6 The interoperability process consist of following main stages ;-

i Data Extraction – The prototype will allow the user to load a text file which has data

values that are found in data set or reporting tool in DHIS2. The text file would contain

aggregated values from the tallying sheets of a certain health facility and which had been

collected during a specific period.

In data extraction process, the bus supports communication protocols and methods of

connecting to a remote HISs databases. Connection to the remote applications from the bus

creates a pathway through the Internet to a specific database and a query statement is

executed on the remote side or on the partner HIS side. The database results are captured

transmitted to a temporal storage on the bus. The data is relayed on the Receive Adapter and

stored on the pipeline/temporary.

ii Routing and Mapping – The data values harvested from a text will be statically or

manually mapped to data sets and data elements loaded in a real-time way from the DHIS2,

the same will occur to data accessed from the remote Hospital Information Systems through

public network or intranet.

Once the mapping of the data values from HISs and data elements from DHIS2 is statically

mapped initially, the exchange bus automatically retains the mapping configurations to the

remote applications and also mapping configurations between the values and elements as

well. The data source and data destination configurations are automatically retained where

the process of mapping and routing is done once and configurations are stored in the

prototype.

iii Transformation – The received data in the bus is in different formats, plain text and

data from different databases is temporary stored where the it is copied to a JSON parser

that translates it to JSON format. The bus which is connected directly to DHIS2 web

services, it mediates applications which cannot interface or directly connect to the published

web services.

After the data is transformed to JSON objects the specific web service is invoked that enables

DHIS2 to receive and store the data objects.

52

4.1.7Data Exchange Service Bus Data Flow

Figure 18:Data Exchange Service Bus Data Flow

The main data sources of the bus are health facilities which have information systems that

maintain the health records of the patients and also facilities which submit reporting data

while typed on a plain text file in a spreadsheets files.

Firstly, the data is obtained from the health facilities in form of text files or through online

access from the Hospital information System diverse databases.

Secondly, the data from facilities is checked for validity and completeness as it is received

into the bus.

Thirdly, the harvested data values from the information systems are statically mapped to the

data elements from the service provider.

Fourthly, the data is translated to the canonical format which is recognizable by the recipient

application.

Data Extraction

Data stored in DHIS2

Data Validation and

Verification

Static Mapping

Data Transformation

Data Exportation Via

Web service

Health IS

(Electronic Health

Records)

Health ISs

(Text Files)

text filestable records

SQL file

53

4.1.8The Web Data Exchange Bus Activity Diagram

Activity diagrams show the sequence of activities in a process, including sequential and

parallel activities, and decisions that are made. The above activity diagram is for

CHRIO or Hospital use case and shows the different possible scenarios.

Figure 19:Data Exchange Service Bus Activity Diagram

Firstly the activity in the prototype starts by the logging in, the user account must be active or

the user login will not be authenticated. Secondly after gaining access into the system, the

user must login to DHIS2 through the bus. Thirdly, the bus will gain access and connect to

DHIS2 resources and pull important data sets and elements :

Login to the

Bus

Authenticate

user

CHRIO or Hospital

Staff
Web Data Exchange Bus system DHIS2-KENYA

Login to

DHIS2

Authenticate

user

Partner HISs

Bus gains

Connection

Browse for

a text file

Load all

Data Sets
Load all

Data

Elements

Load all

Health

Facilities

Connect, query DB of

a remote HIS & Static

routing Data source

Authenticate DB

connection, execute

query and return

data values

Harvest data

Static Map DHIS2 Data Sets,

Elements, Health facilities with

HISs Data values

Data Transformation and

exported DHIS2

Web Service

consumed and

Data stored

 Web service and Data

receipt Acknowledgment
Logout from

the Bus

54

i. Lists all the health facilities that report or submit morbidity data to DHIS2

ii. Lists all reporting tools, the Data Sets forms

iii. Lists all data elements

Fourthly, having established a connection and loaded the elements, the user loads data from

file sent from a health facility or connect to application and run an SQL query statement.

The connections to remote databases are statically entered, thus routing is static however

configurations are saved in the prototype dynamically.

The data values are loaded from file or remote databases by clicking Harvest button.

Fifthly, In the left pane of the Bus window will display data values and in right pane will

display data elements, the user will map the data values to the DHIS2 elements for a specific

data set. The mapping is done manually but the configurations are automatically saved in the

Bus whereby the subsequent time the user requires to do a monthly reporting s/he will use the

previous configurations.

Finally after mapping and routing, the user invoke the transforming of the data and executing

of the web service by the bus where DHIS2 will acknowledge delivery of the data.

4.1.9 Canonical Data Format

Transformation

The integration architecture of the data exchange bus needs to translate or convert any

received data to a common data format which can be understood by all other systems that are

connected to the bus. The common format is referred to as canonical, eXtensible Mark-up

Language (XML) and JavaScript Object Notation (JSON) have been the standard canonical

models or formats used to allow interchange of messages between heterogeneous

applications. The prototype will use JSON canonical as the standard format. After the data is

validated, it is transformed and routed to the destination application for storage, DHIS2.

55

Figure 20: Transformation process

Applications are loosely decoupled since they can communicate or exchange messages with
other applications notwithstanding the data formats that they support.

4.2.0Non-Functional Requirements

i. Flexibility – the prototype has the capabilities of integration technologies toward

rapid adjustments. For example modifications of the software, with minimum effort,

operational and functional capabilities in various computing environments.

ii. Real time - ability of the integration technologies to support operations as they

happen at the same time or access data elements on a remote data storage in their up-

to-date form.

iii. Reliability - the techniques and protocols which are practiced in the integration

technologies to ensure all transmitted data

iv. Reusability - to the ability to use existing information system components or

software solutions to develop new applications in the health information system

domain. Reusability reduces the time and cost of implementation. It has a significant

role in system integration and the results are more maintainable and flexible system.

 Transform

Dn<-> Dc

Dx2

Dx1

Dx3
H

IS
 A

p
p

li
c
a

ti
o

n

H
1

H
IS

 A
p

p
li

c
a

ti
o

n

H
2

H
IS

 A
p

p
li

c
a

ti
o

n

H
3

Rules/
Scripts Dc

Validation

Canonical

Data Format

(Xml or json)

56

v. Performance- refers to the performance of the system, the integration system provide

integration however the performance of overall integration solution is satisfactory.

vi. Maintainability - ability of bus components and software applications to allow

changes without causing any problems in other systems. Integration technologies for

bus easily maintained.

vii. Portability– the bus is easily executed on different platforms. Portability is related to

the concept of standards and provides an important role in the cost effectiveness of

information systems.

viii. Scalability-the bus has the ability to supply high performance to accommodate a

growing future loads and increasing demands.

ix. Heterogeneity– has the capability of interoperating of legacy and new health

information system through the availability of proper programming language and

operating system platforms.

System Design and Implementation

We developed the Web Data Exchange Bus using PHP language and hosted it on a Apache

Web server in Linux (Kubuntu) environment. The prototype doesn‟t have a database for

storing data since data would be loaded from service consumer and provider then the data is

destroyed when the session ends.

We also hosted a Hospital Information System locally which has database for managing

electronic health records of patients.

57

Below is the Login user interface of the prototype

Figure 21:Login user interface of the prototype - BUS

Below is the Login user interface to the recipient system - DHIS2

Figure 22:Login user interface to the recipient system - DHIS2

58

Below is interface of the prototype after gaining connection to Service Provider DHIS2

Figure 23:Interface of the prototype after gaining connection to Service ProviderDHIS2

Below is the prototype after gaining connection to Service Provider DHIS and all listing

health facilities

Figure 24:Interface of prototype and listing health facilities

59

Below is interface of the prototype after gaining connection to Service Provider DHIS2
and listing all Data Sets or Reporting Tools

Interface of the prototype affording user options for sourcing a data file

Figure 25: Interface affording user options for sourcing data

60

Interface that affords user option to load a spreadsheet with data to be consumed by another

HIS.

Figure 26:User options to load a spreadsheet with the values to be consumed by another

HIS.
Interface after harvesting HIS data values from the file but not mapped them to DHIS2 data

elements

Figure 27:Harvested HIS data values but not mapped them to DHIS2 data elements

61

Interface the user mapping HIS data values to the DHIS2 elements

Figure 28:Interface for mapping data values to the data elements.

Interface for user to specify location of the remote host, database connection credentials

Figure 29:Specify location/ip-address of the remote host, database connection credentials

Before data was received by the recipient DHIS2 system

62

Figure 30:Before data was received by the recipient DHIS2 system
After data was received by the recipient DHIS2 system

Figure 31:Data received by recipient system DHIS2

63

5.0 CHAPTER FIVE: RESULTS AND DISCUSSION

In this section we analyze the extent to which the project concerns are satisfied by the

developed solution.

The Kenya Ministry of Health and other health stakeholders highly depend on DHIS2 in

management of routine health services delivery and making of informed decisions based on

analysis of information collected from all health facilities in the country. The invaluable data

from almost all health facilities is collected mainly through manually filling of reporting

tools or data sets sheets in the facilities and later the sheets collected at County level where

the data is keyed into DHIS2 system by the County Health Records Information

Officers(CHRIOs).

By implementing the WDESB for integrating incompatible systems together, through the bus

data from HIS which are web enabled is imported to DHIS2 more efficiently and effectively

solving problems caused by manual data management. By use of the WDESB the data are

delivered to DHIS2 on time and complete without errors since it is obtained directly from the

HIS and on time. The manual method of data collection in the health facilities by filling of

the tallying sheets later recording it on reporting data sets sheet has been prone to delays in

delivering the sheets to the county level offices and also data incompleteness due to errors

when recording on the sheets.

5.1 There are desirable characteristics in interoperability achieved by the system.

i. Facilitate interoperability

The prototype facilitates interoperability by providing a mechanism through which disparate

HISs communicate. The prototype provides a physical communication channel (bus) through

which the disparate systems may communicate.

Consider two points of systems (H1 and H2) that wish to communicate reporting aggregates

via the bus. The physical part of the communication is provided by supplying an endpoint for

system H1 and H2 to send data to (the interface component). The users are authenticated by

the security module and then the data is extracted, transformed then routed to a mediator that

is able to send the message to system H2.

 ii. Security

The System ensures only authorized users can access the services in the bus. Data

confidentiality and integrity are of great concerns when dealing with health information, this

is taken care of in the bus by the authorization and authentication security module.

64

iii. Re-usability

The very key processes in the bus that is the mapping of data values and the elements and

retaining of service requestor and provider configurations are dynamically saved after the

initial configuration is done. The bus retains initial connection to service provider and it also

provides real-time access and use of the up-to-date data sets, elements and services available

at the service provider

With the proposed system, the hospital staff at the health facilities and the CHRIO at the

county level can now submit the monthly reports directly to DHIS2 as long as their HISs are

web enabled or through an SQL data file or spreadsheet file, the main function of the data

service bus is to mediate HISs with no capacity to consume Web Services registered within

the service repository which is discoverable via the service bus.

Reports on outbreak of diseases can easily be traced from databases from hospitals based on

reported cases as well as other statistics can be obtained as well.

Researchers can also now use information obtained from hospital databases easily and in

real-time. Using SOA with web services makes it easy for heterogeneous HISs to be

integrated and interoperate. Services created can be reused in multiple ways and also new

services and applications can be created quickly and easily used with a combination of new

and old services.

5.2 Prototype Testing

5.3 Comparison between Web services and API Integrating Approaches

API (Application Programming Interface) has been a major methodto integrate two different

systems or IT services.[31]An application programming interface (API) is a set of routines,

data structures, object classes and/or protocols provided by libraries and/or operating system

services in order to support the building of applications or exchange of data objects between

two applications.

 A Web Service is defined by the W3C as "a software system designed to support

interoperable machine-to-machine interaction over a network." The difference is that Web

Service almost always involves communication over network and HTTP is the most

commonly used protocol. Web service also uses SOAP, REST, and XML-RPC as a means of

communication. While an API can use any means of communication e.g. DLL files in

C/C++, Jar files/ RMI in java, Interrupts in Linux kernel API etc

65

The WDESB is a software infrastructure for Service Oriented Architecture implementation

we have used as a medium for connecting disparate the health information systems. We will

compare between the major methods of integrating systems, API and Web Services.

Web Services Application Programming Interface (API)

Loosely coupled – works for multiple

connections

Tightly coupled – works for one-to-one

connection

Easy to implement security management lacks security management

Have well established standards:

i. Messaging Standards- SOAP,
ii. Description and discovery Standards -

UDDI and WDSL..
iii. Security Standards - Security Assertion

Markup Language (SAML).
iv. Management Standards - Web Services

Distributed Management

v. Transport Standards - XML or JSON.

Lacks standards due to systems being greatly

different from each other and proprietary

Programming code is organized as from

development and deployment perspective

allowing service interaction

Programming code is in form of object

classes, routines, does not support SOA,

Services are distributed on networks and they

are integrated with each other via a central

service registry, thus services are discoverable

when queried by any client services/applications

Resources are not published at a central

registry and not accessible through

network/not distributed

Table 1:Comparison between Web services and API integrating approaches

5.4 Conclusion

In health information systems, the importance of addressing interoperability issues among

existing systems is widely recognized. A crucial aspect is to allow health information

systems to exchange information in a pervasive andreliable way, even if these data are

distributed in technically and geographically different health information systems.

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://xml.coverpages.org/saml.html
http://xml.coverpages.org/saml.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm

66

In this study, we identified the various approaches for integrating applications, various

technologies and standards for aiding interoperability between the incompatible health

information systems.

 After reviewing the literature we identified the aspects in system development that prevent

interoperability between the different health-care information systems. In order to promote

the exchange of data between the HISs we identified the relevant interoperability

technologies and standards. Having looked at application of the technologies and standards in

three related works we acquired knowledge of how to implement the prototype to enable

HISs and DHIS2 to interoperate.

In this research we proposed a prototype based on SOA architecture and Enterprise Service

Bus that takes advantage of adoption of the established standards. A service-oriented

architecture facilitates an ESB which acts as the communication backbone thus creating the

option for integration. We also studied barriers that prevent systems to communicate or

exchange information and discussed solutions to the impedances: Semantic interoperability,

Technical interoperability, and Process interoperability.

We looked at the processes involved in system interoperability and functions of components

of an ESB which is a secure and efficient option of integration.

After reviewing the literature we acquired knowledge of how to implement the prototype to

enable HISs and DHIS2 to interoperate.

5.5 Recommendation for Future Work

Future work will research on implementing semantic interoperability between HISs ensuring

data values in one application have the same meaning in the other application consuming the

data. Developing a health data semantic framework that defines exact data elements to be

used while developing Health Information Systems and a common meaning that the elements

should have or mean for example data elements like Sex or Gender might not have same

mean. The framework would state clearly data elements to be used universally in all HISs

and the elements have the same meaning to promote semantic interoperability between the

HISs in a specific region like in a country.

67

References

[1] Institute of Electrical and Electronics Engineers. IEEE Standard Computer Dictionary: A

Compilation of IEEE Standard ComputerGlossaries. New York, NY: 1990.

[2] O‟Brien, L., Bass, L. and Merson, P. (September, 2005). Quality Attributes for Service-

Oriented Architectures.

[3] Health Information and Quality Authority, (July 2013),Overview of Healthcare

Interoperability Standards, Published by Health Information and Quality Authority.

Available from: www.hiqa.ie Accessed on: 20th Jan 14.

[4] International Telecommunication Union, (2012), E-Health Standards and Interoperability.

ITU-T Technology Watch Report.2012 [Online]. Available from: www.itu.int/en/ITU-

T/techwatch/Pages/ehealth-standards.aspx. Accessed on: 29 January 2014.

[5] Health Information and Quality Authority, (2011), Developing National eHealth

Interoperability Standards for Ireland: A Consultation Document.

[6] Sprivulis, P., Walker,J., D Johnston, E Pan, J Adler-Milstein, B Middleton, et al., (2011),

The Economic Benefits of Health Information Exchange Interoperability for

Australia, Australian Health Review.

[7] Health Information and Quality Authority, (2012), Guidance on Messaging Standards

 for Ireland, published by Health Information and Quality Information.

[8] Health Level Seven (HL7), (2011), HL7 elearning notes. Available from:

http://www.hl7elc.org/campus/. Accessed on: 11 February 2014.

[9] Sartipi, K., and Yarmand, M. (2008), Standard-based Data and Service Interoperability in

 eHealth Systems, published by Canada Infoway – Health Standardization

Organization.

[10] AL-Khawlani, M. (2004), Web Services: A Bridge between CORBA and DCOM,

Published Journal of Science & Technology Vol. (9).

[11] Sun Microsystems Inc, (June, 2004). Assessing Your SOA Readiness, Available from

http://www.sun.com/software/whitepapers/webservices/soa_ready.pdf Accessed on

11 February 2014.

http://www.itu.int/en/ITU-

68

[12] Albreshne, A., P. Fuhrer, and J., Pasquier, (2009), Web Services Technologies: State of

the Art Definitions, Standards and Case Study, A Working Paper.

[13] Zhang,J., Ewins, D. and W. Xu, (2007), System Interoperability Study for Healthcare

Information System with Web Services: A Case Study for System Interoperability

Concern in Healthcare Field, Journal of Computer Science 3 (7), 515-522, 200

[14] Rodrigues, G. J., Cunha C. R. and Morais, E. P., (2011), A SOA based architecture to

promote ubiquity and interoperability among health information

systems(Portuguese), Creating Global Competitive Economies: A360-Degree

Approach.

[15] Valle, E. D. et al., (2008),The Need for Semantic Web Service in the eHealth: Towards

semantic interoperability based on Semantic Web Services

[16] L.P. Chan et al, (2005). Web Service Implementation Methodology, Public Review

Draft : OASIS, Available from: cation: 7 http://www.oasis-open.org/committees/

documents.php?wg_abbrev=fwsi 8, Accessed on: 10 March 2014.

[17] Kester, Q. A., Gyankumah, G. N., and Kayode, A. I. (2012). Using Web Services

Standards for Dealing with Complexities of Multiple Incompatible Applications

International Journal of Information Technology, 4.

[18] Qusay H. Mahmoud, (2005). Service-Oriented Architecture (SOA) and Web Services:

The Road to Enterprise Application Integration (EAI) .Available:

http://www.oracle.com/technetwork/articles/javase/soa -142870.htmNovember

10th, 2015

[19] Haines, M. (2007) “The Impact of Service-Oriented Application Development of

Software Development Methodology,” Proceedings of the 40th Annual Hawaii

International Conference on System Sciences (HICSS).

[20] Papazoglou, M. P.,(2007), What‟s in a Service?, INFOLAB, Tilburg University, Dept.

of Information Systems &Management, Tilburg 5000 LE, The Netherlands.

http://www.oasis-open.org/

69

[21] Jboss, (2006), Why ESB and SOA?,http://docs.jboss.org/jbossesb/whitepapers/

WhyESB.pdf last accessed on November 10th, 2015

[22] Vollmer,K.,(2011), The Forrester Wave™: Enterprise Service Bus, Application

Development & Delivery Professionals Consortium.

[23] http://msdn.microsoft.com/en-us/library/ff647958.aspx#intpattch05_pointto point

connection, last accessed on October 8th, 2015

[24] http://www.poltman.com/en/technical-information/eai/topologies, last accessed on

October 15th, 2015.

[25] http://www.scis.ulster.ac.uk/~zumao/teaching/COM720/readings/reading10.pdf last

accessed on September 28th, 2015.

[26] Chappell, David (2004). Enterprise Service Bus. O'Reilly Media, Inc.[27] Arsanjani,

A., Borges, B., and K. Holley, (2013), Service-oriented architecture:

Components and modeling can make the difference. Web Services Journal, 9, 1 , 34–

38.

[28] Newcomer, E., and Lomow, G., Understanding SOA with Web Services. Boston:

Addison Wesley.

[29] Bell, M. (2008), Service-Oriented Modeling: Service Analysis, Design, and

Architecture, Addison-Wiley

[30] Keen M. et al, (2004), Patterns: Implementing an SOA Using an Enterprise Service

Bus, http://www.redbooks.ibm.com/redbooks/pdfs/sg246346.pdf - last accessed on

June 20th 2015.

[31] Chen, L.(2012), Integrating Cloud Computing Services Using Enterprise Service

Bus(ESB), Published by Sciedu Press

http://docs.jboss.org/jbossesb/whitepapers/
http://www.scis.ulster.ac.uk/~zumao/teaching/COM720/readings/reading10.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg246346.pdf

70

Appendices

5.7.4 Sample of MOH 711 Register Reporting Form

71

72

Figure 321: Sample of MOH 711 Register Reporting Form

Sample code

<?php

session_start();

require_once("lib.php");

require_once 'DB.php';

 $db = new DB();

date_default_timezone_set('Africa/Nairobi');

if(empty($_SESSION['userid'])){

redirect("modules/auth/users/login.php");

}
?>
<!DOCTYPE html>

<html>
<head>

<!-- Title -->
<title>DHIS2-PartnerHISs Data Exchange Bus</title>
<meta content="width=device-width, initial-scale=1" name="viewport"/>

<meta charset="UTF-8">
<meta name="description" content="Admin Dashboard Template" />

73

<meta name="keywords" content="admin,dashboard" />
<meta name="author" content="Steelcoders" />

<!-- Styles -->
<link href='http://fonts.googleapis.com/css?family=Open+Sans:400,300,600' rel='stylesheet'

type='text/css'>
<link href="assets/myAssets/secondary/plugins/pace-master/themes/blue/pace-theme-
flash.css" rel="stylesheet"/>

<link href="assets/myAssets/secondary/plugins/uniform/css/uniform.default.min.css"
rel="stylesheet"/>

<link href="assets/myAssets/secondary/plugins/bootstrap/css/bootstrap.min.css"
rel="stylesheet" type="text/css"/>
<link href="assets/myAssets/secondary/plugins/fontawesome/css/font-awesome.css"

rel="stylesheet" type="text/css"/>
<link href="assets/myAssets/secondary/plugins/line-icons/simple-line-icons.css"

rel="stylesheet" type="text/css"/>
<link
href="assets/myAssets/secondary/plugins/offcanvasmenueffects/css/menu_cornerbox.css"

rel="stylesheet" type="text/css"/>
<link href="assets/myAssets/secondary/plugins/waves/waves.min.css" rel="stylesheet"

type="text/css"/>
<link href="assets/myAssets/secondary/plugins/switchery/switchery.min.css"
rel="stylesheet" type="text/css"/>

rel="stylesheet" type="text/css"/>
<link href="assets/myAssets/secondary/plugins/slidepushmenus/css/component.css"

rel="stylesheet" type="text/css"/>
<link href="assets/myAssets/secondary/plugins/x-editable/bootstrap3-editable/css/bootstrap-
editable.css" rel="stylesheet" type="text/css">

<link href="assets/myAssets/secondary/plugins/x-editable/inputs-
ext/typeaheadjs/lib/typeahead.js-bootstrap.css" rel="stylesheet" type="text/css">

<link href="assets/myAssets/secondary/plugins/x-editable/inputs-ext/address/address.css"
rel="stylesheet" type="text/css">

<link href="assets/myAssets/secondary/plugins/select2/css/select2.min.css" rel="stylesheet"

type="text/css">

<link href="assets/myAssets/secondary/plugins/bootstrap-datetimepicker/css/bootstrap-

datetimepicker.min.css" rel="stylesheet" type="text/css">
<!-- Theme Styles -->

<link rel="stylesheet" href="assets/myAssets/css/style.css">
<link href="assets/myAssets/secondary/css/modern.min.css" rel="stylesheet"
type="text/css"/>

<link href="assets/myAssets/secondary/css/themes/white.css" class="theme-color"
rel="stylesheet" type="text/css"/>

<link href="assets/myAssets/secondary/css/custom.css" rel="stylesheet" type="text/css"/>
<script src="assets/myAssets/secondary/plugins/3d-bold-

navigation/js/modernizr.js"></script>

74

<script src="assets/myAssets/secondary/plugins/offcanvasmenueffects/js/snap.svg-
min.js"></script>

<!-- HTML5 shim and Respond.js for IE8 support of HTML5 elements and media queries --
>

<!-- WARNING: Respond.js doesn't work if you view the page via file:// -->
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.min.js"></script>

<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>

<![endif]-->
<script type="application/javascript">
 $(function() {

 // a workaround for a flaw in the demo system (http://dev.jqueryui.com/ticket/4375),
ignore!

 $("#dialog:ui-dialog").dialog("destroy");
 $("#dialog-form").dialog({
autoOpen: false,

modal: true,
 });

 $("#nyef")
 .button()
 .click(function() {

 $("#dialog-form").dialog("open");

 });
 });

</script>
<script>

 $(function() {

 $("#tabs").tabs();

 });
</script>

<script>

jQuery(document).ready(function () {

 $('input.date_input').datepicker({

changeYear: true,
yearRange: '1930:2100',

dateFormat: 'yy-mm-dd'

 });

 });

75

</script>
<script language="javascript" type="text/javascript">

functioncheckDate(field){

varallowBlank = true; varminYear = 1902; varmaxYear = 2099;
varerrorMsg = "";

// regular expression to match required date format

 //re = /^(\d{4})\/(\d{1,2})\/(\d{1,2})$/;

re = /^(\d{4})-(\d{1,2})-(\d{1,2})/;

if(field.value != ''){
if(regs = field.value.match(re)) {

if(regs[3] < 1 || regs[3] > 31) {
errorMsg = "Invalid value for day: " + regs[3];
 }

else if(regs[2] < 1 || regs[2] > 12) {
errorMsg = "Invalid value for month: " + regs[2];

 } else if(regs[1] <minYear || regs[1] >maxYear) {

errorMsg = "Invalid value for year: " + regs[1] + " - must be between " + minYear + " and "

+ maxYear;
 }

 }
else {

errorMsg = "Invalid date format: " + field.value;
 }

 }

else if(!allowBlank) {

errorMsg = "Empty date not allowed!";

 }

if(errorMsg != "") {

alert(errorMsg); field.focus();

return false;
 }

return true;
 }

</script>
<script type="text/javascript">

76

<!--
functionshowmenu(id){

var s = document.getElementById(id).style;

s.visibility='visible';
 }

 //-->
functiontimeOut(id){

setTimeout('hideShow("'+id+'")',3000)
 }

functionhideShow(id){

var s = document.getElementById(id).style;

s.visibility=s.visibility=='hidden'?'visible':'hidden';

 }
</script>

<script language="javascript" type="text/javascript">
varnewwindow;

functionpoptastic(url,h,w)
 {

varht=h;

varwd=w;

newwindow=window.open(url,'name','height='+ht+',width='+wd+',scrollbars=yes,left=250,to

p=80');
if (window.focus) {newwindow.focus()}
 }

functionplaceCursorOnPageLoad()
 {

if(document.stores)
showUser();
document.cashsales.itemname.focus();

 }
</script>

</head>

<?php

if (get_magic_quotes_gpc()){

 $_GET = array_map('stripslashes', $_GET);
 $_POST = array_map('stripslashes', $_POST);

77

 $_COOKIE = array_map('stripslashes', $_COOKIE);
}

?>
<body style="background:#ccc;" class="page-header-fixed">

<div class="overlay"></div><nav class="cbp-spmenucbp-spmenu-vertical cbp-spmenu-
right" id="cbp-spmenu-s1"><h3>Chat<i class="fafa-

times"></i></h3><div class="slimscroll"></div></nav><nav class="cbp-spmenucbp-
spmenu-vertical cbp-spmenu-right" id="cbp-spmenu-s2"><h3><span class="pull-

left">Sandra Smith<a href="javascript:void(0);" class="pull-right"
id="closeRight2"><i class="fafa-angle-right"></i></h3><div class="slimscroll
chat"></div></nav>

<main class="page-content content-wrap">
<div class="navbar">

<div class="navbar-inner"><div class="sidebar-pusher"><a href="javascript:void(0);"
class="waves-effect waves-button waves-classic push-sidebar"></div>

<div style="width:600px !important;;" class="logo-box">

DHIS2-PartnerHISs Data Exchange
Bus
</div>

<div class="topmenu-outer">
<div class="top-menu">

<ul class="navnavbar-navnavbar-right">

<i class="fafa-power-off m-r-xs"></i>

<!--Nav -->
</div><!-- Top Menu -->

</div>
</div>
</div><!--Navbar -->

<div style="min-height:1088px !important; background: #ffffff !important;" class="page-
inner">

<div id="main-wrapper" style="background: #ffffff !important;">
<div class="row">
<div class="col-md-1"></div>

<div class="col-md-4 login- info">

78

<div class="image-profile">
<img class="img-circle" style="-webkit-box-shadow:0 0 0 5px #fff;-moz-box-shadow:0 0 0

5px #fff;-o-box-shadow:0 0 0 5px #fff;box-shadow:0 0 0 5px #fff"
src="assets/images/default-user.jpg">

<hr>
</div>
<div class="logged- in-user-info">

<p>Currently Logged in as:</p>

<?php echo $_SESSION['username']; ?>

<?

<button id="connect" onclick="window.location.href='modules/sys/config/connect.php'"
type="button" class="btnbtn-primary btn-addon m-b-smbtn-lg">

<i class="fafa- line-chart"></i>DHIS2-PartnerHIS Data Exchange Bus
</button>

</div>
<div class="col-md-3">
<div class="panel panel-white">

<div class="panel-heading clearfix">

<h3 style="text-align: center !important;" class="panel-title">Account</h3>

</div>

</div><!-- Row -->
</div><!-- Main Wrapper -->

<p style="text-align: center; font-size:15px !important;" class="no-s">© <?php
echo(date('Y')) ?> Licenced to: <?php echo $_SESSION;?>

 J MwaiMsc. Computer Science UONBI. All Rights Reserved.

</p>

END

