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ABSTRACT 

 

The key motivation for virtual organizations (VOs) is the need for business agility against a highly 

volatile and globally competitive market.  The agility includes the ability to dynamically and 

efficiently package and deliver highly customized services that maximally satisfy the utility of 

service consumer demands over the Internet. Dynamic webservice composition (DWSC) is an 

essential Information Communication Technology (ICT) enabler of this form of agility in VOs. 

However, dynamic webservice composition remains a multiple criteria decision making (MCDM) 

nondeterministic polynomial (NP) hard optimization problem despite more than 10 years of 

extensive research. This makes the applicability of DWSC to problems of industrial relevance 

currently limited. Mixed Integer Programming (MIP) is the most widely used technique in 

efficiently modelling the problem. There are two MIP models for the DWSC problem: a local 

planning strategy, herein L-MIP and a global planning strategy hereafter S-MIP. L-MIP is 

provably polynomial time and practically multiple times faster than S-MIP. However L-MIP lacks 

the ability to capture global inter workflow task webservice Quality of Service (QoS) constraints 

and generally is less optimal relative to S-MIP. It has been demonstrated that L-MIP generates 

composite webservices that are 20% to 30% worse in quality with respect to S-MIP. S-MIP on the 

other hand guarantees global optimality but is susceptible to exponential state space explosion, 

making the strategy limited to problems in which the number of service providers per business 

workflow task n is small.  

 

This thesis aimed to design a DWSC MIP global planning strategy that is more efficient than S-

MIP. The second objective was to evaluate the performance of the proposed strategy versus S-MIP 

and L-MIP in terms of runtime efficiency and solution quality. The study proposed a two layer 

MIP model dubbed SLUM: Service Layered Utility Maximization. SLUM is inspired by the theory 

of Layering as Optimization Decomposition. Unlike all the existing DWSC MIP models that 

formulate and solve a single MIP model, in SLUM there are two hierarchically layered MIP models. 

One layer attempts to maximize the utility of service consumers and the other attempts to maximize 

the utility of virtual enterprise brokers. The DWSC is then solved sequentially. Efficiency gains 

from SLUM over S-MIP are hypothesized due to space reduction.  
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The study used both theoretical and empirical methodologies to evaluate the performance of 

SLUM against S-MIP and L-MIP in terms of two metrics: running time and relative solution 

quality (RSQ). Our first main contribution is that we derive a theoretic running time model of 

SLUM and using L-Hospital’s Law, show that the theoretic speedup of SLUM with respect to S-

MIP is given by the function 
(𝟐)𝒌

 𝟏+   ρ
 , 𝑤ℎ𝑒𝑟𝑒 ρ = (∏ (n−∊𝑖)

𝑘
1 )/(𝒏𝒌), n is the number 

of service providers per business workflow task, k is the number of sequential workflow tasks, ∊𝑖 

is the number of service providers against the ith workflow task who fail to satisfy the webservice 

QoS requirements during the optimization process at the first layer. The study defines the 

parameter ρ as the Composite Service Phase Transition Rate. ρ  lies on the interval [0,1].  The 

significance of the model is that at any one time instance, as ρ → 0, implying very few service 

providers proceed for phase two optimization process, a virtual enterprise broker could expect 

relative speedup of up to (𝟐)𝒌, so that when k=2, SLUM is bound to be nearly 4 times faster than 

S-MIP. On the other hand when ρ → 1, meaning that very few service providers get eliminated 

during phase one, the virtual enterprise broker could expect average speedups of up to (𝟐)𝒌−𝟏. 

Therefore at k=2, SLUM is expected to be nearly 2 times faster than S-MIP on average. Thus, we 

show that for other values of ρ, the expected speedup of SLUM with respect to S-MIP is bound to 

be on the interval   [(𝟐)𝒌−𝟏, (𝟐)𝒌].   

 

Our other major contributions were through experimentation. In the first set of experiments on the 

running time performance was investigated. Seven different setups were designed with each 

experiment having a unique ρ value. The value of k was fixed at 2. The following methods were 

used for data analysis: statistical regression analysis , scalability curves ( speed up vs number of 

service providers), differential calculus using L-Hospital’s Law, empirical relative complexity 

analysis, speedup vs ρ  curves. Our second major contribution is that from the empirical results we 

show that the 
(𝟐)𝒌

 𝟏+   ρ
  approximately holds in practice. This was verified using L-Hospital’s Rule 

and polynomial regression curve fitting. We found that the empirical expected speedup values at 

each of the 𝜌 values were all below but in close range with the theoretical values. For example at 

ρ =0.0296, an expected speedup of 3.6 was obtained against the theoretical 3.885. Further, the 
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speedup vs ρ plot confirmed the inverse relation between speedup and ρ in 
(𝟐)𝒌

 𝟏+   ρ
  . The empirical 

relative complexity coefficients β1 obtained for the various ρ values, were between 0.783 for the 

lowest ρ  value and 0.96 for the highest ρ  value. Moreover the β1 values were generally 

proportional to ρ . The deductions here are that for all 𝜌 SLUM is asymptotically faster than S-

MIP. The second deduction is that asymptotic speedup of SLUM with respect to S-MIP is inversely 

proportional to ρ. This further verifies the model 
(𝟐)𝒌

 𝟏+   ρ
  .  On the other hand, the initial relative 

performance parameter β0 obtained via empirical relative complexity analysis generally showed 

that S-MIP is 1.3 times faster than SLUM initially. Using L-Hospital’s Law, exponential 

regression functions as well as the scalability curves, we found that at a constant ρ value, the 

speedup of SLUM with respect to S-MIP grows as the number of service providers grow larger 

but eventually reaches a limit. Further, that below ten service providers per task, S-MIP is generally 

faster than SLUM, beyond which SLUM is faster. The study also established L-MIP is several 

orders faster than both S-MIP and SLUM, and that the running time of L-MIP has a polynomial 

upperbound. On the other hand, the study also established that even though SLUM is on average 

and asymptotically faster than S-MIP, both of them have an empirical running time model bound 

between polynomial and exponential growth. Thus both models are superpolynomial, further 

confirming the NP hardness of the DWSC problem. On the other hand, our empirical results on 

RSQ, show that SLUM has an average RSQ of 93%, which is 7% less optimal compared to S-MIP, 

while L-MIP has an RSQ value of 87% which is 6% less optimal than SLUM.  

 

We conclude that if there is no need for global constraints at all, L-MIP is recommended over S-

MIP and SLUM. However, if end user global constraints is a critical concern, optimality is a 

critical concern and the number of service providers per task is generally below 10, S-MIP should 

be used.  SLUM is preferred over the two models if global constraints are critically needed and the 

number of service providers per task is above 10. Therefore virtual enterprise brokers could mix 

the three models in order to maximize their value and the value of their service consumers. 

 

Keywords: Dynamic Composite Webservice Selection, Mixed Integer Programming, Layering, 

Optimization, Decomposition, Virtual Organizations. 
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1 CHAPTER 1: INTRODUCTION 

The key motivation for virtual organizations (VOs) is the need for business agility against a highly 

volatile and globally competitive market (Molina & Flores, 1999).  The agility includes the ability 

to dynamically and efficiently package and deliver highly customized services that maximally 

satisfy the utility of service consumer demands over the Internet ((Molina & Flores, 1999); (Rabelo 

et al,  2007;2008;2009) . Dynamic webservice composition (DWSC) is an essential ICT enabler 

of this form of agility in VOs (Rabelo et al, 2007; 2008,2009). 

However, webservice composition in dynamic environments such as virtual organizations remains 

a non-deterministic polynomial hard multiple criteria decision making optimization problem 

(Moghaddam et al , 2014; Xu et al, 2012);Mahboobeh & Joseph, 2011; Xu et al, 2011; Bartalos & 

Bieliková,, 2011;  Singh, 2012 ; Mulongo et al, 2015;2016a, 2016b)  despite a decade of extensive 

research on the topic. This means that in some cases, it’s not feasible to find an optimal solution 

to the webservice composition problem within practically acceptable time. This limits its viability 

for problems of industrial relevance. The very nature of the problem lends itself to a mathematical 

programming solution. In the literature, Mixed Integer Programming (MIP) is the most widely 

used mathematical programming technique to tackle the webservice composition problem in 

situations requiring dynamic decisions. However, existing MIP techniques suffer from one or a 

combination of the following problems: - 1) exponential state space explosion implying that in 

some cases, MIP may not yield a solution in practically acceptable time, 2) some MIP models lack 

the ability to capture and take into account the global optimization constraints meaning that for 

this class of MIP solutions,  service consumers are denied the chance to specify some critical global 

constraints, and consequently the quality of solutions produced are sometimes suboptimal and 3) 

all existing methods require service consumers to specify preferences and weight ratings over the 

whole set of webservice QoS attributes including low level performance attributes. This 

requirement can be tedious to the end user (Benatallah, 2004) and at the same time, while all the 

QoS attributes might be essential, some of the attributes may be too technical to be discernable by 

an average user. Therefore a pressing question is: How can we design a more efficient Mixed 

Integer Programming composite webservice selection strategy that can produce high quality 

composite webservice solutions without: - denying service consumers an opportunity to specify all 



2 
 

their critical local and global constraints ?   This question is worthwhile answering albeit a 

difficult one. The main purpose of thesis is to address this research question. 

In order to appreciate the significance and the intricacies involved in addressing the foregoing 

research question, in section 1, we first provide some background to Webservice Composition 

distinguishing between workflow based and Artificial Intelligence planning based service 

composition, and dynamic workflow based from static workflow based service composition in 

section 1.1.1. This is followed by a brief introduction to the Virtual Organizations (VOs) and how 

dynamic webservice composition addresses the challenges in VOs in section 1.1.2. In section 1.1.3 

we highlight the key issues that make dynamic webservice composition challenging.  In section 

1.1.4, we expound on the current MIP models to the problem and discuss their weaknesses and 

thus provide a case for why further research is needed. We then outline a statement of the problem 

in section 1.2. In section 1.3, the overall research goal is highlighted. Two specific research 

objectives are stated in section 1.4. A list of research questions are posed in section 1.5. We give 

an overview of our proposed solution in 1.6, whose formal details can be found in section 2.10. 

The scope of the thesis is given section 1.7. Sections 1.8, 1.9 and 1.10 respectively discuss the 

justification for the study, an overview of how the rest of the thesis is organized and a summary of 

this chapter. 

1.1 Background 

1.1.1 Webservices and WebService Composition  

A web service is a distributed software component that enables machine to machine interaction 

over the network using standard network protocols such as the Simple Object Access Protocol and 

REST. Webservice composition on the other hand, is a process that involves the discovery, 

selection, linking and execution of a set of atomic distributed webservices in a specified logical 

sequence in order to service complex customer request that none of the services could fulfill 

singularly (Rao, 2004), (Rao & Su, 2004; Schahram & Wolfgang, 2005; (Cammarimha and 

Arfsamanesh, 2007;Arfsamanesh  et al, 2012).  Webservice composition can be achieved through 

the use of workflows or through the use of Artificial Intelligence (AI) planning (Rao & Su, 2004). 

Workflow based webservice composition involves defining a business process detailing the logical 

sequence of tasks that should be performed in order respond to some consumer need. The business 

process is then automated into a computer executable workflow using standards such as the 
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Business Process Execution Language, and business process execution engines such as the Oracle, 

IBM or Activiti. The workflow is also referred to as an abstract composite service (Rao Jinghai, 

2004), (Rao & Su, 2004). Once an abstract composite service is defined, a concrete service 

composition is required to link each of the abstract tasks within the workflow to some concrete 

executable webservices. The result of a concrete webservice composition process is a concrete 

composite service (Rao & Su, 2004). The execution of an abstract workflow, causes the concrete 

composite service to be executed to produce the outcome desired by a service requestor. On the 

other hand, Artificial Planning approaches aim at fully automated web service composition- no 

human intervenes; both the logical sequence of tasks to be performed and the web services to be 

linked through the sequence are unknown a priori; they have to be established only at runtime 

automatically based on the knowledge inferred from a service request (Rao, 2004). However, 

despite many years of scientific research on the subject, the AI techniques are still far from real 

and are yet to find their way into industry (Mahboobeh & Joseph, 2011). Therefore currently, 

owing to its worldwide adoption and strong industry support, workflow based service composition 

remains the only viable option for VOs. Hereafter, our focus in this thesis therefore is on workflow 

based webservice composition and therefore unless otherwise, workflow based webservice 

composition and webservice composition shall be used interchangeably.  

Workflow based webservice composition is further classified into static webservice composition 

and dynamic webservice composition (Schahram & Wolfgang, 2005). In dynamic workflow based 

web service composition, the web service that is to execute a workflow task is unknown a priori 

until the workflow is executed in response to an external service request (Zeng et al, 2004). In this 

case, when the workflow is invoked, the set of web services that best answer the demands of the 

request at a point in time has to be first discovered ,selected from a service repository and invoked 

in the logical order enforced by the workflow. Dynamic workflow based service composition is 

contrasted from static workflow based webservice composition, in that in the latter, each workflow 

task is bound to a known web service in advance at design time and the binding can only be altered 

manually. Static workflow based webservice composition is easier to implement than dynamic 

webservice composition. Moreover, static webservice composition suffices in business cases 

where there is no need for customizing service responses in line with consumer specific QoS 

requirements. Further, if there was negligible variance in the QoS attributes of each component 

webservice all the time, then the use of static webservice composition would still produce the best 
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known composite webservice, whichever combination of webservices is defined at design time. 

However, in dynamic environments, customer QoS needs will vary from time to time and from 

customer to customer. Secondly, in real service environments, the QoS attributes of individual 

webservices will vary both at design time and at runtime. Considering the two scenarios, static 

service composition are severely limited. Thus, today due to its potential benefits, dynamic 

webservice composition has become an active area of research. This thesis explores dynamic 

workflow based webservice composition. 

1.1.2 Dynamic Webservice Composition and Virtual Organizations  

A virtual organization (VO) is a dynamic, temporary, and strategic alliance of many independent 

and heterogeneous firms (that have their unique core business competencies), that are logically 

interconnected using Information and Communication Technology networks  (Molina  & Flores , 

1999; Rabelo & Gusmeroli., 2008; Amit et al , 2010; Arfsamanesh  et al,2012). Globalization, 

sophistication of product and service development, fast shifting consumer demands, coupled with 

stringent time to market constraints are the driving forces behind the emergence of VOs (Molina 

& Flores, 1999).  Due to the these constraints, no single firm, even large ones have the internal 

capacity and the time required to develop and deliver a complex composite product (The need for 

business agility, value added services, efficiency in service delivery of value added services and 

customer centricity are distinguishing survival strategies for global virtual organizations (Molina 

& Flores, 1999), (Rabelo & Gusmeroli, 2008), (Amit et al , 2010), (Arfsamanesh et al ,2012).  In 

VOs, firms (usually small scale) share competencies, business processes and resources to fulfill a 

specific market need where none of them can independently deliver the need Mulongo & Flores, 

1999). According to Molina & Flores (1999) the VOs are characterized by: 

i.  Heavy reliance on innovation and information technology and customer centricity. 

ii.  Independence and short lived relationships among the enterprises. New service providers 

or suppliers with better products or services can be substituted, removed, added by the 

virtual enterprise broker when needed in order to respond to customer requests. This 

exemplifies the agility and dynamic nature of VEs. 

iii. Business agility. 

iv. Customer centricity. 
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In order to support the dynamic nature and business objectives of VOs, the ideal information 

technology framework for virtual organizations should at minimum provide mechanisms for 

collaboration, negotiation, interoperability and integration of business processes (Picard W. et al, 

2010). The authors in (Rabelo & Gusmeroli., 2008) identify Service Oriented Architecture (SOA) 

as the appropriate information technology framework for VEs. SOA supports the agility of VEs 

through web service composition (Picard W. et al, 2009). In their ICT-Infrastructure reference 

framework for collaborative networked organizations Rabelo & Gusmeroli (2008) identifies 

webservices and webservice composition as essential ICT services required to facilitate inter 

enterprise business process integration and coordination towards fulfilling a complex consumer 

request. In the context of VOs, the different distributed webservices are each owned by 

geographically disperse entities called virtual enterprises (VE), where a VE is formally defined 

according to (Molina and Flores, 1999). The webservices are the software components that 

produce the data required to execute one of the business tasks required to fulfill a particular 

business process e.g. an online purchase order process. By leveraging the core competencies of 

each VE exposed via webservices in the VO, VOs can quickly generate a more value added 

composite service that meets a complex market demand using the concept of webservice 

composition. 

Under the VO reference architectures by (Molina and Flores, 1999), (Rabelo & Gusmeroli, 2008), 

and (Picard, 2009), among many other things, the responsibility of implementing webservice 

composition lies with a business entity called Virtual Enterprise Broker (VEB). From the point of 

view of the service consumer, a VEB is the service provider.  By exploiting workflow based 

webservice composition, Virtual Enterprise Brokers, can quickly define a new business process, 

automate the workflow and assemble already existing webservices owned by different virtual 

enterprises, to execute the workflow to produce a more value added composite service that satisfy 

a certain market demand. The reuse of already existing business capabilities and already existing 

software technology components promotes the business agility differentiating factor of VOs and 

reduces time to market.  

However, the degree of business agility of a VEB does not only depend on how fast the VEB is 

able to generate a composite service from already existing atomic webservices, but also on how 

well the generated composite service satisfies specific quality of service (QoS) requirements 
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demanded by different service requestors from time to time (Mulongo et al, 2016a). The 

implication is that the workflow based service composition strategy chosen by the VEB needs to 

be highly adaptive and sensitive to the webservice QoS requirements of each and every service 

consumer at all times. If the VEB is able to achieve this requirement, then the customer centricity 

distinguishing element of VOs would be a reality. Due to the time varying nature of consumer 

demands, the volatility of the VOs and the large number of service providers within a VO, as seen 

in section 1.1.1, static service composition falls short in adapting to changing external needs of 

service consumers and internal changes within the VO service environment. On the other hand, 

even though dynamic webservice composition has many challenges but inhibit its utility, it’s a 

more promising technology solution to the business challenges of VOs. 

The successful implementation of dynamic webservice composition would offer the VEBs the 

following benefits. (1) Improved likelihood of the service consumer obtaining high quality 

solutions because the best composite service is selected from a pool of many potential solutions. 

Even in the event that no suitable solution is found that satisfies the consumer, the user can be 

provided with the list of feasible solutions and choose whether or not one of them nearly satisfies 

them, (2) Through re-planning strategies, workflows that are dynamically bound to webservices at 

runtime are more likely to survive failures through selection of different execution paths hence 

boosting system reliability and customer experience.  

In spite of the benefits dynamic webservice composition has to VEBs, a number of factors make 

the technique a formidable challenge. Some of the key challenges are highlighted in section 1.3 

1.1.3 Key Challenges of Dynamic Webservice Composition in Virtual Organizations 

1.1.3.1  Large Size of Virtual Enterprise Providers with Similar Services 

In a global virtual organization operating within a particular business domain, there are potentially 

hundreds to thousands of small to medium virtual enterprises offering competing functionally 

similar simple services (Abiud et al, 2015). The total number of service providers summed from 

each category of services is even larger (Abiud et al, 2015). Although in each cluster, the services 

may be functionally similar, they may be differentiated on some quality of service (QoS) criteria. 

Even when the differentiating factor is a single QoS parameter, the sheer numbers of services make 

the selection of the best composite service a challenge. To put this into perspective, consider a 
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composite travel reservation product that contains four simple services: flight service, hotel service, 

insurance package and a taxi service. Assume further that for each of the simple services, there are 

10 service providers. When a virtual enterprise broker is faced with a customer request enquiring 

for a trip, the VEB is required to select the best combination of four services, 1 from a pool of 10 

candidate services. It’s easy to show that there are 104
 or 10,000 possible composite services from 

which to select the best service. A marginal change from 10 to 20 services per category 

exponentially escalates the solution space to 160,000 and 100000000 for 100 services per task.  

1.1.3.2  Large Number of Webservice Quality of Service Attributes  

 

Functionally equivalent webservices (each webservice provided by a different enterprise) can 

exhibit significant variations in quality of service along dozens of QoS parameters (Zeng et al, 

2004) . A close examination of the number of papers on webservice QoS such as Zeng et al (2004), 

(Rajendran and Balasubramanie 2009), (Xu et al, 2011), (Mahboobeh & Joseph, 2011), (Kuyoro 

Shade et al, 2012), reveal a wide range of important QoS parameters associated with webservices. 

From these studies and others, the most common webservice QoS attributes are reliability, 

availability, response time, reputation, security, cost and throughput. The combination of the 

dimensionality of QoS attributes with even a small number of services exponentially increases the 

combinatorial complexity of the service selection problem. Intuitively the problem is expected to 

worsen as the both the number of QoS attributes and the number of candidate services grows larger. 

The challenge to the virtual enterprise broker transforms from just how to select the best composite 

service from a large set services based on a single criterion to how to efficiently select the best 

combination service from a huge set of services on multiple criteria. Further, in this case, the 

selection should factor in constraints and preferences that are either explicitly stated by the service 

consumer or implied by user needs 

1.1.3.3 Large QoS Constraints by Service Consumers  

From a fixed set of webservice QoS attributes, different service consumers could enforce varying 

number of QoS constraints from time to time. The larger the number of QoS constraints the more 

the complex it becomes to solve the dynamic webservice composition problem. 
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1.1.3.4 Volatile Service Environment  

In virtual organizations, new entrants (VEs) with more quality services could join the VO or 

already existing VEs could exit the VO in the middle of a service composition process. 

Alternatively, some webservices may become temporarily unavailable, timeout or workflows may 

develop internal errors during the composition process. These challenges necessitate embedding 

transaction management and fault handling and replanning strategies within the composition 

process to ensure that workflow execution is sustained in the presence of faults or composition 

decision are re-adjusted in the middle to factor in potentially high quality webservices that have 

just joined. Including fault handling and replanning mechanisms even though desirable only 

escalates the computational effort required to solve the dynamic webservice composition problem. 

1.1.3.5  Complex Workflow Patterns 

 The fundamental structure of a workflow is the sequential pattern. But more complex workflows 

can take parallel patterns, XOR patterns and a combination thereof.  Workflows with more 

complex patterns can cause the composition process to be harder in computational effort and even 

more prone to faults (Bartalos & Bieliková,2011). For example, workflows containing parallel 

flows inherently have the same challenges of parallel programs such as synchronization, deadlocks 

and data inconsistencies if not well handled. 

1.1.4 Overview of Mixed Integer Programming  

As stated earlier, dynamic webservice composition is a multiple criteria non deterministic 

polynomial hard optimization problem. There are two main classes of multiple criteria decision 

making algorithmic solutions to the dynamic webservice composition problem: - local planning 

optimization algorithms and global planning optimization algorithms (Zeng et al, 2004).  In each 

of these approaches, the objective is to maximize some utility function over a set of decision 

variables that are constrained. The utilities are computed using the Simple Additive Weighting 

model (Hwang & Yoon, 1981). In local planning approach,  for each workflow task, the 

webservice with the highest aggregate utility value and that also satisfies the QoS constraints is 

selected (locally) without regard to other tasks within the workflow (Zeng et al,2004). The 

combination of the best service for each task forms the best composite webservice. Suppose there 

are k sequential workflow tasks and each has n candidate webservices per task, the solution space 
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using a local planning approach is nk. Thus, the most naive local planning strategy that evaluates 

each and every candidate webservice is still polynomial time. 

  Although local planning algorithms to the webservice composition problem are provably 

polynomial time and hence more suitable for real time or near real time e-Commerce applications, 

they lack support for global constraints. The result is that local planning denies a service requestor 

the chance to express critical global webservice QoS e.g in a situation where a service consumer 

requires that the total service execution (or access) cost should not exceed a particular budget 

and/or the total execution duration of tasks should be less than some threshold value (Abiud et al 

2015; 2016). Further, because of its inability to capture global constraints, local planning 

algorithms have a high probability of yielding suboptimal solutions (Zeng et al, 2004).  

Global planning based algorithms on the other hand overcome the limitations of local planning 

models by considering global constraints across workflow tasks. Given sufficient time, global 

planning is guaranteed to yield an optimal solution. For a business workflow having k sequential 

tasks with each task having n possible, the solution space is nk possible candidate composite 

webservices when using the global planning strategy.  A naïve global planning algorithm would 

have to compute the utilities of all the nk
 composites and then evaluate each of the composites 

against specified QoS constraints and select the best composite webservice subject to the set of 

QoS constraints (Zeng et al, 2004). The limitation of naïve global planning strategies is that when 

the variables n or k or both grow larger, the algorithms severely suffer exponential state space 

explosion, hence an optimal solution within reasonable for large enough n and k is computationally 

intractable (Zeng et al, 2004). 

An alternative to the naive local planning and naïve global planning algorithms is to apply Mixed 

Integer Programming, MIP (Byod et al, 2003) for optimization of composite service selection. 

MIP is an efficient technique for modeling and solving many real world optimization problems in 

which some variables take on integer values while other variables are continuous (Zhu, 2006), 

(Kitching, 2010) , (Tramontani , 2008) , (Mancini et al  , 2009), (Kitching, 2010), .  As such, today 

MIP is the most widely used method to address the webservice composition problem. Unlike naïve 

approaches to the problem, MIP does not attempt to exhaustively search the entire solution space, 

but instead relies on intelligent enumeration techniques such as the branch and bound to efficiently 

arrive at an optimal solution (Zeng et al 2004; Mancini et al , 2009; Ed Klotz, & Alexandra 
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Newman, 2012). In the literature, there are thus two complementary MIP models exist for the 

webservice composition problem: (1) MIP based on local planning optimization strategy, hereafter 

L-MIP and 2) MIP based on global planning optimization strategy, hereafter, S-MIP. Like other 

local planning and global planning techniques, both L-MIP and S-MIP are formulated guided by 

the Simple Additive Weighting (SAW) model by HC-L and K. Yoon (1981). Although L-MIP is 

more efficient than the naïve local planning method, it still shares the same limitations of local 

planning methods - inability to capture global constraints, prohibiting the service consumer from 

expressing critical constraints that span workflow tasks, and thus high likelihood yielding 

suboptimal solutions. For instance the study in (Ardagna & Pernici, 2005) experimentally 

compared the solution quality of L-MIP and S-MIP and established that on average, L-MIP yields 

solutions that are 20% to 30% worse in quality compared to global planning approaches. Thus L-

MIP and other local planning strategies are limited to application areas where inter workflow task 

constraints is not a requirement. 

S-MIP on the other hand inherits the major strength of global planning algorithms- the ability to 

capture global workflow QoS constraints and produce solutions that are more optimal compared 

to L-MIP. Although S-MIP is generally far more efficient than naïve global planning optimization 

methods for the webservice composition, S-MIP still suffers exponential state space explosion as 

the complexity of the problem grows larger in terms of number of service providers per task, 

number of workflow tasks, number of constraints and complexity of workflow patterns.  This 

constrains the applicability of MIP to small scale problems only (Zeng et al, 2004). Zeng et al 

(2004) pioneered the formulation of a global planning algorithm for dynamic webservice 

composition based on MIP, hereafter we will refer to this algorithm as S-MIP. As an example, 

Zeng et al (2004) shows that the runtime performance of S-MIP starts to severely sore on 

workflows having more than 40 webservices per task. In general, finding an optimal or near 

optimal solution for large complex optimization problems using MIP in some cases may be 

intractable in practice (Toni et al, 2009), (Ed Klotz, & Alexandra. Newman, 2012). 

One would argue that with the current state of the art computing hardware and high performance 

computing technologies, it should be possible to solve MIP problems very fast. On the contrary, 

up to date research shows that even combing the most sophisticated MIP libraries such as the IBM 

CPLEX with the fastest computing infrastructure would still take a couple of minutes, through 
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hours to a couple of weeks to solve a given optimization problem, depending on many factors such 

as the structure and formulation of the problem, the number of constraints, the coefficients of 

constraint inequalities, the bounds of the on the right hand side of the constraint inequalities (Ed 

Klotz, & Alexandra  Newman ,2012).   

Another way of solving complex service composition problems is to cast the problem as a 

Satisfiability (SAT) Problem. In SAT, a problem is specified in form of propositional logic and 

derivative modelling formalisms such as Descriptive Disjunctive Logics (DDL). Although SAT 

problems are NP complete (Cook, 1971), many very efficient SAT algorithms exist today such as 

SATPlan (Kautz & Selman., 1992), WalkSAT (Kautz & Selman., 2004), and GraphPlan (Blum & 

Merrick , 1997). These algorithms are applicable to a large spectrum of practical problems. For 

instance within webservice composition research, SATPlan and SATPlan are recommended for 

complex operator large scale service selection (Seog & Soundar, 2006). Other closely related 

service selection optimization algorithms include A* and its variants, genetic algorithms, Answer 

Set Programming (ASP). Answer Set Programming (Lifschitz ,2002; Yu, 2005a; 2005b),   is based 

on DDL and has been proven to be very efficient as exemplified by the work (Rainer & Dorn, 

2009). However, as a downside, SAT and other Artificial Intelligence Planning based approaches 

to web service composition are limited in their scope of application in the following ways (Abiud 

W.M et al, 2015): - First, for most complex problems, it’s always difficult to model some problems 

efficiently as SAT problems (Kitching, 2010) . Second, Artificial Intelligence Planning and SAT 

solutions are more naturally suited to semantic webservices composition. The reason for this is 

because; semantic webservices are semantically annotated using Artificial Intelligence like 

languages easily allowing for automated reasoning. But to date, semantic webservice composition 

is yet to bear any fruits in commercial use. On the contrary, workflow based service composition 

based on WSDL services continue to enjoy strong industry support as they permeate many 

business applications. Third, generally, SAT and Constraint Satisfiability Problems are plagued by 

the same inadequacy seen in mathematical programming techniques such as MIP- the plague is 

exponential state space explosion (Mancini et al , 2009). 

In addition to efficiency and optimality considerations, all the existing algorithmic solutions to the 

webservice composition have one shared deficiency: they require the service consumer to specify 

relative ratings and preferences in terms of weights on the interval [0, 1] on all the webservice QoS 
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attributes (Mulongo et al, 2015). It becomes tedious for the end user to capture the weights 

especially when the number of QoS parameters is huge (Zeng et al, 2004). Moreover, a good 

number of the QoS parameters even though very relevant, are too technical to make sense to an 

average user (Abiud et al, 2015). A strategy that allows the possibility of capturing local and global 

constraints over all available QoS attributes, while shielding the end user from the complexity of 

having to specify weight ratings on too low level QoS attributes is needed ( Mulongo et al, 2015). 

Thus, from the foregoing, research gaps are glaring and the need for further research into better 

webservice composition architecture and algorithms that address all or a subset of these issues is 

evident. 

1.1.5 Overview of Layering as Optimization Decomposition 

Layering is not a new terminology in computer science. From a software engineering viewpoint, 

layering is one of the architectural decomposition techniques of partitioning a large complex 

software system into simpler components called layers (Bachmann, 2000).  The components are 

strictly ordered with one layer A (the lower layer) providing services to another layer B (the upper 

layer) (Bachmann, 2000) .The immediate advantage of layering is modularity, modifiability and 

portability ((Bachmann, 2000). The second advantage of layering is that it hides technical 

complexity of the computational details of lower layers, with the topmost layer having the least 

technical details. Eventually layering boosts usability of a system. 

Counter intuitively, as a third benefit, layering can be used as an efficient algorithmic method in 

solving hard optimization problems found in complex computing and communication systems. In 

order for layering to be used in as an optimization tool, a formal theory is required. But while 

layering is an old decomposition technique, formal theories on layering as an optimization 

technique can only be traced in the communications and computer networks community. Layering 

as Optimization Decomposition (Mung, 2006), Mung. et al. 2007) and (Low, 2012) is such a 

theory. The theory provides a framework for rigorous and quantitative formulation of layering as 

a divide and conquer algorithm towards solving complex cross layer hard network resource 

allocation and scheduling optimization problems.   Layering as Optimization Decomposition 

theory perceives the task of solving a complex cross layer communication network design 

optimization problem as the solution to multiple well-coordinated subproblems, in which each 

layer is treated as a subproblem. Each layer aims at maximizing its local utility but together all 
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layers aim towards maximizing some global utility. The theory has led to the modularized and 

layered reformulation of the Network Utility Maximization problem. The reformulation of the 

NUM (Kelly et al, 1998) problem based on the theory has been applied to re-engineer the TCP/IP 

protocol stack with appreciable performance improvements. We refer the reader to Chapter 2 for 

more details on the theory of Layering as Optimization Decomposition.  

Whereas Layering as Optimization Decomposition is well formalized in the networking 

community and proven to lead to more efficient, optimized, modular and transparent layered 

networks, a similar formalization in the webservice composition lacks and equally to the best of 

our knowledge, there exists no method that exploits or is inspired by the inherent advantages of 

the theory. In this thesis, we argue that although Layering as Optimization Decomposition 

formalism is rooted in the Network Utility Maximization problem, the complexity of issues 

involved in the web service selection problem, as discussed in section 1.3 closely resemble the 

NUM (Kelly, Maulloh and Tan, 1998) problem and therefore Layering as Optimization 

Decomposition as used in the networking should inspire a reformulation of existing webservice 

composition optimization strategies.  

A primary objective this thesis is in understanding how Layering as Optimization Decomposition 

could inspire the improvement in efficiency of the current MIP algorithmic solutions to the 

problem of the service composition problem. A secondary objective is to understand how the 

technique could be applied to reduce the burden on the user in dynamic webservice composition. 

1.2 Statement of the Problem 

Consider a Virtual Organization in which the Virtual Enterprise Broker offers a composite service 

through several virtual enterprises that are interconnected via the Internet. On a service consumer 

requesting the composite service, a business workflow with k sequential tasks has to be executed 

to effect the service. Each task is executable by an appropriate webservice exposed on the Internet 

by a virtual enterprise within the virtual organization.  For each workflow task, there are n 

alternative webservices. Each webservice has a total of qt webservice quality of service attributes 

including but not limited to service availability, service reliability, service throughput, service 

access cost, service reputation, security, service response time etc. At any one time, the QoS values 

of the qt attributes vary from webservice to webservice.  Further, the service consumer has 

minimum QoS constraints expectations about the composite webservice being requested for. The 
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problem is: - efficiently autogenerate a sequence of k webservices that when executed, maximally 

satisfies the QoS requirements of the service consumer. This is the dynamic composite webservice 

selection problem. The problem is an essential ICT capability for collaborative virtual 

organizations (Rabelo et al, 2007) as it affords virtual enterprise brokers and virtual enterprises the 

business agility required to adaptively respond to complex time varying online consumer service 

requests in a globally competitive market Mulongo & Flores, 1999). Despite its potential benefits, 

over the last 10 years, due to the coupling of the factors discussed in 1.3,  dynamic webservice 

composition remains a multiple criteria decision making (MCDM) nondeterministic polynomial 

hard optimization problem (Zeng et al, 2004; Seog et al, 2006; Mahboobeh  and Joseph , 2011). 

This limits the range of industrially relevant problems for which DWSC can find a high quality 

solution within practically acceptable time (Mulongo et al, 2015; 2016). 

Mixed Integer Programming, MIP is a well-known method for efficiently modeling most complex 

optimization and decision problems in which the variables can take on a combination integer, real 

or binary values. As such the technique has been widely applied to model and solve the DWSC 

problem. There are two complementary MIP models in the literature for the dynamic webservice 

composition problem. MIP exploiting a local planning optimization strategy, hereafter dubbed L-

MIP and MIP exploiting global planning strategy, hereafter S-MIP. The L-MIP technique is 

provably polynomial time but lacks support for global inter workflow task constraints on 

webservice quality of service, and therefore in some cases denies the service consumer an 

opportunity to specify critical QoS constraint that span more than one business workflow task. In 

addition, due to its local scope, the quality of L-MIP solutions is highly probable to be suboptimal. 

For instance, Ardagna & Pernici (2007) show that on average, L-MIP yields solutions that are 20% 

to 30% worse in quality compared to MIP using a global planning strategy.  S-MIP on the other 

hand is capable of generating optimal solutions, and is more efficient than naïve global planning 

algorithms. However, when the service composition problem grows in complexity in the number 

of webservices per task, or  number of QoS constraints or a combination of these, existing S-MIP 

is susceptible to exponential state space explosion and therefore practically constrained to small 

scale webservice composition problems (Zeng et al, 2004).  For example, Zeng et al (2004), 

experimentally shows that beyond 40 webservices per workflow task, the run time performance of 

S-MIP starts to severely dip.  In addition, all existing multiple criteria decision making algorithms 

to the problem require the service consumer to specify weight preferences and QoS constraints on 
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the entire range of relevant QoS attributes. This requirement can be very tedious to an end user 

(Zeng et al, 2004), (Mulongo et al, 2015).  Thus, dynamic webservice composition algorithms that 

are more efficient and provide minimum guarantee on the solution optimality quality, without 

sacrificing the ability of service consumers to capture global QoS constraints, and without 

requiring the end user to interact with all QoS attributes and their constraints are urgently needed. 

1.3 Research Goal 

As explained in the preceding sections, the global planning mixed integer programming approach, 

S-MIP suffers exponential state space explosion even though it supports both local and global 

constraints and guarantees global optimality. On the other hand, the local planning mixed integer 

programming models, L-MIP supports only local constraints and produces solutions that are less 

quality compared to S-MIP, even though L-MIP is practically several orders faster than S-MIP. 

Our main aim was to design a more efficient Mixed Integer Programming dynamic composite 

webservice selection strategy that does not deny service consumers an opportunity to specify all 

their critical local and global webservice QoS constraints.  Our approach takes the S-MIP model 

and converts it into a two layered model inspired by the concept of Layering as Optimization 

Decomposition. The main output of the research is a new architectural model called “Service 

Layered Utility Maximization”, SLUM model together with the associated mathematical models 

for the dynamic composite webservice selection problem (see section 1.7 for an overview of 

SLUM and section 2.10 for details). See also (Abiud W. M. et al, 2015; 2016a; 2016b) for 

associated publications. 

To know whether we reached our reach goal, our proposed architecture, SLUM was evaluated in 

terms of two metrics: run time execution efficiency and solution quality against the S-MIP and L-

MIP models. Running time and solution quality are the main two metrics of evaluating 

optimization models (Eitan, 1981). Therefore our research goal will be said to have been achieved 

if the proposed architectural model, SLUM, satisfies the two requirements below:- 

Requirement 1:  The proposed two layer model, SLUM is faster than the (single layered) global 

planning mixed integer programming model, SLUM and; 

Requirement 2:  The solution quality of the proposed two layer model, SLUM is at least as good 

as that of the local planning mixed integer programming model, L-MIP. 
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1.4  Specific Research Objectives 

Given the research goal stated in section 1.3, the specific research objectives that were pursued 

were:-  

1. Design a layered hierarchical mixed integer programming model for the composite 

webservice selection problem following the concepts from the theory of Layering as 

Optimization Decomposition 

2. Evaluate the performance of the SLUM model against the single layered global planning 

technique (S-MIP) and the local planning method (L-MIP) in terms of two metrics:  

i. Running time (performance efficiency) and; 

ii.  Solution quality. 

The two metrics, running time and Solution quality are the most common performance measures 

for optimization models ( Eitan, 1981), ( Hoos et al, 2003). For details on the performance 

evaluation methodology see chapter 3. 

1.5 Research Questions 

As explained in sections 1.1, 1.1.4 and section 1.2, it’s known that the running time of the S-MIP 

is non deterministic polynomial and can be exponential in some cases especially when the number 

of webservices grows larger. It’s also known that S-MIP produces more optimal solutions than L-

MIP. On the other hand, it’s also known that the running of L-MIP has a polynomial upper bound 

and thus as empirically demonstrated in (Zeng et al, 2004), L-MIP is many orders of magnitude 

faster than S-MIP. Similarly, it’s also known that L-MIP on average produces less optimal 

solutions whose quality is on average in the range 70% to 80% relative to S-MIP. What is unknown 

is how SLUM could perform in terms of runtime efficiency and solution quality relative to S-MIP 

and L-MIP.  This leads us to the research questions stated in section 1.5.1 and section 1.5.2. 

1.5.1 Running Time  

The overall research question concerning performance efficiency is: 

 RQ1:   For a composite webservice selection problem having a workflow with k tasks and v 

alternative webservices per task, how does the runtime efficiency of SLUM compare with that of 

S-MIP and L-MIP when each is used to solve the problem?   The specific research questions arising 

from this question are: 
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RQ1.1: How does the running time of SLUM grow as the number of service providers 

per task increase? 

RQ1.2: How does the running time growth of SLUM compare with that of S-MIP and 

L-MIP? 

RQ1.3:  How much speedup is achievable when using SLUM over S-MIP to 

autogenerate composite webservices given a business workflow having n webservices 

per task? 

RQ1.4: What is the minimum number of service providers per workflow task that a 

virtual enterprise broker needs to have in order to benefit from the relative efficiency of 

SLUM when compared to S-MIP? 

 The significance of RQ1.1 is to derive a mathematical model that characterizes the performance 

efficiency of SLUM as a function of the number of service providers per task. From the model, we 

could infer the running time complexity either as linear, polynomial, exponential or a combination 

of the same.  Given that the composite webservice selection problem is still non deterministic 

polynomial, the second rationale for RQ1.1 is that by deriving the running time model(s) of SLUM, 

we are interested to investigate whether or not SLUM can guarantee polynomial time solution to 

the problem. In case it does not, the problem then remains NP hard and our results will further 

empirical evidence of the NP hardness of the composite webservice selection problem. If 

otherwise, then we could conclude that the two layered approach proposed herein constitutes a 

polynomial time solution to the problem that has been known to be NP hard. RQ1.1 is also a pre-

requisite to answering research question RQ1.2. 

Using the model obtained after answering RQ1.1, we are mainly interested in benchmarking the 

performance efficiency of SLUM against S-MIP. We will also gauge the performance efficiency 

of SLUM against L-MIP. This seeks to establish whether SLUM is worse than S-MIP or better 

and under what circumstances. This is the goal of RQ1.2. 

In case our hypothesis that SLUM is faster than S-MIP turns out to be true, RQ3 aims to establish 

how much faster on average should a virtual enterprise broker expect SLUM to be when compared 

to S-MIP. 
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Sometimes, an algorithm can be faster on average than another algorithm only when the problem 

size is very large enough, say in thousands or millions. Since the problem size in our case is the 

number of virtual enterprises per task, SLUM wouldn’t be practically useful if its improved 

speedup is realizable only for huge n values, since it’s unlikely that the number of virtual 

enterprises per task is infinitely large. The goal of RQ1.4 is to determine the number of virtual 

enterprises per task that a virtual enterprise broker should have in order to gain the minimum 

possible speedup from SLUM. If RQ1.4 can be answered, then a virtual enterprise broker could 

also estimate the speedup of SLUM at any number of virtual enterprises per service. 

1.5.2  Solution Quality  

The overall research question concerning solution quality is:- 

  RQ2:  How does the average solution quality of SLUM compare with that of L-MIP and S-MIP?  

This leads us to the following specific research questions? 

RQ2.1: What is the average relative solution quality (percentage accuracy of quality) of 

the composite webservices generated by SLUM relative to S-MIP? 

RQ2.2: What is the percentage difference in the relative solution quality by SLUM relative 

to L-MIP? 

In order to provide answers to the foregoing research questions, a system methodology for 

analyzing and comparing the performance of the three algorithms is required. With respect to  

efficiency/running time, algorithms can analyzed using two main approaches: theoretical 

(mathematical) or empirical. In the theoretical approach, a mathematical model is developed that 

characterizes the performance behaviour of the algorithm,   and the algorithm is analyzed within 

the model. The empirical approach involves running an algorithm and testing its performance 

against specific problem instances and collecting performance data (Hoos, 2003), (Seogewick & 

Flajolet, 2009). Empirical evaluation of algorithms complements theoretical/mathematical 

approach (Coffin & Saltzman, 2000). 

In section 2.14, we attempt to answer research questions RQ1.1 and RQ1.2 using 

theoretical/mathematical analysis. The theoretical results could pre-empt some analytic 

performance efficiency properties of SLUM independent of specific machine implementation 
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details – the basis of theoretical algorithm analysis in computer science. These results could 

provide a benchmark on running time properties of the SLUM model against the benchmark 

algorithms during empirical evaluation. 

 

1.6 Overview of Our Proposed Approach  

Towards our  research goal stated in 1.3 and the two research objectives in section 1.4, this thesis 

is about converting the well-known (single layered) global planning MIP based dynamic 

webservice composition model originally formulated by Zeng et al  (2004) which is the basis for 

present MIP based webservice selection models that are based on MIP, into a multilayered MIP 

model. Inspired by the formal theory of Layering as Optimization Decomposition (see section 1.1.5 

and chapter 2), we propose a hierarchical two-layer Mixed Integer Programming model dubbed 

SLUM: Service Layered Utility Maximization as in (Abiud et al, 2016); also synonymously 

referred to as Hierarchical Multilayer Service Composition Model, HMSCM as in (Abiud et al, 

2015). 

 Instead of viewing dynamic composite service selection as a one shot monolithic complex 

problem as it’s the case with all the existing strategies, motivated by the theory of Layering as 

Optimization Decomposition, we view the service composition problem as a network with two 

hierarchical layers in which one of the layers is a mixed integer optimization subproblem whose 

objective is to maximize the utility of a service consumer on a subset of the QoS attributes. The 

other layer is a mixed integer optimization subproblem whose objective is to maximize the utility 

of the service provider (in this case, the virtual enterprise broker) on the remaining subset of QoS 

constraints. Both layers exploit global planning allowing users to specify both global and local 

constraints. The layer concerned with maximization of the utility of the service consumer is termed 

as the Service Consumer Utility Maximization (SCUM) layer, while that one concerned with 

maximization of the utility of the Service Provider as the Service Provider Utility Maximization 

Layer (SPUM) (Abiud et al, 2015). The formulation of the SCUM subproblem is in terms of QoS 

attributes that are a direct concern of the service consumer and are less technical in nature. The 

SPUM subproblem is formulated in terms of low level technical attributes that would only be a 

direct concern of the service provider. The layering is done in a manner that the optimization at 

the SPUM layer is completely transparent to the service consumer i.e the end user is not required 
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to specify weight preferences and constraints explicitly on low level technical– this is instead 

handled by the virtual enterprise broker, even though optimization of such QoS attributes indirectly 

benefits the service consumer without their explicit knowledge. The two subproblem are then 

sequentially solved beginning with the lower layer of the two layers such that the output solutions 

of the lower layer becomes the inputs to the upper layer, and the output of the upper layer 

constitutes the best composite service that meets the needs of the end user (and implicitly the needs 

of the virtual enterprise broker. In chapter 2 and chapter 3, we show that together, the two layers 

attempt to solve the global optimization objective and that our approach is more efficient and less 

tedious to the end user than the state of the art. Two questions that arise are: 1) exactly what kind 

of webservice QoS attributes belong to the SPUM layer and which ones belong to SCUM layer 

and why? And 2). In which order are the subproblem solved – SCUM then SPUM or SPUM then 

SCUM. Why? These questions are problems in themselves. We provide detailed answers to these 

questions in chapter 2. 

1.7 . Scope and Limitations of the Study  

In section 1.1.3, we saw that there are a number of key issues that make the dynamic webservice 

composition a complex multi-dimensional problem. In this section, we discuss what the study 

focused on and what the study did not address and the reasons justifying the decisions. 

1.7.1 Nature and Scale of the Virtual Organization  

SLUM targets virtual enterprise brokers operating within global virtual organizations as described 

in (Molina & Flores, 1999). The envisaged global virtual organization framework is that one in  

1.7.2 Nature and Pattern of Business Workflows 

Although the proposed model is generic enough, in this thesis, we assume workflow based service 

composition only as defined in Rao et al (2004). To simplify analysis without loss of generality, 

this thesis will only focus on sequential workflows even though it should not be hard to extend the 

model to other complex workflow patterns.  By focusing on sequential workflows only, we 

avoided extraneous factors such as parallel performance issues that would arise when dealing with 

workflows containing parallel gates. In any case, parallel tasks could be abstracted as a high level 

sequential tasks.  Moreover, in selecting the best composite service where a workflow contains a 

parallel task, the task with the largest execution time is usually used which is essentially sequential. 



21 
 

1.7.3 Nature of the Service Environment  

 The study does not address issues related to a changing service environment due to events such 

as occurrence faults, new service exits and service entries in the middle of an ongoing webservice 

composition – doing so would require replanning mechanisms. This is beyond the scope of the 

study. Such issues have been substantively addressed in studies such as (Urban et al, 2011).  

Further, the method proposed in this study could be used in conjunction with existing fault aware 

replanning strategies, for example the one proposed in (Zeng et al, 2004). 

1.8 Significance of the Study 

1.8.1 Significance to Industry and Practitioners  

 

  Dynamic webservice composition is an essential ICT infrastructure support service for 

collaborative virtual organizations (Rabelo et al, 2007), Mulongo & Flores, 1999).  In a globally 

competitive market, DWSC affords virtual enterprise brokers and virtual enterprises the business 

agility required to adaptively respond to complex time varying online consumer service requests 

Mulongo & Flores, 1999).  On the other hand, dynamic webservice composition gives the service 

consumer all the benefits highlighted in section 1.1.2.  

The study introduces more efficient and near optimal service composition strategy that could boost 

applicability of dynamic webservice composition. Note that as explained in all the preceding 

sections, the applicability of dynamic webservice composition is severely limited to virtual 

organizations that operate a relatively small network of service providers due to computational 

complexity of the problem. As virtual organizations, lead by virtual enterprise brokers span across 

the globe, the need for efficient DWSC strategies will grow. The successful adoption of dynamic 

webservice composition that is also efficient and near optimal would offer the benefits to various 

stakeholders as outlined in subsections 1.8.1.1, 1.8.1.2 and 1.8.1.3. 

  



22 
 

 

1.8.1.1  Significance to Service Consumers 

i. Improved likelihood of the service consumer obtaining highly customized quality 

solutions because the best composite service is selected from a pool of many potential 

solutions (Mulongo et al, 2016). Even in the event that no suitable solution is found 

that satisfies the consumer, the user can be provided with the list of feasible solutions 

and choose whether or not one of them nearly satisfies them. 

ii. Through re-planning strategies, workflows that are dynamically bound to 

webservices at runtime are more likely to survive failures through selection of 

different execution paths hence boosting system reliability and customer experience.  

iii. Enhanced convenience resulting from shorter turnaround times in online services. 

1.8.1.2  Significance to Virtual Enterprise Brokers & Virtual Enterprises 

 This study proposed a more efficient dynamic webservice composition strategy that could boost 

adoption of dynamic webservice composition. In some real time Internet business applications 

such as ultra-low latency trading platforms, response time is as good as the quality of service 

delivered. Nielsen et al (1993; 2010), (Nah , 2004), (Akamai , 2009) and Nngroup (2014) note that 

tolerable waiting limit of web application users is typically 4 seconds with 10 seconds considered 

as annoying. Broadwell (2004) describes response time as a critical user centric performance factor 

for online services alongside data quality. Nielsen et al (1993; 2010; Nah, 2004; Akamai, 2009; 

Nngroup 2014) agree that response time is a critical determinant of customer retention as well 

customer churn. 

  Further, (AgileLoad, 2012) demonstrates that the computational logic within the server side of 

the web applications accounts for the largest percentage of performance efficiency delays – 76%. 

Thus improved runtime performance of dynamic webservice composition could enhance user 

experience. 

 Current methods of user centric dynamic webservice composition require that the user express 

preferences and constraints on the entire set of available webservice QoS constraints. As stated 

earlier, some QoS attributes could be too technical to be comprehensible by an average user. The 

method proposed in this study, SLUM, in addition to efficiency gains and optimality, could 
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improve usability of dynamic webservice composition as SLUM does not require end users to 

directly specify QoS constraints and weight preferences on low level technical QoS attributes. 
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1.8.2 Significance to the Research Community 

The study introduces a new architectural thinking about the structure of the dynamic 

composite webservice selection problem. The new thinking borrows the idea of Layering 

as Optimization Decomposition and its combination with mixed integer programming– an 

optimization approach that has been applied successfully in the communication systems 

field. The study thus pioneers one of the possibly many layering schemes and layering 

models that could be used to tackle the dynamic webservice composition problem and 

structurally related problems.  The following are some of the different types of researchers 

that would find this work relevant. 

i. Service computing researchers who may be interested in exploring improved layering 

models or layering schemes based on this study. 

ii. Other computer science researchers. Dynamic webservice composition as explained 

in section 1.1 can be viewed as planning problem. Researchers from other areas of 

computer science research could find relevance in exploring new applications of the 

layered mixed integer programming approach introduced in the study. 

iii. Experts in decision theory, optimization theory, management science and operations 

research would find this work of interest either with a view to extending it in solving 

related problems that require multiple criteria decision making. 

 

1.9  Operational Definitions 

There are key terms used throughout the rest of the thesis that: 

i. Have interchangeable meanings  and or ; 

ii. Have overloaded meaning i.e could mean more than one thing or; 

iii. Have different meanings in other domains. 

These words are: virtual organization (VO), collaborative networked organization (CNO), 

virtual enterprise broker, virtual enterprise, service provider, provider, service requestor, 

service consumer, and consumer. 
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To resolve ambiguity in the usage of the above terms, in this thesis, the foregoing terms 

will be used as explained in the following subsections. 

1.9.1 Service Provider and Provider 

In Service Oriented Architecture, from a business perspective, a service provider is the business entity that 

offers a particular service to service consumers (IBM, 2004). From a technology view point, a service 

provider is the software application component that enables the business service being offered by the 

business entity by providing appropriate service responses to the service consumer (IBM, 2004).  For the 

purposes of this thesis, the term service provider shall be strictly used from the business view point as 

explained here. This view is also consistent with the recent definition of a service provider according to 

(Terlouw & Albani, 2013).  Terlouw (2013) defines service provider as used in service oriented architecture 

as the party that offers a service to consumers. 

In addition, when viewed from a business angle, the word service provider and the word provider can be 

used interchangeably (Terlouw & Albani, 2013).  Thus in this thesis, the two terms are used interchangeably. 

1.9.2 Service Consumer, Consumer and Service Requestor 

 In Service Oriented Architecture, from a business perspective, a service consumer is the party that requests 

a service offered by as a service provider (IBM, 2004). From a technology view point, a service consumer 

is the client side software component that mediates the user requesting for the service and the service 

provider (IBM, 2004).  According to the webservice architecture framework by IBM (2004), term service 

consumer and service requestor are used interchangeably and from the business perspective as opposed to 

technology perspective. Further, the two terms service consumer and service requestor are used 

interchangeable with the term consumer. This is consistent with the definition of the word consumer by 

(Terlouw & Albani, 2013) i.e a consumer is the party that requests for a service offered by a provider. 
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1.9.3  Virtual Organization, Collaborative Virtual Organization and Collaborative 

Networked Organization 

In the open literature, the term virtual organization is often used rather liberally for example to imply an 

organization where employees can telecommute. This is not the meaning ascribed to the term in this thesis. 

The context of usage of this term is within the domain of electronic commerce involving business to 

business collaborations. Precisely, in this thesis, the term virtual organization used as defined in (Molina 

& Flores, 1999). Refer to section 1.1.2 for a detailed background on virtual organization. The term virtual 

organization is also referred to as collaborative virtual organization or collaborative networked 

organization ( Rabelo et al, 2007; 2008). Unless explicitly stated otherwise, the meaning and usage of these 

three terms in this words remains as such. 

1.9.4 Virtual Enterprise Broker  

Molina & Flores (1999) identifies, defines and describes the concept of virtual enterprise broker as a 

fundamental component of the architecture framework for virtual organizations. As explained earlier in 

section 1.1, according to the architecture framework for virtual organizations by Molina (1999), a virtual 

enterprise broker is the consumer facing business entity, typically with:- 

i.  the expertise in  analyzing market demands and complex consumer needs ; 

ii. the expertise and responsibility in identifying business opportunities arising from the 

market demands; 

iii. the ability and responsibility to design complex value added services/products to meet the 

demand; 

iv. the ability and responsibility of identifying a set of industry specific expert business entities 

called virtual enterprises (see section 1.9.5 for definition of the term virtual enterprise) to 

contribute to the production and delivery of the complex product or service. 

v. The responsibility to broker and manage the delivery of the service/product to the consumer. 

This also involves setting up the requisite computing infrastructure required for consumers 

to access the service, order and purchase the service and managing the quality of the service 

being delivered to the consumer. 

The thesis adopts the definition of the term as described in Molina & Flores (1999). Moreover, 

since in the context of a virtual organization, the virtual enterprise broker is the business that 

provides services to the consumer, from a consumer perspective, the definition of a virtual 

enterprise broker then coincides with the definition and usage of the term service provider as used 

in this thesis. For this reason, in this thesis, virtual enterprise broker and service provider are used 

interchangeably. 
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1.9.5 Virtual Enterprise. 

A virtual enterprise is another fundamental component within a virtual organization according to Molina & 

Flores (1999). In the framework in (Molina & Flores, 1999), a virtual enterprise is a business entity 

specialized in a particular industry domain e.g insurance, education, aviation, information technology and 

so on. Typically, a single virtual enterprise might not have the competencies to wholly deliver a complex 

product/service identified by the virtual enterprise broker ((Molina & Flores, 1999). The virtual enterprise 

would then need a combination of virtual enterprises typically from different industry domains to deliver 

the service (Molina & Flores, 1999). 

1.10 Organization of this thesis 

The rest of this thesis is organized as follows:-  

Chapter two contains a review and analysis of literature related to dynamic webservice 

composition, local planning, and global planning methods to dynamic webservice composition, 

with a particular emphasis on the mixed integer programming solution to the problem.  The theory 

of Layering as Optimization Decomposition and how it has been used in the communication 

networks community is discussed elaborately. Gaps in related literature are stated.  Chapter two 

also contains our proposed solution dubbed “SLUM: Service Layered Utility Maximization” 

which uses a two layer mixed integer global planning to the dynamic webservice composition 

problem. We first give a qualitative description of how the formulation of SLUM maps onto the 

Layering as Optimization Decomposition conceptual framework justifying every design decision 

made. This is followed a detailed description of the mathematical model underpinning SLUM. We 

then describe how our proposed framework differs from the state of the art, discussing both its 

relative strengths and relative limitations.   

Based on our research objectives and research questions stated in section 1.4 and 1.5 respectively, 

we go ahead in chapter two to derive some theoretical performance efficiency models related to 

the running time of SLUM and derive a mathematical model that can be used to estimate the 

speedup of SLUM in relation to S-MIP. The mathematical performance models can be found in 

section 2.12. Later this model is verified experimentally in chapter four. 

Chapter three, Methodology contains a detailed description of the experimental methods that were 

used to verify and validate the proposed model and the corresponding theoretical performance 

models. In part, the experimental methodology complements the theoretical analysis of chapter 
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two and on the other side, provides an empirical validation tool of the claims made under the 

theoretical analysis approach. Under the experimental method, we begin by explaining the 

performance metrics - CPU running time and Relative Solution Quality used to benchmark our 

proposed solution in more details.  This is followed by a detailed description of the experimental 

protocol- the procedure that was followed to achieve implausible experimental results. It’s in this 

section that we discuss how we addressed the various issues that could threaten validity of our 

experiments. We then identify and discuss a set of complementary as well alternative methods of 

analysis in the section titled “Performance Data Analysis Methodology”. The analysis methods 

and tools discussed include: - Statistical Regression Analysis (linear, polynomial and exponential 

regression), the L-Hospital’s Rule from differential calculus, the empirical relative complexity and 

empirical relative complexity coefficients, parametric and nonparametric statistical tests , use of 

central measures of tendency and lastly scaling curves . We justify the use of one or a combination 

of these approaches over the other and the contribution of each method towards the understanding 

of the performance behaviour and performance differences between our proposed method against 

the baseline (S-MIP) and against the alternative algorithm (L-MIP). We also discuss the basis for 

interpretation of various results. 

Chapter four contains details on the specific experiments carried out and the results obtained. The 

results are generally captured using tables and visually represented using scatter plots and where 

appropriate bar graphs to show the performance of SLUM, S-MIP and L-MIP algorithms. Where 

appropriate, a series of regression functions are obtained from the scatter plots, their goodness of 

fit computed and their statistical significance tested, and results interpreted as per the basis 

provided in the preceding section, “Performance Data Analysis and Interpretation methodology”. 

Moreover, using the obtained regression functions the following are parameters are determined: - 

expected growth of the function; this is based on the L-Hospital’s rule, the empirical relative 

complexity and empirical relative complexity coefficients. From these parameters, a couple of 

other quantities are derived. A series of equations are used appropriately to capture these 

parameters. From the raw data that is tabulated, we also compute a number of descriptive statistics 

based on arithmetic mean and show how they enrich the understanding of performances 

differences among the three algorithms. Finally, a discussion of the empirical results follows. The 

discussion is presented in a form that is designed to show the answers to the research questions. 

Moreover, in our discussions we relate our empirical findings to the following: - the analytic 
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arguments, the theory and mathematical analysis presented in chapter two, theory from the rest of 

computer science body of knowledge, and the results obtained from previous studies. We also 

discuss any peculiar findings that cannot be immediately linked to any known theory. 

Chapter five contains the conclusions obtained from the results. Here, we reflect on the dynamic 

webservice composition problem as stated in chapter 1, and then highlight our major contributions 

towards solving the problem. As we discuss our contributions, we also explain the limitations of 

our approach informed by the results and our analytic considerations in chapter two, clearly 

describing the conditions which our method would be preferred over mixed integer programming 

using a local planning strategy and mixed integer programming using a global planning strategy. 

We then give recommendations that help the virtual enterprise broker tackle the algorithm 

selection problem as first described by John (1976), which in this case is “when should L-MIP, S-

MIP and SLUM be used for dynamic webservice selection problem ?”, This section also contains 

highlights of future work given that dynamic webservice selection problem remains an active area 

of research due to its significance, albeit with many issues that remain unresolved – this study 

tackles just a tiny portion of the issues.  

1.11 Chapter Summary  

In this chapter, we introduced the concepts of dynamic webservice composition and virtual 

organizations. We identified the main problem faced in solving the dynamic webservice 

composition problem within virtual organizations. We then identified the two complementary 

approaches that are currently used to tackle the problem: Local Planning using Mixed Integer 

Programming and global planning using Mixed Integer Programming. The overall strengths and 

weaknesses of these methods were discussed and gaps that necessitate further research were 

identified. We also introduced the concept of Layering as Optimization Decomposition and 

highlighted how the theory has been used to efficiently solve related optimization problems in the 

communication networks field. We then articulated the problem statement followed a statement of 

our research goal, which is Design a more efficient Mixed Integer Programming model that can 

dynamically generate the best composite service taking into account both local and global QoS 

constraints, and without requiring the service consumer to specify all QoS constraints.  From the 

research goal, two specific objectives were identified in section 1.4 and two main research 

questions stated in section 1.5.We gave an overview of the proposed solution SLUM, which is 
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inspired by the theory of Layering as Optimization Decomposition. We then discussed the scope 

of this study and explained the justification for the study. We gave operational definitions of key 

terminologies that are used throughout the thesis. Finally, we gave an overview of how the rest of 

the thesis is organized. 
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2 CHAPTER 2: LITERATURE REVIEW 

As stated in chapter one, dynamic webservice composition is a non-deterministic polynomial hard 

multiple criteria decision making problem. The goal of this study is to explore the use of a two 

layer mixed integer programming model (SLUM) to tackle the problem. This chapter presents in 

detail the literature that contributed to the formulation of the proposed model. In the section (2.1) 

titled “Introduction to Service Oriented Architecture and Computing”, key concepts and models 

that shall be referenced throughout this dissertation are discussed. Section 2.2 revisits the problem 

of workflow based dynamic webservice composition in more elaborate terms. The structural model 

and the process model underpinning webservice composition are discussed. In addition, the design 

space complexity of DWSC is expounded. The rationale for this topic is to set the context of our 

specific work within a larger body of existing issues related to DWSC. 

In chapter one, we indicated that a majority of the existing algorithms (including MIP algorithms) 

that combat the DWSC problem are based on the multiple criteria decision making, Simple 

Additive Weight, SAW in (HC-L & K.Yoon, 1981). In section 2.3, we present and discuss in 

details the naïve local planning utility maximization and the naive global planning utility 

maximization mathematical models related to DWSC.  The standard (single layer) mixed integer 

programming model (S-MIP) for DWSC based on the work of Zeng et al (2004) is elaborated in 

section 2.4  . While as will be later seen, the models in section 2 and section 2.5 contribute to the 

mathematical foundation of our proposed solution, the work in section 2.5 contributes to the 

structural and process models our solution, helping answer the question: how should the layering 

be structured and in what order should the utility maximization process be done. 

In section 2.6, the theory of Layering as Optimization Decomposition and how it has been used in 

the communication networks field is presented. The general concepts will then be applied into the 

proposed model. 

In section 2.7, a review of the related work is presented. The related work reviewed is grouped as 

follows. The focus is on those studies generally following the SAW method by Hwang & Yoon, 

(1981) which is the basis for a majority of multiple criteria decision techniques for the service 

composition problem. As explained in (Mulongo et al, 2015; 2016a), to the best of our knowledge, 

no previous work has dealt with Layered Mixed Integer Programming Model for the webservice 
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composition problem before. Therefore other than our work in (Mulongo et al, 2015; 2016a), there 

is no any previous related work. 

In section 2.7, a summary of the gaps in literature are discussed. In section 2.8, similarities and 

differences between our proposed solution and existing work is given. 

In section 2.8, we highlight a summary of the gaps in the literature. 

In section 2.9, we present our proposed model. We begin by presenting a qualitative model of 

SLUM in section 2.9.1. Section 2.9.1 discusses the rationale for major architectural decisions e.g 

what webservice QoS attributes should be placed within the SCUM layer and which ones should 

be placed under the SPUM layer. It also attempts to answer the question, which of the layer serves 

the other i.e should solve the SCUM subproblem first then SPUM second or vice versa and why? 

Using, Layering as Optimization Decomposition theory discussed earlier, these questions are 

answered. In summary, section 2.9.1 is about “ the  structural view  and the process view (without 

the internal mathematical model details) of the dynamic webservice composition problem inspired 

by the Network Utility Maximization Model , NUM problem and Layering as Optimization 

Decomposition theory discussed in section 2.7. In section 2.10.2, formal mathematical models 

underlying SLUM are presented. A Mathematical optimization model at the SCUM layer and 

another one at the SPUM layer are detailed. Both models are based on the S-MIP. Finally, the 

optimization process given the two mixed integer programming models is described. A summary 

of how our proposed model addresses the research question: Design a more efficient Mixed Integer 

Programming webservice composition strategy that can produce high quality solutions that are on 

average near global optimal without: denying service consumers an opportunity to specify all their 

critical local and global webservice QoS constraints. 

In section 2.10, we present the man differences between our approach and the state of the art. 

Section 2.11 outlines the two benchmark algorithms – one baseline – the S-MIP and the other as 

an alternative – the L-MIP.  

In section 2.12 we present mathematical performance models for the proposed model. This formal 

model on one hand is verified experimentally in chapter 3. Conversely, the results that will be 

obtained in chapter three can be checked against the formal models. 
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Table 1: Literature Review Road Map 

Concept, Theory, Framework, Model, Method Section Contribution 

Introduction to Service Oriented Computing & Service Oriented 

Architectures  

  2.2   SLUM 

Dynamic Workflow based Webservice Composition 2.3 SLUM 

 Local Planning Strategy for Webservice Selection 2.4 SLUM 

Global Planning (general) based Service Selection 2.5 SLUM 

Integer Programming Model for Service Composition 2.6 SLUM 

Layering as Optimization Decomposition 2.7 SLUM 

Related Work 2.8  

Summary of the Gaps in the Literature 2.9 SPUM 

Summary of Gaps in the Literature 2.9 SLUM 

Proposed Systems Model (SLUM) 2.10 SLUM 

  Qualitative and Architectural Model 2.10.1 SLUM 

  Mathematical Models 2.10.2 SLUM 

Differences between our Proposed Model and the rest 2.11 SLUM 

Benchmark Algorithms 2.12  

Research Questions 2.13 SLUM 

Theoretical Running time performance results 2.14 SLUM, Phase 

Transition Rates  

 

2.1 Introduction to Service Oriented Architecture  

Service Oriented Architecture (SOA) is paradigm for organizing and utilizing distributed 

capabilities that may be under the ownership of different domains. Therefore a basic element 

of SOA is the notion of a service (Picard et al, 2010). The notion of a service has multifaceted 

meanings and definitions. As such there exists no precise definition and mutual understanding 

of the term service (Terlouw & Albani, 2013).  However, the debate about what a service is or 

is not is beyond the scope of this work. Instead we will pick on working definitions that are 

commonly used in literature. 
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A service is an interaction between a requesting party called a consumer and an offering party 

called a provider or service provider or supplier (Terlouw & Albani 2013).  

According to the Open Group (2007) and Picard et al (2010), Service Oriented Architectures 

facilitate business agility in the following ways: - Service discoverability enables business to 

expose functionalities that can be quickly discovered by service consumers. In virtual 

organizations and virtual enterprises, this means that virtual enterprise brokers can easily locate 

the partners given a business opportunity (Picard. et al, 2009). Another important benefit is service 

reuse through service composition. Within enterprises, a business can easily combine a subset of 

existing atomic services to create a new composite service with less software effort (Khan .H.L et 

al, 2010). 

Webservices are the most widely used technology to implement service oriented architectures. A 

webservice is a software system designed to support interoperable machine to machine interaction 

over a network. Discoverability is one of the properties of a webservice. This means that 

webservice can be located and identified (usually via a URL) by other software systems over 

Internet (Schahram & Wolfgang, 2005). 

XML is the most widely used format for describing a web service although other formats such as 

JSON can be used for REST webservices. For XML based services, The WSDL (W3C, 2001) is 

the widely adopted language for describing the grammar and syntax of a webservice. With the 

advent of the semantic web and semantic webservices, other description languages such as OWL, 

OWL-S 1, WSML2, USDL, and WSDL-S 3 and WSMO have emerged. These languages seek to 

enable fully automated discovery of webservices by adding semantic annotations to service 

descriptions. Most of them are based on Artificial Intelligence concepts especially description 

logics. 

Figure 1 below is the webservice architectural model. The architecture shows the main actors, 

components and operations supported by a service oriented architecture based on webservices 

(IBM, 2004). This model is also the same the one described in (Dustdar& Schreiner, 2005). The 

actors/components are service provider, service requestor /consumer and the components are the 

service registry, the operations are found, publish, and bind. 
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    Figure 1 : A basic Webservices Architecture, Source (IBM, 2004) 

 

2.1.1 Actors and Components of the Service Oriented Architecture 

2.1.1.1 Service Requestor/Service Consumer 

Service requestor or service consume from a business perspective, is the business or user that 

requires certain functions to be satisfied. From an architectural perspective, this is the application 

that is looking for and invoking or initiating an interaction with a service. The service requestor 

role can be played by a browser driven by a person or a program without a user interface, for 

example another Web service   

2.1.1.2 Service Registry/Service Repository 

Is a searchable registry of service descriptions where service providers publish their service 

descriptions? Service consumers find services and obtain binding information (in the service 

descriptions) for services during development for static binding or during execution for dynamic 

binding. For statically bound service requestors, the service registry is an optional role in the 

architecture, because a service provider can send the description directly to service requestors. 

There exist other ways in which service consumers can obtain information about a service 

Service 
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Service 

Description 

 

Service Registry 

  Service Description 



38 
 

description: ,  a local file, FTP site, Web site, Advertisement and Discovery of Services (ADS) or 

Discovery of Web Services  

2.1.2 Basic Computational Operations in a Webservices Model 

2.1.2.1 Publish Operation 

A publish operation enables services to be accessible to service requestors through search 

accessible, a service description needs to be published so that the service requestor can find it. 

Where the service is published can vary depending upon the requirements of the application 

2.1.2.2 Find Operation 

Enables a service requestor to retrieve a service description directly or by querying the service 

registry for the type of service required. Thus the find operation facilitates the process of service 

discovery. The find operation can be involved in two different lifecycle phases for the service 

requestor: at design time to retrieve the services interface description for program development, 

and at runtime to retrieve the service’s binding and location description for invocation (IBM, 

2004).  

2.1.2.3 Bind Operation 

Enables a service request to invoke a service at run time by use the binding details provided in the 

service description. 

A service and a service description constitute artefacts of a web service. Whereas a web service is 

an interface described by a service description, the concrete implementation of the interface is 

called a service (IBM, 2004). Extending this definition, a service is a software module deployed 

on network accessible platforms, provided by the service provider. Service description contains 

the details of the interface and implementation of the service. This includes its data types, 

operations, binding information and network location. It could also include categorization and 

other metadata to facilitate discovery and utilization by service requestors, for example in semantic 

web services.  

2.1.3 Webservice Publication 

The publication of Web Services includes the production of the service descriptions and the 

subsequent publishing. Publishing can use a variety of mechanisms (IBM, 2004). The service 

description can be generated, hand-coded, or pieced together based on existing service interface 
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definitions. Developers can hand-code the entire service description, including the UDDI entry. 

Tools exist to generate parts of the WSDL and potentially parts of the UDDI entry from meta-data 

artifacts from the programming model and the deployment of the Web service executable.  

A service description can be published using a variety of methods.  These various methods provide 

different capabilities depending on how dynamic the application using the service is intended to 

be. The service description can be published to multiple service registries using several different 

approaches. The simplest case is a direct publishes. A direct publish means the service provider 

sends the service description directly to the service requestor. Direct publish can occur after two 

business partners have agreed on terms of doing e-business over the Web, or after fees have been 

paid by the service requestor for access to the service. In this case, the service requestor can 

maintain a local copy of the service description but will need to occasionally update the service 

whenever changes in the service description occur on the side of the service provider. 

Slightly more dynamic publication uses DISCO or ADS. Both DISCO and ADS define a simple 

HTTP GET mechanism to retrieve Web Services descriptions from a given URL. An enhanced m 

service description repository would provide a local cache of service descriptions, but with 

additional search capabilities. For service description repositories that span hosts within an 

enterprise, a service provider would publish to a private UDDI server. There are several types of 

private UDDI nodes that can be used depending on the scope of the domain of Web Services 

published to it. Internal Enterprise Application UDDI node: Web Services for use within a 

company for internal enterprise applications integration should be published to a UDDI node of 

this kind. The scope of this UDDI node can be single application, departmental or corporate. These 

UDDI nodes sit behind the firewall and allow the service publishers more control over their service 

registry and its accessibility, availability and publication requirements. Portal UDDI node: Web 

Services published by a company for external partners to find and use can use a portal UDDI node. 

A portal UDDI node runs outside the service provider’s firewall or between firewalls. This kind 

of private UDDI node contains only those service descriptions that a company wishes to provide 

to service requestors from external partners. This allows companies to retain control of their 

service descriptions, access to the UDDI node and quality of service for the UDDI nodes. Partner 

Catalog UDDI node: Web Services to be used by a particular company can be published to a 

partner catalog UDDI node. A partner catalog UDDI node sits behind the firewall. This kind of 
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private UDDI node contains only approved, tested and valid Web service descriptions from 

legitimate business partners. The business context and meta-data for these Web Services can be 

targeted to the specific requestor. E-Marketplace UDDI node: For Web Services that the service 

provider intends to compete for requestors' business with other Web Services, the service 

description should be published to an e-marketplace UDDI node or the UDDI operator node. E-

marketplace UDDI nodes are hosted by an industry standards organization or consortium and 

contain service descriptions from businesses in a particular industry. 

2.1.4 Webservice Discovery 

The discovery of Web Services includes the acquiring of the service descriptions and the 

consuming of the descriptions. Acquiring can use a variety of mechanisms. Like publishing Web 

service descriptions, acquiring Web service descriptions will vary depending on how the service 

description is published and how dynamic the Web service application is meant to be. Service 

requestors will find Web Services during two different phases of an application lifecycle design 

time and runtime. 

At design time, service requestors search for Web service descriptions by the type of interface they 

support. At runtime, service requestors search for a Web service based on how they communicate 

or qualities of service advertised. With the direct publish approach; the service requestor caches 

the service description at design time for use at runtime. The service description can be statically 

represented in the program logic, stored in a file or in a simple, local service description repository. 

Service requestors can retrieve a service description at design time or runtime from a service 

description repository, a simple service registry or a UDDI server. The look-up mechanism needs 

to support a query mechanism that provides find by type of interface (based on a WSDL template), 

the binding information (that is, protocols), properties (such as QOS parameters), the types of 

intermediaries required, the taxonomy of the service, business information, and so on. The various 

types of UDDI servers have implications on the number of runtime binding Web Services to 

choose from, the policy for choosing one among many, or the amount of prescreening that must 

be done by the requestor before invoking the service. 

UDDI servers can classified as either internal, partner catalog or e-Market place (IBM, 2004). 

Internal UDDI repositories are those used to publish services within an enterprise, partner catalog 
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UDDI repositories are those shared among trusted business partners, e-Market place UDDI 

repositories are accessible to any service requestor via the Internet. 

Internal enterprise application UDDI servers and partner catalog UDDI servers will require no 

prescreening to establish trust of the service. Service selection can be based on binding support, 

historical performance, and quality of service classification, proximity, or load balancing. 

E-marketplace UDDI nodes will have more runtime services to choose from. Some prescreening 

must be done to verify that the Web service provider is a worthy partner. A service can be chosen 

based on price promises, cost, presence on approved partners list, as well as binding support, 

historical performance, quality of service classifications and proximity. 

After a service description is acquired, the service requestor needs to process it to invoke the 

service. The service requestor uses the service description to generate SOAP requests or 

programming language-specific proxies to the Web service. This generation can be done at design 

time or at runtime to format an invocation to the Web service. Various tools can be used at design 

time or runtime to generate programming language bindings from WSDL documents. These 

bindings present an API to the application program and encapsulate the details of the XML 

messaging from the application. 

2.2 Dynamic Workflow Based Webservice Composition  

Web service composition involves combining a set of individual web services to respond to a 

service request that cannot otherwise be achieved using any single service (Dustdar & Schreiner, 

2005), (Bartalos & Bieliková,2011).Web service composition is a critical research challenge in the 

realization of business agility (Rabelo et al, 2007). 

Webservices composition takes different approaches and forms. In chapter 1, we saw that there 

are two paradigms of webservice composition – one following the workflow based service 

composition and the other following the Artificial Intelligence Planning approach. Further we saw 

that workflow based composition can be static or dynamic.  This thesis is dedicated to dynamic 

workflow based service composition. In subsection 2.3.1.1, we formally define the notion of a 

business process, a workflow and task. We then discuss the types of workflow operations.  In 

subsection 2.3.1.2, we go ahead to elaborate on the activities involved in dynamic workflow based 

composition. To contrast dynamic webservice composition from static composition, we also 
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illustrate static workflow based service composition. A recap of the issues that make dynamic 

workflow based service composition a hard optimization problem are discussed in subsection 

2.3.1.3 

2.2.1 Business Process, Workflows, Tasks and Workflow Patterns 

As stated in chapter one, the scope of this work is limited to workflow oriented web service 

compositions mainly because virtual enterprises as elaborated in chapter 1 have specific products 

and services that are delivered to the public through well-defined and known business processes. 

According to the Workflow Management Coalition1, a process is as a representation of a business 

process in a form that supports automated manipulation such as modelling or enactment by a 

workflow management system. A process is composed of a set of activities/tasks, each task 

corresponds to the execution of given operations.  A workflow is an automated business process. 

According to the Business Process Modelling notation (BPMN), the execution of workflow tasks 

can follow different logical patterns e.g sequential, parallel, exclusive OR and so on. BPMN also 

defines different types of tasks based on the agent that executes them. Hence we have human tasks 

that require human intervention, service tasks that can be executed by computer programs 

automatically etc. This study is dedicated to workflows that are fully automated via webservices. 

Figure 2 shows a sequential workflow whose tasks are executed by webservices. Figure 3 

illustrates a workflow in which some tasks are performed in parallel, while figure 4 captures a 

workflow in which at one of the steps one and only of the two tasks is executed based on some 

business logic. Hence forth, our discussions are within the context of purely sequential workflow.

 

 Figure 2 : Example Sequential Workflow with webservice tasks 

 

                                                           
1 http://www.wfmc.org/ 
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Figure 3  Example Complex Workflow with Parallel Webservice Tasks 

Figure 3 shows a workflow with two parallel tasks and one sequential task. 

 

Figure 4  Example Complex Workflow with Exclusive OR Gateway 

In figure 4, either task A or task B will be executed based on some business rules then followed 

by the execution of task C. 
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 Figure 5  Example Travel Planning Sequential Workflow  

In the example in figure 5, we illustrate a pure sequential workflow based on a simplified version 

of the well-known travel planning and reservation webservice composition problem. The business 

process involves four sequential tasks. A customer makes an enquiry concerning available flights 

and their details. If flight enquiry task is successfully executed, then the customer queries travel 

insurance cover information that is related to the destination of the flight and then once satisfied, 

enquires about availability of hotels in the destination area and finally once the first three tasks 

satisfy the user, he makes enquiry about local taxis in the destination area. Eventually the process 

of booking flight, cover and so on (not included here) might follow. 

On the basis of workflow patterns, a distinction is made between simple operator and complex 

operator webservice composition (Seog et al, 2005). In the context of workflow based 

compositions, simple operator service composition is the one in which the workflow tasks are 

connected by the sequential flow pattern only such as the one shown in figure 2, while complex 

operator service composition involves workflows in which there are flow patterns other than the 

sequential flow pattern. These patterns include the parallel gateway, the exclusive OR gateway etc 

(Seog et al, 2005). 

2.2.2 Dynamic Workflow Based Service Composition Process 

 To better understand dynamic workflow based webservice composition, we first illustrate static 

service composition.  In static service composition, for each workflow task, a corresponding 

service component is linked to the workflow task and design time and finally the workflow is 

deployed Schahram & Wolfgang, 2005). This means that at runtime, the service component 

associated with a particular task cannot be automatically changed. While this is an easier 
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composition strategy, it’s severely limiting. For example failure of any one of the component 

services automatically implies failure of the workflow and therefore the service consumer does not 

get desired outcomes (Mulongo et al, 2016a).  Secondly, the technique is insensitive to specific 

needs of a service consumer (Mulongo et al, 2016a). Figure 6 illustrates static workflow based 

webservice composition. 

 

Figure 6  Static Webservice Composition in Workflow Based Service Composition.  

The dotted line without an arrow shows an association between an abstract task and a concrete 

webservice. In static service composition as can be seen, each abstract workflow is associated 

with exactly one sequence of concrete webservices. i.e, before execution of the workflow, there is 

one to one mapping between the workflow and the composite service. Thus prior to workflow 

execution, the sequence of webservices to be known in known in advance. 

To address the deficiencies of static webservice composition, dynamic composition is needed to 

automatically adapt to unpredictable changes in the service environment and to adapt to customer 

requirements with minimal or no user intervention (Schahram & Wolfgang, 2005).  In dynamic 

service composition based on workflows, the services that bind to a workflow task are not known 

in advance. For each workflow service task, a corresponding concrete webservice need to be 

determined at run time. This flexibility means that there could be more than one concrete service 

for each abstract task that can fulfill the task. The result is a set of possible sequences of concrete 

webservices that can be used to realize a single abstract workflow. Usually then in dynamic 

webservice composition, the problem is reduced to service selection problem. How do we select 
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the best composite service from the available sets to fulfill the user requirements specification? 

Figure 7 shows dynamic webservice composition involved in the travel planning problem. 

 

Figure 7  Illustration of Workflow based Dynamic Webservice Composition. 

 In this diagram, each workflow task is associated with a pool or a community of webservices 

capable of performing the workflow task. In this example we have chosen n=3 (number of tasks in 

the business process) and m=2 (number of webservices in each service pool). It turns out that 8 

possible sequences of concrete webservices can be selected to execute the workflow. Each 

sequence constitutes a concrete composite service, composed be joining one service from the first 

pool to the service in the second pool, then a flow from the service in the second pool to a service 

in the third pool etc 

A generic process framework for the dynamic webservice composition is shown in figure 8. 

 

Figure 8: A generic Reference Architecture for Dynamic Webservice Composition: Source 

(Rao et al, 2005)  
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From figure 8, the framework consists of actors, components and processes. The service requestor 

performs the task of external specification. The service provide performs service specification. 

The service repository contains a list of published webservices. Then there is a translator, evaluator 

and execution engine. The role of the service composition system is to accept an external 

specification, translate the specification into an internal specification, generate a process, and 

search the repositories for the sequence of webservices that meet the external specification, 

evaluate the best sequence of services and execute the sequence to produce results that meet the 

external specification. This steps are detailed below. 

2.2.2.1 External Goal Specification 

During composition, the first step involves the service requestor specifying their requirements. 

The requirements contain both the functional requirements and preferences. The preferences are 

further constraints over the outcome the services. Together, the functional requirements and user 

preferences form a goal. The goal is then linked to an existing business process. The goal is 

decomposed into requests that can are then associated with a task within a business process. Each 

business process task defines a unique functionality. 

2.2.2.2 Service Discovery 

Concrete webservices that match the given task within the business process are searched within 

the service repository. One or more services may be found that match the functionality. In case of 

more than one are found, a service selection strategy is needed to pick the best service. 

2.2.2.3 Service Selection 

Through the use of the evaluator, the best composite service is selected based on some 

selection strategy  

2.2.2.4 Process Execution 

Each of the webservices within the composite service is bound to the corresponding service 

task within the process/workflow. The task is then executed by the workflow/process 

engine causing the transition to the next task within the workflow until the entire process 

is completed. 
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2.2.3 Dimensions of Optimization Complexity in Dynamic Webservice Selection 

2.2.3.1 High Dimensionality of Webservices Decision Variables and Constraints 

Many strata of decision attributes or decision variables and the constraints enforced on 

these variables have to be considered in order to select the best composite service that 

fulfills the user’s functional and nonfunctional requirements. According to the 

classification given in (Mahboobeh et al, 2011), the categories of quality (nonfunctional) 

attributes include technical domain independent attributes such as response time , 

availability ;  non-technical domain independent attributes such as service execution cost 

and service reputation, domain dependent quality attributes such as refresh time for a traffic 

monitoring service . In addition to these, there are domain dependent functional attributes. 

For example in the travel reservation problem involving multiple component services, 

flight cost  is a decision attribute specific to a flight service, sum assured and premium 

charged applies to a travel insurance component service only and hotel daily rate to a hotel 

service only. Different users will express different preferences over the functional 

attributes of a service. The multidimensionality of decisions involved in service 

composition turns the service composition problem into a Multiple Criteria Decision NP 

hard problem.  The problem becomes more complicated as the number of decision 

variables and constraints becomes larger as this leads to combinatorial space explosion. 

Finding an optimal solution in polynomial time becomes harder and computationally time 

consuming and may be infeasible altogether. 

2.2.3.2 The large scale of candidate webservices with similar functionality 

In virtual enterprises, several service providers are available that offer services with the 

same functionality.  As mentioned in chapter 1, different providers can be differentiated in 

terms of the different attributes. Even when only a single attribute is the basis of service 

selection optimization, that is, the service selection problem is a single attribute decision 

problem, finding the best composite service  from a large set of candidate services are 

available per task is nontrivial. Generally, for an abstract service with n tasks with m 

candidate services per task, yields a bipartite graph with mn
 different candidate execution 

paths (Benatallah, 2004). To put this in perspective, a composition problem involving 4 

tasks with 10 candidate services per task, results into 10,000 alternative composite services. 

Adjusting m=100, gives 100000000 different composite services. Thus the search state 
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space exponentially explodes with increase in the size of m. Just like in the case of Multiple 

Criteria Decision Making problem above, determining the best composite service in 

polynomial time with increasing m for a single decision problem in polynomial time 

remains a challenge. 

2.2.3.3 Non Deterministic Nature of Component Webservices. 

Component webservices do not operation in isolation. The context, which is the 

circumstances or the facts surrounding the invocation of a service operation, can 

significantly lead to multimodal time varying distributions of the software/service 

operation [cit. Such facts include network link performance, CPU and memory utilization, 

the service load etc at the time of service invocation. Service invocation time significantly 

contributes to overall service composition time . How to accurately predict the most 

efficient services so as to subsequently lead to efficient service composition environments 

under non deterministic is a challenge. 

2.2.3.4 The Scale of Services 

The complexity of service selection increases with the number of services involved in the 

composition process consequently increasing the search space. The issue is further 

aggravated when considering several decision variables against each webservice. This 

explodes the space further. For instance consider a 5 task business process and a service 

repository containing 100 functionally similar webservices per task. If the services per task 

are ranked against 1 variable only e.g service execution cost, then using a local 

optimization strategy yields 500 searches + 500 comparisons =1000 computations using 

the most naïve algorithm . Using global optimization would yield 1000 searches + 1005 = 

10000000000 comparisons!  

2.3 Local Planning Optimization Solution to Dynamic Webservice Selection 

As pointed out in chapter 1, the optimization scope of dynamic webservice composition can 

be local or global.  Algorithms whose optimization scope is local are commonly referred to as 

local planning algorithms within the webservices community. In local planning, the selection 

of the most optimal composite service is performed at task level such the best composite 

service is the sequence of the best atomic webservice selected from each workflow task (Zeng 

et al, 2004). On the other hand, composite service selection algorithms that consider 
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optimization constraints across workflow tasks are called global planning algorithms (Zeng et 

al, 2004). In general local planning algorithms for webservice composition are faster than their 

global planning counterparts. On the other hand, the global planning algorithms generate more 

quality solutions than their local planning counterparts. Because, webservice is multiple 

criteria decision making problem, both existing local planning and global planning algorithms 

for the problem make use of the Simple Additive Weighting method, SAW (MCDM) (Hwang 

& Yoon,, 1981) in computing the utilities of each possible candidate solution. 

In this section, we provide the mathematical formulation of the naïve local planning 

optimization based on SAW. Two mains steps are described: Normalization and weighting. 

2.3.1 Webservice Quality Attribute Vectors and Matrices   

The input to the optimization problem is a set of M by Q matrices. Each matrix is a set of quality 

attribute values of all candidate webservices capable of executing a given workflow task. For a k 

length workflow, there are k such matrices.  Thus M is the number of candidate webservices for a 

given workflow task. Q is the number of quality attributes associated with each webservice. Each 

row in the matrix is a quality vector V, against a single candidate web service. Each Vi has Q 

elements. The jth element of Vi is the QoS value of the jth quality attribute against a given 

webservice. The table below illustrates this. 
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Table 2: Local Planning Optimization Service Quality Matrix for a Single Workflow Task 

Service Quality of Service  Parameters  (Decision Variables) (columns 

identified by j) 

 

A P T R C D 

  W1 0.95 0.99 500 4 10 200 

    W2 0.9 0.98 550 5 9 100 

   W3 0.92 0.89 600 2 10 300 

   W4 0.99 0.97 450 3 8 150 

 

In table 3, there are four candidate webservices that can execute some workflow task. For each 

webservice, there are six associated webservice QoS attributes denoted by A, P, T, R, C and 

Where; 

 A = Average availability of a component webservice 

P = probability of success execution/execution success rate 

T= Expected response time 

C= cost of execution of a component service 

R = reputation of a component service 

D= standard deviation in response time of a component webservice 

The four quality row vectors are :- V1 = (0.95,0.99, 500, 4,10,200) , V2 = (0.9,0.98,550,5,9,100), 

V3 =( 0.92,0.89, 600,2 ,10, 300), V4= (0.99, 0.97, 450, 3, 8,150).  

Thus, V1 shows  that the webservice W1 has an expected availability of 95%, probability of 

successful execution 99%, expected response time of 500 ms, execution cost of 10 units, a 
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reputation of 4 ( of 5) and deviation in response time of 200ms. On the other hand, the column 

vector Va  = (0.95, 0.9, 0.92, 0.99) contains availability quality values of the four services: W1, 

W2, W3 and W4 respectively, Vp  = (0.99, 0.98, 0.89,0.97) holds the reliability quality values of 

W1, W2, W3 and W4, and so on and so forth. 

2.3.2 Normalization/Scaling of Quality of Service Column Vectors 

For some webservice quality attributes, increasing values are desirable. Such quality attributes are 

termed as positive quality attributes (Zeng et al, 2004), (Abiud W.M et al, 2015). For example, 

reliability, availability, throughput and reputation are positive quality attributes. On the other hand, 

for some quality attributes such as response time, service access cost, decreasing values of the 

attributes is desirable. Thus, this type of attributes is called negative quality attributes.  

Since each webservice is associated with a mixture of positive and negative quality attributes, a 

method of computing an aggregate utility value of each webservice on the set of quality attributes 

is required. The Simple Additive Weight method mentioned earlier has been widely used.  The 

first step when using SAW, is the normalization phase and the second phase is weighting. In 

normalization phase, every webservice quality attribute value is normalized such that the resultant 

normalized value lies on the continuous interval (0,1).  

Normalization works as follows. Quality attribute values are normalized column by column, one 

column at a time. Negative web service quality variable scaled according to equation (2.1) and 

positive web service quality variable scaled according to equation (2.2) 

   F1= 𝑉𝑖𝑗= {(𝑄𝑗
max  

–  𝑄𝑖𝑗)/(𝑄𝑗
𝑚𝑎𝑥 −  𝑄𝑗

𝑚𝑖𝑛)      If 𝑄𝑗
𝑚𝑎𝑥 ≠  𝑄𝑗

𝑚𝑖𝑛, 1  otherwise          ( 2.1)                  

        F2 =    𝑉𝑖𝑗= {
 𝑄
𝑖𝑗−    (𝑄𝑗

𝑚in  )/(𝑄𝑗
𝑚𝑎𝑥 −  𝑄𝑗

𝑚𝑖𝑛)      If 𝑄𝑗
𝑚𝑎𝑥 ≠  𝑄𝑗

𝑚𝑖𝑛, 1  otherwise        (2.2)                       

Referring to the example given in table 3, section 2.4.1, availability, probability of success and 

reputation are positive quality attributes and hence the vectors A, P and R would be scaled 

according to (2.2) while response time, execution cost and standard deviation are negative quality 

attributes and consequently the values in the vector T, C and D would be scaled according to (1). 
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As an example, the scaling of the vector Va  = (0.95, 0.9, 0.92, 0.99) yields    V’a  ’ = (0.56, 0, 0.22, 

1) where V’a is the image of Va  after scaling. 

2.3.3 Weighting of Normalized QoS Row Vectors 

During this phase, a weight value is assigned to each quality attribute such that the sum of the 

weights is 1.  All existing algorithms require that the service consumer specify the weights 

(Mulongo et al, 2015; 2016). The weight assigned by a service consumer on a given quality 

attribute is a measure of their degree of preference for that quality attribute. The larger the weight 

value the more preferred the quality attribute. 

Define the column vector W according to equation (2.3), such that (2.4) holds. 

    𝑾 = ⟦

𝒘𝟏
𝒘𝟐
𝒘𝟑
…
𝒘𝑸

⟧                                                                                                (2.3) 

   

 ∑ 𝑤𝑗
𝑗=𝑄
𝑗=1  =1                                                                                                                                  (2.4)                      

Where wj is the weight assigned to the jth attribute in the quality matrix and Q is the number of 

quality attributes. 

For each task, for each row vector Vi,  the utility value, U, of a webservice is then computed as per 

equation (2.5) 

   𝑈𝑖 = ∑ 𝑉𝑗𝑤𝑗
𝑗=𝑄
𝑗=1                                                                                 (2.5)                                                                                                                                                                                           

2.3.4 Selection of the Best Composite Webservice 

In the addition to specifying the preferences, the service consumer also specifies a set of local Qos 

constraints C, such that each constraint is associated with one of the quality attributes in Q.   In  

naïve local planning, for each task, the quality vector of each webservice  Vi, is check against the 

relevant constraints in C. The webservice with the highest utility and that also satisfies all the 

constraints in C is selected to execute the ith task in the workflow. 
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2.3.5 Analytic Runtime Performance Analysis of Naïve Local Planning 

   There are three main operations involved in the naïve local planning. First, the determination of 

the utility values of each webservice which takes nk operations. Second, for each webservice, 

checking whether each quality attribute in Q respects the corresponding constraint in C. Thus for 

one webservice, Q comparisons are required for establishing compliance to the established 

constraints. Accordingly, for one workflow task with n candidate services, we have nC operations 

and thus nkC for the entire workflow. Assume the worst case scenario where each and every 

webservice per task obeys all the constraints in C. The third step is to select the service with the 

highest utility for each task. This takes nk operations.  In total, the major operations are 2nk + nkC 

= nk(2 +C)  = O(nkc). This is polynomial time. Hence as said in chapter 1, local planning 

guarantees a solution within polynomial time. However, as noted before, local planning 

composition schemes deny the user an opportunity to express inter task constraints such as the 

total budget limit on service execution cost. Further local planning optimization is suboptimal. In 

section 2.5, we discuss how the naïve global planning algorithm overcomes these limitations. 

2.4 Global Planning Optimization Solution to Dynamic Webservice Selection 

 

Figure  8 Illustration of Global Planning strategy for webservice Composition using a Bipertite 

Graph   

Consider the webservice Bipertite graph in figure 8 above. The first vertex set V1 has two 

webservices W11 and W12 each capable of executing the first task of a workflow. The second vertex 

set V2 contains two candidate webservices W21 and W22 each capable of executing the second task 

in a workflow. The third vertex set V3 contains two webservices W31 and W32 each capable of 
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executing the third (and last) task of a three task workflow. The edge or arrow emanating from one 

webservice in a vertex set Vi to another webservice in a vertex set Vi+1 is a possible execution path 

(Zeng et al, 2004). The set of execution paths joining W11 ,W21 and W31  or W11 , W22  and W32 are 

possible execution plans. In figure 9, there are such 8 execution plans which is the same as nk 

where k is the number of workflow tasks and n is the number of candidate webservices per task.  

Each execution plan constitutes a possible composite webservice. 

In global planning optimization, utility maximization is subject to both local constraints and global 

constraints across the entire workflow. To achieve this, the first step in global planning is to 

compute aggregate QoS values of each execution path. Like in local planning optimization, what 

follows is normalization, weighting, and then selection of the best composite webservice subject 

to constraints set by the service consumer. 
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2.4.1 Composite Webservice QoS Aggregation Functions   

 

Webservice QoS aggregation functions compute a single joint QoS value across the set of atomic 

webservices within an execution plan or composite webservice (Zeng et al, 2004). Depending on 

the nature of webservice QoS attribute, the aggregate QoS value of a composite may be additive, 

multiplicative, arithmetic mean or the minimum of the QoS attribute values of the individual 

webservices.  

Consider the commonly used webservice QoS attributes as in (Shade et al 2012; Mahboobeh & 

Joseph, 2011; Rajendran and Balasubramanie, 2009; Zeng. et al 2004) QoS attributes are captured 

in table 2.4. The symbols associated with atomic service QoS attributes as well as composite 

service QoS attributes are shown. 

Table 3 . The set of webservice QoS Attributes and their Symbols: Source: Mulongo et al 

(2015) 

QoS Name Absolute 

Symbol 

Atomic Service 

Symbol 

Composite Service Symbol 

Reliability R r
s rc 

Availability A as ac 

Throughput H hs hc 

Execution Duration D ds dc 

Execution Cost C cs cc 

Reputation U us uc 

Security Z zs zc 

 

Using the symbols in table 2.4, for pure sequential workflows, the aggregate QoS values rc, ac
,  h

c
,  

dc
, c

c, uc and zc are computed as per the aggregation functions in table 2.5. 
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Table 4: Composite Service QoS Aggregation Functions –: Source: Mulongo et al (2015) 

QoS Name Aggregation Function 

Reliability rc 
=   ∏ 𝑟𝑠𝑖=𝑁

𝐼=1  

Availability ac
=    ∏ 𝑎𝑠𝑖=𝑁

𝐼=1  

Throughput hc
=   1/𝑁(∑ ℎ𝑠𝑖=𝑁

𝐼=1  ) 

Execution Duration dc
=   ∑ 𝑑𝑠𝑖=𝑁

𝐼=1  

Execution Cost cc
=    ∑ 𝑐𝑠𝑖=𝑁

𝐼=1  

Reputation uc
=  1/𝑁(∑ 𝑢𝑠𝑖=𝑁

𝐼=𝑁 )   

Security zc = 𝑚𝑖𝑛(∑ 𝑧𝑠𝑖=𝑁
𝑖=1  

 

2.4.2 Composite Webservice Quality Attribute Vectors and Matrices   

Like is the case with local planning, a M by Q matrix is generated. The number of rows M is the 

number of composite webservices that are nk in number. Thus each row vector Vi is a composite 

webservice in which the jth value is the jth aggregate QoS value associated with the composite 

webservice. 

2.4.3 Normalization of   Composite Webservice QoS Vectors 

Normalization of the aggregate QoS values is performed according to equations 2.1 and 2.2 above. 

2.4.4 Weighting of   Composite Webservice QoS Attribute Values 

Equation 2.5 is used to compute the weighted utility value of each composite webservice. 

2.4.5 Selection of the Best Composite Webservice 

The naïve exhaustive global planning search algorithm evaluates each and every candidate 

composite service against the constraints using some rule based logic (IF ELSE statements). 

Although the strategy is bound to find an optimal solution, the search space can be exponential as 

the number of atomic candidate webservices increase in size (Zeng et al, 2004), (Ardagna & Penci 

, 2007). The problem is compounded with simultaneous growth in the number of sequential 

workflow tasks, the number of QoS attributes and number of constraints. At the very least, an 

effort of nk
  is required which can be exponential for large enough n. 
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2.5 Mixed Integer Programming Solution to Dynamic Webservice Selection 

 Linear Programming (LP) and Mixed Integer Programming (MIP) are the most important 

optimization techniques to efficiently model and solve real world optimization problems (Berthold 

Timo  et al , 2012), (Ed Klotz, & Alexandra M. Newman, 2012). A MIP problem is defined by a 

maximization or minimization objective function, a set of integer and non-integer decision 

variables, a set of constraints. 

 In the area of webservices composition,  Zeng et al (2004) & Ardagna and Pernici (2007) modelled 

the webservices composition problem as an MIP problem and demonstrated that the MIP is far 

more efficient than the naïve global planning optimization described in section 2.5. Similarly, local 

planning technique can also be modelled as an MIP problem, in which case the resultant 

optimization model can be solved faster than the naïve local planning. 

The general procedure for modelling the webservice composition using MIP is to formulate an 

objective function of the form in equation 2.6. 

𝑀𝑎𝑥  ∑𝑖=𝑛𝑖=1  𝑉𝑗  ∑ 𝑥𝑖
𝑗
 

𝑗=𝑄
𝑗=1                                                                                                     (2.6)    

     Where in equation (2.6) n is the number of candidate webservices, and 𝑉𝑗   as earlier defined is 

the QoS vector containing Q quality attribute values. 𝑥𝑖
𝑗
 is a binary decision variable denoting the 

selection or no selection of a webservice for a given task and is defined as per equation 2.7. 

     𝑥𝑖
𝑗
= {

1, 𝑆𝑗𝑖 → 𝑇𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                            (2.7) 

Where in equation 2.7:- 

 𝑆𝑗 :- Is the set of candidate webservices against the jth  workflow task 

𝑆𝑗𝑖 is  the ith  webservice with the set 𝑆𝑗, 

T, is the set of workflow tasks  

𝑇𝑗 is the jth workflow task 

𝑆𝑖 → 𝑇𝑗 means that 𝑆𝑖 is assigned to , 𝑇𝑗 
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 When the MIP is formulated based on a global planning approach, the vector Vj  is determined by 

applying the aggregation functions described in subsection 2.5.1 and the normalization procedure 

described in 2.5.2.  When the MIP is formulated based on local planning strategy, no aggregation 

is done, and normalization is performed as described earlier. 

The next step is formulating the constraints. One constraint to be enforced that only one and one 

webservice (from the pool of candidate service can be assigned to a workflow task. This constraint 

is captured in equation 2.8.  

∑ 𝑥𝑖
𝑗
= 1,

𝑛𝑗
𝑖=1

   ∀𝑗 ∈ T                                                                                              (2.8)         

 Let R, A and H be the reliability, availability and throughput thresholds set by the service 

consumer on every an atomic webservice (in the case local planning) or composite webservice, in 

the case of global planning. The following constraints are enforced. We have: 

∏ 𝑟     ≥ 𝑅𝑖=𝑁
𝐼=1                                                                        (2.9) 

Since the constraint in equation 2.9   is nonlinear, we linearize it by taking the logarithms on both 

the L.H.S and R.H.S of 2.9 to get equation 2.10. 

 ∑ log (𝑟𝑖=𝑁  
𝑖=1    ) ≥ 𝑙𝑜𝑔 𝑅                      (2.10)         

    

Similarly, the availability constraint on composite service availability is expressed according to       

(2.11). 

 ∑ log (𝑎𝑖=𝑁  
𝑖=1    ) ≥ 𝑙𝑜𝑔 𝐴                                (2.11) 

The constraint on composite service throughput at the SPUM layer is captured in equation 2.12 

ℎ𝑐 = 1/𝑁(∑ ℎ𝑖=𝑁  
𝑖=1    ) ≥ 𝐻                         (2.12)   

    

Further, let D, C, U and Z be the maximum execution duration, maximum total cost, minimum 

reputation and minimum security values respectively. The constraints in equations 2.13 to 2.16 

hold. 

(∑ 𝑑𝑖=𝑁  
𝑖=1    )  ≤  𝐷                              (2.13)            

(∑ 𝑐𝑖=𝑁  
𝑖=1    )  ≤  𝐶                             (2.14)   

    

(∑ 𝑢𝑖=𝑁  
𝑖=1    ) ≥  𝑈                               (2.15)   
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(∑ 𝑧𝑖=𝑁  
𝑖=1    ) ≥  𝑍                                (2.16)     

    

2.6 Layering as Optimization Decomposition  

2.6.1 Decomposition as an Optimization Method in Engineering and Computer Science  

In engineering and Computer Science, decomposition, is breaking a complex problem or complex 

system into parts or components that are easier to conceive, understand, solve and program 

(Songqing & Gary, 2009). Based on the goal of decomposition, (Kusiak and Larson 1995) 

identifies three categories of decomposition: 1) product decomposition, 2) process decomposition 

and 3) problem decomposition. In product decomposition, a system or product is decomposed into 

its parts or components (Kusiak and Larson 1995).  Such a decomposition promotes understanding 

of a product or systems structure (Songqing & Gary, 2009).  Process decomposition involves 

problems in which there is flow of elements or information (Songqing Shan · G. Gary Wang, 

2009). Taking the process of webservice composition as an example, it’s a multistep process 

involving conveyance of information or elements from one stage to another. Problem 

decomposition entails breaking a complex problem into subproblems. In Computer Science, this 

is commonly referred to as divide and conquer. Problem decomposition is at the heart of intensive 

research on the multidisciplinary design optimization (Kodiyalam and Sobieszczanski-Sobieski 

2000; Simpson et al. 2004). 

The overall benefits of decomposition, whether product, process or problem decomposition are 

(Songqing & Gary, 2009):-  

i) Maintainability and Modularity :-In the case of software systems, product 

decomposition leads to reduced programming/debugging effort   

ii) Efficiency:-  Problem decomposition  means solving computational subproblems is 

more efficient using techniques such as parallel/concurrent computing and distributed 

computing  

iii) Enable multi-criteria analysis :-  Where a single or multiple decision makers are 

involved 

iv) Improved Coordination :- improved coordination and communication between the 

decomposed sub-problems 
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v) Enhance reliability and Robustness of optimization problems. 

The goal of this thesis targets the second and third benefits, specifically exploiting the concept of 

Layering as Optimization Decomposition. It’s worth noting that although the natural approach to 

obtaining efficiency gains from decomposed subproblems in computer science is to use parallel or 

distributed computing as stated in (ii) above, decomposition can also benefit from efficiency even 

when the resultant subproblems are solved sequentially. This is possible because performance 

gains arises from the observation that problem complexity grows more than linearly (Byod et al, 

2003), and therefore the growth in complexity of the original problem is generally larger than the 

sum of the parts. 

2.6.2  Layering as Software Architecture Decomposition   

From a software systems engineering viewpoint, layering is one of the software architecture 

(structure) decomposition techniques in which a large complex software system into simpler 

components called layers (Bachmann , 2000).  The components are strictly ordered with one layer 

A (the lower layer) providing services to another layer B (the upper layer) (Bachmann , 2000) .The 

immediate advantage of layering is modularity, modifiability and portability (Bachmann , 2000). 

The second advantage of layering is that it hides technical complexity of the computational details 

of lower layers, with the topmost layer having the least technical details. Layering also promotes 

loose coupling of components or functionality. Eventually layering boosts usability of a system. 

Well known layering techniques in software engineering include the three layer Model View 

Controller (MVC) pattern governing the design of interactive and database intensive applications. 

Usability for instance emanates from the fact at the topmost layer, users are shielded from the low 

level mechanics and jargon at the controller and model levels. Thus, the complex computational 

details are hidden beneath. The second widely known exemplar of layering as an architectural 

/structural decomposition style comes from the communication networks field – layered networks 

based on the OSI model. In the OSI model, the lowest level issues such as bit rate control are 

handled at the lowest layer and are far hidden from the end user. At the application layer, the user 

can enjoy the benefits of the lower layers without being aware of their existence or understanding 

the details under them. A fundamental question in layering is which layer should provide which 

services and how should the layers be interconnected? 
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2.6.3 Layering as Optimization Decomposition   

If optimization is the primary goal of problem decomposition (as seen in section 2.7.2), layering 

could be used as a problem (or optimization) decomposition strategy. If this is the case, then the 

third benefit of layering is to achieve efficiency in solving hard optimization problems.  Layering 

as Optimization Decomposition (Mung, 2006; Mung. et al., 2007; Low, 2013) is an emerging 

formal theory that attempts to provide architectural as well as quantitative tools for understanding 

and solving hard optimization problems in layered communication networks.  Layering as 

Optimization Decomposition theory perceives the task of solving a complex layered 

communication network design optimization problem as the solution to multiple well-coordinated 

sub problems, in which each layer is treated as a subproblem. Viewed this way, in addition to being 

a product/system decomposition technique, layering is also a problem decomposition method. This 

thesis does not aim at understanding the algorithmic and mathematical details of the framework 

but rather the conceptual details of Layering as Optimization Decomposition, and how such 

concepts could inspire the design of a more efficient mixed integer programming global planning 

model for dynamic webservice composition. Conceptually, layering as optimization is defined by 

two core ideas (Mung, 2006): The communication network is viewed as an optimizer and, the 

communication protocols are viewed as distributed solutions to some global optimization problem. 

The global optimization problem in this case is the Network Utility Maximization (NUM) problem 

described by (Kelly et al, 1998). The technique works as follows (Mung, 2006), (Low, 2013):- A 

set of many optimization decision variables are decomposed into subsets of decision variables. 

Then each network layer being viewed as a subproblem iterates over a subset of the decision 

variables, pursuing to optimize its local utility. Within each of the layers, the subproblem is 

formulated a NUM problem. Interfaces between layers are modelled as functions of primal or dual 

variables. When two optimization problems are such that the there is a common variable, y in the 

objective functions of the two subproblems as in f(x,y) and f(x,z), then y is a primal or interface or 

complicating  variable ( Byod et al , 2003). The problem: minimize f1(x) = f1(u1,y1) + f2(u2,y2) s.t 

y1=y2  could be decomposed into two separate functions that are coupled by the constraint y1=y2  . 

y1, y2 are the Lagrange dual constraints.  Each layer below serves the layer above. Together, the 

individual layers strive towards global optimality. 

An important question in Layering as Optimization Decomposition is which layer performs what 

functions or which layer pursues what objectives (Mung, 2006). This question can further be 
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rephrased as how layering should be done? Any solution to this question is referred to as a layering 

scheme (Mung, 2006). As will be discussed in section 2.9, this question is at the core of this thesis. 

The starting point to this question is to recognize the fact that the formulation of the optimization 

problems is in the form of the NUM problem. The NUM problem involves two main objective 

functions, depending on who is concerned with the outcomes of the network optimization process 

(Mung, 2006):- sum of utilities by end users.  The end user utilities could be functions of the 

following variables: - rate, reliability, delay, jitter, power level and so on and so on. The second 

objective function is the network wide cost function - functions of congestion level, energy 

efficiency, network life time, joint error estimation etc.   A second feature of NUM is that the end 

users’ needs are at the forefront of network design (Mung, 2006). As much as optimization 

objectives are pursued both from a user’s perspective and network operator perspective, the 

optimization goal from the point of view of the network operator has to indirectly aim at 

maximizing the end user utility, albeit without the direct knowledge of the user.  For example, the 

benefits of improved information coding and modulation techniques at the physical layer do not 

only lead to reduced bit error rates (BER) but also enhanced reliable applications. While the 

improvements at the lower levels benefit the end user, the user does not need to be aware of them. 

This emphasizes the other advantage of layering which had discussed earlier –abstraction – 

shielding the end user from technical complexity. Thus NUM can act as a benchmark of possible 

layering schemes (Mung, 2006). But because NUM does not enforce any predetermine layering 

scheme or layered network architecture, the choice of a layering scheme is left to human judgment 

and skill (Mung, 2006). Hence different layering schemes to Layering as Optimization 

Decomposition may lead to different layered network architectures that in turn may yield varying 

levels of efficiency (Mung, 2006). 
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Table 5 : Multi-Layer Optimization Objectives in TCP/IP Layered Network, Source: (Steve Low 

(2013) 

Layer Optimization Objective Solution 

Application Minimize response time Various Application Protocols e.g HTTP,SFTP 

Transport Maximize Utility  TCP 

Network Minimize Path Cost  IP 

Link Reliability, Channel Access, Various MAC protocols 

Physical  Minimize Signal to Noise 

Ratio, Maximize Capacity 

etc 

Various Physical Layer protocols 

 

Whereas Layering as Optimization Decomposition is well formalized in the networking 

community and proven to lead to more efficient, optimized, modular and transparent layered 

networks, a similar formalization in the webservice composition lacks and equally to the best of 

our knowledge, there exists no method that exploits or is inspired by the inherent advantages of 

the theory. In this thesis, we argue that although Layering as Optimization Decomposition 

formalism is rooted in the Network Utility Maximization problem, the complexity of issues 

involved in the web service selection problem, as discussed in section 1.3 closely resemble the 

NUM (Kelly et al, 1998) problem and therefore Layering as Optimization Decomposition as used 

in the networking could inspire a more efficient reformulation of the existing (one layer)  mixed 

integer programming webservice composition optimization strategies.  

2.7 Related Work 

The problem of dynamic composite webservice selection has been studied extensively over the last 

decade. The strategy taken in (Pan  & Mao., 2013) uses a multi-agent model for automatic dynamic 

webservices composition based on Artificial Intelligence Planning based on the OWLSPlan tool, 

specifically targeting semantically annoted webservices based on the OWL-S service description 
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language. Similar to the approach in (Benatallah B. et al, 2004), a vector of quality attributes are 

captured about a target service, and then the service composition problem is defined by specifying 

an initial state and goal state using OWL.  The plans the agents follow are captured using the PDD 

language. OWL-S plan is then used to generate all possible execution path where each path is 

possible solution (composite service) satisfying the service composition goal. Finally the 

weighting formula used in (Zeng et al, 2004) is also used in (Pan & Mao., 2013) to compute the 

overall score on each attribute and the service with the maximum score is chosen. A key benefit 

of composition strategies based on OWLS-Plan is that OWL-S Plan allows online reactive 

replanning in case of service failure during an ongoing composition process. However, in this 

method it’s not apparent how externally end users express their constraints. In addition this, the 

limitations related to the work in (Zeng et al, 2004) still remain in (Pan & Mao ,2013) i.e the lack 

of separation of quality parameters into what could be considered standard quality attributes across 

different consumers within the same application domain and consequently combinatorial 

complexity arises. Note also that while in (Pan & Mao ., 2013).  only OWL-S webservices are 

targeted, our proposed method is a generic model independent of a specific service description 

language – our approach makes the assumption that agents searching over webservices descripted 

in a specific service language would need to implement a translator component whose function 

maps to the translation module as defined in (Rao Jinghai and Xiaomeng Su ,2004). 

Even though the approach taken in (Mahdi B. et al, 2012) follows a Fuzzy logic approach to service 

composition involving multiple user defined quality attributes, the deficiencies related to 

(Benatallah B. et al, 2004) can also be observed in (Bakhshi & Hashemi, 2012) in regard to search 

space explosion and also in regard to the practicality of the method by which user express their 

constraints. Regarding the method of expressing constraints, in (Bakhshi & Hashemi, 2012), users 

express constraints as Fuzzy rules. A weighting approach is also used where a user assigns what 

the authors call a Confidence Factor (CF) on the range [0, 1] where the CF denotes the importance 

of each fuzzy rule. Thus rules that are more important from a user’s point of view are assigned a 

higher CF value than the less important ones. We still maintain that in real life applications, not 

many end users would firstly be able to specify their nonfunctional constraints using Fuzzy rules. 

Moreover, if they did, it is difficult for end users to assign weights to rules and make sense out of 

them. Further, since according to the approach suggested in this work, a fuzzy rule is constructed 

by combining one or more QoS attributes ,e ach assigned  a value such as low, high, very high etc  
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and then assigning a single value ( the rank). Let A be the number of quality attributes and L be 

the number of discrete values that are assignable to each of the attributes. Considering, the simplest 

case where a fuzzy rule consists of only one attribute yields AL rules.  To put this in perspective if 

A =5 and L =4, this yields 20 rules. Obviously, this would be a taunting task to an average user to 

assign CF values to 20 rules. As noted, the method suffers scalability due to exhaustive generation 

of plans which is not efficient for a large number of constraints and services. 

The authors in (Alifarai et al, 2010) propose a QoS based optimization on Mixed Integer 

Programming. Although Zeng et al, (2004) earlier demonstrated that MIP is more efficient than 

exhaustive search, we saw in section 1 that MIP is still susceptible to exponential explosion. The 

deficiency in (Alifarai et al, 2010) can be said of the MIP techniques in (Gabrel. et al, 2013), (Yan, 

2012) and (Ngoko et al, 2013). Moreover, Yan (2012) does not provide any justification for the 

use of an MIP method based on Taylor expansion. 

A Fuzzy logic based multiple criteria method is presented in (Yan, 2012). The method involves a 

user expressing preferences by assigning a Confidence Factor (CF) on the range [0, 1] to Fuzzy 

rules. A CF denotes the importance of each fuzzy rule. The higher the CF value the more important 

the Fuzzy rule is relative to another rule. Two shortcomings observed on other approaches are 

inherent in this approach. Firstly, the fact that a user has to express their preferences by specifying 

confidence Factors, imply that the approach is limited to technical audience only. Lastly, the 

complexity of the problem exponentially expands with an increase in the rule base. 

A decomposition method for service selection based on Mixed Integer Programming is presented 

in (Singh, 2012). The method works as follows: Global constraints are converted into local 

constraints. Even though (Singh, 2012) claims reduced MIP model that can be solved in linear 

time, neither details on how the decomposition method works nor are empirical results supporting 

the hypothesis provided. 

The two step Mixed Integer Programming algorithm by Alrifai et al (Virginie G. et al, 2013) is 

based on decomposition of global constraints into local constraints. After the decomposition, local 

optimization using local constraints follows. Firstly, each web service QoS attribute value is 

partitioned into quantized levels for each web service in each service community. The goal is to 

find the best combination of quantized values that will be used as upper bound constraints within 
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the second step. MIP is applied to find the best combination of values that satisfy the constraints. 

In the second stage, a local planning selection algorithm is used to select the best web services. 

The challenge with this approach is that expressing global constraints that will not be violated by 

local constraints is a challenge. Further, the performance of the model is affected by the number 

of quantity levels d. The larger the d the less efficient the model becomes and vice versa. The value 

of d or range of d for which the model can perform better than conventional MIP remains unknown. 

Thirdly, like all other techniques, the model is still too complex from an end user perspective and 

therefore its utility is equally limited to technically sophisticated users. 

Liu (2012) proposes a genetic algorithm for composite service selection. The advantage this has 

over MIP based models is that Genetic Algorithms (GA) are more efficient for ultra large problem 

sizes. However, GAs require configuration and tuning of extra parameters such as the population 

size (Ngoko Y., Goldman A, and Milojicic D, 2013).  

The main innovation by Ngoko Y., Goldman A, and Milojicic D. (2013) is a MIP global 

optimization model for workflow based service compositions involving multiple cooperating 

abstract composite service services. Moreover, the optimization model takes into account service 

level agreement constraints. Generally the authors empirically show that their MIP global planning 

model is more desirable than local planning in terms of optimality of solutions. However, only two 

QoS attributes are considered during optimization so it remains unknown how the model can 

behave as the number of QoS factor s grow larger. 

Similar to (Singh, 2012)  and (Gabrel et al , 2013)., our work in (Mulongo  et al, 2015), also 

described in section 2 of this paper, in general follows Mixed Integer programming with a 

decomposition strategy to optimize composite web service selection. But unlike the rest, the work 

in (Mulongo et al, 2015),  , combines the well-known MIP global planning technique for web 

service selection in (Zeng et al, 2004) with the emerging theory of Layering as Optimization 

Decomposition (Mung, 2006;  Steve Low, 2013). The distinctive features of this approach are: 1) 

two distinct objective functions, one addressing the concerns of the end user and the other 

addressing the concerns of the service provider. Although, in (Abiud W. M. et al, 2015), each layer 

(sub problem) can viewed as a local optimization problem as within the scope of the entire 

“network”, from a web service composition perspective, each of the local sub problem employs a 

self-contained global planning method using the S-MIP technique in (Zeng et al, 2004) although 
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on a subset of constraints and subset of QoS attributes. This brings the second unique feature: 2) 

that we are still able to express global constraints, and that these global user and service provider 

constraints alike, are guaranteed not to be violated, 3) By using layering as a design time 

architectural style, separating the concerns of the users from those of the provider, we not only 

achieve more efficiency, but also derive simplicity that shields the average end user from the 

complexity of technical jargon, and tediousness of having to capture constraints and weight 

preferences on low level QoS attributes. All the other methods lack this feature. 

There are dynamic service selection and composition strategies which do not necessarily consider 

user defined constraints but strive to optimize operational performance quality of service attributes 

such as availability, response time, throughput etc to ensure efficient service composition. Such 

strategies confirm our argument that operational performance oriented QoS attributes should not 

be explicitly specified by an end user of services but rather an implicit given. The methods 

embedded in ADULA frameworks (Monsincat et al, 2010) fall under this category. ADULA is a 

self-regulating webservices composition framework. ADULA (Monsincat et al, 2010) uses a 

simple yet effective randomized probabilistic algorithm that aims to improve system throughput 

by balancing service requests. The framework does this by distributing requests to those services 

that recently performed better and are functionally equivalent to those that performed poorly. QoS 

of services is measured primarily based on service response time thus faster services are selected 

in favour of slower services.  Slower services are put in quarantine for some time t. To ensure 

fairness based on the on the observation that once slower services may become faster in the near 

future and vice versa, the framework uses an adaptation method that is based on change of rate 

(with respect to  response time). A maximum time delta value is fixed say at 500 ms such that if 

the difference between a service’s current response time and the previous response time exceeds 

the delta value, then a change in the service’s state is reported and its state is updated accordingly 

either as slow or fast. A weakness of this technique is however that the quarantine if the quarantine 

period is too long, then currently slow services that could otherwise have become faster are starved. 

The converse is true if the quarantine period is too small. Our proposed QoS model at layer 3 is 

similar to this approach where a service with the highest performance is selected to participate in 

the composition. However, one main difference exists between our work and the work in (Adina 

et al, 2010). Our model jointly considers reliability and response time of a service whereas in 

(Adina M et al, 2010) only response time is considered. The benefit our model has over the one in 
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ADULA is that we do not only select a service that is most likely to execute fastest but also the 

one that has the highest chance of executing successfully. 

2.8 A Summary of the Gaps in the State of the Art 

From the foregoing discussions it’s irrefutable that all the existing dynamic webservice 

composition algorithms have the following deficiencies:- 

i. End user burden:- In all the existing multiple criteria utility based approaches (both local 

and global planning), service consumers are required to specify their preferences by 

supplying weight values for all the set of available webservice QoS parameters. When the 

dimension of such variables is large, it not only becomes too tedious for the user but the 

weight assignment process becomes less objective (Mulongo et al, 2015). For example it’s 

too tempting to ask the end user to specify relative weights on QoS attributes like 

throughput, reliability and availability etc ,first because any Internet user would always 

expect that their service request is going to be successfully responded (100% expected 

reliability), by implication 100% expected availability. Secondly, even if hypothetically, 

users were willing to trade off reliability or availability for instance, the nuances of these 

technical QoS terminologies can be too blurry to an end user for them to objectively assign 

relative weights accordingly (Mulongo et al, 2015). An exception to this is the method 

described in ADULA (Adina et al, 2010) which focuses on high throughput service 

composition without involving the end user. The advantage of the model in ADULA 

(Adina et al, 2010) is that end users are by implication shielded from the technical details 

of the service composition while enjoying the efficiency of the underlying model. The 

disadvantage is that the optimization strategy in (Adina et al, 2010) and related models is 

purely system oriented and ignores the element of preferences specific to a particular 

service consumer such as cost, reputation etc. There is a need for a framework of service 

composition that allows the user to obtain near optimal solutions efficiently without having 

to directly interact with all the quality attributes of the webservices. 

ii. Exponential Explosion: - All the existing global planning strategies are flat structured. 

Thus, as the number of candidate webservices grows larger, the algorithms suffer from 

exponential state space explosion making them severely constrained when it comes to large 

scale industrial scale service based applications. Zeng et al (2004) recommends that for 
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large scale service composition problems, composite webservice selection should be done 

in hierarchical layered manner, applying global planning at each layer. However, to date, 

to the best of our knowledge, such a framework lacks. 

2.9 Proposed Solution: Service Layered Utility Maximization Model (SLUM) 

The proposed method is based on the mixed programming global planning model described in 

section 2.6. However, the deviation from the current practice is our fundamental rethinking about 

the structure of the dynamic webservice composition problem. Instead of viewing the problem as 

flat structure as is the case with all the state of the art, we view the problem as “a layered network” 

with two layers. One of the layers strives to maximize end user utility on a subset of webservice 

QoS variables, while the other layer attempts to maximize the service provider utility on another 

subset of webservice QoS attributes. We show that together, the two layers strive towards a global 

objective, which is to generate within the shortest time possible, the composite webservice that 

maximally satisfies the utility of the service consumer. The union of the subsets constitutes the 

entire range of QoS attributes and the range of QoS constraints over this range. At each of the two 

layers, a mixed integer program is formulated in terms of the subset of QoS variables. The 

subproblems are then solved sequentially in a layered fashion. Analytically, this formulation is 

more likely to yield more efficient solutions due to space reduction. Space reduction arises in two 

ways (see section 2.11), first the sum of the search space at the two layers grows much smaller 

compared to the original problem as the input size grows larger. Secondly, since the subproblems 

are solved sequentially in a layered manner, some services at the first layer could be eliminated, 

further shrinking the overall search space across the two layers. In addition, the design inherently 

shields end users from specifying their expectations on all the QoS constraints. This architectural 

rethinking is inspired by the theory of Layering as Optimization Decomposition as described in 

section 2.7.  In section 2.10.1, we qualitatively describe how our proposed design maps on the 

concept of Layering as Optimization Decomposition. In section 2.10.2, we describe the 

mathematical models underlying the proposed design. 

2.9.1 Qualitative Description of the SLUM Model 

 

We cast the service selection problem onto the network utility maximization problem (NUM) 

based on the formalism of Layering as Optimization Decomposition as follows. First, we view the 
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composite service composition as “a multi layered network” with each layer trying to achieve some 

local optimality towards to global optimization objective. In the case of network design, the global 

optimization problem is formulated as the basic NUM, generalized NUM or the stochastic NUM 

problem. Then based on the NUM global optimization problem, layered variants of the NUM 

(Kelly et al, 1998) problem are formulated and solved. In the case of service composition, there is 

no universally agreed formulation of global “Service Utility Maximization” optimization model.  

However, as stated in chapter 1, the MIP global optimization model by Zeng et al (2004) has been 

widely adopted in the formulation of MIP solutions to service selection problems. In the place of 

NUM therefore we have what we dub here as “basic Service Utility Maximization (SUM)” model, 

referring to the MIP model in (2004). Then, we adapt the basic SUM model to fit the proposed 

layered architecture leading to SLUM for Service Layered Utility Maximization Model. SLUM is 

quantitatively described in section 2.11.2. 

Secondly, we have to identify the “layers” in our “network”. Unfortunately, unlike in network 

design where there are well established network models such as OSI and TCP/IP, no network 

model or layered network formulation of the service selection problem exists today. Luckily we 

can draw some analogies from the NUM problem. Based on existing work on QoS aware 

webservice selection, we work backwards to identify a minimum number of “layers” in the 

network. Here goes the analogy. The generalized NUM problem puts the end user at the forefront 

leading to two types of optimization objective functions (Mung, 2006). 1) maximizing end users 

sum of utility functions over variables like rate, reliability, delay , jitter and 2) a network wide cost 

function determined by the network operator that can be functions of congestion, power efficiency 

etc. Putting the service consumer at the forefront, we can see at least two similar objective 

functions naturally arising in webservice composition problem. The following objectives can be 

identified: The first objective is that the service consumer would like to get access to the composite 

service at the minimum possible cost within the shortest possible time. Therefore from a consumer 

perspective minimization of financial burden (which includes minimizing actual cost of accessing 

the service and minimizing the financial risk) and minimization of service response time are key 

concerns. Financial risk is associated with QoS factors like reputation and security .Thus from this 

perspective, we have that the end user objective function is a utility function over the following 

webservice QoS attributes: service execution cost, reputation, security and response time. On the 

other hand, the most important performance parameter from a business perspective is throughput 
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–how many customers can be served in unit time. By implication, this extends to response time, 

reliability, availability etc. Therefore in the global virtual organization case, the virtual enterprise 

broker key objective is maximizing webservice total utility over throughput and other performance 

factors that affect throughput including response time, reliability, and availability. From these two 

objectives, we work backwards to formulate the two “layers” (subproblems) of our “network”: 

SCUM and SPUM. The objectives of these two layers were introduced in section 1 and here we 

summarize them in Table 6. 

Table 6 : Multi-layer Webservice Optimization Objectives in the Proposed Model: SLUM, 

Source: Mulongo et al (2015) 

Layer Optimization Objective Solution 

Service Consumer 

Utility 

Maximization 

(SCUM) 

Maximize the utility function over composite webservice 

execution cost, reputation, security and response time 

 

SCUM MIP 

model 

Service Provider 

Utility 

Maximization 

(SPUM) 

Maximize the utility function over response time, service 

execution success, throughput ,availability 

SPUM MIP 

model 

 

Third, we need to establish which of the two layers “serves” the other. This is the same as asking 

the question: should the optimization process start at SPUM layer then SCUM layer (bottom up 

service selection optimization) or from SCUM then SPUM (top-down service selection 

optimization), does it matter which way? Starting with the last question, the answer is yes, the flow 

of information during the optimization process using the layered approach matters. Assume a top 

down approach is chosen. There is a possibility of selecting services with the lowest costs, lowest 

financial risk and lowest response time at the SCUM layer but that have the worst reliability, 

reliability and or throughput when evaluated at the SPUM layer. There are two possibilities. First, 

if none of the composites meets the constraints at SPUM layer, then no solution is found. Second, 

a subset or all the webservices may meet the threshold constraints on reliability and availability 
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but only marginally. The result is that such webservices will have a higher probability of failure 

during execution whereas potentially more reliable but more costly and less efficient services were 

“prematurely” dropped at SPUM (Mulongo et al, 2015). Conversely, if a bottom up optimization 

approach is followed, there is a possibility that composite services with the highest throughput, 

availability, reliability  are chosen but may fail to meet the test at SCUM layer  i.e either they do 

not meet cost, financial risk or response time constraints. If they did meet only marginally, the 

execution of the composite service may result in one of the following. Non responsiveness (web 

service takes too long to respond), a higher cost burdens to user, or potential loss of cash due to 

less trusted services.  

The point is that bottom up and top down optimization approaches, each constitute a possible 

layering scheme such that each layering scheme may yield different values to global optimization 

objective resulting into different optimality values. So whether to follow the bottom up or top 

down optimization layering scheme is a problem itself. This thesis does not address the problem 

of which of the two schemes is better in efficiency or optimality. Instead, this the study took a top 

down up approach –solve the SCUM problem first then afterwards the SPUM problem. The reason 

is that end users objectives remain at the core. i.e reducing financial burden, financial risk and 

reducing the time taken to access a service. The worry that less costly and more efficient but less 

reliable and low throughput services that are more likely to fail during execution can resolved by 

making the following observations. First, webservice reliability is a function of availability among 

factors. A service that often fails during execution due to unavailability is less reliable. Fortunately, 

availability is a QoS factor that can be captured as part of the service level agreements (SLAs) 

between the virtual enterprise broker and the various virtual enterprises within the global virtual 

firm. The SLAs will ensure that variability in service availability across virtual enterprises is within 

acceptable bounds, in case the virtual enterprises were to remain within the global virtual market. 

Secondly, webservices that are less responsive (large response times) have double negative impact. 

One is that potential timeouts definitely ruin the reliability of the service- failure to execute 

successfully. Second, the delay negatively impacts the overall system throughput. However, the 

top down optimization approach automatically mitigates these drawbacks – since the utility 

function accepts response time as part of the inputs and its output value is also restricted by the 

constraints on response time, it means that resultant services are not only of low financial burden 

but of high efficiency thus leading to overall increased throughput and reliability of the 
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composition system. Even more, our proposed MIP optimization algorithm at the SCUM layer 

attempts to find all feasible solutions that are then promoted to the SPUM layer. This is done so as 

to avoid early elimination of otherwise candidate webservices with higher reliability, availability 

and throughput values. Thus, in our proposed layered scheme, the SCUM layer serves the SPUM 

layer. 

Fourth, we need to identify primal or Langrage dual variables between the SCUM and SPUM 

layers, if at all there are. We observe that response time is a “coupling or primal or interfacing 

variable” connecting SCUM and SPUM layer. We can eliminate the primal variable by 

maintaining this variable at only one of the two layers. Since optimization is done top down, we 

have that this variable is maintained at the SCUM layer only. There are two main reasons 

motivating this decision. The first reason is to maintain the validity of our choice of the top down 

optimization approach as explained in the preceding paragraph. The other and perhaps the most 

important reason is premised on the empirical evidence the response time for distributed software 

components exhibits time varying multimodal statistical distributions. We make allusions to 

(Kounev S. , Gorton I & Sachas K, 2008). By implication, the distribution of response time of 

webservices is a stochastic process. Therefore, to increase chances of more efficient services being 

promoted from the SCUM layer to SPUM layer, response time must be one of the decision 

variables to be considered in the first cycle of optimization, which happens by choice to be at the 

SCUM layer.  In the end, SCUM and SPUM layers are decoupled in decision variables but coupled 

by data dependencies. Data dependency arises from the fact that the SPUM layer has to wait for 

the outputs from the SCUM layer, which are then used as the input solution space of SPUM. 

Fifth, we model the flow of data or information from one network layer to the next layer as the 

flow of the webservice composition Bipertite graph. The original graph contains all candidate 

webservices. As the graph flows through Layer 2 and Layer 1, some services are eliminated. 
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Table 7: Mapping the Concepts in Layering as Optimization Decomposition to the Proposed 

SLUM model   

Concept in Layering as 

Optimization Decomposition 

Concept Realization in SLUM Model 

Layers: Layers in the OSI 

Model 

Two layers :- SCUM and SPUM 

Relation between Layers SCUM layer serves SPUM layer i.e the output of SCUM layer 

optimization is the input solution space to the SPUM 

subproblem 

Decision Variable Subsets  Integer and real Variables at SCUM layer related to 

cost, reputation, and security and execution duration.  

 Integer and real variables  at SPUM are in terms of 

reliability, availability, throughput and related low 

level performance parameters.  

 In addition, at layer, Boolean decision variables are 

defined at each layer. 

Dual/Langrage/Interface 

Variables 

None 

Objective Functions :- At SCUM: Maximize the utility of the service consumer where 

the utility is function of the subset of variables mentioned 

above 

At SPUM : Maximize the utility of the service provider 

NUM : Network Utility 

Maximization Model ((Kelly , 

et al, 1998) 

The Mixed Integer Programming global planning model herein 

S-MIP described in Zeng et al (2004) 
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Layering Scheme Topdown – SCUM  then SPUM optimization ( as opposed to 

the other way round) 

 

2.9.2 Mathematical Formulation of the SLUM Model 

 

2.9.2.1 Introduction 

 

We formally restate the composite service selection problem as follows:  

Given the tuple,〈𝑅, 𝐹, 𝐺〉 

Find: Pb∈ G   that can execute F to satisfy R 

Where; 

i. R is the complex service request such that R = 〈𝑟1, 𝑟2, . . . , 𝑟𝑛    〉 where 𝑟𝑘 is an atomic service 

request within R. 

ii. F is a sequential abstract workflow such that F = 〈𝑡1, 𝑡2. . , 𝑡𝑛〉 where 𝑡𝑘  is a workflow task 

within F such that the execution of tk  leads to the fulfillment of rk. The tasks are sequentially 

ordered as t1 → t2→,.., →tn , 

iii. G is the webservice composition Bipertite graph such that G is the N-tuple 〈𝑉1, 𝑉2, . . . , 𝑉𝑛〉 

where Vk is a vertex set containing a list of functionally similar concrete webservices that can 

execute the task tk . Therefore Vk  is the data structure List<Wkj> where Wkj  is the jth
  service 

in Vk.. Each Wkj can be defined by the tuple 〈I, O, Q〉 where I is the set of input parameters, O is 

the set of output parameters and Q is the set of QoS values associated with Wkj. Any complete 

path constituted by a service drawn from V1, and another service from V2 , ..., and finally 

another service from Vn consistutes a candidate solution. If m is the number of services in every 

Vk.. then as shown earlier in section 1, there exists mn
   such candidate solutions or candidate 

composite services. Therefore we need to find Pb, 
  the best path (composite service) that 

satisfies R. 
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This thesis is about solving for Pb
.   In section 3.2.2 we elaborate how our SLUM model finds Pb 

using the Service Layered Utility Maximization (SLUM) algorithm. 

The two layered mixed integer solution, SLUM, to the problem above, involves the following 

steps. Decomposing the set of webservice attributes into subsets such that one subset is assigned 

to the SPUM layer and the other is assigned to the SCUM layer. Secondly, formulating the SPUM 

optimization subproblem by specifying its objective function and constraints over the decision 

variables at this layer. Thirdly, formulating the SCUM subproblem by specifying its objective 

function and constraints in terms of its subset of decision variables. Lastly, solving the two 

subproblems in a sequential (layered) manner, beginning with the SCUM subproblem then 

winding in SPUM subproblem. 

2.9.2.2 Webservice Quality of Service Decomposition 

 

The original set of webservice QoS attributes, Q is divided initially into two disjoint partially 

layered sets of QoS attributes, Q1 and Q2, such that Q1 is in SPUM layer and Q2 is assigned to 

SCUM layer. Q2 contains all webservice QoS parameters related to the financial burden and 

financial risk to be borne by the service consumer and one performance QoS parameter – response 

time. Q1  contains the set of all performance parameters except response time. In practical SOA 

applications, the quality of service attributes decomposition step should be performed by the 

Virtual Enterprise Broker. 

1.2.1.3 The SPUM layer Subproblem  

 

2.9.2.3.1 SPUM Weight Assignment to QoS Parameters 

As a first step, the Virtual Enterprise Broker should define a weight vector W1  in which the ith 

element corresponds to a weight assigned to the ith QoS element in Q1  such that ∑ 𝑊1
𝑗𝑗=𝑛

𝑗=1 = 1. A 

weight value assigned to a Qos parameter in Q1 indicates the relative priority of that QoS attribute 

from a service providers point of view. Suppose W1 = [0.5, 0.2, and 0.3] for reliability, availability 

and throughput respectively, then it means that the service provider is concerned about service 

reliability more than any other QoS attribute. From the same example, the virtual enterprise broker 

prefers services with a higher throughput than service which may have a higher availability with 



78 
 

smaller throughput values. The weights can be adjusted as service performance statistics evolve 

over time. 

2.9.2.2.1 SPUM Layer Objective Function Definition 

At SPUM layer , the objective function of the SUM problem, F1 is to maximize the utility function 

U1 over the set Q1, given the initial webservice graph G, the weight vector W1, the set decision 

variables X1 subject to a set of constraints C1. X1   contains the set of decision variables at Layer 1, 

while C is the set of constraints on X1. The objective is captured according (2.17) and refined 

according to (2.18). 

 𝑭𝟏= maximize⟦𝑼𝟏(𝑴𝟏
𝒄 ,𝑾𝟏)  ⟧                                  (2.17) 

The objective function  𝐹1 in (1) is translated as: maximize the value of the utility function U1 

which takes as input, the QoS matrix M1
c and the weight vector W1. M1

c
  is the matrix containing 

normalized aggregate QoS values for each candidate composite service (plan) on every QoS 

attribute in Q1. i.e by adopting a notation similar the one used in (Benatallah, 2004), the rows 

represent a candidate execution plan and the columns represent the jth QoS attribute and M1
cij

  is 

the raw aggregate jth QoS value of the ith
 execution plan . To compute Mk

cij
, the aggregation 

functions given in Table IV are used accordingly. 

 Note that some QoS parameters can be positive while others negative. The QoS of positive 

parameters increase with increasing values of the parameter. The QoS of a negative parameter 

decline with increasing value of the attribute. For example in Table 2.4, execution duration and 

execution cost are both negative QoS attributes and the rest are positive parameters. For this 

reason, the matrix 𝑀1
𝑐  needs to be normalized. If 𝑀𝑘

𝑐𝑖𝑗
 is a positive parameter, we denote the 

normalized image of 𝑀𝑘
𝑐𝑖𝑗

 by 𝑀𝑘
𝑐𝑖𝑗+

 or 𝑀𝑘
𝑐𝑖𝑗−

otherwise. 𝑀𝑘
𝑐𝑖𝑗+

and 𝑀𝑘
𝑐𝑖𝑗−

 are computed 

according to the scaling functions given in (2.18) and (2.19) respectively. 

𝑴𝒌
𝒄𝒊𝒋+

= ⟦𝑴𝒌
𝒄𝒊𝒋
−𝑴𝒌

𝒄𝒋𝒎𝒊𝒏
⟧/⟦𝑴𝒌

𝒄𝒋𝒎𝒂𝒙
−𝑴𝒌

𝒄𝒋𝒎𝒊𝒏
⟧                      (2.18) 

𝑴𝒌
𝒄𝒊𝒋−

= ⟦𝑴𝒌
𝒄𝒋𝒎𝒂𝒙

−𝑴𝒌
𝒄𝒊𝒋
⟧/⟦𝑴𝒌

𝒄𝒋𝒎𝒂𝒙
−𝑴𝒌

𝒄𝒋𝒎𝒊𝒏
⟧                                      

(2.19)              
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  In both (2.18) and (2.19) : 

i. If 𝑀𝑘
𝑐𝑗𝑚𝑎𝑥

−𝑀𝑘
𝑐𝑗𝑚𝑎𝑥

= 0 ,1 is returned. 

ii. 𝑀𝑘
𝑐𝑗𝑚𝑎𝑥

 is the maximum value in the jth column 

iii. 𝑀𝑘
𝑐𝑗𝑚𝑖𝑛

 is the minimum value in the jth column   

iv. 𝑘, as usual is the SCUM optimization layer  or SPUM optimization layer  

We will denote the resultant matrix after scaling the matrix 𝑀𝑘
𝑐  by 𝑀𝑘

𝑐′.Thus the optimization 

objective function at SPUM is revised to (2.20). 

𝑭𝟏= maximize⟦𝑼𝟏(𝑴𝟏
𝒄′,𝑾𝟏)  ⟧               (2.20)    

By applying the Simple Additive Weighting, SAW (Hwang & Yoon,, 1981) to (2.20) as our utility 

function, equation (2.21) holds. 

𝑭𝟏 = 𝒎𝒂𝒙𝒊𝒎𝒊𝒛𝒆⟦𝑴𝟏
𝒄′ ∗  𝑾𝟏⟧                  (2.21) 

     Equation 2.21 can be expanded to (2.22). (2.22) holds because in our case all SPUM layer QoS 

variables are positive. 

 𝑭𝟏 = 𝒎𝒂𝒙𝒊𝒎𝒊𝒛𝒆 ⟦∑ [  𝑴𝟏
𝒄𝒊𝒋+𝒋=𝟑

𝒋=𝟏 ∗ 𝑾𝟏
𝒋
]⟧              (2.22)         

2.9.2.2.2 Definition of SPUM Optimization Constraints 

Let R, A and H be the reliability, availability and throughput thresholds set by the virtual enterprise 

broker on every execution plan. We use the notation 𝐶𝑘𝑖 to denote the 𝑖𝑡ℎ constraint at the 𝑘𝑡ℎ 

layer. When k=1, the following constraints are enforced. We have: 

  𝑪𝟏𝟏:    𝒓𝒄 ≥ 𝑹   or ∏ 𝒓𝒔    ≥ 𝑹𝒊=𝑵
𝑰=𝟏                                  (2.23) 

Since𝐶11:     is nonlinear, we linearize it by taking the logarithms on both the L.H.S and R.H.S of 

(2.23) to get (2.24). 

 𝑪𝟏𝟏:  𝐥𝐨𝐠 𝒓𝒄 = ∑ 𝐥𝐨𝐠 (𝒓𝒔𝒊=𝑵  
𝒊=𝟏    ) ≥ 𝒍𝒐𝒈 𝑹                                         (2.24)           
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 𝐶11 , as represented in (2.24) is the constraint on composite service reliability. 

Similar to 𝐶11 ,  𝐶12 , the availability constraint on composite service availability is expressed 

according to  (2.25). 

𝑪𝟏𝟐: 𝐥𝐨𝐠 𝒂𝒄 = ∑ 𝐥𝐨𝐠 (𝒂𝒔𝒊=𝑵  
𝒊=𝟏    ) ≥ 𝒍𝒐𝒈 𝑨                                         (2.25) 

The constraint on composite service throughput at the SPUM layer is captured in (2.26). 

𝑪𝟏𝟑: 𝒉𝒄 = 𝟏/𝑵(∑ 𝒉𝒔𝒊=𝑵  
𝒊=𝟏    ) ≥ 𝑯                        (2.26)    

We need a binary variable to indicate whether or not a webservice  𝑊𝑆𝑗𝑖 is selected from the vertex 

set 𝑉𝑖   ∈ 𝐺 to execute a workflow task, 𝑡𝑖.  Conventionally this variable is represented as 𝑦𝑖𝑗   . In 

this work, we will represent this variable as 𝑦𝑘
𝑖𝑗

 to reflect our layered architecture, where k is the 

layer number. At k=1, constraints   𝐶14 and    𝐶15 hold.   𝐶14 indicates that a service can assume 

𝑦1
𝑖𝑗

 value of 1 or a 𝑦1
𝑖𝑗

 value of zero. In (2.28),    𝐶15   dictates that only one service can be selected 

from each vertex set 𝑉𝑖   to execute a task 𝑡𝑖 in the set F of workflow tasks. 

 𝑪𝟏𝟒: 𝟎 ≤ 𝒚𝟏
𝒊𝒋
≤ 𝟏                                     (2.27) 

𝑪𝟏𝟓: ∑𝒚𝟏
𝒊𝒋
= 𝟏, 𝒊 ∈ 𝑽𝒊 , ∀𝒊 ∈ F                                              (2.28)               

In addition to the above constraints, at layer 2, we introduce the binary variable𝑙2
𝑖𝑗

. 𝑙2
𝑖𝑗

 indicates 

whether or not the service 𝑊𝑆𝑖𝑗  was selected during layer 2 SCUM optimization process. We 

enforce the constraint in (2.29) to imply that only services previously selected during layer 2 

optimization should be selected.  

  𝑪𝟏𝟔: 𝟎 ≤ 𝒆𝟐
𝒊𝒋
= 𝟏                                                           (2.29) 

Thus the set of optimization constraints   𝐶1 at layer 1 contains  𝐶11, 𝐶12 , 𝐶13   , 𝐶14 , 𝐶15,   𝐶16:    
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2.9.2.3 The SCUM Layer Subproblem 

2.9.2.3.1 Weight Assignment to QoS Parameters 

As a first step, the service consumer should define a weight vector W2  in which the ith element 

corresponds to a weight assigned to the ith QoS element in Q2  such that ∑ 𝑾𝟐
𝒋𝒋=𝒏

𝒋=𝟏 = 𝟏. A weight 

value assigned to a Qos parameter in Q2 indicates the relative priority of that QoS attribute from a 

service consumer point of view. Suppose W2 = [0.1, 0.4, 0.3, and 0.2] for execution duration, 

execution Cost, reputation and security respectively, then it means that the service consumer cares 

about cost more than any other QoS attribute. Recall that this differs from the state of the art where 

the end user is always assumed to be responsible for specifying weight preferences over all QoS 

attributes. With our approach, the end user can benefit from the optimization of parameters such 

as throughput, reliability and availability without necessarily being aware of the optimization 

process surrounding these parameters, just in the same way in the NUM problem, the end user can 

benefit from improved physical layer forward error correcting codes while such details are 

abstracted from them. After all, all service consumers always expect that whenever they access a 

service it’s available and that it will execute successfully all the time. Consequently with our 

methodology, end users have fewer QoS attributes over which to specify weights. 

2.9.2.3.2 SCUM Layer Objective Function Definition 

At layer 2, the objective function of the SCUM problem, F2 is to maximize the utility function U2 

over the set Q2, given the webservice graph G1, the set decision variables X2 subject to a set of 

constraints C2. X2   contains the set of decision variables at Layer 2 and C2 is the set of constraints 

on X2. G
1⊑G i.e G1

 is the set of feasible solutions from Layer 1 or the set of candidate solutions at 

Layer 2. G1
 may contain all or just a subset of paths from the original graph, G. This objective 

function is stated according to (2.30). 

𝑭𝟐= maximize⟦𝑼𝟐(𝑴𝟐
𝒄 ,𝑾𝟐)  ⟧                                         2.30)          

By applying (2.17) and (2.18) and using the conventions adopted in this paper, (2.30) transforms 

to (2.31). The objective function in (2.31) holds since at SCUM layer duration and cost are negative 

parameters while reputation and security are positive parameters. 
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𝑭𝟐 = 𝒎𝒂𝒙𝒊𝒎𝒊𝒛𝒆 ⟦∑ [  𝑴𝟐
𝒄𝒊𝒋−𝒋=𝟐

𝒋=𝟏 ∗ 𝑾𝟐
𝒋
] + ∑ [  𝑴𝟐

𝒄𝒊𝒋+𝒋=𝟒
𝒋=𝟑 ∗ 𝑾𝟐

𝒋
] ⟧                                                    (2.31)         

2.9.2.3.3   SCUM Layer Optimization Constraints 

Let D, C, U and Z be the extreme values set by the service consumer on composite service 

execution response time, execution cost, reputation and security in that order.  Here we define the 

constraints on composite service execution duration, execution cost, reputation and security in 

(2.32), (2.33), (2.34) and (2.35) respectively. 

  𝑪𝟐𝟏: 𝒅𝒄 = (∑ 𝒅𝒔𝒊=𝑵  
𝒊=𝟏    )  ≤  𝑫                             (2.32)     

 𝑪𝟐𝟐: 𝒄𝒄 = (∑ 𝒄𝒔𝒊=𝑵  
𝒊=𝟏    )  ≤  𝑪                                     (2.33)    

 𝑪𝟐𝟑: 𝒖𝒄 = (∑ 𝒖𝒔𝒊=𝑵  
𝒊=𝟏    ) ≥  𝑼                                       (2.34)           

 𝑪𝟐𝟒: 𝒛𝒄 = (∑ 𝒛𝒔𝒊=𝑵  
𝒊=𝟏    ) ≥  𝒁                                                               (2.35)      

  In (2.32), (2.33, (2.34) and (2.35) the service consumer expects the best composite service:- 

i. Not to take more than 𝐷 seconds before the consumer gets the final results to their service 

request as conveyed by   𝐶21. 

ii. To cost them not more than C units of money to access the business service provided by 

the technical composite service as captured by  𝐶22. 

iii. To have an average reputation of at least 𝑈  on the interval [1, 5]. 

iv. To have a security rating of not less Z on the average. The security associated with 

accessing the business service in this case is the average of the each service provided by 

each virtual enterprise.  

 Just like with SPUM Layer , constraint on the allocation constraint 𝑦𝑖𝑗   are defined. Adopting our 

notation, we have (2.36) and (2.37) with the usual meanings. 

 𝑪𝟏𝟔: 𝟎 ≤ 𝒚𝟐
𝒊𝒋
≤ 𝟏                                              (2.36) 

 𝑪𝟏𝟕: ∑𝒚𝟐
𝒊𝒋
= 𝟏, 𝒊 ∈ 𝑽𝒊 , ∀𝒊 ∈ F                                  (2.37)                                      
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2.9.2.4 SLUM Optimization Solution Process 

At SCUM layer, all feasible solutions are determined i.e all combination of services that can fulfill 

the objective function 𝐹2 subject to the constraints set 𝐶2  are returned in a solution pool. The 

reason for obtaining all feasible solutions as opposed to the optimal solution is so as to prevent 

possibility of prematurely dropping a webservice which would have otherwise scored better than 

a majority of the selected services. 

 We define a Webservice to Task Assignment Matrix (STAM). At SCUM layer , we will denote 

this matrix by L1.As an example, consider a two task workflow. Suppose initially before selection 

there were 3 candidate services per task.  

Before SCUM layer evaluation, this matrix is represented in tabular form as in table 8 and table 9 

and after SCUM layer Optimization the matrix L1  is represented as shown in table 8 below. 
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Table 8: An Example Webservice to Task Assignment Matrix before SCUM Optimization, Source: 

Mulongo et al (2015) 

 

Workflow Task, i 

Candidate Web service, j 

1 2 3 

1 0 0 0 

2 0 0 0 

 

Table 9: An example Webservice to Task Assignment Matrix after SCUM Optimization, Source 

(Mulongo et al, 2015) 

 

Workflow Task, i 

Web service, j 

1 2 3 

1 1 1 0 

2 1 0 1 

 

During optimization at SCUM layer, for each service sij that is selected and assigned to a task i , 

yij  is updated to 1.Suppose the resultant webservice to task assignment matrix after SCUM 

optimization is as shown in table 9. The Webservice to Task Assignment matrix, L1 in table 9 

indicates that:- 

i. That services S11, S12 were selected for task 1 while service S13 was not selected for task 1 

after SCUM layer optimization. 

ii. Service S21 and S23 were selected for task 2 while service S22 was eliminated. 

iii. Out of the 9 candidate solutions, only 4 feasible solutions were found. In this case only the 

paths < S11, , S21 >, < S11, S23 >,  <S12, S21 > and  <S12, S23 >  will be evaluated for performance 

at  the SPUM layer.  
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Thus during SPUM optimization process , the 𝑒2
𝑖𝑗

values of S11, , S12,  S21, S23 will  be 1 and only 

these services will be evaluated at the SPUM layer. 

Having selected webservices whose combination maximizes the utility of user preferences on 

service execution cost, reputation etc and that meet the constraints defined on cost, reputation , at 

SPUM layer, the goal is to  select the  service combination that maximizes utility on performance 

related QoS subject to constraints defined on the performance QoS variables. The output of the 

SPUM optimization process is therefore a set of service combinations that fulfill requirements of 

both SCUM and SPUM layers. The solution at SPUM layer therefore consistutes Pb  . 

2.10 A Summary of How our Proposed Model Differs from the State of the Art 

Our proposed architecture (SLUM), unlike all the existing approaches, employs a hierarchical 

layered approach to the dynamic webservice composition problem. Our approach is inspired by 

the theory of Layering as Optimization Decomposition. There are two layers, one attempting to 

maximize service consumer utility, while the other layer strives to maximize the service provider 

utility. The original set of quality attributes is split into two disjoint subsets. One subset of QoS 

attributes is assigned to one of the layers while the other is assigned to the other.  At each layer, a 

global planning mixed integer program is formulated in terms of their corresponding subsets of 

QoS attributes.  The two subproblems are then solved sequentially so that the output of one of the 

layers becomes the solution space to the remaining layer. Together, both layers attempt to solve a 

global optimization problem- which is “Efficiently dynamically select the best composite service 

from a pool of alternative webservices that are differentiated on a wide range of QoS attributes”.  

Our proposed design and model improves on the existing approaches by filling the two gaps in 

section 2.9 through the relative strengths outlined in section 2.10.1. On the other hand, the relative 

limitations of our design are outlined in section  

2.10.1 Relative Strengths  

2.10.1.1 Reduced burden on the end user 

In our strategy SLUM, service consumers specify weight preferences and QoS constraints on a 

smaller set of QoS variables as opposed to the entire range of QoS attributes. Thus, this is less 

laborious compared to the state of the art. 
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2.10.1.2  Reduced Problem Complexity Due to Space Reduction 

As mentioned, exponential explosion in the search space with respect to number of webservices n, 

means that the running time of MIP strategies and other global planning strategies is non 

deterministic polynomial. Our proposed model combats the problem of space explosion inherently 

as follows:- 

i. Space Reduction through Decomposition (without Service Elimination) 

Because of the two layer decomposition of webservice QoS attributes, each webservice QoS 

matrix at each of the layers is nearly half the original webservice QoS matrix. We saw that for 

global planning, given a fixed workflow of size k, the computational effort is proportional to nk.  

But with the layered approach, the size of computational effort is reduced to   2 ((½)k nk).  It’s 

intuitive that as n→∞, 2 ((½)k nk) << nk . This supports the theory that decomposition, even when 

done sequentially, improved efficiency results from the fact that growth in the complexity of a 

computational problem as a function of the input size is more than linear. In chapter 3, we 

investigate and analyze in details the runtime performance of SLUM relative to state of the art on 

problem instances of varying sizes in n. 

ii. Space Reduction through Decomposition with Webservice Elimination  

  The efficiency gains in (i) above are not due to service elimination but due to superlinear growth 

of computational problem complexity. However, in real scenarios, some webservices are likely to 

be eliminated as described in section 2.10. This means that the overall computational effort while 

using SLUM may be smaller than 2 ((½)k nk). Now, at the SCUM layer, the initial search space 

would be  nk composite webservices while at the SPUM layer, the search space given that some 

services eliminated at SCUM layer is generally less than nk. This is results into further gains in 

efficiency of our strategy compared to the state of the art. Let g1  be the search space at SCUM 

layer. The computational effort at SCUM layer is proportional to  nk. Let g2 be the search space at 

the SPUM problem. Generally,  𝑔2 ≤ 𝑔1   . When 𝑔2 = 𝑔1 , it means no webservice was 

eliminated at the end of SCUM  and when 𝑔2 < 𝑔1  , it means some webservices were eliminated 

during SCUM optimization process. In this study we will define Composite Service Phase 

Transition Rate (CSPTR), denoted by ρ, as the ratio 𝑔2/ 𝑔1 .  In chapter 3, this study also 

investigates the relative runtime performance of SLUM under different ρ values. 
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2.10.2 Relative Limitations 

 

Although the MIP formulation at each of the layers is global in scope and therefore SLUM yields 

globally optimal solutions within the scope of the layer, the optimization scope at each layer does 

not take into account the constraints at the other layer (Mulongo et al , 2015; 2016). As explained 

in section 2.10 and in (Mulongo et al, 2015; 2016a), due to this limitation , depending on the 

structure of the problem instance, in some cases, like local planning algorithms,  the overall 

solution quality of SLUM could be suboptimal when compared to flat structured  (single layer) 

global planning algorithms. However, note that unlike local planning algorithms, SLUM is able to 

capture global constraints at each layer. Moreover, analytically, we envisage that although SLUM 

might yield suboptimal solutions relative to state of the art single layer global planning MIP 

algorithms, the solution quality of SLUM is on average better than that of local planning 

algorithms.    The theoretical explanation for this is that under local planning, optimization process 

considers only n   options (at a task level only) and thus ignores the other nk
-n composite service 

options (Mulongo et al, 2016). On the other hand, SLUM at each layer considers (n/2)k 
 maximum 

options  against a maximum possible (n)k and thus at the very least ignores (n)k- (n/2)k 
 composite 

service options (Mulongo et al, 2016). Since, in general (n)k- (n/2)k
 < nk

-n, n>4 at a fixed k,  then 

local planning algorithms are more likely to yield less optimal solutions on average than SLUM 

(Mulongo et al , 2016). Thus, the study also investigated the solution quality of SLUM against the 

mixed integer programming local planning approach to establish their performance differences in 

terms of optimality. 

In general, the optimality limitation of our solution is not a major issue especially if turns out to 

be near optimal. This is so because, for problems of industrial relevance where optimal solutions 

cannot be found in acceptable amount of time, suboptimal but more efficient approaches are often 

sought (Tonci et al, 2009).  

2.11 Benchmark Algorithms 

Based on the research objectives as stated in section 1.4, the baseline algorithm in this study is the 

single layer Mixed Integer Programming global planning model described in section 2.6. This 

algorithm is dubbed S-MIP. By comparing our proposed two layer MIP solution SLUM, we 

benchmark the efficiency as well as the solution quality of our solution. Since the solution quality 
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of S-MIP is conjectured to dominate the one for SLUM for all problem instances, the main 

motivation for comparing SLUM against S-MIP on the solution quality parameter, is to determine 

how close the solution quality of SLUM is on average to the global optimum. The alternative 

algorithm chosen for our benchmark is the local planning algorithm described in 2.4 whose 

formulation is based on mixed integer programming too. This algorithm is hereafter abbreviated 

L-MIP. We already have an idea that the runtime efficiency of L-MIP like any other exact local 

planning algorithms is theoretically proportional to nk(2 +C)  (see section 2.4.5). Analytically this 

is super faster than any conceivable global planning algorithm including SLUM. Hence, the main 

reason for benchmarking SLUM against L-MIP is not to compare their relative runtime 

performance efficiency but to establish their relative performance in terms solution quality, given 

that as explained in section 2.11.2, both the two share the same limitation; they are both suboptimal 

relative to the single layer global planning alternatives. But what is unknown is by how much is 

one better than other in terms of solution quality. 

Through these benchmarks, a major contribution of this work (see the conclusion chapter) is given 

single layered global planning MIP algorithms, local planning MIP algorithm and two layered ( or 

layered) global planning MIP algorithms, which one is better under what conditions ? This 

question is what (John, 1976) calls the algorithm selection problem? 

2.12 2.12 Theoretical Performance Efficiency Assessment of SLUM Model 

In order to provide answers to the research questions that were stated in section 1.5, a system 

methodology for analyzing and comparing the performance of the three algorithms is required. 

With respect to efficiency/running time, algorithms can analyzed using two main approaches: 

theoretical (mathematical) or empirical. In the theoretical approach, a mathematical model is 

developed that characterizes the performance behaviour of the algorithm,   and the algorithm is 

analyzed within the model. The empirical approach involves running an algorithm and testing its 

performance against specific problem instances and collecting performance data (Hoos, 2003), 

(Seogewick & Flajolet, 2009). Empirical evaluation of algorithms complements 

theoretical/mathematical approach (Coffin & Saltzman, 2000). 

In this section, we attempt to answer research questions RQ1.1 and RQ1.2 using 

theoretical/mathematical analysis. The theoretical results could pre-empt some analytic 

performance efficiency properties of SLUM independent of specific machine implementation 
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details – the basis of theoretical algorithm analysis in computer science. These results could 

provide a benchmark on running time properties of the SLUM model against the benchmark 

algorithms during empirical evaluation. 

We begin by deriving mathematical function that describes the worst case performance of SLUM 

under two special cases and then we obtain a generalized model. Suppose for some webservice 

composition problem instance, the QoS constraints are such that all candidate webservices at the 

beginning of SCUM optimization transit to the SPUM, layer.  This represents the special case for 

which ρ = 1. This case could happen (though rarely expected). This case deserves special attention 

as it represents the most computationally expensive case to solve for our proposed model, and 

generally depicts the performance property of SLUM as ρ  approaches 100%. In this scenario, the 

performance gain due to SLUM over S-MIP, if any, is due to space reduction purely due to 

decomposition (and not due to elimination) as explained in section 2.10. We present this special 

case in section 12.12.1.  

The second special case is when for some problem instance, the QoS constraints are such that all 

webservices at the SCUM layer are eliminated i.e no feasible solution is found at the SCUM layer 

and by implication no feasible solution found globally. In this case, ρ = 0.  This case is worth 

attention because, it not only signifies infeasibility but of practical importance, it gives us an idea 

of the performance behaviour of SLUM for a particular problem instance of size n when the rate 

ρ approaches zero. The case is explained in section 12.12.2. 

We then obtain a generalized mathematical function representing the efficiency of SLUM under 

realistic scenarios, where some webservices that do not meet the QoS constraints at the SCUM 

layer are eliminated, and some may be promoted for further optimization at the SPUM layer. In 

the generalized case, the composite service phase transition rate ρ is such that 0 ≤ ρ ≤ 1.  The 

generalized case is presented in section 2.12.3. 

In each of the three cases, we also obtain the relative speedup of SLUM with respect to SLUM and 

with respect to  L-MIP. When the speedup is in relation to SLUM. 

The notations used in this section and the rest of the sections are given in the table 10 below. 
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Table 10 :  Notations used in the Theoretical Performance Analysis of the Proposed Model (SLUM) 

Notation Meaning 

𝒒𝟏 The number of webservice QoS attributes at the Service Consumer Utility 

Maximization Layer of the SLUM model  

𝒒𝟐  The number of webservice QoS attributes at the Service Provider Utility 

Maximization Layer of the SLUM model 

qt The total number of webservice quality attributes such that 𝒒𝒕 = 𝒒𝟏 + 𝒒𝟐. 

𝒌 The number of business workflow tasks 

N The number of functionally similar webservices per workflow task. 

Ωs  or  Ω Theoretical relative speedup of SLUM with respect to  S-MIP 

Ωl Theoretical relative speedup of SLUM with respect to  L-MIP 

g1 The total number of composite webservices available to SLUM before the start of 

optimization at the SUM layer  

g2 The total number of composite webservices available to SLUM at the end of 

optimization at the SUM layer (or beginning of SPUM optimization process). 

𝛒 Composite Service Transition Rate: ρ = 𝑔2/ 𝑔1 

∊𝒊 The number of webservices that were eliminated against the ith  workflow task at the 

SCUM layer 

tB The theoretical running time of SLUM 

 

2.12.1 Special Case: Composite Service Phase Transition Rate 𝛒 = 𝟏 

Conceptually, the initial set of possible composite webservices to be optimized using a global 

planning strategy such as S-MIP is 𝑛𝑘.The time taken to solve the optimization problem in this 

case is proportional to 𝑛𝑘.  The time taken to solve a similar problem by L-MIP is proportional to 
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nk operations Consider that according to (Zeng et al, 2004) and so (Mulongo et al, 2015), a 

webservice is modelled as a vector whose elements are the values of the various QoS attributes. In 

S-MIP the size of each vector is 𝒒𝒕  . Thus, we have n candidate QoS vectors per task to be 

optimized. In SLUM, at the SCUM layer, the size of each vector is 𝒒𝟏 in length, and at the SPUM 

layer, the size of each (sub) vector is 𝒒𝟐. The size of each (sub) vector at the SCUM layer as a 

proportion of the original vector having 𝒒𝒕 elements is [𝑞1/(𝑞1 + 𝑞2)]. Similarly, the size of each 

(sub) vector at the SPUM layer as a proportion of the original vector is [𝑞2/(𝑞1 + 𝑞2)] . 

Respectively, the number of (complete) vectors at the SCUM and SPUM layers are 

[𝑞1/(𝑞1 + 𝑞2) ] ∗ 𝑛  and [𝑞2/(𝑞1 + 𝑞2) ] ∗ 𝑛 .  Assuming, no webservice is eliminated at the 

SCUM layer, the theoretical running time taken by SLUM to solve the two sequentially 

decomposed subproblems is given by equation 2.38 

  𝑡𝐵 = [[[𝑞1/(𝑞1 + 𝑞2) ] ∗ 𝑛]]
𝑘 + [[𝑞2/(𝑞1 + 𝑞2) ] ∗ 𝑛]]

𝑘].                            (2.38)                                              

Let [𝑞1/(𝑞1 + 𝑞2) ] = ώ1  and [𝑞2/(𝑞1 + 𝑞2) ] = ώ2 , equation 2.38 could be re-written as 

equation   2.39  

  𝑡𝐵 = [[ώ1 𝑛]]
𝑘 + [ώ2𝑛]]

𝑘] =   (ώ1
k

 + ώ2
k ) nk                                          (2.39)                                                     

Considering that ≪ 𝑛  , the constant terms could be ignored, so that equation 2.39 could be 

generalized according to equation 2.40. 

            𝑡𝐵 = O(nk )                                                                                         (2.40)                                                        

Thus from equation 2.40, the conclusion is that theoretically, SLUM could be asymptotically as 

worse as the single layered MIP solution, and for that matter SLUM could be non polynomial 

deterministic. Hence, this compared to the running time of L-MIP which in the order of nk, means 

L-MIP still outperforms SLUM by several orders of magnitude without further proof. 

2.12.1.1 Deriving Relative Speedup with respect to S-MIP, Ωs Using L-Hospital’s Rule 

  Even if two algorithms have the same worst case complexity class, one algorithm might be better 

than the other on average. By applying L-Hospital’s rule, we can compare the relative growth of 

two functions. Let,  𝑓(𝑥)  and g(x)  be two functions . L-Hospital’s rule states that n→ ∞ 
𝑓(𝑥)

𝑔(𝑥)
 =
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lim 𝑥 →  ∞ 
 𝜕 𝑓(𝑥)  

𝜕 𝑔(𝑥)
   .  Thus by applying the rule to equation 2.39, we obtain an expression for Ωs  

as per equation 2.41  

 (Ω𝑠) =
𝑛𝑘

((ώ1)𝑘+(ώ2)𝑘)(𝑛𝑘)
  =  

1

((ώ1)𝑘+(ώ2)𝑘)
                                                 (2.41)                                                                                                                                 

   Given that [𝑞1/(𝑞1 + 𝑞2) ] = ώ1  and [𝑞2/(𝑞1 + 𝑞2) ] = ώ2 , and (𝑞1 + 𝑞2) = (𝑞𝑡) , equation 

2.41 can be expanded and simplified to  equation 2.42. 

(Ω𝑠)   =  
(q𝑡)

𝑘

((q1)𝑘+(q2)𝑘)
= 

(q1 +q2 )
𝑘

((q1)𝑘+(q2)𝑘)
                                                         (2.42)                                                                                                                                                                                      

When  𝑞1  ≈  𝑞2 , from equation 2.42 , then (q1 + q2 )
𝑘 > {[𝒒𝟏]

𝒌 + [𝒒𝟐]
𝒌 } . Hence  Ω𝑠 > 𝟏. 

Thus, the complexity of the sum of the parts of two the sequentially decomposed SLUM 

subproblems grows much slower than the complexity of the whole. Thus, even without elimination 

of any webservice at the SCUM layer, SLUM would theoretically perform faster than S-MIP.  

When the number of QoS attributes at the SCUM layer equals the number webservice QoS 

attributes at the SPUM layer (the ideal case), i.e q1 = q2,  then, it’s easy to show that equation 

2.43 holds. 

The ideal case is when the ratio 𝒒𝟏: 𝒒𝟐 = 𝟏  i.e 𝒒𝟏 = 𝒒𝟐 , so that the original webservice 

composition problem is sequentially decomposed into two equal layers in the number of QoS 

attributes. In this case, equation (3) is further simplified to (4) and finally (5). 

      (Ω𝒔)    = (𝟐)𝒌−𝟏                                                                                                                  

(2.43)                                                                                                                          

Thus from equation 2.43, we see that provided 𝒒𝟏 = 𝒒𝟐 , the (Ω𝒔) is only dependent on the length 

of the business workflow and the speedup is a power function of k.  

Where 𝒒𝟏 ≠ 𝒒𝟐 , we show through the examples below that (Ω𝒔)  < (𝟐)
𝒌−𝟏 and (Ω𝒔)  gets much 

smaller than (𝟐)𝒌−𝟏,tending towards 1 as the ratio 𝒒𝟏: 𝒒𝟐 𝒐𝒓 𝒒𝟐 : 𝒒𝟏 gets much larger than 1. Note 

that the practical maximum limit of  𝒒𝟏/𝒒𝟐  is 𝒒𝒕 − 𝟏 , in which case we have 𝒒𝒕 − 𝟏  QoS 

attributes at layer 1 and 1 QoS attributes at layer 2. Thus, more formally, let 𝑟 =  𝒒𝟏/𝒒𝟐 or =

 𝒒𝟐/𝒒𝟏  , whichever is larger. We show that as 𝑟 → 1, (Ω𝒔) → (𝟐)𝒌−𝟏 and 𝑟 → (𝒒𝒕 − 𝟏),Ω → 𝟏 . 
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  Example 1: k =2, 𝒒𝟏 = 𝒒𝟐 = 𝟒 

This example considers a business workflow with two sequential tasks in which the number of 

QoS attributes at layer 1 and layer is equal to 4 and therefore qt =8. Applying the generalized 

equation in (4) we have (Ω𝒔)  =  [(𝟖)
𝟐] /{[𝟒]𝟐 + [𝟒]𝟐 }=2. Since 𝒒𝟏 = 𝒒𝟐 , we could also use (7) 

directly to have (𝟐)𝟐−𝟏 = 𝟐                 

  Example 2: k =2, 𝒒𝟏 = 𝟒, 𝒒𝟐 = 𝟑 

This example is motivated by the practical considerations of the SLUM model described in section 

2.10 and also in (Abiud W . M et al, 2015), where the number of QoS at the layer 1 ( the Service 

Consumer Utility Maximization layer) is 4 i.e reputation, security, service execution duration and 

service access cost, and three QoS attributes at the layer 2 ( Service Provider Utility Maximization 

layer) i.e reliability, availability and throughput. Note that according to the SLUM model [24], the 

number of QoS attributes at either layer could be varied based on the practical guidelines in [24]. 

Since 𝒒𝟏 > 𝒒𝟐 , 𝑟 =
𝒒𝟏

𝒒𝟐
= 𝟏. 𝟑𝟑𝟑  and Ω =  [(𝟕)𝟐] /{[𝟒]𝟐 + [𝟑]𝟐 }=49/25 = 1.96. Notice that 

𝒓 = 𝟏. 𝟑𝟑𝟑 ≈ 𝟏 𝑎𝑛𝑑 Ω = 𝟏. 𝟗𝟔 ≈ 𝟐 .    

Example 3: k =2, 𝒒𝟏 = 𝟔, 𝒒𝟐 = 𝟏 

This is a hypothetical example where layer 1 has six QoS attributes and layer 2 has only one QoS 

attribute – it demonstrates the effect of a high degree of imbalance between the number of QoS 

attributes in the two layers on the magnitude of theoretical speedup of SLUM. Here we have 𝒓 =

𝒒𝒕 − 𝟏 = 𝟔 and Ω =  [(𝟕)𝟐] /{[𝟔]𝟐 + [𝟏]𝟐 }=49/43 = 1.13. Notice that three QoS attributes at the 

layer 2 (Service Provider Utility Maximization layer) i.e reliability, availability and throughput. 

Note that according to the SLUM model [24], the number of QoS attributes at either layer could 

be varied based on the practical guidelines in [24]. Since 𝒒𝟏 > 𝒒𝟐 , 𝑟 =
𝒒𝟏

𝒒𝟐
= 𝟏. 𝟑𝟑𝟑  and Ω =

 [(𝟕)𝟐] /{[𝟒]𝟐 + [𝟑]𝟐 }=49/25 = 1.96. Notice 𝑟  has reached the limiting value and Ω = 1.333  is 

much closer to 1 than to (𝟐)𝒌−𝟏 or 2.         

2.13.1.2 Deriving Relative Speedup with respect to L-MIP, Ωs Using L-Hospital’s Rule 

Following the procedure of the previous section, from equation 2.41, (Ω𝒍) is given by equation 

2.44. 
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            (Ω𝒍) = 
𝑛𝑘

((ώ1)𝑘+(ώ2)𝑘)(𝑛𝑘)
                                                                   (2.44).                             

In equation 2.44, we see that the denominator high order term (𝑛𝑘) dominates the numerator term 

𝑛 as k→∞. Hence (Ω𝒍) < 𝟏 . The conclusion is the L-MIP is much faster than SLUM under ρ = 1 

2.12.2 Special Case: Composite Service Phase Transition Rate 𝛒 = 𝟎 

 

When ρ = 0, it implies that in equation 2.41, ώ2 = 0.  Equation 2.41 then transforms to equation 

2.45 

(Ω𝒔) =
𝒏𝒌

((ώ𝟏)𝒌)(𝒏𝒌)
  =  

𝟏

((ώ𝟏)𝒌)
    =

(𝒒𝟏 +𝒒𝟐 )
𝒌

((𝒒𝟏)𝒌)
                                                             (2.45)                                                                                          

Since, 
(𝒒𝟏 +𝒒𝟐 )

𝒌

≫ ((𝒒𝟏)
𝒌)  , then     (Ω𝑠) > 1 .   For  𝒒𝟏 = 𝒒𝟐    equation 2.46 follows.                                                                            

(Ω𝑠)   =
(𝒒𝟏 +𝒒𝟐 )

𝒌

((𝒒𝟏)𝒌)
=

(𝟐𝒒𝟏  )
𝒌

((𝒒𝟏)𝒌)
= (𝟐 )𝒌                      (2.46)                                                                                      

Recall from equation 2.43 that when   𝛒 = 1,  (Ω𝒔) = (2)
𝑘−1 < (2 )𝑘 . Thus the conclusion is that 

as the transition rate approaches 0, the speedup of SLUM relative to SMIP tends to two times 

larger than when the transition rate tends towards 1.    For instance, when k=2 and = 1 , (Ω𝑠) = 2, 

while when k=2 and 𝛒 = 0  , (Ω𝑠) = 4.  Remember that 𝛒 = 0 means infeasibility and therefore 

hitting the ceiling of (𝟐 )𝒌 in practice might not be possible. 

Similarly, when = 0 , Ω𝑙 is given by 2.47. 

(Ω𝒔) =
𝒏𝒌

((ώ𝟏)𝒌)(𝒏𝒌)
                                                          (2.47)                                                              

Again from equation 2.47, we see that SLUM is much slower in performance compared to L-MIP. 

2.12.3 Generalized Case: Composite Service Phase Transition Rate, 𝟎 ≤ 𝛒 ≤ 𝟏 

Before the start of SCUM optimization, there are 𝒏𝒌  candidate composite webservices, and as 

usual the computational effort is upper bounded by 𝒏𝒌 .  At the end of SCUM optimization, for 

each workflow task, some webservices might be eliminated early. As defined earlier  ∊I is the 

number of webservices eliminated early against the ith task at the SCUM layer ,where (∊𝑖) ≥ 0. 

Thus, at the end of SCUM layer optimization, for each task, (n−∊𝑖) candidate webservices got 



95 
 

promoted for a second round optimization at layer 2. Therefore the total number of composite 

webservices promoted to the SCUM layer is (n−∊1) ∗  (n−∊2) ∗ … ,∗  (n−∊𝑘) = ∏ (n−∊𝑖)
𝑘
1  . It 

follows that the total computational effort with elimination in consideration is given by equation 

2.48    (𝒏𝒌(𝒒𝟏/𝒒𝒕 )
𝒌 + ∏ (n−∊𝑖)

𝑘
1 (𝒒𝟐/𝒒𝒕 )

𝑘) Therefore the generalized function of the speedup 

of SLUM with respect to S-MIP under 0 ≤ ρ ≤ 1 is captured in equation 2.49. 

(Ω𝒔) =
𝒏𝒌

 (𝒏𝒌(𝒒𝟏/𝒒𝒕 )𝒌+ ∏ (𝐧−∊𝒊)
𝒌
𝟏 (𝒒𝟐/𝒒𝒕 )𝒌)

                     (2.48)                        

By dividing the numerator and the denominator of the R.H.S of equation 2.48 by 𝒏𝒌  we get 

equation 2.49  

(Ω𝒔) =
𝟏

 (𝒒𝟏/𝒒𝒕 )𝒌+  (𝒒𝟐/𝒒𝒕 )𝒌  (∏ (𝐧−∊𝒊)
𝒌
𝟏 )/(𝒏𝒌)

         (2.49)                                         

In equation 2.49, the ratio  (∏ (n−∊𝑖)
𝑘
1 )/(𝒏𝒌) happens to be the composite service phase transition 

rate as defined in thesis in table 2.11. Hence in a more compact form, equation 2.49 could be re-

written as equation 2.50. 

(Ω𝒔) =
𝟏

 (𝒒𝟏/𝒒𝒕 )𝒌+  𝛒(𝒒𝟐/𝒒𝒕 )𝒌  
 =   

(𝒒𝟏+𝒒𝟐)
𝒌

 (𝒒𝟏)𝒌+  𝛒(𝒒𝟐)𝒌  
                                                           (2.50)      

     When 𝑞1  ≈  𝑞2 , equation 2.50 transforms to equation 2.51.          

(Ω𝒔)  =   
(𝟐)𝒌(𝒒𝟏)

𝒌

 (𝒒𝟏)𝒌+  𝛒(𝒒𝟏)𝒌  
=   

(𝟐)𝒌

 𝟏+   𝛒
                    (2.51) 

                                           

From equation 2.51, we can deduce the following: 

i. Substituting ρ = 1 in the equation yields (Ω𝑠) =  (𝟐)
𝒌−𝟏 , which confirms equation 2.43 

ii. Substituting ρ = 0 in the equation yields (Ω𝑠) =  (𝟐)
𝒌 , which confirms equation 2.46 

iii. (Ω𝑠) has an inverse relationship with ρ and therefore for known k, a plot of the graph (Ω𝑠) 

vs ρ is predicted to be a decreasing function. 
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2.13 Chapter Summary 

This chapter reviewed the pertinent literature relevant to our research problem as defined in chapter 

one. Through the review, we established the key concepts and theories involved in dynamic 

webservice composition.  Mathematical models for the two well-known approaches to dynamic 

webservice composition: local planning and global planning were presented and discussed. We 

then went into the details of the Mixed Integer programming model formulation for the problem. 

The theory of Layering as Optimization Decomposition was presented. A survey of related work 

was discussed and the gaps identified.  We presented our proposed model SLUM that is based on 

mixed integer programming and Layering as Optimization Decomposition.  We gave an account 

of the philosophy of the design behind it. This was followed by details of the mathematical 

formulations of SLUM including a series of equations. We then gave a summary of the strengths 

and limitations our approach in qualitative terms. A list of research questions worth investigation 

were posed. Finally, theoretical results related to some of the research questions were established. 

The key highlights of this chapter are that:- 

i. Dynamic webservice composition remains NP hard multiple criteria decision problem. 

ii. There exists gaps in the state of the art: - either a strategy is very efficient but does not support 

global constraints or can support global constraints but very inefficient. All strategies require 

the user to capture all the critical QoS constraints. 

iii. The proposed model SLUM bridges the above gaps. It does not require a user to specify all 

critical QoS constraints.  

iv. From the theoretical results of section 2.14, SLUM is predicted to be much faster than the 

standard global planning mixed integer programming models on average. The average 

speedup of SLUM with respect to S-MIP could be on the interval [(𝟐)𝒌−𝟏 , (𝟐)𝒌] where k is 

the number of sequential workflow tasks. 

v. From the theoretical results in section 2.14, SLUM could be much slower than the local 

planning strategy  

vi. From the analytic considerations of section 2.10 and 2.11, SLUM could be less optimal on 

average than S-MIP. At the same time, SLUM could be more optimal than L-MIP. 
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In the next chapter, we describe the experimental methodology that was used to validate our 

analytic and theoretical claims about our model and to answer the research questions stated in this 

chapter. 
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3 CHAPTER 3: METHODOLOGY 

In this chapter, in section 3.1, we first give a summary of the research process that was followed 

to pursue the research objectives and to answer the research questions that were outlined in chapter 

one.  In section 3.2, we detail research design followed. Section 3.3 outlines the tools that were 

used to implement the three mixed integer programming optimization algorithms as well as the 

tools that were used to conduct simulations. In section 3.4, we discuss the methods of data analysis 

and interpretation. A summary of the chapter is given in section 3.5. 

3.1 The Research Process 

 

In line with the research objectives and research questions in chapter one, the study involved the 

design of a new of optimization model called SLUM and the evaluation of performance of the 

model against two related alternative optimization algorithms – S-MIP and L-MIP. According to 

Hoos, 2003), (Bartz-Beielstein & Preub, 2014), (Barr, 2001), a general process model 

recommended for the performance evaluation of optimization algorithms is shown in figure 9. This 

process model has been widely adopted in studies such as (Coffin & Saltzman. 2000), (Hoos, 

2003), (Hoos, 2009), (Hoos et al, 2014), (Mu & Hoos, 2015and Goldsmith in (Goldsmith Fredrick 

Simon, 2009), (Levitin, 2011), (Nudelman, 2005). This study also adopted the process model in 

pursuit of the research objectives and the research questions. 

 

 This study adopted both theoretical and empirical methods in the analysis of the runtime efficiency 

and solution quality of S-MIP and L-MIP.  
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 Figure 9: Research Process Framework, Source (Hoos , 2003 ; Seogewic, 2009) 

 

In table 3 below, we highlight in summary, how the tasks undertaken in this study map onto the 

overall research process framework in figure 9 above. 

 

Table 11:  Outline of the Overall Research Process adopted by the Study. Source (Hoos 2003 ; Seogewic, 2009) 

  Process Step Approach in this study 

1 Design a theoretic model/Algorithm In line with our first research objective, through literature 

review, the study designed a two layer MIP model. The output 

of this phase was the SLUM model. See section 2.9 

2 Identify performance evaluation 

objectives 

The performance evaluation objectives are directly related to 

our second research objective and to the six research questions 

RQ1.1, RQ1.2, RQ 1.3, RQ1.4, RQ 2.1 & RQ 2.2. See section 

3.1.1 for more details 

3 Identify Performance Metrics With respect to our second research objective, two metrics were 

identified – runtime efficiency and solution quality. The choice 

for of these metrics is explained in more detailed in section  3.2 

& section 3.3 for details 

4 Implement Algorithm  
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 Involved choosing an appropriate optimization modelling tool. 

In the study, we chose the Java Optimization Modeler (JOM). 

See details in section 3.4. 

 

5 Selection of Benchmarks This involved selecting sample problem instances that are used 

as subjects to aid in the evaluation. Our study used synthetically 

generated instances. See section 3.2 & 3.4 for details 

6 Define Experimental Protocol For experimental evaluation, this involves the procedure 

followed in collecting performance data e.g the system 

environment, how measures were recorded and so on. We 

describe this under the section 3.5 titled  “experiment setup”  

7 Define performance data analysis 

methods 

The study adopted both theoretic performance analysis (given 

in section  rigorous inferential statistical analysis , numerical & 

empirical algorithmic complexity analysis based on regression 

analysis,  

8 Conduct Experiments Involved performing experiments to collect the performance 

data and analysis of the results, interpreting the results and 

comparing the empirical results with the theoretic performance 

models and or previous results. See chapter four. 

 

3.2 Research Design 

This study sought to answer the research question below. 

i. Research Questions Related to Runtime Efficiency 

RQ1:   For a composite webservice selection problem having a workflow with k tasks and v 

alternative webservices per task, how does the runtime efficiency of SLUM compare with that of 

S-MIP and L-MIP when each is used to solve the problem?   The specific research questions arising 

from this question are: 

RQ1.1: How does the running time of SLUM grow as the number of service providers per task 

increase? 

RQ1.2: How does the running time growth of SLUM compare with that of S-MIP and L-MIP? 

RQ1.3:  How much speedup is achievable when using SLUM over S-MIP to autogenerate 

composite webservices given a business workflow having n webservices per task? 
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RQ1.4: What is the minimum number of service providers per workflow task that a virtual 

enterprise broker needs to have in order to benefit from the relative efficiency of SLUM when 

compared to S-MIP? 

ii. Research Questions Related to Solution Quality 

  RQ2:  How does the average solution quality of SLUM compare with that of L-MIP and S-MIP?  

This leads us to the following specific research questions? 

RQ2.1: What is the average relative solution quality (percentage accuracy of quality) of 

the composite webservices generated by SLUM relative to S-MIP? 

RQ2.2: What is the percentage difference in the relative solution quality by SLUM relative to L-

MIP? 

The researcher adopted a scientific research approach to answer research question RQ1 which 

relates to runtime efficiency and an empirical approach to answer research question RQ2 which 

relates to solution quality. 

 

Scientific approach to performance evaluation of computational algorithms combines both 

theoretical models and experimental evaluation (Coffin & Saltzman, 2000; Hoos, 2003; Seogewick 

& Flajolet, 2009).  In scientific approach, a theoretical model is developed and then experiments 

are performed to verify whether the theoretical model holds in practice (Coffin & Saltzman, 2000; 

Hoos, 2003; Seogewick & Flajolet,, 2009).  Scientific approach has the advantages of both 

theoretical and empirical approach in that the empirical results can be checked for consistency with 

the theoretical model and on the other hand, the practical performance limitations that cannot be 

detected theoretically can be detected through real problem instances (Coffin & Saltzman, 2000; 

Hoos, 2003; Seogewick & Flajolet,, 2009).  

 

In the theoretical approach, a mathematical model is developed that characterizes the performance 

behaviour of the algorithm in terms of the problem input size, and the algorithm is analyzed within 

the model (Seogewick & Flajolet,, 2009). The analysis could make use of asymptotic worst case 

analysis, average case analysis, and differential calculus using L-Hospital’s Rule. The advantage 

of theoretical analysis approach is its rigor and its independence of implementation platform 

details. Secondly, theoretical models are not susceptible to experimental bias and experimental 
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errors. The challenge of theoretical approach is how to choose a good model that is realistic, and 

the need for mathematical details (Seogewick & Flajolet,, 2009). A second weakness of the method 

is that some performance properties of an algorithm can be difficult to model mathematically.   

 

Based on the rigor of theoretical analysis, this study conducted a theoretic performance asssement 

of the runtime efficiency of SLUM, S-MIP and L-MIP and attempted to compare the efficiency of 

the three models. From the theoretical perspective, the study attempted to answer research 

questions RQ1.1, RQ 1.2 and RQ 1.3 as per section 2.12. The key results were: 

i. The generic runtime efficiency model for SLUM is given by (𝒏𝒌(
𝟏

𝟐
)𝒌 +

 ∏ (n−∊𝑖)
𝑘
1 (

𝟏

𝟐
)𝑘) and that of S-MIP is given by 𝒏𝒌  and that of L-MIP is 𝒏𝒌.  Here, 

we see that L-MIP is polynomial time and many times faster than both SLUM and S-MIP. 

Both S-MIP and SLUM are likely to be exponential in 𝑘. However, since (𝒏𝒌(
𝟏

𝟐
)𝒌 +

 ∏ (n−∊𝑖)
𝑘
1 (

𝟏

𝟐
)
𝑘
≪ 𝒏𝒌   for large enough 𝑛.  

SLUM is generally faster than S-MIP by (Ω𝑠) =
(𝟐)

𝒌

 𝟏+   (𝒏𝒌/(∏ (𝐧−∊𝒊)
𝒌
𝟏 ))

   or (Ω𝒔) =
(𝟐)

𝒌

 𝟏+   𝛒
  on 

average. Where 𝛒 = (𝒏𝒌/(∏ (𝐧−∊𝒊)
𝒌
𝟏 ).  And since 𝛒 is on the interval [0,1], the function 

(Ω𝒔) =
(𝟐)

𝒌

 𝟏+   (𝒏𝒌/(∏ (𝐧−∊𝒊)
𝒌
𝟏 ))

   has values on the interval [(𝟐)𝒌−𝟏, (𝟐)𝒌] .  

 

These theoretical results show that the speedup (Ω𝑠) attainable by SLUM relative to S-MIP on 

average lies on the interval [ 𝟐𝒌−𝟏 ,  𝟐𝒌]   where k is the number of sequential workflow tasks.   

The theoretical results also reveal that speedup in between the interval depends on the parameter 

ρ, which we defined as the “composite service phase transition rate”. So for instance when k=2, 

the average speedup of SLUM with respect to S-MIP is expected to be in the range [2, 4], which 

is a significant performance gain.  These theoretical results are useful and could provide a baseline 

for benchmarking the results obtained through experimentation. 
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However, the theoretical analysis was not a sufficient means of evaluating the runtime performance 

of SLUM and the benchmark algorithms because of the earlier mentioned limitations of theoretical 

analysis. For this reason, we sought the empirical approach as a complementary method because : 

i. In attempting to answer RQ2, the study sought to investigate how the performance of 

SLUM and S-MIP compare initially for small values of n. Theoretical analysis cannot 

detect some performance characteristics of an algorithm that could very useful in 

practice. Empirical approach provide some details that highly generalized 

mathematical models cannot.  For example, an algorithm A that analytically is idealized 

to be asymptotically better than another algorithm B could be worse in performance 

initially or even on average when tested on real problem instances. Even better, the two 

algorithms A and B could be equally bad or good asymptotically, but in practice, one 

of them could be better than the other. Because asymptotic analysis might be irrelevant 

for problems of practical essence (Hoos et al, 2003; Seogewick, & Flajolet, 2009), 

(Goldsmith Fredrick Simon, 2009), it’s important to analyze initial as well average case 

performance of an algorithm empirically. By adopting an empirical approach, we 

wanted to understand the conditions under which SLUM scales better than the baseline 

algorithm or performs worse than the baseline.  

ii. The theoretical approach could not address the research question RQ1.4: What is the 

minimum number of service providers per workflow task that a virtual enterprise 

broker needs to have in order to benefit from the relative efficiency of SLUM when 

compared to S-MIP?. 

iii. Empirical analysis reflects real life implementations taking into platform dependent 

factors, something that theoretical analysis falls short of (Hoos et al, 2003). Because of 

the possibility of overgeneralizing when using theoretical analysis, the empirical 

approach was followed as a tool of validating the theoretical/mathematical model. In 

this case the two approaches become complementary. Coffin & Saltzman (200) notes 

that theoretical analysis and empirical analysis can be used to complement each other. 

Coffin & Saltzman (2000) for example notes that empirical performance models (EPM) 

for an algorithm’s running time could be developed statistically to serve as an average 

case equivalent of the theoretical running model. 
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Despite the foregoing justification for the use of empirical methodology, the empirical method has 

a number of shortcomings that threaten validity and reproducibility of experiments, especially 

where performance efficiency is concerned. Ahuja & Orlin (1996) for instance, remarks that 

empirical studies involving CPU running time as a measure of algorithm performance suffer from 

multiple sources of variability: programming language used, compiler, computer hardware, the 

approach used to encode the algorithms into computer programs (which depends on the skill of 

the programmer), problem input size parameter combinations and whether or not at the time of 

measurements, other users were engaging the computing hardware that is used to execute the 

experiments.  

 

The study did not use theoretical analysis despite its advantages, to evaluate and analyze 

performance relating to solution quality because it was too complex if not impossible to model the 

solution quality mathematically as a function problem input size. This is because the solution 

quality of an optimization algorithm depends on various other parameters such as the statistical 

structure of the problem instance, the number of constraints, the left and right hand side 

expressions of the constraints among others. Therefore, we were unable to answer research 

question two using this approach. A majority of existing research on optimization algorithms in 

general and composite webservice selection algorithms in particular use an empirical approach to 

measuring the solution quality of an algorithm ( see for example Zeng et al, 2004), ( Ardagna & 

Penci, 2005), ( Mulongo et al, 2016). 

 

In section 3.2.1 we illuminate more on the research design concerned with runtime performance 

efficiency evaluation and in section 3.2.2 we shade more light on the research design relating to 

solution quality. Issues discussed under each of the subsections are the sampling, sample size, 

number of runs, dependent and independent variables. 
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3.2.1 Runtime Efficiency Study 

     

3.2.1.1 Algorithms to be Evaluated. 

 

The algorithms that were compared were S-MIP, L-MIP and S-LUM. Recall that all the three 

algorithms use Mixed Integer Programming (MIP). Note also that both S-MIP and L-MIP are both 

flat structured except that S-MIP uses global planning while L-MIP uses local planning. SLUM 

on the other hand, uses global planning like S-MIP unlike the rest is two layered. 

3.2.1.2 Dependent and Independent variables  

 

The dependent variable in respect of runtime efficiency was CPU running time. It’s the most 

widely used variable for measuring efficiency of algorithms empirically. See section 3.3 for a 

justification on the choice. 

 

The independent variables can be inferred from the theoretical performance models derived 

theoretically. Based on the theoretical model (𝒏𝒌(
𝟏

𝟐
)𝒌 + ∏ (n−∊𝑖)

𝑘
1 (

𝟏

𝟐
)𝑘), there are three 

variables that could be varied while the rest are fixed and the impact on the performance of SLUM 

relative to the other two investigated. i.e , 𝒌, n, ∊𝑖 . However, there are two issues to be deal 

with : 

i. The variable ∊𝑖  is also a variable. That’s, the number of service providers eliminated 

at layer might not be the same for each task. Thus for 𝒌 the number of eliminated 

service providers are ∊1., ∊2,  …, ∊𝑘.   Unfortunately, ∊𝑖  is not a variable you 

can directly set a priori since the number of services to be eliminated is further 

dependent on the problem instances at hand and the optimization constraint expressions 

and the value of the left hand side (L.H.S) of the constraint expression. 

ii.  And even if these parameters remained unchanged, it’s not still possible to know 

beforehand what the values of ∊1., ∊2,  …, ∊𝑘 would be until the experiments are 
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run. 

The first issue was overcome by having to consider the joint effect of ∊1., ∊2,  …, ∊𝑘  as 

implied in the (𝒏𝒌(
𝟏

𝟐
)𝒌 + ∏ (n−∊𝑖)

𝑘
1 (

𝟏

𝟐
)𝑘 ). i.e we can investigate the effect 

∏ (n−∊𝑖)
𝑘
1  on the runtime performance.  However, recall that the ratio 𝒏𝒌/∏ (n−∊𝑖)

𝑘
1  is 

the composite phase transition rate 𝛒.  Thus in this study, the effect of the 𝛒 at a fixed n and k 

was investigated as opposed to ∊𝑖.  

 

This study will restricted the value of k at 2 and hence maintained two independent variables for 

two reasons. Firstly, 𝑘 = 2  is the smallest size of any business workflow required for webservice 

composition. Given that theoretically, we have an idea that both SLUM and S-MIP could have an 

exponential runtime. By maintain k at the smallest possible value, and investigating the effect of 

varying the number of service providers per task, if turns out that SLUM and S-MIP are empirically 

exponential in runtime growth on a two task workflow, then their performance for larger k values 

cannot be any better. This observation lets us to comprehensively test the impact of change in the 

number of service providers on the runtime efficiency. Note that this research is about dynamic 

webservice composition within virtual organizations, Virtual Organizations would typically span 

the global (Rabelo et al, 2008) and likely to be operating tens to thousands of service providers per 

task (Mulongo et al, 2015;2016a). On the other hand, the number of workflow tasks k are likely to 

be much smaller the number of service providers per task, especially because virtual organizations 

by their real motivation of existence have very lean business processes in their service delivery 

(Molina & Flores, 1999). The third reason is that in order to answer the research questions, 

sufficient samples of each of the three variables would be needed in order to sufficiently make a 

conclusion about the effect each of the variables on the response time while the other two are fixed. 

For example, based on existing studies such as (Zeng et al, 2004) at least eight samples of n would 

be required. This study introduces another dimension, the 𝛒 value which lies on the range [0,1]. 

Although there are no previous studies that investigated the effect of 𝛒 on runtime efficiency , we 

theoretically already know that when this parameter is set at the extreme values have the speedup 

as [(𝟐)𝒌−𝟏, (𝟐)𝒌]  at 𝛒 = 𝟏  and 𝛒 = 𝟎  respectively. We would have to have other 𝛒 
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values chosen between 0 and 1 fairly across the interval in order to investigate the response time 

behaviour of SLUM when  𝛒 tends to 1, tends to 0, is somewhere midway between zero and 0.5 

and midway between 0.5 and 1 and near 0.5. These are 5 additional values in addition to 0 and 1 

bringing this number to 7 different values of 𝛒.  

This kind of setup involving only two variables (n and 𝛒) would require 8 by 7 = 56 experiments 

on one treatment (algorithm). Since we are comparing 3 algorithms, it would require 56 by 3 =168 

experiments at the very minimum. If we were to further vary k say to 3, 4 and 5, this would result 

to 504 experiments. The problem is not yet over. Since we analytically see that two of the 

algorithms have an exponential scalability in k, it would have been time consuming to perform the 

experiments on standard computers.  As will be seen shortly, this study in fact performed 336 

experiments 112 experiments for each algorithm. 

 

 It could be argued that from 
(𝟐)𝒌

 𝟏+   𝛒
  , the contribution of k to the relative speedup of SLUM is much 

larger than the contribution 𝛒, and therefore fix p throughout and vary 𝑘. This is true. However, in 

addition to the considerations in the foregoing paragraphs about why we chose to fix k at 2, this 

study the first one to attempt to define the concept of composite service transition rate and its 

impact on the runtime efficiency. Although a generic theoretic speedup model 
(𝟐)𝒌

 𝟏+   𝛒
  was derived 

in this study, it was desirable to investigate experimentally how 𝛒 impacts runtime efficiency. In 

any case, at a fixed k, the impact of varying 𝛒 between 0 and 1 has a significant performance gain 

over S-MIP, ranging between 200% to 400%. 

3.2.1.3 Setting and Computing the Value of 𝝆 Experimentally 

 

The issue that we cannot fix 𝛒  .directly before experiment run as identified in section 3.2.1.1 

remains. We don’t know how many services per task will be eliminated and hence we can’t fix 𝛒  

upfront. The study overcame this problem in the following way. At a fixed n and k, through a trial 

and error process, the R.H.S values of the one of the SCUM optimization constraints was adjusted, 
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then experiments were performed. Recall from chapter two section 2.9, that as an example, the 

following was one of the constraint expression for the total response time a service consumer 

would be willing to wait.  (∑ 𝒅𝒔𝒊=𝑵  
𝒊=𝟏    )  ≤  𝑫  (see equation 2.32).  While holding the rest of the 

constraints R.H.S, D is adjusted, experiments run, then the number of service providers eliminated 

for task 1, task 2 and so on is observed and recorded. Consequently, , 𝛒 = 𝒏𝒌/∏ (n−∊𝑖)
𝑘
1  

is then computed. Note that, we could adjust the R.H.s values of more than one constraint 

simultaneously, provided we get the desired 𝛒 value at a given. Thus for example, let n=10, k=2 

for some problem instance. Therefore, initially, there are 10 webservices per task. Say by setting 

(∑ 𝒅𝒔𝒊=𝑵  
𝒊=𝟏    )  ≤  𝟏𝟎  , after phase one optimization process we have that ∊1.= 4  , ∊1.= 2 , 

∏ (n−∊𝑖)
𝑘
1 = (10 − 4) ∗ (10 − 2) = 48 , thus ρ =

48

100
= 0.48 . Thus, the 

performance of SLUM at n=10, k=2 , ρ = 0.48  is reported. Having determined the 

combination of constraint values that yielded the ρ = 0.48 , the experiments would be repeated 

with n=10, k=2 , (∑ 𝒅𝒔𝒊=𝑵  
𝒊=𝟏    )  ≤  𝑫   for a number of runs for SLUM and then repeated while n=10, 

k=2 and D is fixed for S-MIP and L-MIP. 

 

3.2.1.4 Sampling the values for the phase transition rate 𝝆   
    As said earlier, no previous study examines the effect of 𝛒 empirically on the runtime efficiency 

of SLUM except our study in (Mulongo et al, 2016a). Thus the choice of the number of values of  

𝛒  and which values of ρ should be sampled from the interval [0,1] was entirely guided by the 

researcher. Nevertheless, a guiding principle adopted by the researcher as explained in section 

3.2.1.1 is that, through the trial and error process described in section 3.2.1.4, for at a fixed n and 

k=2,  a 𝝆 tending to zero was sought. Note that while theoretically 𝝆 can assume zero, in practice 

a 𝝆 value of zero is not possible as this would be signify lack of feasibility in the first phase of 

optimization and the optimization process would in this case terminate prematurely. This value 

helped investigate whether in practice, as  𝝆 → 𝟎, at k=2, the relative speedup tends to (𝟐)𝒌 

=4. Similarly, the researcher through trial and error, set a value of 𝝆 = 𝟏, so that we investigate 
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the convergence of the speedup of SLUM to (𝟐)𝒌−𝟏 =2. Other values were set as follows. 

Some values above 0.5, a value closer to or equal to 0.5, and some values below 0.5. This was 

done through an exploratory process. Through this trial and error process, the followed  𝝆 values 

of 0.0296,0.064, 0.13, 0.36, 0.45 and 0.6 were obtained. Note that since this is a two task workflow, 

getting the square root of each of the 𝜌  values, would give the average number of atomic 

webservices per task that  were promoted per task from phase one to phase two. So that at 𝝆 = 

0.0296, 0.13, 0.36, 0.45 and 0.6, 1the average number service providers promoted to layer are 

respectively 17%, 25%,  36%,  60%,67%,  77%, 100% respectively. The researcher considered 

this sample fairly representative and sufficient to infer implausible performance trend attributable 

to 𝝆. 

3.2.1.5  Sampling the values of the number of service providers per workflow task 𝒏   
 

When benchmarking algorithms in terms of running time, the three issues to be considered are:- 1) 

instance hardness- the researcher should focus on hard instances, 2) instance size. A range should 

be provided for scaling studies and, 3) instance type. The researcher ought to provide a variety of 

problem instances (Hoos, 2003; Barr, 2001). Problem instance type or variety can be achieved 

through the use of real application instances or ensembles of instances from random distributions 

Hoos, 2003).   

 

The researcher chose 16 problem instances ranging from the simplest having five candidate 

webservices per workflow task, to the hardest having 80 candidate webservices per workflow. In 

between the two were instances whose size was a multiple of five. Therefore problem instances of 

size n=5, 10, 15,… 80 were considered. The sixteen problem instances provide an adequate variety, 

given that in a similar study in (Zeng et al, 2004), four problem instances were used. Similarly, the 

hardness of the problems ranging from 5 to 80 is sufficient since in related such as (Zeng et al, 

2004), the problem hardness in terms of number of webservices per task is varied from 10 to 40. 

However, it’s worth noting, that while the instance type (statistical structure) affects the running 

time of randomized algorithms, it does not affect the running time of exact algorithms (Mulongo 

et al, 2016).  Since all the three algorithms are exact algorithms, our focus was on how variation 
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in the problem instance size affects the running time of each of the three algorithms. In addition to 

the considerations of previous related studies, the sample size chosen is sufficient for analysis 

given that as explained in section 3.3, the study adopted rigorous inferential statistical analysis 

techniques including empirical relative complexity analysis. These methods are powerful tools for 

inferring runtime performance differences without requiring large samples (Coffin & Saltzman, 

2016). This so because, for runtime growth, it’s the size of the problem (in this case the number of 

service providers per task) that matters more than the number of samples i.e few samples with 

reasonable empirical hardness are more desirable than many sample with low empirical hardness. 

3.2.1.6 Problem Instances – the Subjects.  
 

Problem instances variety can be achieved through the use of real application instances or 

ensembles of instances from random distributions (Hoos, 2003). In this study, a problem instance 

is the graph  𝑮𝟏=   

{
 
 

 
 [
〈𝟎. 𝟗𝟗, 𝟎. 𝟗𝟓, 𝟏𝟎𝟎𝟎, 𝟓, 𝟒, 𝟏𝟎, 𝟐𝟎〉,
〈𝟎. 𝟗𝟏, 𝟎. 𝟖𝟓, 𝟖𝟎𝟎, 𝟑, 𝟑, 𝟐𝟎, 𝟓𝟎〉 ] ,

[
〈𝟎. 𝟗𝟎, 𝟎. 𝟖𝟖, 𝟏𝟎𝟎, 𝟑, 𝟒, 𝟒𝟎, 𝟐𝟎〉,
〈𝟎. 𝟗𝟓, 𝟎. 𝟗𝟎, 𝟖𝟎𝟎, 𝟓, 𝟓 𝟏𝟓, 𝟏𝟎〉,]

}
 
 

 
 

      in which the first matrix is a pool 

of functionally similar webservices assigned for task 1 and the second matrix is a pool of 

functionally similar webservices assigned to task 2. Therefore since we fixed the number of tasks 

at 2, each problem instance had exactly two matrices.  

 

Each vector within a matrix represent a sequence of different QoS values attached to a single 

webservice. Each vector has seven QoS values. The values are respectively reliability, availability, 

throughput, security, reputation, response time and service cost. The seven parameters as explained 

in chapter one, chapter two and specifically section 2.9, are the most widely used QoS parameters 

in the webservices research community due to their significance. The number of vectors per 

webservice is equivalent to n, the number of webservices per task. 

 

Therefore, each of the 16 problem instances mentioned in preceding section took the structure 

above, having 5 by 7 matrix, 10 by 7 matrix, 15 by 7 matrix …, 80 by 7 matrix.  
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To generate a problem instance with the above structure, two webservices were programmed in 

Java, each performing a different task in a composite workflow. Using SOAPUI, each of the 

service was replicated using the SOAPUI mock services feature. Each replica of the webservice 

would then generate a functionally similar real webservice. So for each webservice, 5 mock 

webservices, 10 mock webservices , …, 80 mock webservices were generated. Each mock 

webservice generated had a unique service endpoint. Using groovy scripts within each mock 

service, the QoS properties were simulated through randomization. For reliability and availability, 

each of the webservices was programmed to throw faults at random times and timeout, for response 

time, the webservices were programmed to delay for a random number of seconds. For security, 

random default values were assigned and so to reputation. Each webservice was invoked only once 

at ago to generate and report their vector of QoS values. The QoS vectors of the first 5 webservices 

for each task was saved to a unique file in the structure like the one above, the first 10, the 15 and 

so on. Therefore 80, different files generated. 

3.2.1.6  Runtime Performance Efficiency Metrics  
 

When measured empirically, the running time of an algorithm can be captured using CPU time or 

through the use of operations counts. The use of CPU running time often raises validity threats. 

Ahuja & Orlin (1996) for instance, remarks that empirical studies involving CPU running time as 

a measure of algorithm performance suffer from multiple sources of variability: programming 

language used, compiler, computer hardware, the approach used to encode the algorithms into 

computer programs (which depends on the skill of the programmer), problem input size parameter 

combinations and whether or not at the time of measurements, other users were engaging the 

computing hardware that is used to execute the experiments. Nevertheless, CPU running time still 

remains the most widely used method for measuring algorithm running time (Coffin & Saltzman, 

2000). On the other hand, operations count entails automatically counting the number of times an 

algorithm executes major operations (Ravindra et al, 1996). Specific methods of how to implement 

the operations count method empirically include the representative (bottleneck) operations counts 

method proposed in (Ahuja & Orlin (1996) and the trend-prof tool utilizing execution operation 

counts (Goldsmith Fredrick Simon, 2009). This method ideally targets to curtail the challenges of 

experimentations based on CPU running time. However, the execution operation counts approach 

is not devoid of limitations. In practice it might be difficult to establish which operations critically 
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affect performance and which ones are insignificant and should therefore be excluded (Mulongo 

et al, 2016). Moreover, because the counting of such operations is automated through a profiler 

such as the one in Goldsmith Fredrick Simon, 2009) the impact of the profiler on the program 

(system) under test may be another source of variability that would be equally elusive to isolate.  

 

This study adopted the CPU running time since its straight forward and popular. The mentioned 

validity issues due to CPU running time are addressed in the experiment design approach and in 

the choice of the analysis methods in section and respectively. The measurement units of time 

were “seconds”. The choice for “second” as a unit of measure is motivated by two reasons: 1) the 

second is the SI unit of time and 2) MIP algorithms take seconds to weeks to solve given problem 

instances (Ed Klotz, and Alexandra M. Newman , 2012)  therefore using the second is adequate 

enough to ensure high precision and resolution of time measurements. For each problem instance, 

the CPU running time was automatically tracked and recorded on successful termination of the 

optimization process.  

 

3.2.1.7  Experimental Protocol in Measuring  CPU Time  

In this section, we address several issues that need to be addressed during the actual processing of 

running the experiments in order to ensure validity of results.  

The time taken to find an optimal solution can be affected by the number of constraints. During 

experimentation, all problem instances as well constraint inequalities remained unaltered at a given 

combination of n, k and 𝝆 . The three algorithms were tested on the same problem instance, one 

at a time until the entire ensemble of problem instances were exhausted. Given that different 

sections of a program can take different times to execute, we only measured the time taken to for 

each of the algorithms to execute the function getBestComposite Service (int opt Mode) in each of 

the experiments. The Java function System.CurrentTimeMillis () was used to compute the time 

lapse. Secondly, we ensured that each time the experiment was conducted, the CPU and Memory 

Utilization of the computer used to conduct experiments remained fairly constant. We realized this 

by having only the default auto start system services and processes running and only our Java 

system prototype running during each experiment. Thirdly, the same computer was used 

throughout the experiments. The computer had the following specifications: LENOVO, Windows 
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Professional 64 bit (6.1, build 7601), Intel Pentium CPU B960, 2 CPUs @2.20 GHz, 2GB RAM, 

CPU Utilization, Physical Memory Utilization State at any one time fluctuated between 88% to 

93% at any one time, averaging about 90% (or 1.43 GB of 2GB).  

 

In addition to the above measures, to minimize effects of variance by chance in response time 

observed on different values of n, within and between the two treatments, for every problem 

instance, 10 consecutive measurements of time were taken one at time and the arithmetic average 

value recorded. This was achieved by executing the workflow 10 times repeatedly. Ten (10) was 

chosen because it’s statistically known that 4-10 repeated measurements are sufficient to 

significantly reduce the random errors observed on measurements due to uncertainties in the 

measurement environment. Moreover, for every problem instance, the time measurement on each 

of the algorithms was immediately successive. For example, at n=10, 10 successive measurements 

of time are taken on L-MIP, then 10 successive measurements on SLUM, then 10 successive 

measurements on S-MIP. The process is then repeated for n=15, n=20 etc. This protocol differs 

from the approach where for n=10, 15,20 .., 10 successive measurements are taken for L-MIP for 

each n, then the procedure repeated for SLUM and then S-MIP. The first approach minimizes the 

time gap between when measurements on the same subject (problem instance) but on a different 

treatment (algorithm). This is meant to minimize the impact of intervening system state changes 

with the passage of time. To put this in context, suppose, at n=10, 20 ,30, 40, 50,60,70 ,L-MIP 

takes 5 seconds ,10 sec, 20 sec, 40 sec,  80 sec, 160, 320  sec to record ten time measures 

respectively, if the first method is used the 10 measurements at n=10 on SLUM would be recorded 

shortly after 5 seconds, while using the second approach, the 10 measurements at n=10 on SLUM 

would be recorded after 635 seconds or approximately 10 minutes. If the for some reason, the CPU 

memory utilization bursts within the 10 minutes delay, the pairwise comparison of the system 

response time when using L-MIP vs when using SLUM at n=10 would be somewhat biased. 

 

 

The same considerations as those stated in section 3.4.1 were taken into account when generating 

benchmarks for solution quality (SQ) comparison. Unlike in 3.4.1, where the focus is on the 

hardness, here the focus is how the SQ of SLUM and L-MIP compares on a variety of independent 

problem instances. Hence for SQ, 40 randomly generated problem instances having n=2, 3, 4, ..., 
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41 webservices per task were used. In section 3.5, the choice of 40 problem instances aided in the 

selection of appropriate statistical tests of significance as explained in section 3.5. 

 

3.2.2 Solution Quality Efficiency Study 

3.2.2.1 Algorithms to be Evaluated 

 

The algorithms that were compared were S-MIP, L-MIP and S-LUM. Recall that all the three 

algorithms use Mixed Integer Programming (MIP). Note also that both S-MIP and L-MIP are both 

flat structured except that S-MIP uses global planning while L-MIP uses local planning. SLUM 

on the other hand, uses global planning like S-MIP unlike the rest is two layered. Solution quality  

3.2.2.2 Solution Quality Performance Metrics  
 

A major goal of optimization algorithms is to generate a high quality solution from a large space 

of alternative solutions within a reasonable amount of time. A common method to gauge the 

solution quality of the solution value 𝑧 produced by algorithm 𝐴 (where A is hypothesized to be 

suboptimal) on some optimization problem instance 𝑝, is to compare the value 𝑧 against a global 

optimum value 𝑧∗ output by an algorithm 𝐵 that is known to produce a globally optimal solution 

value 𝑧∗ for every 𝑝 ∊ 𝑃. We know that the S-MIP algorithm has the property that for every 𝑝 ∊

𝑃, 𝑧∗ is output. Let 𝑧𝐵and 𝑧𝐿 be the solution values produced by SLUM and L-MIP on the same 

problem instance. We are interested in measuring the pairwise solution accuracy between 𝑧𝐵 and 

𝑧∗  and 𝑧𝐿  and 𝑧∗ . Two commonly used metrics for comparing a suboptimal or approximate 

algorithm with respect to an optimal one, in terms of solution accuracy are optimality ratio (OR) 

and relation solution quality (RSQ). The two metrics have been used previously in studies such as 

(Coffin & Saltzman, 2000) and Hoos, 2003). The quality metric is one of those discussed in (Eitan 

, 1981).  To make it more intuitive, we convert RSQ to a percentage by scaling it by 100 as per (1). 

We denote the RSQ of SLUM with respect to SLUM as RSQB and RSQ of L-MIP with respect to 

SLUM as RSQL so that (2) and (3) follows. The optimality ratio of L-MIP and SLUM are given 

by equations 3.4 and 3.5 respectively.  

RSQ = ([𝒛∗ − 𝒛 )/(𝒛∗)] ∗ 𝟏𝟎𝟎)                                           (3.1)   

RSQL = ([𝒛∗ − 𝒛𝑳 )/(𝒛∗)] ∗ 𝟏𝟎𝟎)                                        (3.2)   



115 
 

 RSQB = ([𝒛∗ − 𝒛𝑩 )/(𝒛∗)] ∗ 𝟏𝟎𝟎)                                         (3.3) 

  ORL = ([𝒛𝑳 )/(𝒛∗)] ∗ 𝟏𝟎𝟎)                                              (3.4)   

   ORB = ([𝒛𝑩 )/(𝒛∗)] ∗ 𝟏𝟎𝟎)                                            (3.5)     

 

3.2.2.3 Experimental Protocol in Measuring Solution Quality 

 

The solution quality produced by an optimization algorithm is bound to be affected by not only 

the number of constraints but also the coefficients of the constraint inequalities on the left hand 

size, the boundary values on the right hand side of the constraint inequalities, and the values within 

problem instances. We kept these factors invariant and same across the three treatment types during 

each experimental setup. There was no need for taking several repeated measurements of the 

solution values for each problem instance, since L-MIP, SLUM and S-MIP are exact algorithms 

that guarantee to output same solution for a given problem instance no matter how many times the 

algorithm is invoked on the same problem instance. This differs from probabilistic optimization 

algorithms that are bound to yield different solutions at different times, other factors kept constant. 

 

As noted earlier, the S-MIP (Zeng et al, 2004) algorithm guarantees global optimality while local 

planning has no guarantee for global optimality i.e it may yield suboptimal solutions, as 

experimentally illustrated in (Zeng et al, 2004). The SLUM algorithm in (Mulongo et al, 2015) is 

hypothesized not to find globally optimal solutions  at the “network level” in some cases since it 

does not consider all QoS attributes at ago, even though it does guarantee optimality within each 

layer (since global constraints across workflow tasks within a layer are considered). Thus both L-

MIP and SLUM are somewhat approximate optimization algorithms relative to S-MIP. Whether 

or not SLUM or L-MIP finds a global optimum and if not how close the suboptimal solution is 

from the global optimum may vary from problem instance to problem instance based on the 

structure of the problem instance.  To illustrate this, we will denote Gi as the input webservice QoS 

graph to a problem instance Pi.. Gi contains k webservice QoS matrices where matrix M1, M2 .., Mk 

corresponds to the set of webservices that can execute worklow task 1, task 2, task k 

correspondingly. The vectors within each matrix are of a fixed length v where v is the number of 

QoS attributes. Assume v=7 so the QoS attributes in consideration are the 7 QoS attributes 
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according to [48]. . For ease of readability, we use “{ }” to represent a graph, “[ ]” to represent a 

matrix within a graph, “〈 〉” to represent a vector within a matrix, “,” is used to separate vectors 

within a matrix, and matrices within a graph.  Let 𝐺1  and 𝐺2  be two webservice QoS graph 

instances defined according to equation 3.6 and equation 3.7. Examining the two graphs, G1  seems 

somewhat systematically and selectively chosen because in each matrix of G1, one QoS vector 

(webservice) dominates the other one on all the 7 QoS attributes such that  selecting the dominant 

(best) webservice from each matrix  using L-MIP yields a solution global solution. Similarly, 

selecting the best composite using SLUM will yield network wide global optimum because in layer 

1, vector 1 of matrix 1 will be chosen and in layer 2 the same combination will be chosen. Thus if 

for all problem instances, one vector in each matrix of the input webservice QoS graph dominates 

the rest on all QoS attributes, it would give a false impression that S-MIP, SLUM and L-MIP all 

yield globally optimal solutions all the time or all the three at least yield the same cost values 

(whether optimal or not) for all problem instances. 

     𝑮𝟏=   

{
 
 

 
 [
〈𝟎. 𝟗𝟗, 𝟎. 𝟗𝟓, 𝟏𝟎𝟎𝟎, 𝟓, 𝟒, 𝟏𝟎, 𝟐𝟎〉,
〈𝟎. 𝟗𝟏, 𝟎. 𝟖𝟓, 𝟖𝟎𝟎, 𝟑, 𝟑, 𝟐𝟎, 𝟓𝟎〉 ] ,

[
〈𝟎. 𝟗𝟎, 𝟎. 𝟖𝟖, 𝟏𝟎𝟎, 𝟑, 𝟒, 𝟒𝟎, 𝟐𝟎〉,
〈𝟎. 𝟗𝟓, 𝟎. 𝟗𝟎, 𝟖𝟎𝟎, 𝟓, 𝟓 𝟏𝟓, 𝟏𝟎〉,]

}
 
 

 
 

                 (3.6)               

 

     𝑮𝟐=   

{
 
 

 
 [
〈𝟎. 𝟗𝟏, 𝟎. 𝟖𝟏, 𝟏𝟎𝟎, 𝟓, 𝟏, 𝟏𝟎, 𝟐𝟎𝟎〉,
〈𝟎. 𝟗𝟕, 𝟎. 𝟕, 𝟖𝟎, 𝟏, 𝟒, 𝟒𝟎, 𝟏𝟎𝟎〉, ] ,

[
〈𝟎. 𝟗𝟎, 𝟎. 𝟖𝟑, 𝟏𝟎𝟎, 𝟐, 𝟓, 𝟒𝟎, 𝟖𝟎〉,
〈𝟎. 𝟖𝟗, 𝟎. 𝟗𝟔, 𝟏𝟎𝟎, 𝟓, 𝟒, 𝟐𝟎, 𝟗𝟓〉,]

}
 
 

 
 

                        (3.7)                  

 

On the other hand, contrary to G1, G2 appears to have a random structure and it’s not obvious which 

webservice within each task is better than the other since some are better than the other on some 

QoS attributes and worse on other QoS attributes. In this case, it’s likely that each of the three 

algorithms will yield different cost values. 

 

 Due to the sensitivity of solution quality to the structure of problem instances, to ensure 

plausibility of results on solution quality, for each problem instance Pi, the graph Gi was randomly 
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generated. Both internal and external validity of results as far solution quality is concerned was 

then ensured because (Mulongo et al, 2016): 

i. The QoS matrices within each graph instance are randomized eliminating statistical bias. 

Thus, any differences observed on objective function cost values on S-MIP, L-MIP and 

SLUM are not due to mere chance of the structure of the problem ,for example systematic 

dominance of one QoS vector over the rest for each workflow task. 

ii. Each graph instance is independently generated from the other and therefore any 

differences observed on optimality values across one graph instance is not dependent or 

related to the other. 

iii. The random graph instances generated have monotonically increasing number of QoS 

vectors (webservices) per task. From a solution quality perspective, this increases the 

variety of candidate solutions available. 

 

3.3 Algorithm Implementation   

The SLUM, L-MIP and S-MIP algorithms were all implemented in Java 7.0 using the Java 

Optimization Modeler (JOM)2 tool version 1.15 with a GLPK3 linear programming optimization 

solver. Each of these algorithms invoked a program function called getBestCompositeService (int 

optMode) where “optMode” denotes optimization type. The enumeration values for the argument 

is one of L-MIP=0, SLUM=1 and S-MIP=2. 

  

                                                           
2 www.net2plan.com/jom/ 
3 https://www.gnu.org/software/glpk/ 
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3.4 Data Analysis and Interpretation 

 

The study took a rigorous numerical and statistical approach to the analysis and interpretation of 

the performance differences of S-MIP, SLUM and L-MIP. Our methodology is mainly informed 

by the ideas in (Coffin & Saltzman, 2000), (Hoos, 2003; 2009; 2014), (Hoos & Mu, 2015), (Hoos 

& Mu, 2015) and Goldsmith in (Goldsmith Fredrick Simon, 2009), (Annay Levitin, 2011), 

(Nudelman, 2005). Using the ideas of (Coffin & Saltzman , 2000), (Nudelman, 2005), Hoos, 

2003), (Goldsmith Fredrick Simon , 2009), (Hoos, 2009), (Hoos & Mu (2015), (Levitin, 2011), for 

example, where appropriate, we derive statistical regression models through model fitting, that 

describe the empirical scaling behaviour of each of the algorithms with respect to  problem 

instances of monotonically increasing hardness. If the metric is running time, and where 

meaningful statistical scaling models relating the growth CPU time and the number of webservices 

per task are obtained, the performance comparison of the three algorithms is first done using the 

concept of empirical complexity (EC) as described in (Coffin & Saltzman , 2000) . EC gives 

running time performance bounds (empirically) without regard to constant terms, just as is with 

the case of theoretical algorithm analysis (see section 3.4.2.1). Secondly, where appropriate and 

based on the regression models obtained, L-Hospital’ Rule as described in (Levitin, 2011), is used 

to determine the average empirical performance of SLUM with respect to either S-MIP or L-MIP 

(see 3.4.2.2 for details). If the pairwise regression models of SLUM and S-MIP or SLUM and L-

MIP, satisfy the conditions in 3.4.2.3, the concept of empirical relative complexity (Coffin & 

Saltzman, 2000) is then used to quantify the initial as well the empirical asymptotic performance 

of SLUM with respect to S-MIP or SLUM with respect to  L-MIP. In addition to these techniques, 

we define some descriptive statistical measures of analysis for running time in 3.4.2.5 to augment 

the analysis. In case no meaningful statistical models for running time were obtained (unlikely to 

be the case based on the analytic considerations of chapter 1), then the use of sample means or 

medians coupled with normality or non-parametric tests as described in section 3.4.2.4 were 
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followed. We summarize the methods used to analyze runtime performance efficiency as follows: 

 

i. Statistical regression models (linear, polynomial and exponential) where fitted on data to 

capture the relationship between the CPU running time (in seconds) and the problem 

instance size (number of webservices per workflow task, with a fixed number of tasks). 

Goodness fit tests and significance tests were applied to the regression models. Regression 

analysis helped us to answer the research question RQ1.1: How does the running time of 

SLUM grow with increasing number of webservices per task?. The complexity class of our 

proposed method was determined and compared with that of the baseline and the 

alternative algorithms. 

ii. Empirical Relative Complexity and Empirical Relative Complexity Coefficients (Coffin & 

Saltzman, 2000) were used to compare the express the running time of the proposed 

algorithm as a function of the baseline algorithm, S-MIP i.e , using an equation of the form 

teB = β0 (teA)
β1

 ,where teB is the running time of SLUM , teA is the running time of S-MIP. β0 

is parameter showing how many times SLUM performs faster (or slower) than S-MIP 

initially ( small sized problem instances) while (teA)
β1 is the number of times SLUM is faster 

(or slower) than S-MIP asymptotically. To obtain the model teB = β0 (teA)
β1,  first the 

statistical regression models of both algorithms have to be obtained, and must each be 

linear after a log transformation. This method was used to address the question RQ1.2: 

How much speedup is achievable using SLUM over S-MIP?. Thus were able to determine 

how many times SLUM was slower or faster than S-MIP initially and asymptotically using 

this approach. 

iii. Differential Calculus based on the L-Hospital’s Rule:- We used this method to compute 

expected average speedup of the algorithm relative to S-MIP. This method also relied on 

the statistical functions obtained from regression analysis. The expected speedup values 

obtained empirically were compared to the theoretical speedup results described in chapter 

2 that were also computed using L-Hospital’s Rule. 

iv. Combining ii and iii above, other useful parameters were determined e.g what is the least 

of number of webservices (virtual enterprises) per workflow task is required for SLUM to 

be at least X times faster than S-MIP. 

v.  Sample Instantaneous Speedup was used to show the speedup of SLUM relative to S-MIP 
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at a particular value of n (Mulongo et al, 2016) 

vi. Speedup – Phase Transition Graphs (Mulongo et al, 2016) were used to show the 

relationship between the speedup of SLUM relative to S-MIP and various Composite 

Service Phase Transition Rates. 

vii.  Mean was used to summarize the sample speedup, and the solution quality of the 

algorithms for comparison purposes. For solution quality, parametric tests were used to test 

significance in difference of mean values 

viii.  Graphs were generally used to visualize trends. We also used bar graphs to depict solution 

quality of the algorithms. 

 

In regard to solution quality, if meaningful regression models of relative solution quality with 

respect to problem instance size (n) are derivable, the RSQ models could be used to describe the 

scaling behaviour of RSQ with respect to n for SLUM and L-MIP. Further, if a scatter plot of RSQB 

vs n and RSQL vs n or log RSQB  vs  n  and log RSQL  are strongly linear, then the slope test could 

be used to detect performance solution quality performance differences between L-MIP and 

SLUM. If no suitable model is derivable or the linearity condition is not satisfied, then either 

normality tests or nonparametric tests as described in section 3.4.1.2 were used to detect RSQ 

performance differences between the two algorithms. A similar approach is recommended by the 

authors in (Coffin & Saltzman, 2000) and the effectiveness of the approach illustrated by the same 

author on a wide range of optimization problems in (Coffin & Saltzman, 2000).  

 

3.4.1 Analysis and Interpretation of Relative Solution Quality and Optimality Ratio 

3.4.1.1 Detecting Solution Quality Difference between L-MIP and SLUM using Slope Test  

As said earlier, this test is conducted if linearity exists between both the pairs RSQL vs n and RSQB 

vs n or ln RSQL vs n and ln RSQB vs n.   Equation 3.8 was used to generalize the function describing 

the linear relation between RSQL vs or ln RSQL vs n, and equation 3.9 to mean the function 

describing the linear relation between RSQB vs n or ln RSQB vs n. 

 𝒚𝒊𝒏
𝟏  =  𝜷𝟎𝟏 + 𝜷𝟏𝟏𝒏 + €𝒏𝒊 ,                                          (3.8)                      

 𝒚𝒊𝒏
𝟐  = 𝜷𝟎𝟐 + 𝜷𝟏𝟐𝒏 + €𝒏𝒊 ,                       (3.9) 

Where  𝑦𝑖𝑛
1  = RSQL or 𝑦𝑖𝑛

1  = ln RSQL, 𝑦𝑖𝑛
2 =  RSQB or 𝑦𝑖𝑛

2 =  ln RSQB , 𝛽01  and 𝛽02  are the 
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intercepts representing heuristic effects (Coffin & Saltzman, 2000). , 𝛽11 and 𝛽12 are slopes, and 

€𝑛𝑖 are random variations. 

 

We set the null and alternative hypotheses in equation 3.10. If any of the null hypotheses is rejected, 

then the two algorithms differ in RSQ performance. Further if H0  in equation  3.11 is accepted, 

then it was concluded that the problem size effect on RSQL  is the same as the problem size effect 

on RSQB. Similarly if RSQB  in (10) is accepted, then the heuristic effect on RSQB  is equal on RSQ 

in both algorithms. 

 

 H0 : 𝜷𝟎𝟏 = 𝜷𝟎𝟐 vs H1 : 𝜷𝟎𝟏 ≠ 𝜷𝟎𝟐                               (3.10) 

 H0 : 𝜷𝟏𝟏 = 𝜷𝟏𝟐vs H1 : 𝜷𝟏𝟏 ≠ 𝜷𝟏𝟐                                (3.11) 

3.4.1.2 Detecting Solution Quality Performance Differences 

   

To check for performance differences in solution quality between SLUM and L-MIP, we used the 

paired Student t-test if the performance differences were normally distributed or non-parametric 

tests otherwise. To determine normality of the distribution of the performance differences, we used 

Shapiro Wilk test to test for normality of the performance differences between the pairs. Other 

tests of normality include Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests (Razali & 

Wah, 2011). However, Razal and Wah (2011) established that the Shapiro-Wilk test is more 

accurate in detecting normality of distribution in data hence the rationale for our choice of the 

method. With the Shapiro-Wilk test, we computed the statistic W and compared the value of W 

against the critical value Wc  at a significance level of 0.05. The more close the value of W is close 

to 1 the more likely the data are normally distributed. If W is determined to be more than Wc then 

it could concluded that there is no reason to believe that the data are not normally distributed, 

otherwise we could concluded that the differences in RSQ values are not normally distributed. In 

case the differences in RSQ values do not follow a normal distribution, we could use either the 

sign test or the Wilcoxon matched pairs signed rank test. In section 3.3.3, we explained that our 

optimization problem instances were randomly generated. Holdger H. Hoos (2003) states that if 

the benchmark optimization problem instances are random in nature, the binomial sign test or 

Wilcoxon matched pairs signed rank test could be used to detect performance differences 

( assuming that the test of normality has failed on the data). Since the Wilcoxon tests assumes 
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symmetry of the data sample, we would choose the method if a histogram plot of the performances 

differences was fairly symmetrical in shape. If on the contrary, the histogram was asymmetrical, 

the sign test that has no symmetry assumptions could be used. In the case of using either of the 

nonparametric, tests, the null hypothesis is that the median relative solution quality for SLUM and 

L-MIP is the same at a 95% confidence interval. On the other hand, for the paired student t- test, 

the null hypothesis is that the mean RSQB and the mean RSQL are equal. 

3.4.2 Analysis of CPU Running time Performance Differences  

3.4.2.1 Running time Analysis using Growth of Functions and Statistical Regression 

Models 

First, we define empirical complexity (EC) of an algorithm according to Coffin & Saltzman (2000) 

as the function describing the growth of the empirical running time of the algorithm with respect 

to the problem instance size n. Like the theoretical counterpart, the empirical complexity can be 

regarded as the running time statistical regression model without the constant terms. For example, 

suppose the statistical model capturing the growth of some algorithm is a polynomial of the form 

𝛽1 𝑛
𝛽2 + 𝛽0 𝑛 + 𝑐, then as per the definition of Coffin & Saltzman (2000) , the EC of this algorithm 

is denoted by 𝑂(𝑛𝛽2 ).                                           

Here and henceforth, any regression model of the form in equation 3.12 will be said to belong to 

the linear empirical complexity function 𝑂(𝑛), while any regression model of the form in equation 

3.13 will be said to belong to the polynomial empirical complexity function 𝑂(𝑛𝛽2 )  and any 

regression model of the form in equation 3.14 will be said to belong to the exponential empirical 

complexity function (𝑂(𝑒𝑜(𝑛) ) . For simplicity, let 𝐶𝑙  = 𝑂(𝑛) , 𝐶2  = 𝑂(𝑛
𝛽2 )  and 𝐶3   = 

(𝑂(𝑒𝑜(𝑛) ).   

 Define 𝑇𝑒𝐿 (𝑛), 𝑇𝑒𝐴 (𝑛) and 𝑇𝑒𝐵 (𝑛) as the parameterized running time empirical functions of the 

number of candidate webservices per workflow task n, of the local planning optimization strategy 

as in (Zeng et al, 2004), S-MIP and SLUM respectively. We use 𝑇𝑒 (𝑛) to imply 𝑇𝑒𝐿 (𝑛), or 𝑇𝑒𝐴 (𝑛) 

or 𝑇𝑒𝐵 (𝑛).  Let 𝑔𝑙 , 𝑔𝑝  and 𝑔𝑒  respectively, be linear, polynomial and exponential functions of n 

of the form in equations 3.12 ,3.13 and 3.14 respectively  

  𝝁𝟏  =   𝒈𝒍 (𝒏) = 𝜷𝒏 + 𝒄                                                              (3.12) 
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    𝝁𝟐  = 𝒈𝒑 (𝒏) = 𝜷𝟏 𝒏
𝜷𝟐 + 𝜷𝟎 𝒏 + 𝒄                                                                          (3.13) 

  𝝁𝟑  = 𝒈𝒆 (𝒏) =  𝜷𝟎 𝒆
𝜷𝟏𝒏                                                                 (3.14) 

We would like to establish the running time statistical regression function that significantly 

describes𝑇𝑒𝐿 (𝑛) , 𝑇𝑒𝐴 (𝑛)  and 𝑇𝑒𝐵 (𝑛) . To determine whether 𝑇𝑒 (𝑛)    𝜇𝑖 , i=1, 2 or  , we used 

statistical regression tests where the sample data points were fitted on the model 𝜇𝑖, i=1, 2, 3, one 

at a time. The R2
 statistic was used to test goodness of fit of the model 𝜇𝑖 on the data. If the R2 

<0.8, we automatically accepted the null hypothesis that 𝜇𝑖 does not fit the data. Otherwise, we 

performed a further test to check if the percentage of fit is significant. We set p = 0.05. If the 

computed p value is greater than 0.05, we accepted the null hypothesis that the model 𝜇𝑖 , despite 

having an acceptable goodness of fit, does not significantly fit the data at p = 0.05. Otherwise we 

accepted the alternative hypothesis that the R2 value is significant and hence the 𝜇𝑖 model fits the 

data. The null hypothesis and alternative hypothesis are summarized as below. 

𝑯𝟎   : 𝑻𝒆 (𝒏)  ≠  𝝁𝒊  𝐢𝐟, 𝑹
𝟐  < 𝟎. 𝟖 𝒐𝒓 (𝑹𝟐 ≥ 𝟎. 𝟖 𝒂𝒏𝒅 𝒑 > 𝟎. 𝟎𝟓)                                  (3.15) 

𝑯𝟏   : 𝑻𝒆 (𝒏) =   𝝁𝒊  𝐢𝐟, 𝑹
𝟐 ≥ 𝟎. 𝟖 𝒂𝒏𝒅 𝒑 < 𝟎. 𝟎𝟓                                                            (3.16) 

We used the Data Analysis ToolPack and the Real Statistics Resource Pack Microsft Excel 2013 

plugins to perform the regression tests 

It’s possible that for instance 𝑇𝑒𝐴 (𝑛) is significantly described by more than one kind of regression 

model e.g       𝑔𝑝 (𝑛) and  𝑔𝑒 (𝑛) so that (15) and (16) follows. 

𝑻𝒆𝑨 (𝒏) = 𝒈𝒑 (𝒏)                                                                                 (3.17)    

𝑻𝒆𝑨 (𝒏) = 𝝁𝟑  = 𝒈𝒆 (𝒏)                                                                (3.18).                 

According to equation 3.17, 𝑇𝑒𝐴 (𝑛) ∊  𝑂(𝑛
𝛽2 ) , 𝑠𝑖𝑛𝑐𝑒  𝑔𝑝 (𝑛) ∊  𝑂(𝑛

𝛽2 )  and 𝑇𝑒𝐴 (𝑛) ∊

 (𝑂(𝑒𝑜(𝑛) ) given that 𝑔𝑒 (𝑛) ∊ (𝑂(𝑒
𝑜(𝑛) ) according to equation 3.18. 

 In the case where the running time function is significantly described by two or three regression 

models, then we concluded that 𝑇𝑒 (𝑛)  is tightly empirically lower bounded by the smallest 

empirical complexity class and upper bounded the largest empirical complexity class, noting that 

𝐶𝑙  ≪ 𝐶2  ≪ 𝐶3  . We will use the notation 𝑇𝑒 (𝑛)    𝜇𝑖 to denote that the 𝑇𝑒 (𝑛) significantly fits 
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on the model  𝜇𝑖, 𝑇𝑒 (𝑛)≠𝜇𝑖, otherwise where I  is a value on the closed interval [1,2,3]. Further, 

we will use 𝑇𝑒 (𝑛)   = { 𝜇2, 𝜇3}  to imply both the models 𝜇2  and 𝜇3  significantly fit the function 

𝑇𝑒 (𝑛)Thus, 𝑇𝑒 (𝑛)    { 𝜇2, 𝜇3} →, 𝑇𝑒 (𝑛) ∊  {𝐶2,𝐶3} . If two of the three or all the three algorithms 

are lower bounded by the same empirical complexity class, then we could conclude that on average, 

theoretically the algorithms perform the same initially (ignoring the constant terms). If two of the 

three or all the three algorithms are empirically upper bounded by the same empirical complexity 

class, then we could conclude that on average, theoretically the algorithms perform the same 

asymptotically (ignoring the constant terms). If the empirical lower bound of one algorithm X is 

the empirical upper bound of the other algorithm Y , then clearly Y is far more efficient than X. If 

two of the three or all the three algorithms share the same lower bound empirical complexity class, 

as well as the upper bound empirical complexity class, then theoretically, we could conclude that 

the algorithms have the same runtime performance. As an example, assume 𝑇𝑒𝐿 (𝑛) = { 𝐶1, 𝐶2} , 

𝑇𝑒𝐵 (𝑛) = { 𝐶2, 𝐶3} and 𝑇𝑒𝐴 (𝑛) = { 𝐶2, 𝐶3}. As per our definitions and criteria, we can conclude 

that L-MIP is far faster than both S-MIP and SLUM, while both SLUM and S-MIP have the same 

theoretical performance since both of them are have a polynomial lower bound and an exponential 

upper bound. 

3.6.2.1.1 Testing 𝑯𝟏   : 𝑻𝒆 (𝒏) =   𝝁𝟏 

This is the most straightforward case. Using the “ (linear) regression feature in Data Analysis 

ToolPack, we provided the 𝑇𝑒 (𝑛)  values as Y variable values and n  values as X variable values. 

The output was recorded. In addition, a graph of 𝑇𝑒 (𝑛)  𝑣𝑠 𝑛 was drawn and a linear regression 

trend line added using Microsoft excel native capabilities. The coefficient, intercept and R2
 values 

obtained using excel trend line feature were then counterchecked against the corresponding values 

obtained using the ToolPak addin. 

3.6.2.1.2 Testing 𝑯𝟏   : 𝑻𝒆 (𝒏) =   𝝁𝟐 

Recall that this test entails fitting 𝑻𝒆 (𝒏) on the polynomial regression model given in equation 

3.13 and determining the parameters 𝛽0  𝛽1 , and c for some known 𝛽2 . In this work, we set 𝛽2 =

𝑘 = 2 thus making the assumption that 𝝁𝟐 is a quadratic function. This assumption is reasonable 

in general, since we saw in section 1 that global optimization, algorithms conceptually take time 

proportional to 𝑛𝑘 to generation of candidate composite webservices. Thus by setting 𝛽2 = 2 , 
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equation 3.19 holds. 

𝝁𝟐 =𝒈𝒑 (𝒏) = 𝜷𝟏 𝒏
𝟐 + 𝜷𝟎 𝒏 + 𝒄                                                (3.19) 

 In equation 3.19, we have two independent variables n (X variable 1) and 𝑛2 (X variable 2). We 

computed the range of values of 𝑛2 from known values of n. To test that 𝑻𝒆 (𝒏) is quadratic, we 

used multiple linear regression analysis. This was accomplished using Excel Data Analysis 

ToolPak, where we input the range of 𝑻𝒆 (𝒏) values in the Y input range and all the values in the 

range X variable 1 and X variable 2. The output contains among other items the values of the 

coefficients 𝛽1 𝑎𝑛𝑑  𝛽0  and the intercept C. In addition, a scatter plot of 𝑻𝒆 (𝒏) 𝒗𝒔 𝒏  was done in 

Excel and polynomial regression fitted on the curve using Excel “Add Trend line” feature. The 

coefficients and the intercept values and the R2
 values obtained using the scatter plot were 

compared with those obtained using ToolPak. 

3.6.2.1.3 Testing 𝐻1   : 𝑻𝒆 (𝒏) =   𝜇3 

As described above, this test involved establishing whether or not 𝑻𝒆 (𝒏) fits on some exponential 

function 𝜇2  (as in equation 3.14. Since 𝜇3  is of the form 𝛽0 𝑒
𝛽1𝑛 , if indeed 𝑻𝒆 (𝒏)  grows 

exponentially with respect to n then log 𝑻𝒆 (𝒏) should be linear with respect to n. Following this, 

we transform equation 3.14 to equation 3.20 by taking natural logarithms on both sides.                           

  𝐥𝐧 𝑻𝒆 (𝒏) =   𝒍𝒏 𝜷𝟎 + 𝜷𝟏𝒏 =   𝜷′𝟎 + 𝜷𝟏𝒏             (3.20) 

From equation 3.20 we applied linear regression using ToolPak where the Y Input range takes on 

the range of ln 𝑇𝑒 (𝑛) and the X input range takes the range of values of n. The scatter plot 

ln 𝑇𝑒 (𝑛) 𝑣𝑠 𝑛  is also drawn and linear trendline obtained in a manner similar to the one 

explained in the preceding sections. Additionally the graph 𝑇𝑒 (𝑛) 𝑣𝑠 𝑛   (expected to be 

exponential graphically) is drawn and exponential fitting using the Excel trendline feature done. 

The 𝛽1 value obtained from ToolPak is directly crosschecked against the 𝛽1 values obtained from 

the linear regression and exponential regression modes of the scatter plot ln 𝑇𝑒 (𝑛) 𝑣𝑠 𝑛  and 

𝑇𝑒 (𝑛) 𝑣𝑠 𝑛 respectively. On the other hand, 𝛽′0  value obtained from the graph ln 𝑇𝑒 (𝑛) 𝑣𝑠 𝑛 

is directly counterchecked against the intercept value obtained using ToolPak whereas the inverse 

of 𝛽′0  or the inverse of the intercept value of the ToolPak output is checked against the 𝛽0 obtained 

from direct exponential regression fitting of the curve 𝑇𝑒 (𝑛) 𝑣𝑠 𝑛. 
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3.4.2.2 Running time Expected Relative Speedup Analysis using Limits of Growth of 

Functions  

Once the performance regression models were established for each of the algorithms, the analysis 

that followed in section 3.6.2.1 aimed to characterize the performance of each of the algorithms 

into empirical complexity classes ignoring the constant terms. The analysis in 3.6.2.1 therefore is 

tantamount to the theoretical analysis of algorithms. In this section, the algorithms that 

theoretically share the same upper bound empirical complexity class are further analyzed for 

average (practical) performance using differential calculus and L-Hospital’s Rule and limits theory. 

The rationale for this analysis, is that even if the running time of two algorithms are characterized 

by the same “worst case” empirical complexity, it’s of practical relevance to analyze which one is 

better than the other on average .Using the example in 3.6.2, even if 𝑇𝑒𝐴 (𝑛) and 𝑇𝑒𝐵 (𝑛) have an 

exponential time upper bound, it is likely that 𝑇𝑒𝐵 (𝑛) is better than 𝑇𝑒𝐴 (𝑛), at least informed by 

the analysis in chapter two and also in (Mulongo et al, 2015;2016). In fact, it’s easy to quickly tell 

from the scaling graphs of 𝑇𝑒𝐵 (𝑛) 𝑣𝑠 𝑛 and 𝑇𝑒𝐴 (𝑛) vs n. Moreover, the coefficients or constant 

terms obtained through the statistical tests in 3.6.1.1 can hint which of the two algorithms grows 

faster in running time, even if the two algorithms share the same upper bound empirical complexity 

class. 

We will term the performance efficiency gain (or loss) of SLUM with respect to  either S-MIP or 

L-MIP as n tends to infinity as SLUM Expected Speedup (SES). SES is a function or constants that 

tells how many times SLUM is faster or slower than S-MIP ( if SES is computed with respect to  

S-MIP) or faster or slower than L-MIP ( if SES is computed with respect to L-MIP). Let 𝑆𝐸𝑆𝑔 and 

𝑆𝐸𝑆𝑙  represent SES with respect to S-MIP and SES with respect to L-MIP. Let 𝑓(𝑛)  be the 

empirical regression equation (function) representing the runtime function of SLUM and 𝑔(𝑛) be 

the empirical regression equation (function) representing the runtime growth of either L-MIP or 

S-MIP. Further, in this analysis, we use 𝑇𝑒 (𝑛) to refer to either 𝑇𝑒𝐴 (𝑛) or 𝑇𝑒𝐿 (𝑛).  

To show that as 𝑛 → ∞, 𝑇𝑒  (𝑛) ≫  𝑇𝑒𝐵 (𝑛) , we need to show that 
  𝑇𝑒  (𝑛)

𝑇𝑒𝐵 (𝑛)
  → ∞,  𝑛 → ∞  . The 

converse is to show that 
  𝑇𝑒𝐵  (𝑛)

𝑇𝑒 (𝑛)
 → 0, 𝑛 → ∞. We adopt the former. Applying L-Hospital’s Rule, 

equation 3.21 is true. 

lim n→ ∞ 
  𝑻𝒆  (𝒏)

𝑻𝒆𝑩 (𝒏)
 = 𝐥𝐢𝐦 𝒏 →  ∞ 

 𝝏 𝑻𝒆  (𝒏)

𝝏 𝑻𝒆𝑩 (𝒏)
                     (3.21) 
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 Mathematically, the SES defined here is given by equation 3.22. 

𝑺𝑬𝑺 = 𝐥𝐢𝐦 𝒏 →  ∞ 
 𝝏 𝑻𝒆  (𝒏)

𝝏 𝑻𝒆𝑩 (𝒏)
                                                                           (3.22) 

Thus 𝑆𝐸𝑆  is the slope of the function  𝑇𝑒  (𝑛)  with respect to  𝑇𝑒𝐵 (𝑛)  for large enough n. Two 

outcomes are possible. The first case is that 𝑆𝐸𝑆 is a constant (real number). The second case is 

that 𝑆𝐸𝑆 is a function of n. In the first case, to show that 𝑇𝑒𝐵 (𝑛)  is more efficient than  𝑇𝑒  (𝑛), 

it suffices to show that 𝑆𝐸𝑆 > 1, otherwise for the latter case, we have to show that the function 

𝑆𝐸𝑆 →  ∞, 𝑛 →  ∞  . Consequently, we make the null and alternative hypothesis below. 

 𝑯𝟎   : 𝑻𝒆 (𝒏) =≪ 𝑻𝒆𝑩 (𝒏)                                                                             (3.23)  

 𝑯𝟏   : 𝑻𝒆 (𝒏) ≫ 𝑻𝒆𝑩 (𝒏)                                                              (3.24) 

𝐻0   will be accepted if 𝑆𝐸𝑆 ≤ 1 𝑜𝑟 𝑆𝐸𝑆(𝑛) →  0 , 𝑛 →  ∞  .Otherwise 𝐻1    

In the case where 𝑆𝐸𝑆 is a function of n, it’s essential to determine the value of n for which the 

value of the slope > 1.  We will call the value of n at which the expected speedup is more than 1 

as the expected critical point and denote it by 𝑛𝐶𝐸  . The larger the 𝒏𝑪𝑬 the more remote the chances 

are that a small scale virtual enterprise broker will benefit from the efficiency of our method as 

opposed to an alternative technique. The significance of this is so that a virtual enterprise broker, 

for instance can determine how many virtual enterprise service providers per workflow task the 

broker needs in order to benefit from using our approach. Because we do not foresee a situation 

where SLUM is faster than L-MIP, the analysis and determination of 𝑛𝐶𝐸  will only be with respect 

to S-MIP. 

3.4.2.3 Runtime Performance Correlation based on Empirical Relative Complexity  

 The analysis in section 3.6.2.1 concerned characterizing the empirical complexity of L-MIP, 

SLUM and S-MIP with an aim to determining and comparing their theoretical limits. In 3.6.2.2, 

the analysis targeted (practical –all terms in the regression equation considered) average 

performance of SLUM with respect to S-MIP. In this section, the analysis aims to compare the 

initial practical and asymptotic practical performance of 𝑇𝑒𝐵 (𝑛) against 𝑇𝑒 (𝑛) , where 𝑇𝑒 (𝑛) 

could be 𝑇𝑒𝐴 (𝑛) or 𝑇𝑒𝐿 (𝑛). The analysis is carried out using the method by Coffin 

 & Saltzman (2000). If the regression model obtained by either plotting 𝑇𝑒𝐵 (𝑛) vs 𝑇𝑒 (𝑛) is linear 

or by plotting ln 𝑇𝑒𝐵 (𝑛) vs ln 𝑇𝑒 (𝑛) is linear, then the resultant regression model of the form in 
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equation 3.25 can be used to tell whether 𝑇𝑒𝐵 (𝑛) is better or worse than 𝑇𝑒 (𝑛) initially and by 

how much, and also show whether 𝑇𝑒𝐵 (𝑛) is better or worse than 𝑇𝑒 (𝑛) asymptotically and by 

how much. This can be can easily be checked graphically. However, graphs wouldn’t quantify the 

magnitude of relative differences initially and asymptotically. Also, the methods in preceding two 

subsections cannot reveal these levels of detail. 

 

Picking from 3.6.1, we saw that 𝑇𝑒𝐴 (𝑛) (𝑂(𝑒
𝑜(𝑛) )) and 𝑇𝑒𝐵 (𝑛(𝑂(𝑒

𝑜(𝑛) ) ). By plotting a graph 

of    ln 𝑇𝑒𝐵 𝑣𝑠 𝑙𝑛 𝑇𝑒𝐴 (𝑛) , a linear regression of the form in equation 3.25 holds. Note, 𝑡𝑒𝐴  

= 𝑻𝒆𝑨 (𝒏).  

From equation 3.25 we obtain equation 3.26. 

𝒍𝒏𝑻𝒆𝑩 (𝒏) = 𝒍𝒏 𝜷𝟎 + 𝜷𝟏 𝒍𝒏 𝒕𝒆𝑪  +  €                    (3.25)                           

     𝑻′𝒆𝑩 (𝒏) =  𝜷𝟎  𝒕𝒆𝒄 
𝜷𝟏                                                           (3.26)           

Thus given the running time algorithm A (S-MIP), running time of algorithm B (SLUM) in terms 

of 𝑡𝑒 can be estimated using (26). Coffin & Saltzman (2000) refers to the function 𝑂(𝑡𝑒 
𝛽1 ) as the 

empirical relative complexity of algorithm B relative to algorithm C and the parameter 𝛽1  as the 

empirical relative complexity coefficient of algorithm B with respect to algorithm C, where 

algorithm C is either L-MIP( algorithm L) or S-MIP (algorithm A).  When 𝛽1 < 1 , then 

empirically, B is asymptotically much faster than C (Coffin & Saltzman , 2000). . Otherwise when 

𝛽1 > 1 , then , B is asymptotically much slower than C (Coffin & Saltzman , 2000) . As 

n→∞,𝑻′𝒆𝑩 (𝒏) ≈  𝑡𝑒𝐴 
𝛽1  (Coffin & Saltzman , 2000). On the other hand, when 𝛽0 > 1, it means 

that algorithm C is faster than B for small enough n, while when 𝛽0 < 1, it means that algorithm 

C is slower than algorithm B for small enough n (Coffin & Saltzman , 2000). . We made two sets 

of hypotheses, one on the parameter 𝛽0  and the other on 𝛽1 . The hypotheses are captured in 

equations 3.27, 3.28, 3.29 and 3.30. The null hypothesis in equation 3.27 below claims that the 

initial performance of both algorithms is equal while the corresponding alternative hypothesis in 

equation 3.28 claims that the initial performance is not the same.  𝐻0   in equation 3.29 states that 

the asymptotic performance of the two algorithms is the same while the alternative hypothesis 𝐻1    

 𝑯𝟎   : 𝜷𝟎 = 𝟏                                                                                            (3.27)              

𝑯𝟏   : 𝜷𝟎 ≠ 𝟏                                                                                  (3.28)              

𝑯𝟎   : 𝜷𝟏 = 𝟏                                                                                  (3.29)              

𝑯𝟏   : 𝜷𝟏 ≠ 𝟏                                                                                  (3.30) 
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3.4.2.4 Performance Difference Detection using Parametric/Non Parametric Tests  

As explained earlier on, these tests shall be applied if the performance comparison between SLUM 

vs S-MIP or SLUM vs L-MIP using the method in 3.6.2.3 is not feasible. Coffin & Saltzman 

(2000) notes that CPU running times exhibit increasing non constant variance so that any attempt 

to use tests with normality assumptions may not yield plausible results. To confirm this, we used 

Shapiro Wilk test to test for normality of the performance differences between the pairs. If the data 

were normally distributed, we use the paired student t-test, otherwise we use either the signed test 

or the Wilcoxon matched paired test.  

3.4.2.5 Runtime Analysis using Sample Instantaneous Speedup and Sample Mean Speedup 

All the preceding methods of analysis are based on inferential statistics. Inferential statistics 

provide more rigorous tools (than descriptive statistics) of estimating population parameters 

based on sample data (Howel C. David, 2013). Nevertheless, descriptive statistics can be useful 

tools in summarizing sample data (Howel C. David, 2013)  .We define two descriptive statistics: 

SLUM Sample Instantaneous Speedup (SSIS) and SLUM Sample Mean Speedup (SSMS). SSIS 

and SSMS with respect to S-MIP and with respect to  L-MIP are denoted as  𝑆𝑆𝐼𝑆𝑔, 𝑆𝑆𝑀𝑆𝑔, 𝑆𝑆𝐼𝑆𝑙 

and 𝑆𝑆𝑀𝑆𝑙, and defined according to (31) , (32), (33) and (34) respectively. 

𝑺𝑺𝑰𝑺𝒈 = (𝑻𝒆𝑳 (𝒏))/ (𝑻𝒆𝑩 (𝒏))                                                     (3.31)

              

 𝑺𝑺𝑴𝑺𝒈  = (∑ 𝑺𝑺𝑰𝑺𝒈 
𝑵
𝟏 )/𝑵                     (3.32) 

𝑺𝑺𝑰𝑺𝒍 = (𝑻𝒆𝑳 (𝒏))/ (𝑻𝒆𝑳 (𝒏))                       (3.33)         

                            

𝑺𝑺𝑴𝑺𝒍  = (∑ 𝑺𝑺𝑰𝑺𝒍 
𝑵
𝟏 )/𝑵                     (3.34) 

Where N is the sample size (number of problem instances). 

 

Thus, SSIS is the speedup of SLUM for a specified problem instance of size n. 𝑆𝑆𝐼𝑆 < 1 means 

that SLUM is slower than the alternative algorithm for some specific value of n. 𝑆𝑆𝐼𝑆 = 1, means 

that SLUM has equal efficiency with the alternative algorithm for some n while SLUM is faster 

than the alternative strategy for some n when 𝑆𝑆𝐼𝑆 > 1 . 𝑆𝑆𝑀𝑆  has a similar interpretation, 

although over the set of all N sample problem instances. Similar to 𝑛𝐶𝐸  (see section 3.6.2.3) will 

define 𝑛𝐶𝑆  as the value of n beyond which 𝑆𝑆𝐼𝑆 >  1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛𝐶𝑆 . Thus 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 < 𝑛𝐶𝑆 ,  



130 
 

𝑆𝑆𝐼𝑆 ≤ 1. Therefore, even without performing the detailed regression analysis, 𝑆𝑆𝐼𝑆, . 𝑆𝑆𝑀𝑆 and 

𝑛𝐶𝑆 can pre-empt some interesting performance behaviour of SLUM. Because we do not foresee 

a situation where SLUM is faster than L-MIP, we only determine 𝑛𝐶𝑆 will only be with respect to 

S-MIP. 

 

3.5 Chapter Summary 

In this chapter we discussed the research methodology followed in order to study the runtime 

performance efficiency and the solution quality of our proposed model SLUM against the standard 

related models- S-MIP and L-MIP. We discussed the overall research process, followed by a 

detailed discussion on research design. Research design addressed the issues concerning the 

metrics of measurements of runtime efficiency and solution quality, in which respectively, CPU 

time and relative solution quality (RSQ) were adopted. The design also addressed the issues of 

sampling where for CPU time, 16 problem instances, having 5, 10, .., 80 service providers per task 

and two tasks for each problem instance were chosen.  The choice of 16 samples for CPU runtime 

was found to be sufficient in relation to: i) previous related studies, ii) the fact that for CPU runtime, 

the difficulty of the problem instance as opposed to merely the size of the sample, is more 

important and iii. the methods of analysis and the nature of statistical tests applied were robust 

enough i.e regression analysis, empirical relative complexity analysis and differential calculus. 

Further, the composite phase transition rate values were seven and were distributed over the 

interval [0.1], including the 0 and 1.  The distribution was selected carefully so that we could 

observe the behaviour of SLUM efficiency as the composite phase transition rate progressively 

tends to zero and progressively tends to 1.  For solution quality, 40 samples were determined as 

the right sample size to evaluate differences in solution quality among the three algorithms. The 

number was chosen because differences in mean performance was the only viable method for 

assessing solution quality differences by the very nature of this metric and also in regard to 

previous studies. Normality tests were identified as the method of analysis given that the sample 

size was more than the minimum number 30 required for test of normality. Other issues discussed 

were, the number of runs in which we determined for CPU runtime, 10 runs would be performed 

for each experiment. This owes to the fact that measurements of CPU runtime taken even within 

the same interval might have some variances. For solution quality, it was determined that only one 

run was sufficient because the algorithms under text are deterministic in terms of the solution 



131 
 

returned. For this reason, provided the optimization variables remained invariant, running the same 

experiment many times would still yield the same utility value of the objective function. We also 

addressed the issue of how problem instances were generated and their structure. The answer here 

was that simulated webservices were programmed to generate random vectors of seven QoS values. 

The vectors of related webservices were packed into one matrix, leading to two matrices leading 

to a n by 7 matrix, where n as said varied from 5, 10 , to 80. 
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4 CHAPTER 4: RESULTS AND DISCUSSIONS 

The two specific research objectives of this study were:- 

1. Design a layered hierarchical mixed integer programming model for the composite webservice 

selection problem following the concepts from the theory of Layering as Optimization 

Decomposition. 

2. Evaluate the performance of the SLUM model against the single layered global planning 

technique (S-MIP) and the local planning method (L-MIP) in terms of two metrics:  

i. Running time (performance efficiency) and; 

ii.  Solution quality. 

Objective number one was achieved by way of presenting the proposed Service Layered Utility 

Maximization (SLUM) model as detailed in section 2.10, after conducting literature review. 

Objective number two, roman number one was partially achieved through the theoretical 

mathematical analysis presented in section 2.14. As explained in chapter 3, it was not possible to 

mathematically model the relative solution quality of the algorithms prompting for an experimental 

approach. Further the experimental approach as detailed in chapter 3, besides serving as a 

verification tool of the theoretical results, was designed to answer the research questions outlined 

in section 2.13, some of which could not be answered through theoretical mathematical analysis.  

The research questions were:- 

RQ1:   For a composite webservice selection problem having a workflow with k tasks and v 

alternative webservices per task, how does the runtime efficiency of SLUM compare with that of 

S-MIP and L-MIP when each is used to solve the problem?   The specific research questions arising 

from this question are: 

RQ1.1: How does the running time of SLUM grow as the number of service providers per task 

increase? 

RQ1.2: How does the running time growth of SLUM compare with that of S-MIP and L-MIP? 

RQ1.3:  How much speedup is achievable when using SLUM over S-MIP to autogenerate 

composite webservices given a business workflow having n webservices per task? 
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RQ1.4: What is the minimum number of service providers per workflow task that a virtual 

enterprise broker needs to have in order to benefit from the relative efficiency of SLUM when 

compared to S-MIP? 

RQ2 that was outlined in section 2.13 of chapter two. The question is, RQ2:  How does the average 

solution quality of SLUM compare with that of L-MIP and S-MIP?  This leads us to the following 

specific research questions: 

RQ2.1: What is the average relative solution quality (percentage accuracy of quality) of the 

composite webservices generated by SLUM relative to S-MIP? 

RQ2.2: What is the percentage difference in the relative solution quality by SLUM relative to L-

MIP? 

This chapter presents the experimental results of the study. The results are later analyzed in 

response to the to the above research questions. Recall that the specific research questions were 

designed towards addressing objective number two.  

A significant amount of the results, analysis and discussions reported here can also be found in 

(Abiud W. M. et al, 2016a).  In sections 4.1 to 4.8 results on the running time behaviour of the 

three algorithms are presented. Recall that from chapter two, we theoretically showed that the 

running time growth TeB(n) and hence the speedup  Ω of SLUM relative to the baseline algorithm 

(S-MIP) varies directly as the initial number of webservices (virtual enterprise service providers) 

per task n, and inversely as the composite service phase transition rate ρ. Hence, in this study, in 

order to answer research questions RQ1, we designed the experiments such that the variation of 

TeB(n) with n and the speedup Ω were reported at specific average values of ρ.  Recall also from 

chapter 3 that ρ cannot be determined directly a priori since at the start of the experiment, it’s not 

possible to know how many webservices will proceed to phase two of the optimization process. 

However, by varying one or some of the boundary values of the webservice QoS constraints, the 

number of webservices that get promoted to phase two can be indirectly controlled. Holding the 

set of input data set constant, we used a trial and error process, where we tuned some of the 

constraints in order to achieve a desired average value of ρ. At the end of each experiment, the 

mean value ρavg  was computed. Since ρavg varies on the continuous closed interval [0,1], we 
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designed a number of experimental setups having ρavg  values on this range. The experiment setup 

were as follows. 

 The first setup consisted of the case where ρavg= 0.0296 approaches zero, representing the special 

case when ρ=0 as described in chapter two , section 2.14.2. This is the case where the average 

speedup Ω relative to S-MIP is expected to be approximately 2k
  for large enough n.  The second 

experiment setup had ρavg=1, which is the special case described in chapter two section 2.14.1. As 

per section 2.14.1, when ρavg=1, the average expected to be approximately 2k-1 for a large enough 

n. The other experiments had ρavg  values in between, specifically ρavg=0.61, ρavg=0.45, ρav=0.36, 

ρavg=0.13 and ρavg=0.064.  

In each of the above setups, k was fixed at 2 and the same ensemble of input problem instance set 

was used. The problem instance set consisted of 16 problem instances having n=5, 10, 15, .... 80. 

The results produced in each of the experiments were analyzed following the methodology 

described in section 3.6.2: 

i)  Descriptive Statistics (Sample Instantaneous Speedup), Scatter plots of running time, 

growth 

ii) Statistical Regression Analysis to quantitative characterize the running time empirical 

function. Makes use of the scatter plots in (i) above 

iii) Expected Speedup using L-Hospitals Law to determine average speed up for large n. 

Makes use of the regression functions in (ii) above 

iv) Initial and asymptotic speedup using Empirical Relative Complexity analysis. Makes use 

of the analysis in (ii) above.   

At the end, we summarize the key results on running time in section 4.9. 

In section 4.10, we present findings on solution quality of SLUM in relation to the two other 

algorithms. The analysis follows the methodology established in section 3.4.1 of chapter three. 

In section 4.11, we present a detailed discussions of the results. In our discussion, we link the 

findings to our research questions. Further we explain our results linking them to the analytic and 

theoretical considerations of chapter two. In this section, we also report any “an unexpected results” 

that have no immediate scientific/theoretical basis. 
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4.1    Running Time Analysis when mean Composite Service Phase 

Transition, ρ=0.0296 

4.1.1 Running time Scaling Scatter Plots and Simple 

Descriptive Statistics (Sample Speedup) 

It can be observed that for each of the three algorithms, the time taken to find a solution is 

consistently increasing with respect to n; figure 10 confirms this observation. Moreover, the 

running time of SLUM, S-MIP and L-MIP nearly the same at n=5.  Beyond n=5, the running time 

of L-MIP is persistently lower than that of SLUM and S-MIP. In fact, both SLUM and S-MIP 

running time grows more than double compared to L-MIP for every increment in n. For example, 

when n=10, teA = 1.3, teB = 1.3 and tEl=0.68. Thus, at n=10, both SLUM and S-MIP are more than 

two times slower than L-MIP. When n is doubled from 10 to 20, it’s possible to see that both 

SLUM and S-MIP are about 4 times slower than L-MIP. Table 12 also shows that SLUM is 

generally slower than S-MIP for all n<40 since we can see that for n<40, the SIS<1. On the other 

hand, SLUM is consistently faster than S-MIP for n>40 since SIS>1 for all n>40.  

 

Table 12: CPU Running time Data when Phase Transition Rate ρ 0.0296 

N 

  

teB(s) teA(s) 

  

ln (teA ) ln (teB ) ln (teL ) SISn N-

Squared 
teL(s) 

5 25 0.65 0.59 0.55 -0.53 -0.43 0.6 0.91 

10 100 1.3 1.3 0.68 0.26 0.26 0.39 1 

15 225 1.96 1.96 0.8 0.67 0.67 0.22 1 

20 400 4.2 4 0.66 1.39 1.44 0.42 0.95 

25 625 4.6 4.2 0.8 1.44 1.53 0.22 0.91 

30 900 6.9 6.35 0.88 1.85 1.93 0.13 0.92 

35 1225 9.9 9.6 0.88 2.26 2.29 0.13 0.97 

40 1600 13.3 14.5 1 2.67 2.58 0 1.09 

45 2025 15.8 22 1 3.09 2.76 0 1.39 

50 2500 19.3 32.5 1.3 3.48 2.96 0.26 1.68 

55 3025 22.5 40.3 1.4 3.7 3.11 0.34 1.79 

60 3600 30 62 1.5 4.12 3.4 0.41 2.07 

65 4225 37 87 1.66 4.46 3.61 0.51 2.35 

70 4900 47 118 1.72 4.77 3.85 0.54 2.51 

75 5625 60 155 1.9 5.04 4.09 0.64 2.58 
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Figure 10  Empirical Running Time Growth Scatter Plot of L-MIP, SLUM and SMIP ρavg 

= 0.0296.  

 

 

Therefore from table 3 and figure 10, we have that 𝑛𝑐𝑠 = 40. 

Figure 11 below shows how the linear regression models of the running time growth of SLUM, S-

MIP & L-MIP at a fixed composite service phase transition rate p=0.0296. 

The table 4 below shows a summary of the linear regression, regression and exponential regression 

statistics for each of the three algorithms : SLUM, S-MIP and L-MIP. 
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4.1.2 CPU Running Time Growth Analysis via Linear, Polynomial and Exponential 

Regression  

 

Figure 11 Empirical Running Time Growth Linear Regression Analysis at ρavg   0.0296 

Table 13: CPU Running time Goodness of fit and Significance Results when Phase Transition 

Rate ρ 0.0296 

 Regression Model Type 

Linear Regression Polynomial Regression Log-linear regression) 

Algorithm R2 p1 pi R2 p1 p2 pi R2 pn pi 

L-MIP 0.93 1.95

*10-5 

0.000

4 

0.97

8 

0.86 0.00012

7 

4.5*10-

6 

0.23 0.08 0.35 

S-LUM 0.86

8 

4.3*

10-7 

0.007 0.98

7 

0.004 0.00000

1 

0.024 0.97 1.5*10-

10 

0.38 

S-MIP 0.78 2.5*

10-5 

0.007 0.98 6.6*10

-5 

3.0*10-7 0.0025 0.99

5 

4.0*10-

15 

0.0000

4 

           

teA = 1.8652n - 37.321

R² = 0.7597

teB = 0.7518n - 11.776

R² = 0.8687

teL = 0.0187n + 0.3693

R² = 0.9387
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                    Figure 12  Empirical Running Time Growth – Polynomial Regression Curves at ρavg = 

0.0296 

 

Figure 12 above shows how the polynomial regression models of the running time growth of 

SLUM, S-MIP & L-MIP at a fixed composite service phase transition rate p=0.0296. On the other 

hand, figure 13 below shows the log-linear regression models of the running time growth of 

SLUM, S-MIP & L-MIP at a fixed composite service phase transition rate p=0.0296. Note that as 

described in chapter 3, the log-linear regression was used to text the exponential runtime growth 

of each of the three. 
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Figure 13  Empirical Running Time Growth – Log Linear Regression at ρavg = 0.0296 

 

4.1.2 SLUM Expected Speedup via  L. Hospital’s Law   

 

Applying the L-Hospital’s Law, we compute the SLUM expected speedup (SES) as per the 

methodology in chapter three.  Using the statistics from figure 12 and figure 13, the SES value 

under polynomial growth, SESP   is determined as per equation 4.1 and. the SES function under 

exponential growth is given equation 4.2. 

𝑆𝐸𝑆𝑝 =   lim
𝑛→∞

𝑑(𝑡𝑒𝐴)/𝑑( (𝑡𝑒𝐵) =   
0.0518

0.0144
= 3.6                                               ( 4.1)                                           

  𝑆𝐸𝑆𝐸 =   lim
𝑛→∞

𝑑(𝑡𝑒𝐴)/𝑑( (𝑡𝑒𝐵) =
0.6231e0.0763n

0.904e0.0593n
0.6893e0.017n                               ( 4.2)            

The function 0.6893e0.017n can be used to compute the expected speedup for a given number of 

service providers per workflow task at ρ=1. To compute, nCE ,the critical value beyond which 

TeL(n)= 0.0022x + 0.2327

R² = 0.057

ln TeB(n)= 0.0593n - 0.1011

R² = 0.959
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SLUM is faster than S-MIP, we could set the expected SES at 1.1 and solve the inequality in 

equation 4.1. 

 0.6893e0.017n ≥ 1.1 = 0.0117𝑛𝑙𝑛𝑒 = ln 1.1 → 𝑛 ≥ 8                                         (4.3)                                                             

Equation 4.3 means that if a virtual enterprise broker had at least 8 virtual enterprises per task, and 

the current transition rate is 0.029, they would enjoy a 10% increase in speedup when using SLUM 

instead of S-MIP.  

Similarly, the least of number of service providers per task needed to achieve an expected speedup 

of 3.6 is given as per equation 4.4 below. 

0.6893e0.017n ≥ 3.6 = 0.0117𝑛𝑙𝑛𝑒 = ln 3.6 → 𝑛 ≥ 109                                  (4.4)                                      

4.1.3 Initial and Asymptotic Speedup via Empirical Relative 

Complexity under Exponential Growth   

We plot log teB vs log teA as shown in figure 14. The relationship log teB vs log teA seems to be 

strongly linear. We checked the significance of the relationship using the Microsoft Excel ToolPak 

plugin, and obtained a p value of 0.01 for the intercept and a p value of 3.85 * 10-13
 for the X 

variable. These results indicate that the linear relationship is not only strong but statistically 

significant at a significance level of 0.05. The linear relationship allowed to us to compute the 

values of 𝛽0 and 𝛽1 in the equations 3.25 and 3.26. We obtained 𝛽0 = 0.2506 𝑎𝑛𝑑 𝛽1 = 0.7833 

→ 𝑡𝑒𝐵 = 1.28𝑡𝑒𝐴
0.783

  → 𝛽0 = 1.28  and 𝛽1 = 0.7833 . Since 𝛽0 > 1 , we reject the null 

hypothesis in equation 3.27 and accept the alternative hypothesis of equation 3.28. Additionally, 

𝛽1 < 1 and therefore we reject the null hypothesis in equation 3.29 and accept the alternative 

hypothesis in equation 3.30. We thus conclude that S-MIP is 1.28 times faster than SLUM initially, 

but SLUM is more efficient than S-MIP asymptotically since 𝑡𝑒𝐵 = 𝑡𝑒𝐴
0.783 for large enough teA.  
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Figure 14  Empirical Relative Complexity –log-log Scatter plot at  ρavg = 0.0296 

4.2 Running Time Analysis when Mean Composite Service Phase Transition,  

ρ 1 

4.2.1 Running time Scaling Scatter Plots and Simple 

Descriptive Statistics  

Table 5 presents the CPU runtime performance of SLUM and S-MIP with respect to problem 

instances of increasing empirical hardness. As explained earlier, optimization inequality 

constraints were tuned once such that for all problem instances, all candidate webservices 

evaluated during stage one were all promoted for evaluation in phase 2. The goal was to ensure 

that any variation in performance between SLUM and S-MIP is not attributed to the service 

elimination effect. The data shows that until n=45, the performance of SLUM is marginally worse 

than that of S-MIP. Beyond n=45, the performance of SLUM is steadily better than that of S-MIP. 

Moreover the relative speedup of S-MIP Ssi increases steadily, starting at 1.017 when n=45 and 

grows to 1.2 at n=120.  The scatter plot in figure 15 and the SLUM Instantaneous speedup curve 

(SISC) in figure 4.8 reinforce the observations. 
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Table 14: CPU Running time Data when Phase Transition Rate ρ 1 

 

 

 

Figure 15  Empirical Running Time Growth Scatter Plot at ρavg = 0.0296 
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N TB (s) TA (s) Ssi N TB (s) TA (s) Ssi 

5 0.62 0.56 0.9032 60 42.2 43.4 1.0284 

10 1.37 1.3 0.9489 65 59.1 61 1.0321 

15 1.86 1.7 0.9140 70 79.89 83.1 1.0402 

20 2.64 2.4 0.9091 75 100.76 104.3 1.0446 

25 3.87 3.49 0.9018 80 130.09 138.2 1.062354 

30 5.3 5 0.9434 85 165.54 177 1.069211 

35 7.45 6.95 0.9329 90 218.17 235 1.07712 

40 10.7 10.5 0.9813 95 254.81 275.6 1.081592 

45 15.74 16 1.0165 100 312.01 339.3 1.087455 

50 22.2 22.4 1.0090 110 481.76 530 1.100139 

55 31 31.6 1.0194 120 673.85 748 1.110038 
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Figure 16:  Speedup Growth Curve vs Number of Service Providers per workflow task at  

ρavg = 1 

4.2.2 Statistical Regression Models: Linear, Polynomial & 

Exponential 

 

Exponential regression of the curves in figure 15 yielded the equations teA = 0.7793e0.0624n at R² = 

0.9835 and teB = 0.8676e0.0605n at R² = 0.9836. Thus we conclude that both SLUM and S-MIP 

exhibit exponential growth in running time. By substituting equation (10) with the two exponential 

equations, and setting determined 𝑛𝑆𝑆𝐶=60 as the minimum number of webservices that would be 

required for SLUM to be at least faster than S-MIP 
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  Figure 17  Empirical Running Time Growth:- Linear Regression Curves at ρavg = 1 

Figure 17 above shows linear regression models/equations on each of the three algorithms – S-

MIP, SLUM and L-MIP when the composite service phase transition rate is unity i.e when all 

webservices are promoted from the SCUM layer to the SPUM layer. On the other hand, figure 18 

below shows the polynomial regression models for S-MIP, SLUM and L-MIP when the composite 

service phase transition rate is unity. 

 

Figure 18  Empirical Running Time Growth:- Polynomial Regression Curves at ρavg = 1 
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Figure 19  Empirical Running Time Growth :- Exponential Regression Curves ρavg =1 

Figure 19 above shows exponential regression models equations on each of the three algorithms – 

S-MIP, SLUM and L-MIP when the composite service phase transition rate is unity i.e when all 

webservices are promoted from the SCUM layer to the SPUM layer. On the other hand, figure 18 

below shows the polynomial regression models for S-MIP, SLUM and L-MIP when the composite 

service phase transition rate is unity. 

4.2.3 SLUM Expected Speedup via L-Hospital’s Law  

 

Applying the L-Hospital’s Law, we compute the SLUM expected speedup (SES) as per the 

methodology in chapter three.  Using the regression equations from the figure 18  and figure 19, 

the SES value under polynomial growth, SESP   is determined as per equation 4.5 below and the 

SES function under exponential growth is given equation 4.6 

 𝑆𝐸𝑆𝑝 =   lim
𝑛→∞

𝑑(𝑡𝑒𝐴)/𝑑( (𝑡𝑒𝐵) =   
0.0949

0.0846
= 1.12                                             (4.5)                                           

 

  𝑆𝐸𝑆𝐸 =   lim
𝑛→∞

𝑑(𝑡𝑒𝐴)/𝑑( (𝑡𝑒𝐵) =   
0.7793e0.0624n

0.8676e0.0606n
= 0.9e0.0018n                              ( 4.6)            
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The function 0.9e0.0018n can be used to compute the expected speedup for a given number of 

service providers per workflow task at ρ=1. To compute, nCE ,the critical value beyond which 

SLUM is faster than S-MIP, we could set the expected SES at 1.1 and solve the inequality in 

equation 4.7 

 0.9e0.0018n ≥ 1.1 = 0.0103𝑛𝑙𝑛𝑒 = ln 1.1 → 𝑛 ≥ 59                                            (4.7)                                  

Equation 4.7 means that if a virtual enterprise broker had 59 virtual enterprises per task, and the 

current transition rate is 1, they would enjoy a 10% increase in speedup when using SLUM instead 

of S-MIP.  

4.2.4   SLUM Initial and Asymptotic Speedup via Empirical 

Relative Complexity Analysis 

 

The growth behaviour of the two curves in figure 15 above hint non constant variance and 

nonnormality of CPU running time. Thus according to Coffin & Saltzman (2000), a variance 

stabilizing transformation (log transformation in this case) is required. The log-log scatter plot in 

Figure 3 being a straight line confirms the heteroskedasticity of the CPU running time. From Figure 

20, we infer that the empirical relative complexity coefficient of SLUM with respect to  S-MIP β1 

= 0.9684 while the constant term β0 =1.1 and thus conclude that initially, S-MIP is 1.1 times faster 

than SLUM but asymptotically, SLUM is more efficient than S-MIP such that teB =  teA
0.9684

 . This 

means that if for instance the running time of S-MIP is 1000 seconds, the running time of SLUM 

would be 10000.9684
 = 804 seconds.  
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Figure 20  SLUM Empirical Relative Complexity log-log Curve at ρavg = 1 

 

Using figure 20, we can also compute the SLUM Expected Speedup function under exponential 

growth. That’s, by considering that over the long run, the function for computing SLUM running 

time as function of S-MIP running time is teB =  teA
0.9684

 .    For any teA, the rate of change (speedup) 

of SLUM with respect to  S-MIP is   SES = teA / teA
0.9684

 =  teA
0.0316

  .  By plotting the function teA
0.0316

  

vs  teA we obtain a graph showing how SES varies with teA   for very large values.   The graph is 

depicted in figure 21. The goal was to empirically estimate the limit of the SLUM expected 

speedup. Figure 21 reveals that the SES values are increasing with respect to  teA. However, the 

same figure reveals that the growth in SES is not infinite, but instead seems to approach a limiting 

value of 2.  

Table 15: Expected Relative Speedup of SLUM with respect to S-MIP for large teA values 

at ρ 1 

teA(seconds) teB(seconds) SES 

1000 803.8962 1.243942 

5000 3820.169 1.308843 

10000 7474.807 1.337827 

y = 0.9684x + 0.0999
R² = 0.9999
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50000 35520.78 1.407627 

100000 69502.43 1.438799 

500000 330280.2 1.513866 

1000000 646249.2 1.547391 

10000000 6008970 1.664179 

50000000 28555025 1.751005 

100000000  1.789781 

 

 

Figure 21  SLUM Expected Speedup Curve  under Exponential Growth at ρavg =1 

 

4.3 Running Time Analysis when Composite Service Phase Transition ρ=0.6 

4.3.1 Running time Scaling Scatter Plots and Simple 

Descriptive Statistics  

     Table 7 below, gives a summary of the runtime results on the three algorithms- SLUM,S-MIP 

and L-MIP   when the composite service transition rate is  0.6. 
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Table 16: CPU Running time Data when Phase Transition Rate ρ 0.6 

n n1 n2 g2 g1 p teA teB SSI ln teA ln teB 

5 5 5 25 25 1 0.577 0.65 0.8876

92 

-0.54991 -0.43078 

10 10 10 100 100 1 1.4 1.5 0.9333

33 

0.33647

2 

0.405465 

15 15 15 225 225 1 1.8 1.95 0.9230

77 

0.58778

7 

0.667829 

20 20 20 400 400 1 2.4 2.6 0.9230

77 

0.87546

9 

0.955511 

25 25 25 625 625 1 3.4 3.9 0.8717

95 

1.22377

5 

1.360977 

30 30 30 900 900 1 5.1 5.2 0.9807

69 

1.62924

1 

1.648659 

35 20 38 760 122

5 

0.62040

8 

7 6.9 1.0144

93 

1.94591 1.931521 

40 32 32 1024 160

0 

0.64 10.7 8.5 1.2588

24 

2.37024

4 

2.140066 

45 31 32 992 202

5 

0.48987

7 

15.6 11.3 1.3805

31 

2.74727

1 

2.424803 

50 30 37 1110 250

0 

0.444 22.6 15.1 1.4966

89 

3.11795 2.714695 

55 31 37 1147 302

5 

0.37917

4 

31.6 19.7 1.6040

61 

3.45315

7 

2.980619 

60 33 32 1056 360

0 

0.29333

3 

44 26 1.6923

08 

3.78419 3.258097 

65 30 37 1110 422

5 

0.26272

2 

60.1 34 1.7676

47 

4.09601 3.526361 

70 32 27 864 490 0.17632 81 42 1.9285 4.39444 3.73767 
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0 7 71 9 

75 28 35 980 562

5 

0.17422

2 

106 55.6 1.9064

75 

4.66343

9 

4.018183 

80 25 35 875 640

0 

0.13671

9 

135 71 1.9014

08 

4.90527

5 

4.26268 

 

 

 

Figure 22  Empirical Running Time Growth Curves at ρavg = 0.6 

Figure 22 shows the runtime growth of SLUM vs S-MIP when the composite service phase 

transition rate is 0.6. The red line shows the runtime curve for SLUM and the blue is the curve for 

S-MIP. 

 

 

 

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80 90

C
P

U
 R

u
n

n
in

g 
Ti

m
e

 (
se

co
n

d
s)

Number of Webservices (Virtual Enterprises) per workflow task, n

S-MIP-Data Set I

SLUM-DataSetI



151 
 

 

4.3.2   Statistical Regression Models: Linear, Polynomial & 

Exponential at p=0.6 

       

 

Figure 23  Empirical Running Time Growth :-Linear, Polynomial and Exponential 

Regression Curves at ρavg = 0.6 

 

4.3.3 Expected Speedup via L-Hospital’s Law  
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Applying the L-Hospital’s Law, we compute the SLUM expected speedup (SES) as per the 

methodology in chapter three.  Using the regression equations from figure 23, the SES value under 

polynomial growth, SESP   is determined as per equation 4.8. The SES function under exponential 

growth is given equation 4.9 

 𝑆𝐸𝑆𝑝 =   lim
𝑛→∞

𝑑(𝑡𝑒𝐴)/𝑑( (𝑡𝑒𝐵) =   
0.0392

0.0181
= 2.16                                            ( 4.8)                                           

  𝑆𝐸𝑆𝐸 =   lim
𝑛→∞

𝑑(𝑡𝑒𝐴)/𝑑( (𝑡𝑒𝐵) =   
0.5918e0.0706n

0.7902e0.0579n
= 0.74e0.0127n                          ( 4.9)            

The function 0.74e0.0127n   can be used to compute the expected speedup for a given number of 

service providers per workflow task at ρ=0.6. To compute, nCE ,the critical value beyond which 

SLUM is faster than S-MIP, we could set the expected SES at 1.1 and solve the inequality in 

equation 4.1  

 0.74e0.0127n  ≥ 1.1 = 0.0094𝑛𝑙𝑛𝑒 = ln 1.1 → 𝑛 ≥ 10                                          (4.10)        

Equation 4.10 means that if a virtual enterprise broker had 10 virtual enterprises per task, and the 

current transition rate is 0.6, they would enjoy a 10% increase in speedup when using SLUM 

instead of S-MIP.. 

Similarly, the virtual enterprise broker could be interested to determine at what value of n they 

could achieve the expected speedup of 2.576 if the transition rate were 0.064. We solve the 

equation in 4.11 

    0.0094𝑛𝑙𝑛𝑒 ≥ 2.16 = 0.0094𝑛𝑙𝑛𝑒 = ln 2.16 → 𝑛 ≥ 81                                 (4.11)                                                                

 

4.3.4 Initial and Asymptotic Speedup via Empirical Relative 

Complexity Analysis 

 

The growth behaviour of the two curves in figure 22 hint non constant variance and nonnormality 

of CPU running time. Thus according to Coffin & Saltzman (2000), a variance stabilizing 

transformation (log transformation in this case) is required. The log-log scatter plot in Figure above 

being a straight line confirms the heteroskedasticity of the CPU running time. From Figure 24, we 

infer that the empirical relative complexity coefficient of SLUM with respect to  S-MIP at ρ=0.6,  

β1 = 0.82 while the constant term β0 =1.2 and thus conclude that at ρ==0.6 , SLUM is initially 
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slower than S-MIP but asymptotically faster than S-MIP.   Initially S-MIP is 1.2  times faster than 

S-MIP  and asymptotically, SLUM’s running time is given by  teB =  teA
0.82

 . This means that if for 

instance the running time of S-MIP is 1000 seconds, the running time of SLUM would be 10000.82
 

= 2888 seconds.  This is equivalent to a speed of  3.4 times. 

 

  

 

Figure 24  SLUM Empirical Relative Complexity –log-log Curve at  ρavg = 0.6 

 

4.4 Running Time Analysis when Composite Service Phase Transition,  

ρ 0.45 

4.4.1 Running time Scaling Scatter Plots and Simple 

Descriptive Statistics  

Table 8 below shows the runtime values of SLUM vs S-MIP at variable values of n when the 

composite service phase transition rate is 0.45. 

Table 17: CPU Running time Data when Composite Service Phase Transition Rate ρ 0.45 

n ln(n) TB 

(s) 

TA (s) ln(TA) ln(TB) ρ1 ρ2 g1 g2 g2/g1 Ssi 

5 1.609438 0.56 0.56 -0.57982 -0.57982 3 5 25 15 0.6 1 

10 2.302585 0.87 1.3 0.262364 -0.13926 10 10 100 100 1 1.494253 

ln teB = 0.8214lnteA + 0.1931
R² = 0.9962
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15 2.70805 1.35 1.72 0.542324 0.300105 2 2 225 4 0.017778 1.274074 

20 2.995732 1.9 2.4 0.875469 0.641854 2 1 400 2 0.005 1.263158 

25 3.218876 3.9 3.8 1.335001 1.360977 25 25 625 625 1 0.974359 

30 3.401197 5.4 5.2 1.648659 1.686399 30 30 900 900 1 0.962963 

35 3.555348 6.5 7.6 2.028148 1.871802 30 28 1225 840 0.685714 1.169231 

40 3.688879 8.6 10.7 2.370244 2.151762 32 32 1600 1024 0.64 1.244186 

45 3.806662 10.91 16.3 2.791165 2.38968 31 32 2025 992 0.489877 1.494042 

50 3.912023 15.6 22.4 3.109061 2.747271 30 37 2500 1110 0.444 1.435897 

55 22.04 19.7 32 3.465736 2.980619 31 37 3025 1147 0.379174 1.624365 

60 4.094345 25.9 43.7 3.777348 3.254243 33 32 3600 1056 0.293333 1.687259 

65 4.174387 34 61 4.110874 3.526361 30 37 4225 1110 0.262722 1.794118 

70 4.248495 44.1 82.5 4.412798 3.78646 32 27 4900 864 0.176327 1.870748 

75 0 55.29 107 4.672829 4.012592 28 35 5625 980 0.174222 1.93525 

80  71.7 134.18 4.899182 4.272491 35 28 6400 980 0.153125 1.871409 
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Figure 25   Empirical Running Time Growth Curves at ρavg = 0.45 

Figure 25 above shows the runtime growth of SLUM vs S-MIP when the composite service phase 

transition rate is 0.45. The red line shows the runtime curve for SLUM and the blue is the curve 

for S-MIP. 

 

 

4.4.2    4.4.2 Statistical Regression Models: Linear, Polynomial 

& Exponential at p=0.45 

         

Figure 26 Empirical Running Time Growth – Linear, Polynomial and Exponential 

Curves at  ρavg = 0.45 

4.4.3 SLUM Expected Speedup via L-Hospital’s Law 
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Applying the L-Hospital’s Law, we compute the SLUM expected speedup (SES) as per the 

methodology in chapter three.  Using the regression statistics from figure 26, the SES value under 

polynomial growth, SESP   is determined as per equation 4.11. The SES function under exponential 

growth is given equation 4.12. 

 𝑆𝐸𝑆𝑝 =   lim
𝑛→∞

𝑑(𝑡𝑒𝐴)/𝑑( (𝑡𝑒𝐵) =   
0.09738

0.03925
= 2.48                                            (4.11)                                           

  𝑆𝐸𝑆𝐸 =   lim
𝑛→∞

𝑑(𝑡𝑒𝐴)/𝑑( (𝑡𝑒𝐵) =   
0.5882e0.3545n

0.5678e0.3206n
= 1.036e0.0339n                       (4.12)            

 The function 0.81e0.0115n   can be used to compute the expected speedup for a given number of 

service providers per workflow task at ρ=0.36. To compute, nCE ,the critical value beyond which 

SLUM is faster than S-MIP, we could set the expected SES at 1.1 and solve  the inequality in 

equation 4.1  

1.036e0.0339n  ≥ 1.1 = 0.0351𝑛𝑙𝑛𝑒 = ln 1.1 → 𝑛 ≥ 3                                          (4.13)        

Equation 4.13 means that if a virtual enterprise broker had 3 virtual enterprises per task, and the 

current transition rate is 0.45, they would enjoy a 10% increase in speedup when using SLUM 

instead of S-MIP.  

Similarly, the virtual enterprise broker could be interested to determine at what value of n they 

could achieve the expected speedup of 2.48 if the transition rate were 0.45. We solve the equation 

in 4.14 

    1.036e0.0339n  ≥ 2.48 = 0.0351𝑛𝑙𝑛𝑒 = ln 2.48 → 𝑛 ≥ 25                                 (4.14)   

4.4.4 Initial and Asymptotic Speedup via Empirical Relative 

Complexity Analysis 

The growth behaviour of the two curves in figure 25 hint non constant variance and nonnormality 

of CPU running time. Thus according to Coffin & Saltzman (2000), a variance stabilizing 

transformation (log transformation in this case) is required. The log-log scatter plot in figure 27 

below being a straight line confirms the heteroskedasticity of the CPU running time. From Figure 

27, we infer that the empirical relative complexity coefficient of SLUM with respect to  S-MIP at 

ρ=0.45,  β1 =0.887 while the constant term β0 =0.94 and thus conclude that at ρ=0.45 , SLUM is 

both initially and asymptotically faster than S-MIP.   Initially SLUM is 1.06 times faster than S-

MIP  and asymptotically, SLUM’s running time is given by  teB =  teA
0.887

 . This means that if for 

instance the running time of S-MIP is 1000 seconds, the running time of SLUM would be 10000.887
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= 458 seconds.  Which is equivalent to a speed of 2.1 times. 

 

 

Figure 27  SLUM Empirical Relative Complexity –log-log Curve at  ρavg = 0.45 

 

4.5 Running Time Analysis when Composite Service Phase Transition,  

ρ 0.36 

4.5.1 Running time Scaling Scatter Plots and Simple 

Descriptive Statistics  

 

 The data in table 9 and the figure 28 below show that the running time of both S-MIP and SLUM 

increases none linearly as n grows larger. We also observe that initially, SLUM lags behind S-MIP  

until n=35. Beyond n=35, the growth of SLUM is persistently slower than S-MIP. Beyond n=40, 

the performance differences between the two algorithms become conspicuous. We also note that 

the SLUM Sample Instantaneous speedup steadily increases as n grows larger. For example the 

SIS value at n=35, n=40 , n=50, n=70 is 1.17,1.24, 1.53 , 1.84 respectively. 

Table 9 below shows the runtime response time values of SLUM vs S-MIP when the composite 

service phase transition rate at p value of 0.36. ρ1 is the number of services that were eliminated 
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for task 1 and ρ2  were the number of tasks that were eliminated for task 2. The product of g2 = 

ρ2. ρ2 gives the number of composite services that transitioned to the SPUM layer. g1 is the 

number of composite services available before the optimization process begins. The ration g2/g1 

is the composite service transition rate at a given n.  

 

Table 18: CPU Running time Data when Composite Service Phase Transition Rate ρ 0.36 

 

 

 

N TB (s) TA (s) ρ1 ρ2 g1 g2 g2/g1 Ssi ln(TA) ln(TB) 

5 0.625 0.57 3 1 25 3 0.12 0.912 -0.56212 -0.47 

10 1.35 1.28 1 2 100 2 0.02 0.9481 0.24686 0.300105 

15 1.89 1.88 2 2 225 4 0.0178 0.9947 0.631272 0.636577 

30 5.3 5.1 30 30 900 900 1 0.9623 1.629241 1.667707 

35 6.45 7.6 30 28 1225 840 0.6857 1.1783 2.028148 1.86408 

40 8.6 10.7 32 32 1600 1024 0.64 1.2442 2.370244 2.151762 

45 12.8 17.1 31 32 2025 992 0.4899 1.3359 2.839078 2.549445 

50 15.7 24 30 37 2500 1110 0.444 1.5287 3.178054 2.753661 

55 21.5 34.56 31 37 3025 1147 0.3792 1.6074 3.542697 3.068053 

60 28 47.9 33 32 3600 1056 0.2933 1.7107 3.869116 3.332205 

65 36.18 64 30 37 4225 1110 0.2627 1.7689 4.158883 3.588506 

70 47.01 86.43 32 27 4900 864 0.1763 1.8385 4.459335 3.85036 

75 59 110 28 35 5625 980 0.1742 1.8644 4.70048 4.077537 
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Figure 28  Empirical Running Time Growth Curves  at  ρavg = 0.36 

 

4.5.2 Statistical Regression Models: Linear, Polynomial & 

Exponential 

 

Table 19. CPU Running time Regression Statistics when Phase Transition Rate ρ 0.36 

 

 Linear Model Polynomial Model Exponential 

Model 

R² 

(Linear) 

R² 

(POL) 

R² 

(EXP) 

S-

MIP 

1.36n - 26 0.0369n2 - 1.5558n + 

13.018 

0.5602e0.0732

n 

0.76 0.9868 0.993

1 

SLU

M 

0.737n – 

7.12.64 

0.0173n2 – 0.6338n + 

5.8815 

0.6882e0.0617

n 

0.81 0.9893 0.988

1 

 

Table 10 above shows a summary of the linear, polynomial and exponential regression models at 
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R² and their corresponding goodness of fit as shown by the R² values.  Figure 29 below captures 

the same statistics graphically. 

 

            

 

Figure 29   Empirical Running Time Growth –Linear, Polynomial and Exponential 

Regression Curves at  ρavg = 0.36 

 

4.5.3 Expected Speedup via L-Hospital’s Law 

 

Applying the L-Hospital’s Law, we compute the SLUM expected speedup (SES) as per the 

methodology in chapter three.  Using the regression equations from the table in 10 and figure 

section 29 above, the SES value under polynomial growth, SESP   is determined as per equation 

4.15. The SES function under exponential growth is given equation 4.16. 
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 𝑆𝐸𝑆𝑝 =   lim
𝑛→∞

𝑑(𝑡𝑒𝐴)/𝑑( (𝑡𝑒𝐵) =   
0.0369

0.0173
= 2.13                                      ( 4.15)                                           

  𝑆𝐸𝑆𝐸 =   lim
𝑛→∞

𝑑(𝑡𝑒𝐴)/𝑑( (𝑡𝑒𝐵) =   
0.5602e0.0732n

0.6882e0.0617n
= 0.81e0.0115n                   ( 4.16)            

      

The function 0.81e0.0115n   can be used to compute the expected speedup for a given number of 

service providers per workflow task at ρ=0.36. To compute, nCE ,the critical value beyond which 

SLUM is faster than S-MIP, we could set the expected SES at 1.1 and solve the inequality in 

equation 4.1  

0.81e0.0115n  ≥ 1.1 = 0.00932𝑙𝑛𝑒 = ln 1.1 → 𝑛 ≥ 10                                          (4.17)        

Equation 4.17 means that if a virtual enterprise broker had 9 virtual enterprises per task, and the 

current transition rate is 0.36, they would enjoy a 10% increase in speedup when using SLUM 

instead of S-MIP.  

Similarly, the virtual enterprise broker could be interested to determine at what value of n they 

could achieve the expected speeup of 2.13  if the transition rate were 0.36. We solve the equation 

in 4.18 

   0.81e0.0115n  ≥ 2.13 = 0.00932𝑛𝑙𝑛𝑒 = ln 2.13 → 𝑛 ≥ 81                                 (4.18)   

 

4.5.4 Initial and Asymptotic Speedup via Empirical Relative 

Complexity Analysis 

 

The growth behaviour of the two curves in figure 28 above hint non constant variance and 

nonnormality of CPU running time. Thus according to Coffin & Saltzman (2000), a variance 

stabilizing transformation (log transformation in this case) is required. The log-log scatter plot in 

Figure above being a straight line confirms the heteroskedasticity of the CPU running time. From 

Figure 30, we infer that the empirical relative complexity coefficient of SLUM with respect to  S-

MIP at ρ=0.36,  β1 = 0.8437 while the constant term β0 =1.12 and thus conclude that at ρ=0.36 , 

SLUM is initially slower and asymptotically faster than S-MIP.   Initially S-MIP is 1.12 times 

faster than S-MIP  and asymptotically, SLUM’s running time is given by  teB =  teA
0.8374

 . This means 



162 
 

that if for instance the running time of S-MIP is 1000 seconds, the running time of SLUM would 

be 10000.8374
 = 331 seconds.  Which is equivalent to a speed of  3.01 times. 

 

 

Figure 30  SLUM Empirical Relative Complexity –log-log Curve at  ρavg = 0.36 

4.6    Running Time Analysis when mean Composite Service Phase 

Transition,  ρ=0.13 

4.6.1 Running time Scaling Scatter Plots and Simple 

Descriptive Statistics  

 

Table 20.: CPU Running time Data when Composite Service Phase Transition Rate ρ 0.13 

n TB 

(s) 

TA 

(s) 

ρ1 ρ2 g1 g2 g2/g1 Ssi ln(TA) ln(TB) 

5 0.67 0.58 5 5 25 25 1 0.865672 -0.54473 -

0.4004

8 

10 1.25 1.39 5 7 100 35 0.35 1.112 0.329304 0.2231

44 
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R² = 0.9977
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15 1.76 2.1 7 8 225 56 0.248889 1.193182 0.741937 0.5653

14 

20 2.25 2.75 8 4 400 32 0.08 1.222222 1.011601 0.8109

3 

25 2.7 3.6 11 7 625 77 0.1232 1.333333 1.280934 0.9932

52 

30 3.73 5.2 7 6 900 42 0.046667 1.394102 1.648659 1.3164

08 

35 5.1 7.2 9 7 1225 63 0.051429 1.411765 1.974081 1.6292

41 

40 6.3 10.9

9 

4 6 1600 24 0.015 1.744444 2.396986 1.8405

5 

45 8.88 16.1

3 

10 6 2025 60 0.02963 1.816441 2.780681 2.1838

02 

50 12.7 23.1 8 5 2500 40 0.016 1.818898 3.139833 2.5416

02 

55 17.2

8 

31.7 9 5 3025 45 0.014876 1.834491 3.456317 2.8495

5 

60 23.1 44.4 7 6 3600 42 0.011667 1.922078 3.793239 3.1398

33 

65 31 60.3 4 9 4225 36 0.008521 1.945161 4.099332 3.4339

87 

70 42.9 85 4 7 4900 28 0.005714 1.98044 4.394449 3.7111

3 

75 53.8 107 6 4 5625 24 0.004267 1.981352 4.672829 3.9852

73 

80 68.7 140 5 6 6400 30 0.004688 2.037846 4.919981 4.2297

49 
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The data in table 11 above shows that the running time of both S-MIP and SLUM increases none 

linearly as n grows larger. We also observe that initially, SLUM lags behind S-MIP until n=10. 

Beyond n=10, the growth of SLUM is persistently slower than S-MIP. Beyond n=20, the 

performance differences between the two algorithms become conspicuous. We also note that the 

SLUM Sample Instantaneous speedup steadily increases as n grows larger. For example the SIS 

value at n=5, n=10 , n=50, n=70 is 0.86,1.1, 1.8 , 1.98 respectively. 

4.6.2  Statistical Regression Models: Linear, Polynomial & 

Exponential 

 

Table 12 below shows the S-MIP, L-MIP and SLUM linear, polynomial and exponential 

regression equations and the goodness of fit statistics captured through the R² values. 

Table 21: CPU Running time Regression Statistics when Composite Service Phase Transition 

Rate ρ 0.13 

 Linear 

Model 

Polynomial Model Exponential 

Model 

R² 

(Linear) 

R² 

(POL) 

R² 

(EXP) 

S-MIP 1.59n – 33 0.0405 n2  - 

1.1849n + 10.864 

0.634e0.0699n 0.76 0.98 0.99 

SLUM 0.779n - 15 0.092n2 - 0.3843n 

+ 3.7664 

0.628e0.0597n 0.78 0.98 0.99 
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Figure 31  Empirical Running Time Growth – Linear, Polynomial and Exponential 

Regression Curves at  ρavg = 0.13 

Figure 31 shows the linear, polynomial and exponential statistical regression models for S-MIP 

and L-MIP at ρ=0.13. 

4.6.3 Expected Speedup via L-Hospital’s Law under   

 

Applying the L-Hospital’s Law, we compute the SLUM expected speedup (SES) as per the 

methodology in chapter three.  Using the regression equations from table 12 and figure 31., the 

SES value under polynomial growth, SESP   is determined as per equation 4.19. The SES function 

under exponential growth is given equation 4.20. 

 𝑆𝐸𝑆𝑝 =   lim
𝑛→∞

𝑑(𝑡𝑒𝐴)/𝑑( (𝑡𝑒𝐵) =   
0.0405

0.0192
= 2.1                                               ( 4.19)                                           

  𝑆𝐸𝑆𝐸 =   lim
𝑛→∞

𝑑(𝑡𝑒𝐴)/𝑑( (𝑡𝑒𝐵) =   
0.634e0.0699n

0.628e0.0597n
= 1.01e0.0102n                            ( 4.20)            

The function 1.01e0.0102n can be used to compute the expected speedup for a given number of 

service providers per workflow task at ρ=0.13. To compute, nCE ,the critical value beyond which 
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y = 0.0192x2 - 0.8563x + 9.0362
R² = 0.9817
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SLUM is faster than S-MIP, we could set the expected SES at 1.1 and solve the inequality in 

equation 4.21  

 1.01e0.0102n ≥ 1.1 = 0.0103𝑛𝑙𝑛𝑒 = ln 1.1 → 𝑛 ≥ 9                                         (4.21)        

Equation 4.21 means that if a virtual enterprise broker had 9 virtual enterprises per task, and the 

current transition rate is 0.13, they would enjoy a 10% increase in speedup when using SLUM 

instead of S-MIP. Examining the data in table 1 above, we that at n=5, the speedup is 0.8 and at 

n=10, the speedup is 1.32. Therefore a speedup of 1.1 should lie in between n=5 and n=10. Thus 

the solution to equation 4.21 holds. 

Similarly, the virtual enterprise broker could be interested to determine at what value of n they 

could achieve the expected speedup of 2.1 if the transition rate were 0.13. We solve the equation 

in 4.22 

        1.01e0.01n ≥ 2.1 = 0.0103𝑛𝑙𝑛𝑒 = 2.1 → 𝑛 ≥ 72                                             (4.22)           
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4.6.4 Initial and Asymptotic Speedup via Empirical Relative 

Complexity  

 

 

Figure 32  SLUM Empirical Relative Complexity –log-log Curve at  ρavg = 0.13 

 

The growth behaviour of the two curves in figure 31 hint non constant variance and nonnormality 

of CPU running time. Thus according to Coffin & Saltzman (2000), a variance stabilizing 

transformation (log transformation in this case) is required. The log-log graph in figure 32 above 

being a straight line confirms the heteroskedasticity of the CPU running time. From Figure 32, we 

infer that the empirical relative complexity coefficient of SLUM with respect to  S-MIP at ρ=0.13,  

β1 = 0.851 while the constant term β0 =0.93 and thus conclude that at ρ=0.13 , SLUM is both 

initially and asymptotically faster than S-MIP.   Initially SLUM is 1.07 times faster than S-MIP  

and asymptotically, SLUM’s running time is given by  teB =  teA
0.851

 . This means that if for instance 

the running time of S-MIP is 1000 seconds, the running time of SLUM would be 10000.851
 = 357 

seconds.  Which is equivalent to a speed of  2.8 times. 
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4.7 Running Time Analysis when mean Composite Service Phase Transition,  

ρ 0.064 

         4.7.1 Running time Scaling Scatter Plots and Simple Descriptive Statistics  

Table 22: CPU Running time Data when Composite Service Phase Transition Rate ρ 0.064 

n n1 n2 g2 g1 p teA teB SSI ln teA ln teB 

5 3 4 12 25 0.48 0.577 0.65 0.887692 -0.54991 -0.43078 

10 2 4 8 100 0.08 1.3 0.98 1.326531 0.262364 -0.0202 

15 2 2 4 225 0.017778 1.8 1.39 1.294964 0.587787 0.329304 

20 6 1 6 400 0.015 2.7 2.044 1.320939 0.993252 0.714909 

25 2 3 6 625 0.0096 3.7 2.3 1.608696 1.308333 0.832909 

30 3 3 9 900 0.01 5.2 3.4 1.529412 1.648659 1.223775 

35 2 3 6 1225 0.004898 7.1 4.6 1.543478 1.960095 1.526056 

40 2 4 8 1600 0.005 10.7 6.3 1.698413 2.370244 1.84055 

45 2 5 10 2025 0.004938 16.3 9 1.811111 2.791165 2.197225 

50 6 4 24 2500 0.0096 22.7 12.2 1.860656 3.122365 2.501436 

55 2 4 8 3025 0.002645 31.6 17.4 1.816092 3.453157 2.85647 

60 2 3 6 3600 0.001667 44 22.8 1.929825 3.78419 3.126761 

65 30 37 1110 4225 0.262722 60.1 29 2.072414 4.09601 3.367296 

70 7 4 28 4900 0.005714 81 34 2.382353 4.394449 3.526361 
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Figure 33   Empirical Running Time Growth Curves  at  ρavg = 0.064 

 

The data in the table and the figure shows that the running time of both S-MIP and SLUM increases 

none linearly as n grows larger. We also observe that initially, SLUM lags behind S-MIP until 

n=10. Beyond n=10, the growth of SLUM is persistently slower than S-MIP. Beyond n=20, the 

performance differences between the two algorithms become conspicuous. We also note that the 

SLUM Sample Instantaneous speedup steadily increases as n grows larger. For example the SIS 

value at n=5, n=10 , n=50, n=70 is 0.887,1.32, 1.5 , 2.38 respectively. 
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 4.7.2 Statistical Regression Models: Linear, Polynomial & Exponential 

 

Figure 34  Empirical Running Time Growth- Linear, Polynomial and Exponential 

Regression Curves at  ρavg = 0.064 

 

The figure 34 above and the regression equations in table 14 below show that the growth curves 

of both SLUM and S-MIP at ρ=0.064 has near perfect polynomial and a near perfect exponential 

growth. However, while S-MIP has no linear growth since the R2 value for linear regression is 

below 0.8 for S-MIP, SLUM exhibits some linear growth characteristics since R2=0.84. 
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Table 23: CPU Running time Regression Statistics when Composite Service Phase Transition 

Rate ρ 0.064 

 Linear Model Polynomial Model Exponential 

Model 

R² (LN) R² 

(POL) 

R² 

(EXP) 

S-MIP 1.0577n - 

19.037 

0.0299 n2 - 

1.1849n + 10.864 

0.5674e0.0727n 0.7807 0.9804 0.994 

SLU

M 

0.4879n - 

7.8628 

0.0116n2 - 0.3843n 

+ 3.7664 

0.5326e0.0617n 0.8405 0.9933 0.996

6 

         4.7. 3 Expected Speedup via L-Hospital’s Law  

Applying the L-Hospital’s Law, we compute the SLUM expected speedup (SES) as per the 

methodology in chapter three.  Using the regression equations from the table 14 , the SES value 

under polynomial growth, SESP   is determined as per equation 4.23. The SES function under 

exponential growth is given equation 4.24. 

 𝑆𝐸𝑆𝑝 =   lim
𝑛→∞

𝑑(𝑡𝑒𝐴)/𝑑( (𝑡𝑒𝐵) =   
0.0299

0.0116
= 2.5776                                   ( 4.23)                                           

  𝑆𝐸𝑆𝐸 =   lim
𝑛→∞

𝑑(𝑡𝑒𝐴)/𝑑( (𝑡𝑒𝐵) =   
0.5674e0.0727n

0.5326e0.0617n
= 1.065e0.01n                    ( 4.24)            

The function 1.065e0.01n can be used to compute the expected speedup for a given number of 

service providers per workflow task at ρ=0.064. To compute, nCE ,the critical value beyond which 

SLUM is faster than S-MIP, we could set the expected SES at 1.1 and solve  the inequality in 

equation 4.25 

 1.065e0.01n ≥ 1.1 = 0.01065𝑛𝑙𝑛𝑒 = ln 1.1 → 𝑛 ≥ 9                                        (4.25)        

Equation 4.25 means that if a virtual enterprise broker had 9 virtual enterprises per task, and the 

current transition rate is 0.064, they would enjoy a 10% increase in speedup when using SLUM 

instead of S-MIP. Examining the data in table 1 above, we that at n=5, the speedup is 0.8 and at 

n=10, the speedup is 1.32. Therefore a speedup of 1.1 should lie in between n=5 and n=10. Thus 

the solution to equation 4.25 holds. 

Similarly, the virtual enterprise broker could be interested to determine at what value of n they 

could achieve the expected speedup of 2.576 if the transition rate were 0.064. We solve the 

equation in 4.26. 
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 1.065e0.01n ≥ 2.576 = 0.01065𝑛𝑙𝑛𝑒 = ln 2.576 → 𝑛 ≥ 88                                 (4.26)        

 

 

                                                         

         4.7.4 Initial and Asymptotic Speedup via Empirical Relative Complexity Analysis 

 

Figure 35  SLUM Empirical Relative Complexity –log-log Curve at  ρavg = 0.064 

 

The growth behaviour of the two curves in figure 34 above hint non constant variance and 

nonnormality of CPU running time. Thus according to Coffin & Saltzman (2000), a variance 

stabilizing transformation (log transformation in this case) is required. The log-log scatter plot in 

Figure above being a straight line confirms the heteroskedasticity of the CPU running time. From 
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Figure 35, we infer that the empirical relative complexity coefficient of SLUM with respect to S-

MIP at ρ=0.064,  β1 = 0.84 while the constant term β0 =0.88 and thus conclude that at ρ=0.064 , 

SLUM is both initially and asymptotically faster than S-MIP.   Initially SLUM is 1.15 times faster 

than S-MIP and asymptotically, SLUM’s running time is given by teB =  teA
0.84

 . This means that if 

for instance the running time of S-MIP is 1000 seconds, the running time of SLUM would be 

10000.84
 = 331 seconds.  Which is equivalent to a speed of 3.01 times. 

4.8 Summary of Key CPU Running Time Results 

4.8.1 Variation of Running Time vs Number of Service 

Providers under the various ρ values 

 

Figure 36 below shows that generally the smaller the transition rate the slower the growth in 

running time and the better the performance. 

 

Figure 36   Summary -SLUM Running Time Growth at different composite service phase 

transition rates 
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4.8.2 Variation of Speedup vs Number of Service Providers 

per task under the various ρ values     

In the legend on of the graph in figure 37 below, SIS stands for ‘SLUM Instantaneous Speedup’ 

as defined earlier in chapter 3. SIS-n means the SIS value at given value of n, whereas  the symbol 

ρ carries the usual meaning as earlier defined in section 2.14. 

 

Figure 37   Summary -SLUM Speedup vs Number of Service Providers per Task at different 

phase transition rates  

 

In figure 37, we plot the speedup that was observed against increasing number of service providers 

per task at a given transition rate. The following can be observed. That at a constant transition rate, 

the speedup of SLUM with respect to grows larger as the number of service providers grows larger. 

However, we also see that the speedup hits a limit (does not grow infinitely).  The third observation 

is that reducing the transition rate accelerates increases the maximum speed achievable at any 

number of service providers. For example the speedup at n=10, when p=0.029 is 1.5 times, against 
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1.2 at p=0.13 and below 1 when p=1. These observations are expected as per the theoretical 

performance models developed in chapter two where we found that the speedup and transition 

rates are inversely related.  
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4.8.3 Expected Speedup vs Composite Service Phase 

Transition Rates under Polynomial Growth  

 

In table 24, the following conclusions can be drawn. First, the empirical speedup generally 

increases with a decrease in transition rate. However, we note that the speedup at p=0.13 = 2.133 > 

speedup at p=0.064 =2.1. We treat this as an outlier. The second conclusion is that the empirical 

speedups are all smaller in value than their expected theoretical counterparts. This is expected 

because of several reasons. The theoretical expected speeds have an assumption of n being very 

large. Secondly, the theoretical model ignores constant terms which in practice could have 

contributed to some performance inefficiencies in our model. 

Table 24: Summary Data:  Expected Speedup vs Phase Transition Rates under Polynomial 

Growth 

 

Ρ SLUM Polynomial 

Function 

S-MIP Polynomial  

Function 

Empirical  

Speedup(Ωs

) 

Theoretical  

Speedup(Ωs

) 

0.029

6 

0.0144n2-0.3993n+ 4.530 0.0518 n2-2.2816n + 21.426 3.5972 4 

0.064 0.0116n2-0.3843n + 3.766 0.0299n2- 1.1849n + 10.864 2.5779 3.7594 

0.13  0.0192n2-0.8567n+ 

9.0362 

0.0405n2- 1.8665n + 18.443 2.109375 3.5398 

0.36  0.0173n2 - 0.634n + 5.886  0.0369n2-1.5558n +13.018 2.133 2.9411 

0.45 0.3925n2- 2.8013n + 

5.6039 

0.9738n2- 8.8225n + 17.215 2.481 2.7586 

0.61 0.0181n2-0.7365n+ 

8.0346 

 0.0392n2- .789n + 17.503 2.17 2.484 

 

1 0.0846n2-5.7392n+ 

75.403 

0.0949 n2  -6.554n + 86.398 1.12 2 
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Figure 38   Summary – SLUM Expected Empirical and Expected Theoretical Speedup with 

respect to phase transition rates 

The figure 38 alongside depicts a plot of speedup vs composite service transition rate. Both the 

empirical and theoretical curves are drawn. We deduce that both curves are decreasing functions. 

We also observe that the empirical curve is under the theoretical curve.  
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4.8.4 Expected Speedup vs Composite Service Phase 

Transition Rates under Exponential Growth  

 

Table 25: Exponential Expected Speedup functions under various  Phase Transition Rates 

 

Table 25 shows the speedup exponential functions at different transition rates.  The functions can 

be used to answer the question: How much speedup given n and given that the transition rate was 

p? The solution is obtained by equating the function with the desired speedup and solving for n.  

The results show that for all transition rates except where p=1, at n>=10, a speedup of 1.1 times is 

guaranteed. The result mean that a virtual enterprise broker operating at least 10 service providers 

per task, regardless of the transition rate (except in rare cases where p=1), they are guaranteed to 

enjoy at least a 10% increase in efficiency by using SLUM over S-MIP. The functions could be 

used to compute speedups at any other value of n. 

ρ SLUM 

Exponential 

Function ( teB) 

S-MIP 

Exponential  

Function (teA) 

Empirical  Speedup 

function  

𝐥𝐢𝐦
𝒏→∞

𝒅(𝒕𝒆𝑨)/𝒅( (𝒕𝒆𝑩) 

nCE at  Ω    

1.1(Solve  

𝐥𝐢𝐦
𝒏→∞

𝒅(𝒕𝒆𝑨)

/𝒅( (𝒕𝒆𝑩) ≥ 𝟏. 𝟏 

0.0296 0.904e0.0593n 0.6231e0.0763n 0.6893e0.017n 8 

0.064  0.5326e0.0617n 0.5674e0.0727n 1.065e0.01n 9 

0.13  0.6268e0.0597n 0.6302e0.0699n 1.01e0.0102n 9 

0.36  0.6882e0.0617n  0.5602e0.0732n 0.81e0.0115n    10 

0.45 0.5679e0.3206n 0.5882e0.3545n 1.036e0.0339n 3 

0.61 0.7902e0.0579n 0.5918e0.0706n 0.74e0.0127n 10 

1 0.8676e0.0605n 0.7793e0.0624n 0.9e0.0018n 59 
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4.8.5 Variation of Initial and Asymptotic Coefficients   vs 

Composite Service Phase Transition Rates 

 Table 26 below shows the variation of initial performance of SLUM relative to S-MIP and the 

asymptotic performance of SLUM with respect to S-MIP. A general trend is that SLUM is slower 

than S-MIP initially since the β0>1 generally. Exceptions to this were noted e.g when ρ 0.064 , 

ρ 0.13 and p  0.45, where SLUM is marginally faster. The graph of β0 vs ρ in figure 39 shows 

that the initial performance of SLUM is generally poorer than S-MIP. The reason for this is that 

SLUM experiences the sequential overheads of having to select the best composite service in two 

sequential phases, where S-MIP does only once (Mulongo et al, 2015). 

  



180 
 

        Table 26: Initial and Asymptotic Performance Coefficients vs Phase Transition Rates  

 

(ρ) Log  teB vs  log teB   Equation  

Initial  

Performance 

Parameter 

(β0) 

Asymptotic 

Performance :- 

Empirical Relative 

Complexity 

Coefficient  

1/(β1) 

0.0296 log TeB(n) = 0.7833 log TeA(n) + 

0.2506 

1.28 0.7883 1.2685526 

0.064 log TeB(n)= 0.8488 log TeA(n) - 

0.146 

0.8644 0.8488 1.1781338 

0.13 log TeB(n)= 0.8513 log TeA(n)  - 

0.0675 

0.94082 0.8513 1.174674 

0.36 log TeB(n)= 0.8437log TeA(n)  + 

0.1116 

1.1181 0.8437 1.1852554 

0.45 log TeB(n)= 0.8872 log TeA(n) - 

0.061 

0.941 0.8872 1.1271416 

0.61   log TeB(n) = 0.8214 log TeA(n)  + 

0.1931 

1.213 0.8214 1.2174336 

1 log TeB(n)= 0.9684 log TeA(n) + 

0.0999 

1.1 0.9684 1.0326311 
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Figure 39   Summary –Variation of Initial Performance Parameter β0   with respect to  Phase 

Transition Rate ρ  

The graph in figure 39 shows how the initial performance of SLUM relative to that of S-MIP varies 

with different values of the composite service phase transition rate ρ. 

On the other hand, the converse is true for the empirical relative complexity β1, which generally 

increases with an increase in ρ and reduces with a reduction in ρ.  The graphs in figure 40 and 41 

prove this.  Since empirical relative complexity (Coffin & Saltzman, 2000) is a well-known 

method of comparing the relative speeds of two algorithms, the direct correlation between our 

method of transition rate , confirm the theoretical analysis that the speedup of SLUM was likely 

to decrease with an increase in transition rate. This was equivalent to proving that increasing 

transition rate increases the empirical relative complexity coefficient and vice versa, which this 

study has achieved. 
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Figure 40   Summary –Variation of Empirical Relative Complexity Coefficient β1   with 

respect to Phase Transition Rate ρ.  

Figure 40 shows how the empirical relative complexity and hence how the asymptotic performance 

of SLUM with respect to S-MIP varies with the composite service phase transition rate. 

 

Figure 41   Summary –Variation of Inverse of Empirical Relative Complexity Coefficient 

(1/β1)  with respect to Phase Transition Rate ρ 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Em
p

ir
ic

al
 R

e
la

ti
ve

 C
o

m
p

le
xi

ty
 C

o
e

ff
ic

ie
n

t

Composite Service Phase Transition Rate

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2In
ve

rs
e

 E
m

p
ir

ic
al

 R
e

la
ti

ve
 C

o
m

p
le

xi
ty

 
C

o
e

ff
ic

ie
n

t

Composite Service Phase Transition Rate



183 
 

4.9 Solution Quality and Optimality Results 

 

Table 27: Solution Quality Performance Results 

N 
 

ZB 

 

ZL 

 

Z* 

 

RSQB 

 

RSQL 

 

ORB 

 

ORL 

2 0.69 0.58 0.69 0.00 16.67 100.00 83.33 

3 0.61 0.73 0.73 16.44 0.15 83.56 100 

4 0.68 0.50 0.68 0.00 26.50 100.00 73.50 

5 0.59 0.56 0.75 21.33 25.11 78.67 74.89 

6 0.70 0.65 0.73 4.11 10.62 95.89 89.38 

7 0.77 0.60 0.77 0.00 22.22 100.00 77.78 

8 0.82 0.80 0.83 1.20 3.26 98.80 96.74 

9 0.72 0.61 0.72 0.00 14.74 100.00 85.26 

    

10 

0.75 0.65 0.79 5.06 17.92 94.94 82.08 

11 0.70 0.58 0.72 2.78 19.22 97.22 80.78 

12 0.70 0.61 0.7 0.00 13.28 100.00 86.72 

13 0.67 0.00 0.7 4.29 100.00 95.71 0.00 

14 0.63 0.00 0.69 8.70 100.00 91.30 0.00 

15 0.60 0.68 0.68 11.76 0.60 88.24 99.40 

16 0.59 0.64 0.75 21.33 15.04 78.67 84.96 

17 0.72 0.65 0.75 4.00 13.33 96.00 86.67 

        

18 0.67 0.69 0.75 10.67 7.35 89.33 92.65 

19 0.65 0.64 0.72 9.72 10.63 90.28 89.38 

20 0.71 0.56 0.77 7.79 27.65 92.21 72.35 

21 0.66 0.55 0.74 10.81 25.51 89.19 74.49 

26 0.76 0.78 0.69 2.56 11.45 97.44 88.55 

27 0.74 0.79 0.79 6.33 0.31 93.67 99.69 

28 0.65 0.77 0.60 15.58 21.79 84.42 78.21 
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In table 27 above, the optimization solution values for SLUM, L-MIP and S-MIP respectively are 

given in the columns labelled ZB, ZL  and Z*
 for problem instances of varying size.. The rows in the 

grey background denote infeasibility i.e no solution was found for the problem instances with the 

given problem size. Such instances were excluded from analysis. 

 

From the results, we observe that for every problem instance, S-MIP solution value Z*
 is the highest 

value of the three algorithms, implying that S-MIP yields more quality solutions than both SLUM 

and L-MIP. This result confirms our considerations in section 3.2.2. Thus the result allowed us to 

compute RSQB, RSQL, ORB and ORL as defined in equations (2), (3), (4) and (5) respectively. In 

table 1, a RSQ value of 100% denotes that no solution was found (or 100% error rate). For example, 

we see that for the problem instances with n=13 and those with n=14, L-MIP failed to find a 

solution where SLUM and S-MIP did. For fair analysis and comparison, we excluded results that 

contained RSQ=100%. By computing the mean optimality ratio from the data provided, we 

determine that the mean optimality ratio of SLUM ≈93b3T CVC %, implying an average error rate 

(RSQ) of ≈7%. On the other hand, the mean ORL value of L-MIP is ≈88% or RSQL ≈12%. These 

simple descriptive statistics suggest that SLUM generally generates more optimal solutions on 

29 0.73 0.77 0.74 5.19 4.23 94.81 95.77 

30 0.74 0.78 0.68 5.13 13.43 94.87 86.57 

31 0.75 0.79 0.77 5.06 2.53 94.94 97.47 

32 0.66 0.8 0.74 17.50 6.99 82.50 93.01 

33 0.70 0.78 0.67 10.26 13.93 89.74 86.07 

34 0.69 0.83 0.71 16.87 14.41 83.13 85.59 

35 0.79 0.79 0.60 0.00 24.29 100.00 75.71 

36 0.68 0.74 0.62 8.11 15.72 91.89 84.28 

37 0.72 0.79 0.72 8.86 8.23 91.14 91.77 

38 0.80 0.82 0.74 2.44 9.51 97.56 90.49 

39 0.62 0.79 0.66 21.52 17.04 78.48 82.96 

40 0.66 0.73 0.70 9.59 4.30 90.41 95.70 

41 0.77 0.8 0.63 3.75 20.77 96.25 79.23 
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average than L-MIP by approximately 5%. We shortly validate this claim using one of the tests 

described in section 3.5.1. Despite the fact that SLUM seems to have a larger mean OR or smaller 

RSQ, there are some cases where L-MIP yields more quality solutions, for example, in table 1 L-

MIP is outperforms SLUM when n=16, 27, 39 etc. However, as visualized in figure 42 and figure 

43, SLUM generally has more quality solutions than L-MIP. With reference to the problem 

instances with n=3, n=9, n=12 , it can also be seen that both SLUM and S-MIP are able to obtain 

a globally optimal solutions in some cases.  

 

Our inferential statistical analysis followed the procedure established in section 3.5.1 to compare 

the RSQB, vs RSQL, and therefore by implication ORB vs ORL. Figure 42 is a graph of RSQ vs n. 

An alternative representation of the results is captured by the bar graph in figure 43. The curves 

RSQB vs n and RSQL vs n both hint the following: the variation of RSQ vs n is nonlinear, and the 

performance differences between RSQB and RSQB do not seem to be constantly increasing with n. 

Thus, the slope test based on linear regression as described in 3.5.1.1 was not found to be an 

appropriate comparison technique. The alternative approach detailed in section 3.5.1.2 was used 

instead. Since our sample size N=38 and solution quality differences do not exhibit 

heteroskedasticity, under the assumptions of the central limit theorem, we assume that the RSQ or 

OR are normally distributed. We carried out a Shapiro Wilk test on the 38 sample performance 

differences, to verify our normality assumption. We obtained W=0.93 against the critical value Wc 

=0.938, at a significance of level of 0.05 and 38 degrees of freedom. The result confirms our 

assumption of normality. Therefore, the paired Student t- test was used to verify the significance 

of the 5% mean difference in solution quality between SLUM and L-MIP. The null hypothesis is 

rejected if either t-stat< -t critical two tail or t-stat> t-critical two tail. The results of the significance 

test are presented in table 2. In table 3 below, the t-stat = -3.182 and -t-critical two tail = -2.03. 

Since -3.182 <-2.03, we reject the null hypothesis and conclude that there are more than 95% 

chances that SLUM yields solutions with better quality by 5%. 
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Figure 42 Line Graph Showing Relative Solution Quality of SLUM & L-MIP  

 

  

 

Figure 43   Bar Graph Showing Relative Solution Quality of SLUM and L-MP with respect 

to S-MIP 

  

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45

R
SQ

T 
(%

)

Problem Instance (number of webservices per task)

Relative Solution Quality SLUM

L-MIP

0

5

10

15

20

25

30

2 4 6 8 10 12 16 18 20 22 24 26 28 30 32 34 36 38 40

R
SQ

Problem Instances (Number of webservices per task)

Relative Solution Quality

SLUM

L-MIP



187 
 

 

Table 28 : Paired Student  -t Test Results on SLUM & L-MIP Relative Solution Quality  

 

 

4.10 Discussion of Results 

As per section 1.5, the thesis sought to answer the research questions below: 

RQ1:   For a composite webservice selection problem having a workflow with k tasks and v 

alternative webservices per task, how does the runtime efficiency of SLUM compare with that of 

S-MIP and L-MIP when each is used to solve the problem?   The specific research questions arising 

from this question are: 

RQ1.1: How does the running time of SLUM grow as the number of service providers 

per task increase? 

RQ1.2: How does the running time growth of SLUM compare with that of S-MIP and 

L-MIP? 

RQ1.3:  How much speedup is achievable when using SLUM over S-MIP to 

autogenerate composite webservices given a business workflow having n webservices 

per task? 

RQ1.4: What is the minimum number of service providers per workflow task that a 

virtual enterprise broker needs to have in order to benefit from the relative efficiency of 

SLUM when compared to S-MIP? 

SLUM L-MIP

Mean 7.618157895 12.95210526

Variance 40.33246949 62.92169815

Observations 38 38

Pearson Correlation -0.034624739

Hypothesized Mean Difference 0

df 37

t Stat -3.182521967

P(T<=t) one-tail 0.00147773

t Critical one-tail 1.68709362

P(T<=t) two-tail 0.00295546

t Critical two-tail 2.026192463
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RQ2 that was outlined in section 1.5 of chapter two is:  How does the average solution quality of 

SLUM compare with that of L-MIP and S-MIP?  This leads us to the following specific research 

questions: 

RQ2.1: What is the average relative solution quality (percentage accuracy of quality) of 

the composite webservices generated by SLUM relative to S-MIP? 

RQ2.2: What is the percentage difference in the relative solution quality by SLUM relative 

to L-MIP? 

 

4.10.1   Running Time  

 

RQ1.1: How does the running time of SLUM grow as the number of service providers per 

task increase? 

First, as per the results in section 4.8.1, we conclude that the running time growth of SLUM 

increases as the initial number of webservices per task get larger. At the same time, based on the 

empirical results, we conclude that the running time growth also grows larger the larger the 

composite service phase transition rate ρ and grows slower for smaller values of ρ.  Hence the 

empirical results are in agreement with our theoretical model  𝑇𝐵 (𝑛) = (𝒏
𝒌(𝒒𝟏/𝒒𝒕 )

𝒌 +

 ∏ (n−∊𝑖)
𝑘
1 (𝒒𝟐/𝒒𝒕 )

𝑘) 

We have determined that regardless of the value of the phase transition rate ρ, SLUM exhibits very 

strong and very statistically significant polynomial running time growth in the number of service 

providers per workflow task  ( see the results in section 4.2 to 4.8). This finding is consistent with 

the theoretical model  𝑇𝐵 (𝑛) = (𝒏
𝒌(𝒒𝟏/𝒒𝒕 )

𝒌 + ∏ (n−∊𝑖)
𝑘
1 (𝒒𝟐/𝒒𝒕 )

𝑘 ) (see equation 2.48 in 

chapter two). Given that k , 𝒒𝟏, 𝒒𝒕  and 𝒒𝟐 are generally much smaller than n and further k, 𝒒𝟏, 𝒒𝒕  

and 𝒒𝟐 are fixed, the theoretical model in equation 2.48 is approximately a polynomial of degree 

k. The statistical polynomial regression functions obtained under all the seven different values of 

ρ had a degree of two (2) (see section 4.8 for a summary of the functions), which happens to the 

value of k at 2 that was fixed for all the experiments. At the same time, in all the setups, we also 

observed that SLUM exhibits a strong and statistically significant exponential growth in the 



189 
 

number of service providers, even though, generally, the exponential growth is not as strong as 

polynomial growth at a fixed transition rate. This implies that for very large number of virtual 

enterprise service providers per workflow task, our prosed model SLUM,  is highly likely to suffer 

exponential state space explosion, and thus not likely to guarantee polynomial time solution to 

very large problems. In conclusion we could say that SLUM is superpolynomial and hence non 

deterministic polynomial. This result is not surprising since as discussed in chapter one and two, 

we saw that all Mixed Integer Programming algorithms suffer exponential state explosion for very 

large problem sizes. The finding that SLUM has a superpolynomial running time growth despite 

being faster than the state of the art (see previous and subsequent sections for evidence) is an 

empirical reinforcement that the dynamic webservice composition problem remains NP hard. 

RQ1.2: How does the running time growth of SLUM compare with that of S-MIP and L-

MIP? 

In regard to RQ1.2, we determine that the running time of S-MIP is empirically bounded between 

polynomial and exponential growth –this implies that the running time of S-MIP is 

nondeterministic polynomial or superpolynomial. In a theoretical sense, we could conclude that 

for an infinitely large number of service providers per workflow task, both SLUM and S-MIP are 

equally bad in performance. This is expected because as per the analytic considerations of chapter 

two, ignoring constant terms, the initial global search space for both algorithm is 𝒏𝒌.  For very 

huge n, this search space can require exponential effort (Benatallah, et al, 2004). However, as will 

shortly be explained, in practice SLUM is much faster than S-MIP.  On the other hand, we saw 

that the running time growth of L-MIP has a polynomial upper bound. In a L-MIP is multiple 

factors faster than both S-MIP an L-MIP. The result confirms the analysis in chapter two and also 

reinforces the fining of previous studies that L-MIP is much faster than S-MIP. 

 

As per the criteria in 3.5.2.1, we can conclude that the running time growth of L-MIP, TeL(n) is 

empirically bounded between O(n) and O (nk) i.e 𝑂(𝑛) ≤ 𝑇𝑒𝐿(𝑛) ≤ 𝑂(𝑛𝑘), while TeB(n) and TeA(n) 

are both empirically bounded between polynomial and exponential empirical complexity classes, 

so that e 𝑂(𝑛𝑘) ≤ 𝑇𝑒𝐴(𝑛) ≤ 𝑂(𝑒
𝑜(𝑛)) and 𝑂(𝑛𝑘) ≤ 𝑇𝑒𝐵(𝑛) ≤ 𝑂(𝑒𝑜(𝑛)). On the basis of empirical 

complexity, we therefore conclude that L-MIP guarantees solutions within polynomial time, while 

both SLUM and S-MIP do not guarantee solutions in polynomial time since they have a 
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polynomial empirical lower bound but exponential empirical upper bound. Thus, L-MIP is far 

more efficient than both SLUM and S-MIP. 

 

Despite having found that both SLUM and S-MIP are superpolynomial theoretically, and therefore 

are equally bad in theoretically, there are plausible practical performance differences between the 

two methods. Looking at the graphs of running time for the seven different experimental setups, 

and the summary statistics in section 4.8, it’s evident that irrespective of the transition rates, SLUM 

is much faster than S-MIP ( see the response to RQ1.3 for a more quantitative treatment of the 

performance comparison between SLUM and S-MIP). 

 

RQ1.3:- How much speedup is achievable when using SLUM over S-MIP to autogenerate 

composite webservices given a business workflow having n webservices per task? 

The answer to this question comes from figure 37, the plot of speedup vs number of service 

providers for different transition rates and figure 38 having a plot of expected speeup vs transition 

rates. We saw that at a constant transition rate, the speedup of SLUM with respect to grows larger 

as the number of service providers grows larger. However, we also see that the speedup hits a limit 

(does not grow infinitely).  The third observation was that reducing the transition rate accelerates 

increases the maximum speed achievable at any number of service providers. For example the 

speedup at n=10, when p=0.029 is 1.5 times, against 1.2 at p=0.13 and below 1 when p=1. Figure 

38 on the hand, shows that on average, it’s possible for virtual enterprise brokers to hit an average 

speed up of 3.6 times when using SLUM. We see that:- 

1. Based on the  descriptive and inferential statistics in section 4.8.2 :- the speeup vs number of 

service provi ers graph shows that :- 

i.  Virtual enterprise brokers with as low 10 to 20 service providers per workflow task 

could enjoy speeups of up to 1.5 times when using SLUM as opposed to S-MIP. 

ii.  Virtual enterprise brokers with service providers per task in the range 30 to 50  

could enjoy nearly two fold speed up when using SLUM instead of S-MIP. 

iii. Virtual enterprise brokers with more than 60 service providers could enjoy more 

than two times speedup. 

2. Using the results in section 4.8.3 that are based on differential calculus using L-Hospital’s Rule. 

We established that for any number of service providers that is large enough, virtual enterprise 
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brokers could expect a worst mean speedup of 1.1 times (10% efficiency gain) when the 

transition rate approaches 100% and up to 3.6 times (260% gain efficiency gain) when the 

transition rate approaches zero. Note that the transition rate depends on the current values of 

webservices QoS attributes and the current QoS constraint models) of the problem instance. 

Since we see that at 60 to 70 service providers per task, it’s possible to hit an average speed up 

of 3.5 times, then the 260% improvement in speed is very practicable. In chapter two, we 

established a theoretical model that captures the expected speedup of SLUM w.r.t. The model 

is model  Ω =
(𝟐)𝒌

 𝟏+   ρ
 .  Thus a plot of Ω should exhibit inverse rational function. The empirical 

expected speedups determined via L-Hospital’s rule (see section 4.8.3) confirm the inverse 

trend between speedup and transition rate. Secondly, a comparison between the empirical 

expected speedup values at given transition rates with the expected theoretical results are in 

synchrony albeit with some deviations. However, note that the empirical values are all less 

than their theoretical counterparts. This is expected because, as said earlier, theoretical models 

do not take into account the practical limitations of the execution platform. The error deviations 

could be attributed to: 1) machine dependent factors and 2) random errors. The conclusion is 

that on average the virtual enterprise broker can practically expected speedups of up to 
(𝟐)𝒌

 𝟏+   ρ
. 

3. Using the method of empirical relative complexity analysis ( see chapter 3) or Coffin & 

Saltzman (2000), we have empirically demonstrated that even though both SLUM and S-MIP 

could suffer exponential state space explosion, in practice,  the running time of SLUM grows 

much slower compared to S-MIP. The summarized results in section 4.8.4 show that for all 

composite service phase transition rates ρ on the interval [0,1], the empirical relative 

complexity coefficient β1 of SLUM with respect to S-MIP is less than 1. In fact, based on the 

statistics, the mean value of β1 is about 0.85 and the modal value between 0.8 and 0.9   . A β1   

value of 0.85 roughly corresponds to a transition rate value of 0.36. At ρ=0.36, the speedup is 

about 2.1 times. Note that at k=2, transition rate of 0.36 means that  more than half of the initial 

service providers per task get promote for phase two optimization. 

 

Although SLUM is generally much faster than S-MIP, using the empirical relative complexity 

measure by Coffin & Saltzman (2000), we found that for a small number of webservices per task, 

S-MIP is about 1.2 times faster than SLUM even though there were a few cases where SLUM is 
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initially an asymptotically better than S-MIP . We also used L-Hospital’s rule and limits theory to 

arrive at 𝑛𝐶𝐸 = 22 i.e beyond 22 webservices per worklow task, SLUM has a relative speedup 

larger than 1 and therefore faster than S-MIP. These results could be attributed to the fact that 

initially, SLUM suffers the sequential overhead of having to formulate and instantiate the 

optimization problem twice on two sequentially partitioned problem instances, first one at the 

SCUM layer then later at the SPUM (Abiud et al, 2016).  At a fixed transition rate, the overhead 

is steadily overcome by the relative advantage of the layering as decomposition optimization 

approach as n grows larger and beyond 22, the sequential overhead is completely overcome and 

the superior performance of SLUM becomes apparent. This empirical result reinforces the 

theoretical claim that even when decomposition is formulated on sequential algorithms, relative 

performance speedups arise from the Superlinear growth of the problems being solved (Byod et 

al, 2003). 

 

 RQ1.4: What is the minimum number of service providers per workflow task that a virtual 

enterprise broker needs to have in order to benefit from the relative efficiency of SLUM 

when compared to S-MIP?  

The answer to this research question comes from the analysis of the results as in subsections 4.2.3, 

4.3.3, 4.4.3, 4.4.3, 4.5.3, 4.6.3 and 4.7.3, titled “ Expected Speedup via L-Hospital’s Law”. Under 

exponential growth, in each of these sections, the speedup of SLUM with respect to S-MIP (SES) 

is an exponential function in n. We have consolidated the results of these subsections in section 

4.8.4.  Figure 37 can also be quickly used to answer the question without rigorous mathematical 

analysis.  

 

From the results, we conclude that the minimum number of service providers beyond which SLUM 

is faster than S-MIP depends on the transition rate. The lower the rate the lower the value 𝑛𝐶𝐸 , and 

the better the case for the virtual enterprise broker. For instance, using the results in section 4.8.4 

we see that to achieve a minimum speedup of 1.1 times, at any transition rate value 𝑛𝐶𝐸 ≤ 10. 

This means that a virtual enterprise broker operating at least 10 service providers per task could 

be guaranteed at least a 10% increase in efficiency when using SLUM as opposed to S-MIP. An 

exception exists, where 𝑛𝐶𝐸=59 when the transition rate is 1. The implication is that is at any one 

time whenever the transition rate is 1, at that point in time, any virtual enterprise broker having 
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less than 59 service providers per workflow task would not benefit from SLUM. However, in a 

dynamic service environment, the transition rate will be seldom stationary and like said earlier, 

will rarely be 1. This is to mean that the frequency of a virtual enterprise broker with as few 

enterprises as ten per task are high. 

From figure 37, we see that at a rate of 0.029, a virtual enterprise broker can enjoy a speedup of 

1.5 at 𝑛𝐶𝐸=10, thus 10 becomes the minimum at this rate. At ρ=0.1 , the minimum value of 𝑛𝐶𝐸  

is still 10 but a lower speedup of 1.3 times speedup. At ρ=0.6, the minimum value of n is 40  

providers with 1.3 times speedup. At ρ=1, the minimum value of n is about 120 service providers 

with 1.2 times speedup.  However, given that ρ=1 represents an extreme (special) cases, it’s 

unlikely that on the average case, a virtual enterprise broker with less than 120 service provider 

would fail to enjoy the speedup of SLUM. From the graph in section 4.8.2, we can see that for all 

transition rates except at ρ=1, SLUM performs better than S-MIP just above 30 service providers 

per task. One method to validate this is by ρ=0.6 (a realistic but the most pessimistic value). At 

k=2, ρ=0.6 means that more than 75% of service providers per task satisfied the QoS constraints 

of layer optimization. For example, k=60, yields 3600 composite services initially. Sixty percent 

transition rate, means a total of 2160 composite services proceeding to layer two for final selection, 

which is roughly 47 out 60 services per task transiting. Having set ρ=0.6, and assuming 

exponential growth (worst case), the exponential regression functions at ρ=0.6 could be used to 

estimate the minimum number of service providers required for SLUM to have a speedup of at 

least S times. From the results, at ρ=0.6, we have teA = 0.5918e0.0706n
  and teB = 0.7902e0.0579n 

.  

Applying L-Hospital’s rule as per the methodology established in chapter three, we have SLUM 

Expected speedup at some value of n given as SES = 0.5918e0.0706n
 / 0.7902e0.0579n

 = 0.75e0.0127n 

 

By solving the inequality 0.75e0.0127n
 ≥ 𝑺, one can estimate the minimum value of n required to 

achieve at a speedup of at least S times. Let’s we have that S = 1.3 (20% increase in speed) . We 

have 0.75e0.0127n
 ≥ 𝟏. 𝟑. Which yields 𝒏 ≥ 𝟐𝟕. Lowering S=1.2, yields 𝒏 ≥ 𝟐𝟎 and 𝒏 ≥ 𝟏𝟎 at 

S=1.1. Thus, in general a virtual enterprise broker having at least 20 service providers per task is 

guaranteed at least a 10% improvement in speed when using SLUM instead of S-MIP provi the 

transition rate is less than 100%.  
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4.10.2 Relative Solution Quality of SLUM vs L-MIP with 

respect to S-MIP 

  

 RQ2.1: What is the average relative solution quality (percentage accuracy of quality) of the 

composite webservices generated by SLUM relative to S-MIP? 

  In response to research question RQ2.1, the results in section 4.9 indicate that the optimality ratio 

of SLUM is about 93% on average. We conclude that SLUM suboptimal relative to S-MIP. This 

finding confirms our analytic considerations of section 2.11 of chapter two, our early hypothesis 

of our recent work in  (Abiud et al, 2015) and the results in (Abiud W. M et  al, 2016). The reason 

for this result is because, although SLUM considers all global constraints eventually, it does so in 

two layered steps, so that at one layer only global constraints related to the QoS attributes at that 

layer are considered. Thus, while SLUM guarantees global optimality within each layer, it does 

not guarantee the same at the network level because optimization at each layer does not take into 

account the constraints at the other layer (Mulongo et al, 2015; 2016). 

 

RQ2.2: What is the percentage difference in the relative solution quality by SLUM relative 

to S-MIP? 

We found that SLUM on average is significantly more optimal than L-MIP by approximately 5%. 

We draw the conclusion that SLUM on average yields more quality solutions than L-MIP. The 

reason why SLUM has a better solution quality performance could be qualitatively attributed to 

the fact that while SLUM considers global constraints albeit in two partial steps, L-MIP does not 

at all take into account global constraints, and thus, the chance of L-MIP ignoring potentially better 

webservices across the workflow are higher than SLUM (Mulongo et al, 2016). A possible 

quantitative explanation for the same observation is as follows (Mulongo et al, 2016): for each k 

by n workflow, L-MIP only considers the QoS matrices of n webservices at a time. Given that 

globally, the maximum number of possible solutions is nk
, for every optimization decision L-MIP 

takes, L-MIP ignores the QoS of nk
-n other possible solutions. SLUM on the other hand, at each 

layer, considers approximately only half of the QoS matrices per workflow task i.e recall that each 

worklow task is mathematically represented as matrix. Each matrix contains a set of n QoS vector, 

where each vector is a webservice. By considering only half of the QoS attributes at a time, SLUM 
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only considers n/2(half of the QoS information) options per task. Thus at each layer, SLUM 

considers only (n/2)k
 possible options, while it ignores the remaining (n)k- (n/2)k

 options. At a 

constant k, it is possible to show that (n)k- (n/2)k
 < nk

-n, n>4. For instance, let n=6 and k=2, (n) k- 

(n/2)k
 =27 , while nk

-n = 30, and when n=60, k=2, (n)k- (n/2)k=2700 and nk
-n =3540. Since solution 

quality depends on the variety of candidate solutions (Holdger Hoos, 2003) (see also chapter three), 

SLUM has more chance of yielding more optimal solutions than L-MIP. Nevertheless, we also 

observed that in some instances, L-MIP, despite ignoring a larger number of candidate solutions, 

is able to produce solutions with better quality than SLUM. This isn’t surprising because, in 

addition to the variety or set of candidate solutions considered, as illustrated in section 3.2.3.3, the 

statistical structure of the problem instances (QoS matrices) can affect the quality of the solution 

produced by one algorithm compared to the other. However, provided the problem instances are 

random in nature, for a very large number of problem instances, with monotonically increasing 

number of webservices per workflow task, there are more than 95% chances that SLUM will 

produce more quality solutions than L-MIP as indicated by the statistical tests. 

 

Even if L-MIP performs worse than SLUM on average, we observed that its mean optimality ratio 

with respect to S-MIP is 87%. This is still an impressive performance. The study conducted by 

Ardagna et al (2007) established that global planning MIP algorithms for webservice composition 

outperform local planning MIP algorithms designed for the same task by 20% to 30% on average 

in terms of solution quality. This implies that, at the very best, local planning MIP strategy has a 

mean optimality of 80% according to Ardagna et al (2005).  Although, our results report a figure 

slightly larger than 80%, our finding that L-MIP has 87% mean solution quality, is a reinforcement 

of the results by Ardagna et al (2007). 
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5 CHAPTER 5: CONCLUSIONS & CONTRIBUTIONS 

In general, webservice composition is a critical business capability of modern virtual organizations 

(Rabelo et al, 2007; 2008). Composite Web services can save a substantial amount of time and 

cost for developing new software applications and enhancing the interoperability and collaboration 

among the various virtual enterprises within collaborative virtual organizations (Dongsong et al, 

2005). In particular, dynamic webservice composition (DWSC) is an important technological as 

well as a business capability for enabling delivery of highly adaptable, customized and 

personalized services to web service consumers ( Mulongo et al , 2015;2016a; 2016b), (Farhan et 

al, ,2010). DWSC could benefit a Virtual enterprise broker in the following ways (Abiud et al, 

2016a):   

i. Improved likelihood of the service consumer obtaining high quality solutions because the 

best composite service is selected from a pool of many potential solutions. Even in the 

event that no suitable solution is found that satisfies the consumer, the user can be provided 

with the list of feasible solutions and choose whether or not one of them nearly satisfies 

them. 

ii. Through re-planning strategies, workflows that are dynamically bound to webservices at 

runtime are more likely to survive failures through selection of different execution paths 

hence boosting system reliability and customer experience.  

However to autogenerate and adapt composite services that maximize the utility of various service 

consumers whose preferences differ from time to time, remains a multiple criteria decision making 

problem whose solution cannot be guaranteed in reasonable time. As explained in previous 

chapters, Mixed Integer Programming (MIP) is the most appropriate method for efficiently 

modelling decision problems that involve linear integer, real and binary variables.   Current MIP 

formulations for the webservice composition problem exploit two alternative strategies – local 

planning which is demonstrably polynomial time but lacks the ability to capture global constraints 

and therefore generally suboptimal. The alternative strategy is global planning, which can capture 

both local and global constraints. The global planning MIP guarantees global optimality but cannot 

guarantee a solution in polynomial time.  All the existing global planning MIP methods for the 

webservice composition problem follow a flat structured model in which one monolithic mixed 

integer optimization program is formulated and solved in one shot (Mulongo et al, 2015; 2016a; 
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2016b). The limitation is that such MIP models grow faster in search space as the number of 

optimization decision variables grow larger (Mulongo et al, 2015; 2016a). Other than performance 

limitations, a second gap in all existing service composition strategies is that end users are required 

to specify weights and QoS constraints on too many QoS attributes, some of which are too 

technical to discern (Abiud W.M et al,  2015) – it can be too tedious for the end user (Zeng et al, 

2004).  Even though Benatallah (2004) hypothesizes that a hierarchical optimization approach to 

the dynamic webservice composition problem could yield a more efficient solution albeit with 

solution quality tradeoff, until this study there no such an approach. 

In line with our research goal, this study aimed to design more efficient Mixed Integer 

Programming dynamic composite webservice selection strategy that does not deny service 

consumers an opportunity to specify all their critical local and global webservice QoS constraints. 

This research goal was pursued through two specific research objectives. The research objectives 

were: 

i. Design a layered hierarchical mixed integer programming model for the composite 

webservice selection problem following the concepts from the theory of Layering as 

Optimization Decomposition. 

ii. Evaluate the performance of the SLUM model against the single layered global 

planning technique (S-MIP) and the local planning method (L-MIP) in terms of two 

metrics:  

i. Running time (performance efficiency) and; 

ii. Solution quality. 

In relation to the above research objectives, the study also sought to answer the following 

two main research questions. 

RQ1:   For a composite webservice selection problem having a workflow with k tasks and 

n alternative webservices per task, how does the runtime efficiency of SLUM compare with 

that of S-MIP and L-MIP when each is used to solve the problem?  The specific research 

questions arising from this question are: 

RQ2:  How does the average solution quality of SLUM compare with that of L-MIP and 

S-MIP?  This leads us to the following specific research questions? 
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Through pursuing the above research objectives and seeking answers to the above research 

questions, this study makes the contributions and conclusions described from section 5.1. 

5.1 Contributions 

5.1.1 A Two Layer Architecture and Model MIP Model for the Webservice Composition. 

  

Our main contribution is that we have pioneered the application of the theory of Layering as 

Optimization Decomposition (from a conceptual perspective) to solving the dynamic webservice 

composition problem more efficiently using the global planning strategy described in chapter two. 

Layering as Optimization Decomposition (Mung, 2006;2007) & (Steve Low , 2013)  is an 

architectural as well as mathematical framework that has been used to reformulate the classical 

Network Utility Maximization (NUM) problem, so that it’s solved in a layered fashion, the results 

being more optimal TCP/IP networks in efficiency, throughput and network resource allocation. 

Although the theory has its roots in the communication networks field, this study has argued that 

the dynamic webservice composition problem resembles the network utility maximization problem, 

and consequently recast, the well-known (single layered) global planning mixed integer 

programming model (S-MIP) for service composition pioneered by Zeng et al (2004), into a two 

layered hierarchical MIP model called SLUM: Service Layered Utility Maximization model,  

inspired by the conceptual aspects of the Layering as Optimization Decomposition theory. 

The research output was a conceptual architecture together with the underlying mathematical 

models. The two layered MIP model is documented in (Mulongo et al, 2015) and its performance 

analysis presented in ((Mulongo et al, 2016a; 2016b). The key ideas in SLUM are as follows.  

i. Like in network utility maximization problem, NUM (Kelly et al, 1998) based on Layering as 

Optimization Decomposition, in SLUM, the original webservice composition problem is 

partitioned in two MIP optimization problems – each subproblem is tackled at its layer.  One 

layer is concerned with the maximization of end user utilities. The objective function here is 

formulated in terms of decision variables related to financial burden of the user and efficiency 

i.e response time, reputation, etc.  The other layer, is concerned with the maximization of the 

utility of the virtual enterprise broker (and their service providers). The objective function at 

the service provider layer is modelled in terms of low level technical webservice QoS 
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parameters such as throughput, availability, reliability etc.  The mathematical optimization 

model at each of the two layers follows the global planning MIP model originally defined in 

Zeng et al (2004).  The two MIP subproblems are then solved sequentially. 

ii.    Optimization at the Service Provider Utility Maximization layer is invisible to the end user 

yet the efficiency benefits of the optimization at the service provider are propagated to the end 

user without their knowledge. This form of abstraction is also employed in the network utility 

maximization problem, where improvements in the physical layer performance due to novel 

optimization algorithms at the physical layer are propagated to the application layer without 

the awareness of the end user.  

The study has analytically theoretically and empirically shown that the two layered MIP approach 

is more efficient than the flat structured owing two main factors:-  

i. Space reduction due to sequential decomposition.  When a problem is decomposed and the 

resultant subproblems solved sequentially (as opposed to a parallel solution), efficiency 

benefits from the decomposition will still be achieved due to the theory that the complexity 

of computational problems grows more than linearly as a function of the input size (Byod 

et al,, 2003). The significance of this is that virtual enterprise brokers operating a workflow 

that has k sequential tasks could benefit from faster average speed  of up to 1.5 times using 

a two layer global planning MIP strategy than using a single layer global planning  to MIP 

strategy, even in the absence of webservice elimination at the first phase of optimization. 

More evidence for this contribution is given in sections 5.2.2 to 5.2.8, and can also be found 

in (Mulongo et al, 2016b). 

ii. Space reduction due to early service provider elimination.  We have shown that other than 

the relative speed gain due to superlinearity of the complexity of computation problems,   

a two layered MIP architecture inherently benefits from further efficiency gains due to 

early elimination of some service providers who do not satisfy the end user QoS constraints. 

In particular, according to section 4.8.3 and (Mulongo et al, 2016a), we showed that in the 

presence of elimination, a two layer global planning MIP model could be on average up to 

4 times faster than the single layered global planning MIP model. 
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The performance efficiency results obtained provide an empirical proof that decomposition, even 

when applied to problems sequentially, eventually yields significantly more efficient solutions due 

to the super linearity of the complexity of computational problems as the problem size rises (Byod 

et al,, 2003). Concurrently, the results support the thesis of layering as decomposition (Mung ,2006) 

& (Low, 2012)), as a more efficient mathematical as well as architectural method for problems 

that inherently can be reformulated in multiple layers of abstraction- we provide the first proof 

where the composite webservice selection problem is concerned. Moreover, the results show that 

the relative expected efficiency gain of layering as decomposition with respect to non-layered is 

limited by the sequential overheads, hence achieving theoretical maximum expected speedup with 

respect to S-MIP may not be feasible.  

5.1.2 Runtime Performance Evaluation of the Two Layer MIP Model. 

 Based on research question RQ1 above, the study makes several contributions to the body of 

knowledge as regards the general runtime performance efficiency of SLUM, the initial as well 

asymptotic performance of SLUM with respect to S-MIP and L-MIP and expected speedup of 

SLUM with respect to S-MIP. The contributions & conclusions are described in subsections 

5.1.2.1, 5.1.2.2, and 5.1.2.3. 

  5.1.2.1 A Theoretic Runtime Performance Model for the Two Layer MIP Model 

Starting with the specific research question: 

 RQ1.1: How does the running time of SLUM grow as the number of service providers per 

task increase? 

 Through the analysis in section 2.12, the theoretical conclusion is that the runtime efficiency of 

SLUM is given by𝒏𝒌(𝟏/𝟐)𝒌 + ∏ (n−∊𝑖)
𝑘
1 (𝟏/𝟐)𝑘.This theoretical performance 

model constitutes our second major contribution to the body of knowledge. 

More conclusions can be drawn from this model. Firstly, that unlike in flat structured workflow 

based dynamic webservice composition approaches (L-MIP and S-MIP) in this case, the 

performance of layered approaches such as the proposed model (SLUM) is not only affected by 

the number of service providers 𝒏, and the number of workflow tasks  , but also by the number of 

service providers that are eliminated per workflow task at the SCUM layer, ∊𝑖. The larger the ∊𝑖 

value the larger the efficiency and vice versa.   Hence, the significance is that the magnitude of the 

average speedup gains expected by virtual enterprise brokers from SLUM depends also on the 
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number of early eliminated service providers. 

 

Secondly, that runtime growth of SLUM as the n grows larger, at a fixed k is likely to be 

polynomial but also that at a fixed n, the runtime is likely to be exponential in k. The conclusion 

therefore is that theoretically, SLUM’s runtime performance is superpolynomial and consequently 

non deterministic polynomial. However, examining the coefficients of the model leads to the 

conclusion that SLUM is theoretically more efficient than S-MIP, since the latter’s performance 

model is given by 𝒏𝒌. Further, the SLUM runtime performance model shows that as anticipated, 

SLUM has a poorer performance than L-MIP given that the latter’s runtime performance model of 

the L-MIP is nk, which is linear time. 

5.1.2.2 Empirical Runtime Performance Characterization of the Two Layer MIP Model 

Through a series of experiments and using statistical regression analysis when k is fixed at 2, the 

study found that SLUM has both very strong and statistically significant quadratic and exponential 

runtime growth. Note that the quadratic growth is a polynomial growth when k=2.  This consistutes 

our third major contribution – the first empirical proof that a two layer MIP model for the dynamic 

webservice composition problem is superpolynomial. Thus, our contribution here is in showing 

the a key limitation of layered MIP approach to webservice composition which is “despite the two 

layer MIP model having been proven to be on average and asymptotically more efficient than the 

single layered one” (see subsequent subsections) it still suffers from exponential state explosion.  

Through this finding, to the webservices research community, we provide further empirical 

evidence that the dynamic composite webservice selection considering global constraints, remains 

nondeterministic polynomial hard problem, and thus remains a significant problem deserving 

further research (Abiud et al 2016;2016b). 

 Given that SLUM is superpolynomial at k=2 and since k=2 is the smallest workflow in the number 

of tasks and is already superpolynomial, and the absolute performance of cannot be better at larger 

values of k, we therefore conclude that SLUM is generally superpolynomial both in theory in 

practice for all k. 

5.1.2.3 Theoretic and Empirical Relative Performance Evaluation of the Two Layer MIP 

Model. 

The contributions made under this section arise from the three research questions below: 
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RQ1.2: How does the running time growth of SLUM compare with that of S-MIP and L-MIP? 

RQ1.3:  How much speedup is achievable when using SLUM over S-MIP to autogenerate 

composite webservices given a business workflow having n webservices per task? 

RQ1.4: What is the minimum number of service providers per workflow task that a virtual 

enterprise broker needs to have in order to benefit from the relative efficiency of SLUM when 

compared to S-MIP? 

 The study answered the research questions using both theoretical algorithm analysis and empirical 

analysis following a series of experiments. The resultant contributions and conclusions are given 

in section 5.1.2.3.1 to 5.1.2.3.5. 

5.1.2.3.1 Complexity Analysis: SLUM & S-IMP are both theoretically 

& Empirically Superpolynomial & L-MIP is Polynomial time. 

Following the analysis from section 2.12, from a theoretical perspective, the SLUM runtime 

performance model is given by TB =  𝒏𝒌(𝟏/𝟐)𝒌 + ∏ (n−∊𝑖)
𝑘
1 (𝟏/𝟐)𝑘 .S-MIP 

performance model TA = 𝒏𝒌 and the L-MIP runtime performance model is TC = nk.  Intuitively, 

both S-MIP and SLUM are superpolynomial theoretically since for both algorithms, for a fixed n, 

the runtime would grow exponentially in k, and grow in polynomial time in n with a degree of k, 

for a fixed k. Thus, ignoring constant terms, we can conclude that both the two layer MIP (SLUM) 

and the single layered MIP (S-MIP) are superpolynomial and equally bad in performance. As 

explained in the preceding subsection, empirical results also confirmed that both SLUM and S-

MIP exhibit polynomial and exponential growth in runtime. On the other hand, L-MIP worst case 

runtime growth not only polynomial time but multiple orders faster than both S-MIP and SLUM 

i.e   𝑛𝑘 ≪ 𝒏𝒌  and 𝑛𝑘 ≪ 𝒏𝒌(𝟏/𝟐)𝒌 + ∏ (n−∊𝑖)
𝑘
1 (𝟏/𝟐)𝑘. 

5.1.2.3.2 SLUM is much faster than S-MIP on average theoretically for 

large values n for all k. 

Although from a complexity analysis point of view SLUM and S-MIP are superpolynomial, from 

the theoretical performance models, quantitatively, SLUM is significantly faster than S-MIP i.e 
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𝒏𝒌(
𝟏

𝟐)𝒌
+ ∏ (n−∊𝑖)

𝑘
1 (

𝟏

𝟐
)
𝑘
≪ 𝒏𝒌 .  This brings us to our fourth main contribution- we derive 

a theoretic SLUM speedup model relative to S-MIP. Based on the analysis of section 2.12, 

Following the model(𝒏𝒌(𝒒𝟏/𝒒𝒕 )
𝒌 + ∏ (n−∊𝑖)

𝑘
1 (𝒒𝟐/𝒒𝒕 )

𝑘), the study introduced 

the concept of Composite Service Phase Transition Rate  ρ . ρ is the ratio of the number of 

alternative composite webservices available after phase one optimization to the number of 

alternative composite webservices available before the start of phase one optimization. Thus 𝜌 =

(∏ (n−∊𝑖)
𝑘
1 )/(𝒏𝒌)  and lies on the interval [0,1]. Using L-Hospital’s rule, we went ahead 

to show that when the number of service providers per task is large enough, the expected speedup 

of SLUM with respect to S-MIP is generally given by the, function  
(𝟐)𝒌

 𝟏+   ρ
 . At ρ = 1, the 

speedup is (2)𝑘−1  and at ρ = 0, speedup is (2)𝑘 . Hence, theoretically, we learn that the 

average speedup 
(𝟐)𝒌

 𝟏+   ρ
 is on the interval [(𝟐)𝒌−𝟏, (𝟐)𝒌] for a large enough n. Another lesson 

learned from the theoretical model is that the average speedup is inversely proportional to  ρ. 

The average speedup model suggests that virtual enterprise brokers operating a large number of 

service providers per task could expect an average speedup on the interval [(𝟐)𝒌−𝟏, (𝟐)𝒌] in 

practice. For instance, for two task workflow, a speedup between 2 and 4 could be expected.  We 

also conclude that the expected relative SLUM speedup is inversely proportional to the composite 

service phase transition rate ρ. This analysis also shows that for large enough n, SLUM  is on 

average many orders faster than S-MIP. Another important conclusion from the speedup model 

(𝟐)𝒌

 𝟏+   ρ
 is that at ρ = 1, we have a speedup (𝟐)𝒌−𝟏. This is the average speedup arising from 

pure sequential decomposition when all service providers are promoted from the SCUM layer to 

the SPUM layer any speedup is not due to service provider elimination. 
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5.1.2.3.3 SLUM is much faster than S-MIP on average practically for 

large values n on a two task workflow. 

To verify the theoretical speedup model, the study conducted a series of experiments for a range 

of problem instances with increasing empirical hardness in the number of service providers per 

task at various values of the composite phase transition rate. The number of workflow tasks was 

fixed at 2. The summarized empirical results in table 15 of section 4.8.3, table 16 of section 4.8.4, 

and the Speedup vs  ρ  graph in figure 38 of section 4.8.3 leads to various conclusions and 

contributions regarding the average empirical performance of our proposed two layer MIP model 

versus the state of the art single layer MIP model: 

 

i. The empirical speedup values obtained at all composite service phase transition rates 

including at  ρ =1, are greater than 1. We conclude that, SLUM is not only theoretically 

faster than S-MIP on average, but also practically faster than S-MIP on average. 

ii. Secondly, the empirical speedup values are larger at smaller ρ values and smaller at 

larger ρ  values. This empirical finding verifies the inverse relation between the 

expected SLUM speedup and the composite phase transition rate as captured in the 

theoretical model 
(𝟐)𝒌

 𝟏+   ρ
.  Hence for a fixed number of service providers per workflow 

task, virtual enterprise brokers and hence service consumers will experience faster 

relative speeds at time instants when the composite service phase transition rate is 

higher than when it’s smaller in value. 

iii. Thirdly, the empirical speedup ρ value, obtained via L-Hospital’s law tends towards 

the corresponding theoretical value. For example, from table 4.8.3, at ρ = 0.0296, 

expected theoretical speedup is 3.885 while the computed is 3.6. However, all empirical 

expected speedups are below their theoretical counterparts by some error margin. The 

conclusion is that although the empirical expected speedup approaches the estimated 

theoretical speedup and hence fairly approximates the theoretical model, in practice, 

it’s difficult to hit the envisaged theoretical maximum speedup gains (Mulongo et al, 

2016a). This is due to sequential computational overheads incurred by the two layer 
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model that are not theoretically captured into the theoretical model (Mulongo et al, 

2016a). 

Fourth, the empirical speedup values at smaller ρ values are closer to their corresponding 

theoretical values than at larger ρ values. This could be attributed to the fact that the sequential 

overheads experienced by SLUM are larger at larger ρ  and vice versa. 

5.1.2.3.3 SLUM is about slower than S-MIP for small values of n below certain threshold 

on a two task workflow. 

If the two layered model is not faster than the single layered model until a certain minimum number 

of service providers, then another question arising from RQ1.2 is:  how faster is the single layered 

model initially better than the layered model? Using empirical relative complexity (Coffin & 

Saltzman, 2000), we established that although the initial relative performance of SLUM is also 

dependent on the transition rate, SLUM is generally slower than the single layer MIP approach 

initially when the number of service providers is below a certain threshold. Specifically, using the 

empirical relative complexity analysis method, we established that on a two task workflow, the S-

MIP is about 1.3 faster than SLUM initially. Thus the conclusion is that single layered MIP models 

could be more efficient for small scale webservice composition problems than the two layered 

approach. 

5.1.2.3.5 SLUM is practically asymptotically faster than S-MIP for 

large values of n above a certain threshold on a two task workflow. 

In addition the to initial and average performance comparison and in relation to RQ1.2, the study 

sought to understand the empirical asymptotic performance of the two layer MIP model compared 

with the single layered model. To do this, we used the empirical relative complexity coefficients 

(Coffin & Saltzman ,2000).  For ρ = 0.0296 (much closer to zero), we obtained an empirical 

relative complexity coefficient of 0.783 compared with the 0.96 obtained when ρ = 1). For the 

remaining five ρ values set at 0.064, 0.6, 0.45, 0.36, and 0.13 yielded empirical relative complexity 

coefficients between 0.783 and 0.96 that were generally directly proportional to the transition rate.  

The finding that the empirical relative complexity coefficients are directly proportional to 

transition rate is a cross validation of the theoretical performance model obtained in chapter two. 

The finding that at ρ = 1, the empirical coefficient is less than 1 means that even without service 
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elimination, SLUM is not only faster than S-MIP on average but also asymptotically.  These results 

provide an empirical evidence of our earlier theoretical conclusions that decomposition even when 

done sequentially can lead to improved efficiency.   

5.1.2.3.6 On a two task workflow, in practice at a fixed transition rate, 

the relative speedup of SLUM grows larger as n grows larger and at a 

fixed number of n.  

 In regard to RQ1.3:  How much speedup is achievable when using SLUM over S-MIP to 

autogenerate composite webservices given a business workflow having n webservices per 

task? The study also investigated the effect of varying the number of service providers per task at 

a fixed ρ value on the running time of the two layered model compared to the single layered 

approach. By plotting graphs of speedup vs number of service providers per task, for various ρ 

values, we observed that the expected speedup of SLUM generally grows larger as the number of 

service provider’s increase. For example at ρ = 0.36 ,  𝑛 = 10, 40, 50 and 70 , the speedups were 

1, 1.3, 1.5, and nearly 2 respectively. At ρ = 0.0296 , the speedups at n =10, and n=70 were 1.5 

and 2.6 respectively. In general, we establish that the relative speedup of SLUM at a given value 

can be determined from the exponential speedup functions derived at a particular value of k and ρ. 

For example, at k=2 and ρ = 0.0296 , a virtual enterprise broker would expect0.6893e0.017n.  

The exponential speedup functions can also be used to answer the research question: 

RQ1.4: What is the minimum number of service providers per workflow task that a virtual 

enterprise broker needs to have in order to benefit from the relative efficiency of SLUM 

when compared to S-MIP? 

To determine the minimum number of service provider nmin , the exponential speedup function at a 

particular value of k and ρ can be used to compute nmin  by setting the desired speedup value. For 

example, at k=2 and ρ = 0.0296, to determine nmin   needed to obtain a 50% gain, one would solve 

the equation 0.6893e0.017n ≥ 1.5. 
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5.1.2.3.7 Relative Speedup of SLUM has an elastic limit with respect to 

the number of virtual enterprises per task. 

We observed that the speedup does not grow infinitely with the number of service providers but 

rather hits a limit.  From these results, we make an important contribution towards the 

scalability/elasticity characteristics of layered MIP algorithms for the webservice composition 

problem. The contribution is that beyond a certain value of n, virtual enterprise brokers would no 

longer expect any more relative efficiency gains from the two layer MIP model. 

5.1.3 Empirical Evaluation of SLUM’s Solution Quality and Optimality. 

The main research question regarding solution quality was:  

RQ2:  How does the average solution quality of SLUM compare with that of L-MIP and S-MIP?   

The results obtained show that layered MIP has an average solution quality of 93%, which is 7% 

less optimal than the single layered. However, the same results showed that the local planning MIP 

approach has an average solution quality of 87%, which is 5% less optimal less than the layered 

MIP. The finding that L-MIP has an optimality of 87% reinforces the study in (Ardagna, 2007) 

which established that L-MIP could be an average 20% to 30% worse than the global MIP strategy. 

The conclusion is that a two layer MIP model is generally suboptimal but could on average produce 

more quality solutions than the local planning MIP algorithms. Analytically, any scheme 

exploiting layered optimization is bound to yield a suboptimal solution (Mung, 2006). Therefore 

the proposed two layer MIP model was hypothesized to be suboptimal. However, the error 

deviation of the two layered MIP model from the global optimum was unknown.  

 

5.1.4 The Algorithm Selection Problem for the Virtual Enterprise Broker: S-MIP vs L-MIP 

vs SLUM   

 

Considering the foregoing, the overall and practical contribution is that for virtual enterprise 

brokers to gain maximum benefit from dynamic webservice composition, there is a need to 

combine the three techniques, given that none of the methods is adequate in all situations. This 

transforms to what (John, 1976) terms as The Algorithm Selection Problem. In this case, the 

question becomes, which of the three algorithms should the Virtual enterprise broker use under 

what circumstances? Our contribution to this is that:- 
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i. In scenarios where there is no need for global webservice QoS constraints, the local planning 

mixed integer programming is the most ideal technique to use especially in ultra-low latency 

webservice enabled collaborative online stock trading platforms. In such web applications, the 

tolerable waiting limit for end users is 2 seconds  (Neilson, 1993;2009) , ( Akamai, 2009) & 

(Nah, 2004)  

ii. Below 10 service providers per work task, the difference between SLUM and S-MIP is below 

1 second. Where there are requirements for global constraints and strict requirements for 100% 

optimality, the single layered global planning MIP is better than both SLUM and L-MIP since 

SLUM does not guarantee global optimality whereas L-MIP lacks support for global 

constraints and at the same time is suboptimal  

iii.  Where there is need to address global QoS constraints and the Virtual Enterprise Broker has 

more than 10 service providers per workflow task, then SLUM is the best tradeoff. 

iv. Based on (Mulongo et al, 2015), if there are no strict requirements on timelines and  some 

marginal error in solution quality is tolerable , then SLUM dominates over both S-MIP and L-

MIP because S-MIP is less efficient than SLUM while L-MIP is less optimal than SLUM. 

v.  If the target service consumers average users, and usability is a great concern, SLUM 

dominates over S-MIP and L-MIP because unlike the rest, SLUM does not require users to 

directly specify constraints on low technical parameters.   
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5.1.5 Methodological Contributions 

When analyzing and comparing the performance of two or more composite webservice selection 

algorithms, their running time, and consequently their relative average speedup can be analyzed 

empirically as functions of the  problem input size ( in this case, the  number of webservices per 

task is the problem size). Further, the relative initial and asymptotic performance efficiency of 

two algorithms could be analyzed graphically by plotting running time vs problem size, and even 

more formally by exploiting the concept of empirical relative complexity as in (Coffin & Saltzman, 

2000). All these approaches have been followed in this thesis (see section 4.1 to 4.7). However, 

when comparing the relative performance of a layered composite service selection algorithm vs a 

non-layered counterpart or even vs another layered algorithm, a second dimension arises- the 

Composite Service Phase Transition Rate, ρ  as defined by the author in this thesis, a method for 

visualizing the variation of the relative performance of one algorithm with respect to  the other as 

a function of the rate ρ was needed. Previously, no study has explored such a method. In any case 

as stated earlier, to the best of our knowledge, there exists no any other study that exploited the 

concept of “a hierarchically layered mixed integer programming “model for the composite 

webservice selection problem. The study fills the gap through the below contributions:- 

5.1.5.1 Ω-ρ Graph 

This type of graph shows how the speedup of an algorithm B relative to algorithm A varies with 

increasing values of ρ.  For example, in this work, figure 38 in section 4.8.3 shows the Ω-ρ graph 

of our proposed SLUM algorithm with respect to the baseline algorithm S-MIP. The graph quickly 

tells one that the relative speedup of SLUM with respect to S-MIP declines with increasing ρ value. 

Where a mathematical model exists that correlates the relative speedup Ω with the transition rate 

ρ,  two Ω-ρ graphs can be plotted, one obtained through empirical analysis and another obtained 

by substituting certain ρ values in the mathematical model. The empirical and theoretical Ω-ρ 

graphs can then be compared where the empirical graph can be used to verify the theoretical model 

and vice versa. This is exactly what this study did. Using figure 38 in section 4.8.3 as a reference, 

we have one theoretical Ω-ρ graph and one empirical Ω-ρ graph. Both of the graphs confirm the 

same general trend that the speedup of SLUM with respect to S-MIP declines with increasing 

transition rate, thus validating the theoretical results of section 2.13. 
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Besides SLUM, future layered approaches to the composite webservice selection problem, may or 

may not exploit mixed integer programming model. And even if they did, variations in the 

formulation of the layered approach could be possible. Nevertheless, the invariant concept here is 

that in any of the layered approaches, candidate composite services are bound to be eliminated as 

they pass through the layers and thus the notion of “Composite Service Phase Transition Rate” 

remains. Thus, the Ω-ρ graph is envisaged to be a useful tool of algorithm performance efficiency 

comparison in the context of any layered approaches to composite service selection. In this case, 

Ω-ρ graph becomes a vital visualization tool depicting effect of service elimination through the 

phases on the relative performance of the new layered algorithm being investigated. 

5.1.5.2 β0-ρ Graph 

As explained throughout this study, other than average performance, the initial and asymptotic 

performance of two algorithms can be compared more formally using the concept of empirical 

relative complexity analysis as defined and explicated in (Coffin & Saltzman, 2000). The only 

condition for this kind of analysis is that a log-log graph of the running times of both algorithms 

must yield a graph that is significantly linear. This study takes the work of (Coffin & Saltzman, 

2000) further to introduce the notion of β0-ρ graph. The graph shows how the relative initial 

performance β0, of a layered algorithm B varies with the transition rate ρ. For example, in this 

work, in section 4.8.5, figure 39 shows how the initial performance of our proposed model with 

respect to S-MIP varies with ρ. In our case, the variation although somewhat noisy, shows that the 

initial performance of SLUM is generally poorer than S-MIP and that the effect of ρ is almost 

negligible. 

5.1.5.3 β1-ρ Graph 

This graph is very similar to the β0-ρ graph except that it shows the relative asymptotic 

performance of a layered algorithm with respect to another (non-layered) as a function of the 

transition rate. Figure 40 in section 4.8.5 captures this concept. The conclusion drawn from the β1-

ρ  graph in figure 40 is that the asymptotic performance parameter β1 (computed as per Coffin & 

Saltzman (2000)) and the phase transition parameter ρ are directly proportional to each other. Since 

according to Coffin & Saltzman (2000) a larger value of β1 , where β1 is on the interval [0,1], 

shows a poorer relative asymptotic performance than a smaller value, and given that from the 

definition of the parameter ρ, and the derived speedup model 
(2)𝑘

 1+   ρ
, for large enough n, the speedup 
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is poorer at larger ρ values, then the direct correlation between β1 and ρ is not a surprising result. 

5.2 Limitations of the Study  

 

The generalized theoretic SLUM speedup model 
(𝟐)𝒌

 𝟏+   ρ
 has been be shown to approximately hold 

in practice using a set of 112 experiments involving sixteen problem instances whose difficulty 

ranged from 5 service providers per task to 80 problem instances per task ( in steps of 5, two tasks 

per work and seven ρ whose fairly spread between 0 and 1. Although, the empirical ρ  values and 

their theoretical counter parts were converging, the study showed that the empirical values were 

all below their corresponding theoretical values. A limiting factor explaining this behaviour is the 

runtime sequential computational overheads that SLUM has to overcome first before getting faster 

than S-MIP (Abiud et al, 2016a).  

 

Whereas the model 
(𝟐)𝒌

 𝟏+   ρ
  generally suggests that SLUM’s speedup would be much larger at 

larger k values, it would have been interesting to perform more experiments involving 𝒌 > 𝟐   

e.g 𝒌 = 𝟐, 𝟑   in order to establish the scalability behaviour of SLUM relative to S-MIP at 

larger 𝒌 at larger  k values at different composite service phase transition rates and at different 

number of service providers per workflow task. This would have helped illuminate the 

circumstances and conditions under which SLUM is more beneficial than S-MIP for workflows 

containing more than two sequential tasks.  

 

5.3 Future Work 

 

It would be desirable to explore further work on the scalability behaviour of SLUM with respect 

to S-MIP on workflows larger than two sequential tasks. 

  

Analytically due to decomposition and layering, the abstraction afforded by our approach 

inherently shields end users from the burden of specifying weights and constraints on low level 
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performance attributes such as reliability, throughput etc. However, it would be desirable in future 

to carryout qualitative usability studies to compare the user experience/ease of use of our model 

against the baseline model in order to determine the effect of reduced end user QoS parameters on 

the usability. 

 

Layering as Optimization Decomposition is a science as well an art requiring human engineering 

effort (Mung, 2006). There are more than one scheme of layering and each layering scheme could 

lead to varying degree of runtime efficiency and optimality (Mung, 2006) as proven in the 

communications network research. This being the pioneering work, we have only advanced one 

of the possibly many MIP layering schemes that could follow from this one.  Future work shall 

explore alternative MIP layering schemes and their relative performance in terms of runtime 

execution efficiency and optimality benchmarked. A starting point would be to investigate whether 

reversing the optimization process in our two layer SLUM model, such that optimization begins 

at the Service Provider Utility Maximization (SPUM) layer followed by the Service Consumer 

Utility Maximization (SCUM) layer could yield any improvement in the relative speedup as well 

as optimality of the SLUM model compared to when the reverse order is done. Recall that as per 

the practical and philosophical considerations of this study (see section 2.10), the study adopted a 

layered optimization process beginning with SCUM followed by SPUM. 

This study pioneered a layered mixed integer approach to the dynamic composite webservice 

selection problem. Specifically a two layer approach was formulated, again based on realistic 

applications at the forefront as elaborated in section 2.10. Whether it’s for mere theoretical or 

practical motivations, future work could explore N layered mixed integer programming approaches 

to the problem, where N>2. Obviously, the complexity in analyses is expected to grow larger as 

the number of layers increases. However, if approached well, new performance insights never 

conceivable before could emerge. 
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Appendix 1:  Composite Webservice Subgraph Program Logic 
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Appendix 2: Composite Webservice Selection Model in Java Optimization Modeler 
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Appendix 3: Experiment Setup 

 

SOAPUI

JAVA SOAP 
client

Java Optimization Modeler – 
MIP Composite Service 

Selection Engine

2 by  n by 7 webservice QoS Matrix File

SLUM S-MIP L-MIP

 

 In the setup above, SOAPUI was used to generate n mock webservices per task. As explained in 

the methodology section, each mock service generated a random vector of 7 QoS values when 

invoked by a Java SOAP client. The output vector is then store in a file. The data structure stored 

in the file is three dimension. The first dimension represents the number of workflow tasks, which 

as explained was fixed at 2 The second dimension is the number of QoS vectors, which map to the 

number of webservices per task and the last one is the number of QoS attributes, which was fixed 

at 7. The Java Optimization Modeler (JOM) is a Mixed Integer Programming Library. The 

composition engine was built on top of JOM. The input to the engine is a 2 by n by 7 graph. The 

engine based on the configuration, gets the file as input, selects one of the three algorithms to 

process the input file. The output is one or a 2 by 7 QoS matrix, where the first vector is the best 

webservice for task 1 and the second vector is the best webservice for task 2.  
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