

UNIVERSITY OF NAIROBI

A TWO LAYER MIXED INTEGER PROGRAMMING MODEL FOR DYNAMIC

COMPOSITE WEBSERVICE SELECTION IN VIRTUAL ORGANIZATIONS INSPIRED BY

LAYERING AS OPTIMIZATION DECOMPOSITION

BY

ABIUD WAKHANU MULONGO

THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS OF THE

DEGREE OF DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE OF UNIVERSITY OF

NAIROBI

MAY 2016

I

II

DECLARATION

This thesis is my original work. It has not been presented for any other degree award in any other

university.

Signature _________________________ Date_______________

Abiud Wakhanu Mulongo

P80/93241/2013

The thesis has been submitted for examination with our approval as the University Supervisors.

Signature _________________________ Date_______________

Dr. Elisha T. O Opiyo Omulo

School of Computing and Informatics

Signature _________________________ Date_______________

Dr. Elisha Odira Abade

School of Computing and Informatics

III

DEDICATION

To my wife Jael Netondo :- You know best the PhD journey I have walked &. You stood by me in this

enduring journey

My sons Berring Fusho and Liam Muya: You bring incomparable joy in my life.

To my Dad Enos Wakhanu and mum Catherine Namisoo: I am because you are- you are my heroes.

To my late grandfather Mulongo wa Muya: I miss your great secrets of life

IV

ACKNOWLEDGEMENT

When I enrolled for my PhD studies back in October 2013, during the PhD induction session, I

curiously asked whether I could be allowed to finish my PhD in less than 2 years! In reply, to this,

Prof. Wagacha Waiganjo , the PhD coordinator said, “Sure, you could do it in say 18 months as

the minimum”. And Prof. Okello Odongo, the director, School of Computing & Informatics,

added, “In that case, the school would give you a trophy”. It’s three years on, and now I think, the

two Profs were just being modest and kind – I had no idea what PhD was, now I do. My PhD

journey was long and tough. In the course of it, I fainted not once, not twice, and admitted the

same number of times. This is how I realized the “Damaging effects of “PhD”. And therefore, I

would like to profoundly appreciate the following who made it possible to successfully finish the

race :- To my supervisors Dr. Elisha T. O Opiyo and Dr. Elisha Abade. You were always available

for me at the shortest notice, despite your many other official commitments. You gave me the best

guidance and advice I could ever imagine as far my PhD research was concerned. When I felt like

am chasing the wind and was about to throw in the towel, you made what seemed impossible

possible to me. I felt rejuvenated to maintain course. And when I felt too confident about this “big

idea, you posed very challenging questions, which at the end of it, have made me the philosopher

I am today. I hold you in the highest of esteem. To my colleagues at SCI who at one time or the

other, were my companions through the journey. Your support and inspiration was pivotal in

getting this work to its current position. To all the administrative, technical and support staff at the

School of Computing. Your support and cooperation was invaluable. To the management of the

University of Nairobi, and the School of computing and informatics. Thank you for providing a

conducive environment that promotes freedom of thought and independence in scholarly work.

V

ABSTRACT

The key motivation for virtual organizations (VOs) is the need for business agility against a highly

volatile and globally competitive market. The agility includes the ability to dynamically and

efficiently package and deliver highly customized services that maximally satisfy the utility of

service consumer demands over the Internet. Dynamic webservice composition (DWSC) is an

essential Information Communication Technology (ICT) enabler of this form of agility in VOs.

However, dynamic webservice composition remains a multiple criteria decision making (MCDM)

nondeterministic polynomial (NP) hard optimization problem despite more than 10 years of

extensive research. This makes the applicability of DWSC to problems of industrial relevance

currently limited. Mixed Integer Programming (MIP) is the most widely used technique in

efficiently modelling the problem. There are two MIP models for the DWSC problem: a local

planning strategy, herein L-MIP and a global planning strategy hereafter S-MIP. L-MIP is

provably polynomial time and practically multiple times faster than S-MIP. However L-MIP lacks

the ability to capture global inter workflow task webservice Quality of Service (QoS) constraints

and generally is less optimal relative to S-MIP. It has been demonstrated that L-MIP generates

composite webservices that are 20% to 30% worse in quality with respect to S-MIP. S-MIP on the

other hand guarantees global optimality but is susceptible to exponential state space explosion,

making the strategy limited to problems in which the number of service providers per business

workflow task n is small.

This thesis aimed to design a DWSC MIP global planning strategy that is more efficient than S-

MIP. The second objective was to evaluate the performance of the proposed strategy versus S-MIP

and L-MIP in terms of runtime efficiency and solution quality. The study proposed a two layer

MIP model dubbed SLUM: Service Layered Utility Maximization. SLUM is inspired by the theory

of Layering as Optimization Decomposition. Unlike all the existing DWSC MIP models that

formulate and solve a single MIP model, in SLUM there are two hierarchically layered MIP models.

One layer attempts to maximize the utility of service consumers and the other attempts to maximize

the utility of virtual enterprise brokers. The DWSC is then solved sequentially. Efficiency gains

from SLUM over S-MIP are hypothesized due to space reduction.

VI

The study used both theoretical and empirical methodologies to evaluate the performance of

SLUM against S-MIP and L-MIP in terms of two metrics: running time and relative solution

quality (RSQ). Our first main contribution is that we derive a theoretic running time model of

SLUM and using L-Hospital’s Law, show that the theoretic speedup of SLUM with respect to S-

MIP is given by the function
(𝟐)𝒌

 𝟏+ ρ
 , 𝑤ℎ𝑒𝑟𝑒 ρ = (∏ (n−∊𝑖)

𝑘
1)/(𝒏𝒌), n is the number

of service providers per business workflow task, k is the number of sequential workflow tasks, ∊𝑖

is the number of service providers against the ith workflow task who fail to satisfy the webservice

QoS requirements during the optimization process at the first layer. The study defines the

parameter ρ as the Composite Service Phase Transition Rate. ρ lies on the interval [0,1]. The

significance of the model is that at any one time instance, as ρ → 0, implying very few service

providers proceed for phase two optimization process, a virtual enterprise broker could expect

relative speedup of up to (𝟐)𝒌, so that when k=2, SLUM is bound to be nearly 4 times faster than

S-MIP. On the other hand when ρ → 1, meaning that very few service providers get eliminated

during phase one, the virtual enterprise broker could expect average speedups of up to (𝟐)𝒌−𝟏.

Therefore at k=2, SLUM is expected to be nearly 2 times faster than S-MIP on average. Thus, we

show that for other values of ρ, the expected speedup of SLUM with respect to S-MIP is bound to

be on the interval [(𝟐)𝒌−𝟏, (𝟐)𝒌].

Our other major contributions were through experimentation. In the first set of experiments on the

running time performance was investigated. Seven different setups were designed with each

experiment having a unique ρ value. The value of k was fixed at 2. The following methods were

used for data analysis: statistical regression analysis , scalability curves (speed up vs number of

service providers), differential calculus using L-Hospital’s Law, empirical relative complexity

analysis, speedup vs ρ curves. Our second major contribution is that from the empirical results we

show that the
(𝟐)𝒌

 𝟏+ ρ
 approximately holds in practice. This was verified using L-Hospital’s Rule

and polynomial regression curve fitting. We found that the empirical expected speedup values at

each of the 𝜌 values were all below but in close range with the theoretical values. For example at

ρ =0.0296, an expected speedup of 3.6 was obtained against the theoretical 3.885. Further, the

VII

speedup vs ρ plot confirmed the inverse relation between speedup and ρ in
(𝟐)𝒌

 𝟏+ ρ
 . The empirical

relative complexity coefficients β1 obtained for the various ρ values, were between 0.783 for the

lowest ρ value and 0.96 for the highest ρ value. Moreover the β1 values were generally

proportional to ρ . The deductions here are that for all 𝜌 SLUM is asymptotically faster than S-

MIP. The second deduction is that asymptotic speedup of SLUM with respect to S-MIP is inversely

proportional to ρ. This further verifies the model
(𝟐)𝒌

 𝟏+ ρ
 . On the other hand, the initial relative

performance parameter β0 obtained via empirical relative complexity analysis generally showed

that S-MIP is 1.3 times faster than SLUM initially. Using L-Hospital’s Law, exponential

regression functions as well as the scalability curves, we found that at a constant ρ value, the

speedup of SLUM with respect to S-MIP grows as the number of service providers grow larger

but eventually reaches a limit. Further, that below ten service providers per task, S-MIP is generally

faster than SLUM, beyond which SLUM is faster. The study also established L-MIP is several

orders faster than both S-MIP and SLUM, and that the running time of L-MIP has a polynomial

upperbound. On the other hand, the study also established that even though SLUM is on average

and asymptotically faster than S-MIP, both of them have an empirical running time model bound

between polynomial and exponential growth. Thus both models are superpolynomial, further

confirming the NP hardness of the DWSC problem. On the other hand, our empirical results on

RSQ, show that SLUM has an average RSQ of 93%, which is 7% less optimal compared to S-MIP,

while L-MIP has an RSQ value of 87% which is 6% less optimal than SLUM.

We conclude that if there is no need for global constraints at all, L-MIP is recommended over S-

MIP and SLUM. However, if end user global constraints is a critical concern, optimality is a

critical concern and the number of service providers per task is generally below 10, S-MIP should

be used. SLUM is preferred over the two models if global constraints are critically needed and the

number of service providers per task is above 10. Therefore virtual enterprise brokers could mix

the three models in order to maximize their value and the value of their service consumers.

Keywords: Dynamic Composite Webservice Selection, Mixed Integer Programming, Layering,

Optimization, Decomposition, Virtual Organizations.

VIII

Table of Contents

I DECLARATION ... II

II DEDICATION .. III

III ACKNOWLEDGEMENT .. IV

IV ABSTRACT ... V

V LIST OF FIGURES .. XIII

VI LIST OF TABLES .. XV

VII LIST OF ABBREVIATIONS AND ACRONYMS ... XVI

1 CHAPTER 1: INTRODUCTION ... 1

1.1 Background ... 2

1.1.1 Webservices and WebService Composition ... 2

1.1.2 Dynamic Webservice Composition and Virtual Organizations ... 4

1.1.3 Key Challenges of Dynamic Webservice Composition in Virtual Organizations 6

1.1.4 Overview of Mixed Integer Programming .. 8

1.1.5 Overview of Layering as Optimization Decomposition ... 12

1.2 Statement of the Problem .. 13

1.3 Research Goal ... 15

1.4 Specific Research Objectives ... 16

1.5 Research Questions .. 16

1.5.1 Running Time .. 16

1.5.2 Solution Quality ... 18

1.6 Overview of Our Proposed Approach ... 19

1.7 . Scope and Limitations of the Study .. 20

1.7.1 Nature and Scale of the Virtual Organization ... 20

1.7.2 Nature and Pattern of Business Workflows .. 20

1.7.3 Nature of the Service Environment .. 21

1.8 Significance of the Study ... 21

1.8.1 Significance to Industry and Practitioners .. 21

1.8.2 Significance to the Research Community ... 24

1.9 Operational Definitions ... 24

1.9.1 Service Provider and Provider .. 25

1.9.2 Service Consumer, Consumer and Service Requestor ... 25

IX

1.9.3 Virtual Organization, Collaborative Virtual Organization and Collaborative Networked

Organization .. 26

1.9.4 Virtual Enterprise Broker .. 26

1.9.5 Virtual Enterprise. ... 27

1.10 Organization of this thesis .. 27

1.11 Chapter Summary ... 29

2 CHAPTER 2: LITERATURE REVIEW ... 31

2.1 Introduction to Service Oriented Architecture ... 34

2.1.1 Actors and Components of the Service Oriented Architecture .. 37

2.1.2 Basic Computational Operations in a Webservices Model ... 38

2.1.3 Webservice Publication ... 38

2.1.4 Webservice Discovery ... 40

2.2 Dynamic Workflow Based Webservice Composition .. 41

2.2.1 Business Process, Workflows, Tasks and Workflow Patterns ... 42

2.2.2 Dynamic Workflow Based Service Composition Process .. 44

2.2.3 Dimensions of Optimization Complexity in Dynamic Webservice Selection 48

2.3 Local Planning Optimization Solution to Dynamic Webservice Selection 49

2.3.1 Webservice Quality Attribute Vectors and Matrices .. 50

2.3.2 Normalization/Scaling of Quality of Service Column Vectors ... 52

2.3.3 Weighting of Normalized QoS Row Vectors ... 53

2.3.4 Selection of the Best Composite Webservice ... 53

2.3.5 Analytic Runtime Performance Analysis of Naïve Local Planning 54

2.4 Global Planning Optimization Solution to Dynamic Webservice Selection 54

2.4.1 Composite Webservice QoS Aggregation Functions ... 56

2.4.2 Composite Webservice Quality Attribute Vectors and Matrices .. 57

2.4.3 Normalization of Composite Webservice QoS Vectors ... 57

2.4.4 Weighting of Composite Webservice QoS Attribute Values ... 57

2.4.5 Selection of the Best Composite Webservice ... 57

2.5 Mixed Integer Programming Solution to Dynamic Webservice Selection 58

2.6 Layering as Optimization Decomposition ... 60

2.6.1 Decomposition as an Optimization Method in Engineering and Computer Science 60

2.6.2 Layering as Software Architecture Decomposition .. 61

X

2.6.3 Layering as Optimization Decomposition ... 62

2.7 Related Work .. 64

2.8 A Summary of the Gaps in the State of the Art .. 69

2.9 Proposed Solution: Service Layered Utility Maximization Model (SLUM) 70

2.9.1 Qualitative Description of the SLUM Model ... 70

2.9.2 Mathematical Formulation of the SLUM Model ... 76

2.10 A Summary of How our Proposed Model Differs from the State of the Art 85

2.10.1 Relative Strengths ... 85

2.10.2 Relative Limitations ... 87

2.11 Benchmark Algorithms .. 87

2.12 2.12 Theoretical Performance Efficiency Assessment of SLUM Model 88

2.12.1 Special Case: Composite Service Phase Transition Rate 𝛒 = 𝟏 .. 90

2.12.2 Special Case: Composite Service Phase Transition Rate 𝛒 = 𝟎 .. 94

2.12.3 Generalized Case: Composite Service Phase Transition Rate, 𝟎 ≤ 𝛒 ≤ 𝟏 94

2.13 Chapter Summary ... 96

3 CHAPTER 3: METHODOLOGY .. 98

3.1 The Research Process .. 98

3.2 Research Design .. 100

3.2.1 Runtime Efficiency Study .. 105

3.2.2 Solution Quality Efficiency Study .. 114

3.3 Algorithm Implementation ... 117

3.4 Data Analysis and Interpretation .. 118

3.4.1 Analysis and Interpretation of Relative Solution Quality and Optimality Ratio 120

3.4.2 Analysis of CPU Running time Performance Differences .. 122

3.5 Chapter Summary ... 130

4 CHAPTER 4: RESULTS AND DISCUSSIONS .. 132

4.1 Running Time Analysis when mean Composite Service Phase Transition, ρ=0.0296 135

4.1.1 Running time Scaling Scatter Plots and Simple Descriptive Statistics (Sample Speedup) 135

4.1.2 CPU Running Time Growth Analysis via Linear, Polynomial and Exponential Regression 137

4.1.2 SLUM Expected Speedup via L. Hospital’s Law .. 139

4.1.3 Initial and Asymptotic Speedup via Empirical Relative Complexity under Exponential

Growth 140

XI

4.2 Running Time Analysis when Mean Composite Service Phase Transition, ρ=1 141

4.2.1 Running time Scaling Scatter Plots and Simple Descriptive Statistics 141

4.2.2 Statistical Regression Models: Linear, Polynomial & Exponential 143

4.2.3 SLUM Expected Speedup via L-Hospital’s Law .. 145

4.2.4 SLUM Initial and Asymptotic Speedup via Empirical Relative Complexity Analysis 146

4.3 Running Time Analysis when Composite Service Phase Transition ρ=0.6 148

4.3.1 Running time Scaling Scatter Plots and Simple Descriptive Statistics 148

4.3.2 Statistical Regression Models: Linear, Polynomial & Exponential at p=0.6 151

4.3.3 Expected Speedup via L-Hospital’s Law .. 151

4.3.4 Initial and Asymptotic Speedup via Empirical Relative Complexity Analysis 152

4.4 Running Time Analysis when Composite Service Phase Transition, ρ=0.45 153

4.4.1 Running time Scaling Scatter Plots and Simple Descriptive Statistics 153

4.4.2 4.4.2 Statistical Regression Models: Linear, Polynomial & Exponential at p=0.45 155

4.4.3 SLUM Expected Speedup via L-Hospital’s Law .. 155

4.4.4 Initial and Asymptotic Speedup via Empirical Relative Complexity Analysis 156

4.5 Running Time Analysis when Composite Service Phase Transition, ρ=0.36 157

4.5.1 Running time Scaling Scatter Plots and Simple Descriptive Statistics 157

4.5.2 Statistical Regression Models: Linear, Polynomial & Exponential 159

4.5.3 Expected Speedup via L-Hospital’s Law .. 160

4.5.4 Initial and Asymptotic Speedup via Empirical Relative Complexity Analysis 161

4.6 Running Time Analysis when mean Composite Service Phase Transition, ρ=0.13 162

4.6.1 Running time Scaling Scatter Plots and Simple Descriptive Statistics 162

4.6.2 Statistical Regression Models: Linear, Polynomial & Exponential 164

4.6.3 Expected Speedup via L-Hospital’s Law under.. 165

4.6.4 Initial and Asymptotic Speedup via Empirical Relative Complexity 167

4.7 Running Time Analysis when mean Composite Service Phase Transition, ρ=0.064 168

4.7.1 Running time Scaling Scatter Plots and Simple Descriptive Statistics .. 168

4.7. 3 Expected Speedup via L-Hospital’s Law .. 171

4.7.4 Initial and Asymptotic Speedup via Empirical Relative Complexity Analysis 172

4.8 Summary of Key CPU Running Time Results ... 173

4.8.1 Variation of Running Time vs Number of Service Providers under the various ρ values . 173

XII

4.8.2 Variation of Speedup vs Number of Service Providers per task under the various ρ values

 174

4.8.3 Expected Speedup vs Composite Service Phase Transition Rates under Polynomial Growth

 176

4.8.4 Expected Speedup vs Composite Service Phase Transition Rates under Exponential

Growth 178

4.8.5 Variation of Initial and Asymptotic Coefficients vs Composite Service Phase Transition

Rates 179

4.9 Solution Quality and Optimality Results ... 183

4.10 Discussion of Results ... 187

4.10.1 Running Time .. 188

4.10.2 Relative Solution Quality of SLUM vs L-MIP with respect to S-MIP 194

5 CHAPTER 5: CONCLUSIONS & CONTRIBUTIONS ... 197

5.1 Contributions .. 199

5.1.1 A Two Layer Architecture and Model MIP Model for the Webservice Composition. 199

5.1.2 Runtime Performance Evaluation of the Two Layer MIP Model. .. 201

5.1.3 Empirical Evaluation of SLUM’s Solution Quality and Optimality. ... 208

5.1.4 The Algorithm Selection Problem for the Virtual Enterprise Broker: S-MIP vs L-MIP vs SLUM

 .. 208

5.1.5 Methodological Contributions ... 210

5.2 Limitations of the Study .. 212

5.3 Future Work .. 212

6 REFERENCES .. 214

Appendix 1: Composite Webservice Subgraph Program Logic .. 222

Appendix 2: Composite Webservice Selection Model in Java Optimization Modeler 223

Appendix 3: Experiment Setup ... 224

XIII

LIST OF FIGURES

FIGURE 1 : A BASIC WEBSERVICES ARCHITECTURE, SOURCE (IBM, 2004) .. 37

FIGURE 2 : EXAMPLE SEQUENTIAL WORKFLOW WITH WEBSERVICE TASKS .. 42

FIGURE 3 EXAMPLE COMPLEX WORKFLOW WITH PARALLEL WEBSERVICE TASKS ... 43

FIGURE 4 EXAMPLE COMPLEX WORKFLOW WITH EXCLUSIVE OR GATEWAY ... 43

FIGURE 5 EXAMPLE TRAVEL PLANNING SEQUENTIAL WORKFLOW ... 44

FIGURE 6 STATIC WEBSERVICE COMPOSITION IN WORKFLOW BASED SERVICE COMPOSITION. 45

FIGURE 7 ILLUSTRATION OF WORKFLOW BASED DYNAMIC WEBSERVICE COMPOSITION. ... 46
FIGURE 8 ILLUSTRATION OF GLOBAL PLANNING STRATEGY FOR WEBSERVICE COMPOSITION USING A BIPERTITE

GRAPH ... 54

FIGURE 9: RESEARCH PROCESS FRAMEWORK, SOURCE (HOOS , 2003 ; SEOGEWIC, 2009) ... 99

FIGURE 10 EMPIRICAL RUNNING TIME GROWTH SCATTER PLOT OF L-MIP, SLUM AND SMIP ΡAVG = 0.0296. 136

FIGURE 11 EMPIRICAL RUNNING TIME GROWTH LINEAR REGRESSION ANALYSIS AT ΡAVG = 0.0296........................ 137

FIGURE 12 EMPIRICAL RUNNING TIME GROWTH – POLYNOMIAL REGRESSION CURVES AT ΡAVG = 0.0296 138

FIGURE 13 EMPIRICAL RUNNING TIME GROWTH – LOG LINEAR REGRESSION AT ΡAVG = 0.0296 139

FIGURE 14 EMPIRICAL RELATIVE COMPLEXITY –LOG-LOG SCATTER PLOT AT ΡAVG = 0.0296 141

FIGURE 15 EMPIRICAL RUNNING TIME GROWTH SCATTER PLOT AT ΡAVG = 0.0296 .. 142

FIGURE 16: SPEEDUP GROWTH CURVE VS NUMBER OF SERVICE PROVIDERS PER WORKFLOW TASK AT ΡAVG = 1 143

FIGURE 17 EMPIRICAL RUNNING TIME GROWTH:- LINEAR REGRESSION CURVES AT ΡAVG = 1 144

FIGURE 18 EMPIRICAL RUNNING TIME GROWTH:- POLYNOMIAL REGRESSION CURVES AT ΡAVG = 1 144

FIGURE 19 EMPIRICAL RUNNING TIME GROWTH :- EXPONENTIAL REGRESSION CURVES ΡAVG =1 145

FIGURE 20 SLUM EMPIRICAL RELATIVE COMPLEXITY LOG-LOG CURVE AT ΡAVG = 1 .. 147

FIGURE 21 SLUM EXPECTED SPEEDUP CURVE UNDER EXPONENTIAL GROWTH AT ΡAVG =1 148

FIGURE 22 EMPIRICAL RUNNING TIME GROWTH CURVES AT ΡAVG = 0.6 .. 150
FIGURE 23 EMPIRICAL RUNNING TIME GROWTH :-LINEAR, POLYNOMIAL AND EXPONENTIAL REGRESSION CURVES AT

ΡAVG = 0.6 ... 151

FIGURE 24 SLUM EMPIRICAL RELATIVE COMPLEXITY –LOG-LOG CURVE AT ΡAVG = 0.6 .. 153

FIGURE 25 EMPIRICAL RUNNING TIME GROWTH CURVES AT ΡAVG = 0.45.. 155
FIGURE 26 EMPIRICAL RUNNING TIME GROWTH – LINEAR, POLYNOMIAL AND EXPONENTIAL CURVES AT ΡAVG = 0.45

 .. 155

FIGURE 27 SLUM EMPIRICAL RELATIVE COMPLEXITY –LOG-LOG CURVE AT ΡAVG = 0.45 .. 157

FIGURE 28 EMPIRICAL RUNNING TIME GROWTH CURVES AT ΡAVG = 0.36 ... 159
FIGURE 29 EMPIRICAL RUNNING TIME GROWTH –LINEAR, POLYNOMIAL AND EXPONENTIAL REGRESSION CURVES

AT ΡAVG = 0.36 .. 160

FIGURE 30 SLUM EMPIRICAL RELATIVE COMPLEXITY –LOG-LOG CURVE AT ΡAVG = 0.36 .. 162
FIGURE 31 EMPIRICAL RUNNING TIME GROWTH – LINEAR, POLYNOMIAL AND EXPONENTIAL REGRESSION CURVES

AT ΡAVG = 0.13 .. 165

FIGURE 32 SLUM EMPIRICAL RELATIVE COMPLEXITY –LOG-LOG CURVE AT ΡAVG = 0.13 .. 167

FIGURE 33 EMPIRICAL RUNNING TIME GROWTH CURVES AT ΡAVG = 0.064 .. 169
 FIGURE 34 EMPIRICAL RUNNING TIME GROWTH- LINEAR, POLYNOMIAL AND EXPONENTIAL REGRESSION CURVES AT

ΡAVG = 0.064 ... 170

FIGURE 35 SLUM EMPIRICAL RELATIVE COMPLEXITY –LOG-LOG CURVE AT ΡAVG = 0.064 172
FIGURE 36 SUMMARY -SLUM RUNNING TIME GROWTH AT DIFFERENT COMPOSITE SERVICE PHASE TRANSITION

RATES .. 173
FIGURE 37 SUMMARY -SLUM SPEEDUP VS NUMBER OF SERVICE PROVIDERS PER TASK AT DIFFERENT PHASE

TRANSITION RATES .. 174

XIV

FIGURE 38 SUMMARY – SLUM EXPECTED EMPIRICAL AND EXPECTED THEORETICAL SPEEDUP WITH RESPECT TO

PHASE TRANSITION RATES ... 177
FIGURE 39 SUMMARY –VARIATION OF INITIAL PERFORMANCE PARAMETER Β0 WITH RESPECT TO PHASE

TRANSITION RATE Ρ .. 181
FIGURE 40 SUMMARY –VARIATION OF EMPIRICAL RELATIVE COMPLEXITY COEFFICIENT Β1 WITH RESPECT TO

PHASE TRANSITION RATE Ρ. .. 182
FIGURE 41 SUMMARY –VARIATION OF INVERSE OF EMPIRICAL RELATIVE COMPLEXITY COEFFICIENT (1/Β1) WITH

RESPECT TO PHASE TRANSITION RATE Ρ .. 182

FIGURE 42 LINE GRAPH SHOWING RELATIVE SOLUTION QUALITY OF SLUM & L-MIP .. 186

FIGURE 43 BAR GRAPH SHOWING RELATIVE SOLUTION QUALITY OF SLUM AND L-MP WITH RESPECT TO S-MIP . 186

XV

LIST OF TABLES

TABLE 1: LITERATURE REVIEW ROAD MAP ... 34

TABLE 2: LOCAL PLANNING OPTIMIZATION SERVICE QUALITY MATRIX FOR A SINGLE WORKFLOW TASK 51

TABLE 3 . THE SET OF WEBSERVICE QOS ATTRIBUTES AND THEIR SYMBOLS: SOURCE: MULONGO ET AL (2015) 56

TABLE 4: COMPOSITE SERVICE QOS AGGREGATION FUNCTIONS –: SOURCE: MULONGO ET AL (2015) 57

TABLE 5 : MULTI-LAYER OPTIMIZATION OBJECTIVES IN TCP/IP LAYERED NETWORK, SOURCE: (STEVE LOW (2013).. 64

TABLE 6 : MULTI-LAYER WEBSERVICE OPTIMIZATION OBJECTIVES IN THE PROPOSED MODEL: SLUM, SOURCE:

MULONGO ET AL (2015).. 72

TABLE 7: MAPPING THE CONCEPTS IN LAYERING AS OPTIMIZATION DECOMPOSITION TO THE PROPOSED SLUM MODEL

 .. 75

TABLE 8: AN EXAMPLE WEBSERVICE TO TASK ASSIGNMENT MATRIX BEFORE SCUM OPTIMIZATION, SOURCE:

MULONGO ET AL (2015) .. 84

TABLE 9: AN EXAMPLE WEBSERVICE TO TASK ASSIGNMENT MATRIX AFTER SCUM OPTIMIZATION, SOURCE

(MULONGO ET AL, 2015) ... 84

TABLE 10 : NOTATIONS USED IN THE THEORETICAL PERFORMANCE ANALYSIS OF THE PROPOSED MODEL (SLUM) 90
TABLE 11: OUTLINE OF THE OVERALL RESEARCH PROCESS ADOPTED BY THE STUDY. SOURCE (HOOS 2003 ;

SEOGEWIC, 2009) .. 99

TABLE 12: CPU RUNNING TIME DATA WHEN PHASE TRANSITION RATE Ρ=0.0296 .. 135
TABLE 13: CPU RUNNING TIME GOODNESS OF FIT AND SIGNIFICANCE RESULTS WHEN PHASE TRANSITION RATE

Ρ=0.0296 ... 137

TABLE 14: CPU RUNNING TIME DATA WHEN PHASE TRANSITION RATE Ρ=1 ... 142

TABLE 15: EXPECTED RELATIVE SPEEDUP OF SLUM WITH RESPECT TO S-MIP FOR LARGE TEA VALUES AT Ρ=1 147

TABLE 16: CPU RUNNING TIME DATA WHEN PHASE TRANSITION RATE Ρ=0.6 .. 149

TABLE 17: CPU RUNNING TIME DATA WHEN COMPOSITE SERVICE PHASE TRANSITION RATE Ρ=0.45 153

TABLE 18: CPU RUNNING TIME DATA WHEN COMPOSITE SERVICE PHASE TRANSITION RATE Ρ=0.36 158

TABLE 19. CPU RUNNING TIME REGRESSION STATISTICS WHEN PHASE TRANSITION RATE Ρ=0.36 .. 159

TABLE 20.: CPU RUNNING TIME DATA WHEN COMPOSITE SERVICE PHASE TRANSITION RATE Ρ=0.13 162
TABLE 21: CPU RUNNING TIME REGRESSION STATISTICS WHEN COMPOSITE SERVICE PHASE TRANSITION RATE

Ρ=0.13 ... 164

TABLE 22: CPU RUNNING TIME DATA WHEN COMPOSITE SERVICE PHASE TRANSITION RATE Ρ=0.064 168
TABLE 23: CPU RUNNING TIME REGRESSION STATISTICS WHEN COMPOSITE SERVICE PHASE TRANSITION RATE

Ρ=0.064 ... 171

TABLE 24: SUMMARY DATA: EXPECTED SPEEDUP VS PHASE TRANSITION RATES UNDER POLYNOMIAL GROWTH ... 176

TABLE 25: EXPONENTIAL EXPECTED SPEEDUP FUNCTIONS UNDER VARIOUS PHASE TRANSITION RATES.................. 178

TABLE 26: INITIAL AND ASYMPTOTIC PERFORMANCE COEFFICIENTS VS PHASE TRANSITION RATES 180

TABLE 27: SOLUTION QUALITY PERFORMANCE RESULTS .. 183

TABLE 28 : PAIRED STUDENT -T TEST RESULTS ON SLUM & L-MIP RELATIVE SOLUTION QUALITY 187

XVI

LIST OF ABBREVIATIONS AND ACRONYMS

AI Artificial Intelligence

BPEL Business Process Execution Language

BPM Business Process Modeling

BPMN Business Process Modeling Notation

CP Constraint Programming

DDL Descriptive Disjunctive Logic

DWSC Dynamic Webservice Composition- the subject of this thesis.

HMSCM Hierarchical Service Composition Model

ICT Information and Communication Technology

IP Internet Protocol

JOM Java Optimization Modeler

JSON Java String Object Notation

L-MIP Mixed Integer Programming using Local Planning Strategy for service composition

LOD Layering as Optimization Decomposition

LP Linear Programming

MAS Multi-Agent System

MCDM Multiple Criteria Decision Making

MIP Mixed Integer Programming

REST Representational State Transfer

SAW Simple Additive Weighting

XVII

SCUM Service Consumer Utility Maximization

SPUM Service Provider Utility Maximization

SLUM Service Layered Utility Maximization - the proposed model in this study

S-MIP Single Layered (Standard) Mixed Integer Programming using global planning

strategy

SOA Service Oriented Architecture

SOC Service Oriented Computing

TCP Transport Control Protocol

SAT Satisfiability – as used in Artificial Intelligence

SOAP Simple Object Access Protocol

VE Virtual Enterprise

VEB Virtual Enterprise Broker

VIC Virtual Industry Cluster

VO Virtual Organization

WFC Workflow Consortium – An international body that defines process modelling

standards

WS-BPEL Webservice Business Process Execution Language

WSC Webservice Composition

WSDL Webservice Description Language

XVIII

1

1 CHAPTER 1: INTRODUCTION

The key motivation for virtual organizations (VOs) is the need for business agility against a highly

volatile and globally competitive market (Molina & Flores, 1999). The agility includes the ability

to dynamically and efficiently package and deliver highly customized services that maximally

satisfy the utility of service consumer demands over the Internet ((Molina & Flores, 1999); (Rabelo

et al, 2007;2008;2009) . Dynamic webservice composition (DWSC) is an essential ICT enabler

of this form of agility in VOs (Rabelo et al, 2007; 2008,2009).

However, webservice composition in dynamic environments such as virtual organizations remains

a non-deterministic polynomial hard multiple criteria decision making optimization problem

(Moghaddam et al , 2014; Xu et al, 2012);Mahboobeh & Joseph, 2011; Xu et al, 2011; Bartalos &

Bieliková,, 2011; Singh, 2012 ; Mulongo et al, 2015;2016a, 2016b) despite a decade of extensive

research on the topic. This means that in some cases, it’s not feasible to find an optimal solution

to the webservice composition problem within practically acceptable time. This limits its viability

for problems of industrial relevance. The very nature of the problem lends itself to a mathematical

programming solution. In the literature, Mixed Integer Programming (MIP) is the most widely

used mathematical programming technique to tackle the webservice composition problem in

situations requiring dynamic decisions. However, existing MIP techniques suffer from one or a

combination of the following problems: - 1) exponential state space explosion implying that in

some cases, MIP may not yield a solution in practically acceptable time, 2) some MIP models lack

the ability to capture and take into account the global optimization constraints meaning that for

this class of MIP solutions, service consumers are denied the chance to specify some critical global

constraints, and consequently the quality of solutions produced are sometimes suboptimal and 3)

all existing methods require service consumers to specify preferences and weight ratings over the

whole set of webservice QoS attributes including low level performance attributes. This

requirement can be tedious to the end user (Benatallah, 2004) and at the same time, while all the

QoS attributes might be essential, some of the attributes may be too technical to be discernable by

an average user. Therefore a pressing question is: How can we design a more efficient Mixed

Integer Programming composite webservice selection strategy that can produce high quality

composite webservice solutions without: - denying service consumers an opportunity to specify all

2

their critical local and global constraints ? This question is worthwhile answering albeit a

difficult one. The main purpose of thesis is to address this research question.

In order to appreciate the significance and the intricacies involved in addressing the foregoing

research question, in section 1, we first provide some background to Webservice Composition

distinguishing between workflow based and Artificial Intelligence planning based service

composition, and dynamic workflow based from static workflow based service composition in

section 1.1.1. This is followed by a brief introduction to the Virtual Organizations (VOs) and how

dynamic webservice composition addresses the challenges in VOs in section 1.1.2. In section 1.1.3

we highlight the key issues that make dynamic webservice composition challenging. In section

1.1.4, we expound on the current MIP models to the problem and discuss their weaknesses and

thus provide a case for why further research is needed. We then outline a statement of the problem

in section 1.2. In section 1.3, the overall research goal is highlighted. Two specific research

objectives are stated in section 1.4. A list of research questions are posed in section 1.5. We give

an overview of our proposed solution in 1.6, whose formal details can be found in section 2.10.

The scope of the thesis is given section 1.7. Sections 1.8, 1.9 and 1.10 respectively discuss the

justification for the study, an overview of how the rest of the thesis is organized and a summary of

this chapter.

1.1 Background

1.1.1 Webservices and WebService Composition

A web service is a distributed software component that enables machine to machine interaction

over the network using standard network protocols such as the Simple Object Access Protocol and

REST. Webservice composition on the other hand, is a process that involves the discovery,

selection, linking and execution of a set of atomic distributed webservices in a specified logical

sequence in order to service complex customer request that none of the services could fulfill

singularly (Rao, 2004), (Rao & Su, 2004; Schahram & Wolfgang, 2005; (Cammarimha and

Arfsamanesh, 2007;Arfsamanesh et al, 2012). Webservice composition can be achieved through

the use of workflows or through the use of Artificial Intelligence (AI) planning (Rao & Su, 2004).

Workflow based webservice composition involves defining a business process detailing the logical

sequence of tasks that should be performed in order respond to some consumer need. The business

process is then automated into a computer executable workflow using standards such as the

3

Business Process Execution Language, and business process execution engines such as the Oracle,

IBM or Activiti. The workflow is also referred to as an abstract composite service (Rao Jinghai,

2004), (Rao & Su, 2004). Once an abstract composite service is defined, a concrete service

composition is required to link each of the abstract tasks within the workflow to some concrete

executable webservices. The result of a concrete webservice composition process is a concrete

composite service (Rao & Su, 2004). The execution of an abstract workflow, causes the concrete

composite service to be executed to produce the outcome desired by a service requestor. On the

other hand, Artificial Planning approaches aim at fully automated web service composition- no

human intervenes; both the logical sequence of tasks to be performed and the web services to be

linked through the sequence are unknown a priori; they have to be established only at runtime

automatically based on the knowledge inferred from a service request (Rao, 2004). However,

despite many years of scientific research on the subject, the AI techniques are still far from real

and are yet to find their way into industry (Mahboobeh & Joseph, 2011). Therefore currently,

owing to its worldwide adoption and strong industry support, workflow based service composition

remains the only viable option for VOs. Hereafter, our focus in this thesis therefore is on workflow

based webservice composition and therefore unless otherwise, workflow based webservice

composition and webservice composition shall be used interchangeably.

Workflow based webservice composition is further classified into static webservice composition

and dynamic webservice composition (Schahram & Wolfgang, 2005). In dynamic workflow based

web service composition, the web service that is to execute a workflow task is unknown a priori

until the workflow is executed in response to an external service request (Zeng et al, 2004). In this

case, when the workflow is invoked, the set of web services that best answer the demands of the

request at a point in time has to be first discovered ,selected from a service repository and invoked

in the logical order enforced by the workflow. Dynamic workflow based service composition is

contrasted from static workflow based webservice composition, in that in the latter, each workflow

task is bound to a known web service in advance at design time and the binding can only be altered

manually. Static workflow based webservice composition is easier to implement than dynamic

webservice composition. Moreover, static webservice composition suffices in business cases

where there is no need for customizing service responses in line with consumer specific QoS

requirements. Further, if there was negligible variance in the QoS attributes of each component

webservice all the time, then the use of static webservice composition would still produce the best

4

known composite webservice, whichever combination of webservices is defined at design time.

However, in dynamic environments, customer QoS needs will vary from time to time and from

customer to customer. Secondly, in real service environments, the QoS attributes of individual

webservices will vary both at design time and at runtime. Considering the two scenarios, static

service composition are severely limited. Thus, today due to its potential benefits, dynamic

webservice composition has become an active area of research. This thesis explores dynamic

workflow based webservice composition.

1.1.2 Dynamic Webservice Composition and Virtual Organizations

A virtual organization (VO) is a dynamic, temporary, and strategic alliance of many independent

and heterogeneous firms (that have their unique core business competencies), that are logically

interconnected using Information and Communication Technology networks (Molina & Flores ,

1999; Rabelo & Gusmeroli., 2008; Amit et al , 2010; Arfsamanesh et al,2012). Globalization,

sophistication of product and service development, fast shifting consumer demands, coupled with

stringent time to market constraints are the driving forces behind the emergence of VOs (Molina

& Flores, 1999). Due to the these constraints, no single firm, even large ones have the internal

capacity and the time required to develop and deliver a complex composite product (The need for

business agility, value added services, efficiency in service delivery of value added services and

customer centricity are distinguishing survival strategies for global virtual organizations (Molina

& Flores, 1999), (Rabelo & Gusmeroli, 2008), (Amit et al , 2010), (Arfsamanesh et al ,2012). In

VOs, firms (usually small scale) share competencies, business processes and resources to fulfill a

specific market need where none of them can independently deliver the need Mulongo & Flores,

1999). According to Molina & Flores (1999) the VOs are characterized by:

i. Heavy reliance on innovation and information technology and customer centricity.

ii. Independence and short lived relationships among the enterprises. New service providers

or suppliers with better products or services can be substituted, removed, added by the

virtual enterprise broker when needed in order to respond to customer requests. This

exemplifies the agility and dynamic nature of VEs.

iii. Business agility.

iv. Customer centricity.

5

In order to support the dynamic nature and business objectives of VOs, the ideal information

technology framework for virtual organizations should at minimum provide mechanisms for

collaboration, negotiation, interoperability and integration of business processes (Picard W. et al,

2010). The authors in (Rabelo & Gusmeroli., 2008) identify Service Oriented Architecture (SOA)

as the appropriate information technology framework for VEs. SOA supports the agility of VEs

through web service composition (Picard W. et al, 2009). In their ICT-Infrastructure reference

framework for collaborative networked organizations Rabelo & Gusmeroli (2008) identifies

webservices and webservice composition as essential ICT services required to facilitate inter

enterprise business process integration and coordination towards fulfilling a complex consumer

request. In the context of VOs, the different distributed webservices are each owned by

geographically disperse entities called virtual enterprises (VE), where a VE is formally defined

according to (Molina and Flores, 1999). The webservices are the software components that

produce the data required to execute one of the business tasks required to fulfill a particular

business process e.g. an online purchase order process. By leveraging the core competencies of

each VE exposed via webservices in the VO, VOs can quickly generate a more value added

composite service that meets a complex market demand using the concept of webservice

composition.

Under the VO reference architectures by (Molina and Flores, 1999), (Rabelo & Gusmeroli, 2008),

and (Picard, 2009), among many other things, the responsibility of implementing webservice

composition lies with a business entity called Virtual Enterprise Broker (VEB). From the point of

view of the service consumer, a VEB is the service provider. By exploiting workflow based

webservice composition, Virtual Enterprise Brokers, can quickly define a new business process,

automate the workflow and assemble already existing webservices owned by different virtual

enterprises, to execute the workflow to produce a more value added composite service that satisfy

a certain market demand. The reuse of already existing business capabilities and already existing

software technology components promotes the business agility differentiating factor of VOs and

reduces time to market.

However, the degree of business agility of a VEB does not only depend on how fast the VEB is

able to generate a composite service from already existing atomic webservices, but also on how

well the generated composite service satisfies specific quality of service (QoS) requirements

6

demanded by different service requestors from time to time (Mulongo et al, 2016a). The

implication is that the workflow based service composition strategy chosen by the VEB needs to

be highly adaptive and sensitive to the webservice QoS requirements of each and every service

consumer at all times. If the VEB is able to achieve this requirement, then the customer centricity

distinguishing element of VOs would be a reality. Due to the time varying nature of consumer

demands, the volatility of the VOs and the large number of service providers within a VO, as seen

in section 1.1.1, static service composition falls short in adapting to changing external needs of

service consumers and internal changes within the VO service environment. On the other hand,

even though dynamic webservice composition has many challenges but inhibit its utility, it’s a

more promising technology solution to the business challenges of VOs.

The successful implementation of dynamic webservice composition would offer the VEBs the

following benefits. (1) Improved likelihood of the service consumer obtaining high quality

solutions because the best composite service is selected from a pool of many potential solutions.

Even in the event that no suitable solution is found that satisfies the consumer, the user can be

provided with the list of feasible solutions and choose whether or not one of them nearly satisfies

them, (2) Through re-planning strategies, workflows that are dynamically bound to webservices at

runtime are more likely to survive failures through selection of different execution paths hence

boosting system reliability and customer experience.

In spite of the benefits dynamic webservice composition has to VEBs, a number of factors make

the technique a formidable challenge. Some of the key challenges are highlighted in section 1.3

1.1.3 Key Challenges of Dynamic Webservice Composition in Virtual Organizations

1.1.3.1 Large Size of Virtual Enterprise Providers with Similar Services

In a global virtual organization operating within a particular business domain, there are potentially

hundreds to thousands of small to medium virtual enterprises offering competing functionally

similar simple services (Abiud et al, 2015). The total number of service providers summed from

each category of services is even larger (Abiud et al, 2015). Although in each cluster, the services

may be functionally similar, they may be differentiated on some quality of service (QoS) criteria.

Even when the differentiating factor is a single QoS parameter, the sheer numbers of services make

the selection of the best composite service a challenge. To put this into perspective, consider a

7

composite travel reservation product that contains four simple services: flight service, hotel service,

insurance package and a taxi service. Assume further that for each of the simple services, there are

10 service providers. When a virtual enterprise broker is faced with a customer request enquiring

for a trip, the VEB is required to select the best combination of four services, 1 from a pool of 10

candidate services. It’s easy to show that there are 104
 or 10,000 possible composite services from

which to select the best service. A marginal change from 10 to 20 services per category

exponentially escalates the solution space to 160,000 and 100000000 for 100 services per task.

1.1.3.2 Large Number of Webservice Quality of Service Attributes

Functionally equivalent webservices (each webservice provided by a different enterprise) can

exhibit significant variations in quality of service along dozens of QoS parameters (Zeng et al,

2004) . A close examination of the number of papers on webservice QoS such as Zeng et al (2004),

(Rajendran and Balasubramanie 2009), (Xu et al, 2011), (Mahboobeh & Joseph, 2011), (Kuyoro

Shade et al, 2012), reveal a wide range of important QoS parameters associated with webservices.

From these studies and others, the most common webservice QoS attributes are reliability,

availability, response time, reputation, security, cost and throughput. The combination of the

dimensionality of QoS attributes with even a small number of services exponentially increases the

combinatorial complexity of the service selection problem. Intuitively the problem is expected to

worsen as the both the number of QoS attributes and the number of candidate services grows larger.

The challenge to the virtual enterprise broker transforms from just how to select the best composite

service from a large set services based on a single criterion to how to efficiently select the best

combination service from a huge set of services on multiple criteria. Further, in this case, the

selection should factor in constraints and preferences that are either explicitly stated by the service

consumer or implied by user needs

1.1.3.3 Large QoS Constraints by Service Consumers

From a fixed set of webservice QoS attributes, different service consumers could enforce varying

number of QoS constraints from time to time. The larger the number of QoS constraints the more

the complex it becomes to solve the dynamic webservice composition problem.

8

1.1.3.4 Volatile Service Environment

In virtual organizations, new entrants (VEs) with more quality services could join the VO or

already existing VEs could exit the VO in the middle of a service composition process.

Alternatively, some webservices may become temporarily unavailable, timeout or workflows may

develop internal errors during the composition process. These challenges necessitate embedding

transaction management and fault handling and replanning strategies within the composition

process to ensure that workflow execution is sustained in the presence of faults or composition

decision are re-adjusted in the middle to factor in potentially high quality webservices that have

just joined. Including fault handling and replanning mechanisms even though desirable only

escalates the computational effort required to solve the dynamic webservice composition problem.

1.1.3.5 Complex Workflow Patterns

 The fundamental structure of a workflow is the sequential pattern. But more complex workflows

can take parallel patterns, XOR patterns and a combination thereof. Workflows with more

complex patterns can cause the composition process to be harder in computational effort and even

more prone to faults (Bartalos & Bieliková,2011). For example, workflows containing parallel

flows inherently have the same challenges of parallel programs such as synchronization, deadlocks

and data inconsistencies if not well handled.

1.1.4 Overview of Mixed Integer Programming

As stated earlier, dynamic webservice composition is a multiple criteria non deterministic

polynomial hard optimization problem. There are two main classes of multiple criteria decision

making algorithmic solutions to the dynamic webservice composition problem: - local planning

optimization algorithms and global planning optimization algorithms (Zeng et al, 2004). In each

of these approaches, the objective is to maximize some utility function over a set of decision

variables that are constrained. The utilities are computed using the Simple Additive Weighting

model (Hwang & Yoon, 1981). In local planning approach, for each workflow task, the

webservice with the highest aggregate utility value and that also satisfies the QoS constraints is

selected (locally) without regard to other tasks within the workflow (Zeng et al,2004). The

combination of the best service for each task forms the best composite webservice. Suppose there

are k sequential workflow tasks and each has n candidate webservices per task, the solution space

9

using a local planning approach is nk. Thus, the most naive local planning strategy that evaluates

each and every candidate webservice is still polynomial time.

 Although local planning algorithms to the webservice composition problem are provably

polynomial time and hence more suitable for real time or near real time e-Commerce applications,

they lack support for global constraints. The result is that local planning denies a service requestor

the chance to express critical global webservice QoS e.g in a situation where a service consumer

requires that the total service execution (or access) cost should not exceed a particular budget

and/or the total execution duration of tasks should be less than some threshold value (Abiud et al

2015; 2016). Further, because of its inability to capture global constraints, local planning

algorithms have a high probability of yielding suboptimal solutions (Zeng et al, 2004).

Global planning based algorithms on the other hand overcome the limitations of local planning

models by considering global constraints across workflow tasks. Given sufficient time, global

planning is guaranteed to yield an optimal solution. For a business workflow having k sequential

tasks with each task having n possible, the solution space is nk possible candidate composite

webservices when using the global planning strategy. A naïve global planning algorithm would

have to compute the utilities of all the nk
 composites and then evaluate each of the composites

against specified QoS constraints and select the best composite webservice subject to the set of

QoS constraints (Zeng et al, 2004). The limitation of naïve global planning strategies is that when

the variables n or k or both grow larger, the algorithms severely suffer exponential state space

explosion, hence an optimal solution within reasonable for large enough n and k is computationally

intractable (Zeng et al, 2004).

An alternative to the naive local planning and naïve global planning algorithms is to apply Mixed

Integer Programming, MIP (Byod et al, 2003) for optimization of composite service selection.

MIP is an efficient technique for modeling and solving many real world optimization problems in

which some variables take on integer values while other variables are continuous (Zhu, 2006),

(Kitching, 2010) , (Tramontani , 2008) , (Mancini et al , 2009), (Kitching, 2010), . As such, today

MIP is the most widely used method to address the webservice composition problem. Unlike naïve

approaches to the problem, MIP does not attempt to exhaustively search the entire solution space,

but instead relies on intelligent enumeration techniques such as the branch and bound to efficiently

arrive at an optimal solution (Zeng et al 2004; Mancini et al , 2009; Ed Klotz, & Alexandra

10

Newman, 2012). In the literature, there are thus two complementary MIP models exist for the

webservice composition problem: (1) MIP based on local planning optimization strategy, hereafter

L-MIP and 2) MIP based on global planning optimization strategy, hereafter, S-MIP. Like other

local planning and global planning techniques, both L-MIP and S-MIP are formulated guided by

the Simple Additive Weighting (SAW) model by HC-L and K. Yoon (1981). Although L-MIP is

more efficient than the naïve local planning method, it still shares the same limitations of local

planning methods - inability to capture global constraints, prohibiting the service consumer from

expressing critical constraints that span workflow tasks, and thus high likelihood yielding

suboptimal solutions. For instance the study in (Ardagna & Pernici, 2005) experimentally

compared the solution quality of L-MIP and S-MIP and established that on average, L-MIP yields

solutions that are 20% to 30% worse in quality compared to global planning approaches. Thus L-

MIP and other local planning strategies are limited to application areas where inter workflow task

constraints is not a requirement.

S-MIP on the other hand inherits the major strength of global planning algorithms- the ability to

capture global workflow QoS constraints and produce solutions that are more optimal compared

to L-MIP. Although S-MIP is generally far more efficient than naïve global planning optimization

methods for the webservice composition, S-MIP still suffers exponential state space explosion as

the complexity of the problem grows larger in terms of number of service providers per task,

number of workflow tasks, number of constraints and complexity of workflow patterns. This

constrains the applicability of MIP to small scale problems only (Zeng et al, 2004). Zeng et al

(2004) pioneered the formulation of a global planning algorithm for dynamic webservice

composition based on MIP, hereafter we will refer to this algorithm as S-MIP. As an example,

Zeng et al (2004) shows that the runtime performance of S-MIP starts to severely sore on

workflows having more than 40 webservices per task. In general, finding an optimal or near

optimal solution for large complex optimization problems using MIP in some cases may be

intractable in practice (Toni et al, 2009), (Ed Klotz, & Alexandra. Newman, 2012).

One would argue that with the current state of the art computing hardware and high performance

computing technologies, it should be possible to solve MIP problems very fast. On the contrary,

up to date research shows that even combing the most sophisticated MIP libraries such as the IBM

CPLEX with the fastest computing infrastructure would still take a couple of minutes, through

11

hours to a couple of weeks to solve a given optimization problem, depending on many factors such

as the structure and formulation of the problem, the number of constraints, the coefficients of

constraint inequalities, the bounds of the on the right hand side of the constraint inequalities (Ed

Klotz, & Alexandra Newman ,2012).

Another way of solving complex service composition problems is to cast the problem as a

Satisfiability (SAT) Problem. In SAT, a problem is specified in form of propositional logic and

derivative modelling formalisms such as Descriptive Disjunctive Logics (DDL). Although SAT

problems are NP complete (Cook, 1971), many very efficient SAT algorithms exist today such as

SATPlan (Kautz & Selman., 1992), WalkSAT (Kautz & Selman., 2004), and GraphPlan (Blum &

Merrick , 1997). These algorithms are applicable to a large spectrum of practical problems. For

instance within webservice composition research, SATPlan and SATPlan are recommended for

complex operator large scale service selection (Seog & Soundar, 2006). Other closely related

service selection optimization algorithms include A* and its variants, genetic algorithms, Answer

Set Programming (ASP). Answer Set Programming (Lifschitz ,2002; Yu, 2005a; 2005b), is based

on DDL and has been proven to be very efficient as exemplified by the work (Rainer & Dorn,

2009). However, as a downside, SAT and other Artificial Intelligence Planning based approaches

to web service composition are limited in their scope of application in the following ways (Abiud

W.M et al, 2015): - First, for most complex problems, it’s always difficult to model some problems

efficiently as SAT problems (Kitching, 2010) . Second, Artificial Intelligence Planning and SAT

solutions are more naturally suited to semantic webservices composition. The reason for this is

because; semantic webservices are semantically annotated using Artificial Intelligence like

languages easily allowing for automated reasoning. But to date, semantic webservice composition

is yet to bear any fruits in commercial use. On the contrary, workflow based service composition

based on WSDL services continue to enjoy strong industry support as they permeate many

business applications. Third, generally, SAT and Constraint Satisfiability Problems are plagued by

the same inadequacy seen in mathematical programming techniques such as MIP- the plague is

exponential state space explosion (Mancini et al , 2009).

In addition to efficiency and optimality considerations, all the existing algorithmic solutions to the

webservice composition have one shared deficiency: they require the service consumer to specify

relative ratings and preferences in terms of weights on the interval [0, 1] on all the webservice QoS

12

attributes (Mulongo et al, 2015). It becomes tedious for the end user to capture the weights

especially when the number of QoS parameters is huge (Zeng et al, 2004). Moreover, a good

number of the QoS parameters even though very relevant, are too technical to make sense to an

average user (Abiud et al, 2015). A strategy that allows the possibility of capturing local and global

constraints over all available QoS attributes, while shielding the end user from the complexity of

having to specify weight ratings on too low level QoS attributes is needed (Mulongo et al, 2015).

Thus, from the foregoing, research gaps are glaring and the need for further research into better

webservice composition architecture and algorithms that address all or a subset of these issues is

evident.

1.1.5 Overview of Layering as Optimization Decomposition

Layering is not a new terminology in computer science. From a software engineering viewpoint,

layering is one of the architectural decomposition techniques of partitioning a large complex

software system into simpler components called layers (Bachmann, 2000). The components are

strictly ordered with one layer A (the lower layer) providing services to another layer B (the upper

layer) (Bachmann, 2000) .The immediate advantage of layering is modularity, modifiability and

portability ((Bachmann, 2000). The second advantage of layering is that it hides technical

complexity of the computational details of lower layers, with the topmost layer having the least

technical details. Eventually layering boosts usability of a system.

Counter intuitively, as a third benefit, layering can be used as an efficient algorithmic method in

solving hard optimization problems found in complex computing and communication systems. In

order for layering to be used in as an optimization tool, a formal theory is required. But while

layering is an old decomposition technique, formal theories on layering as an optimization

technique can only be traced in the communications and computer networks community. Layering

as Optimization Decomposition (Mung, 2006), Mung. et al. 2007) and (Low, 2012) is such a

theory. The theory provides a framework for rigorous and quantitative formulation of layering as

a divide and conquer algorithm towards solving complex cross layer hard network resource

allocation and scheduling optimization problems. Layering as Optimization Decomposition

theory perceives the task of solving a complex cross layer communication network design

optimization problem as the solution to multiple well-coordinated subproblems, in which each

layer is treated as a subproblem. Each layer aims at maximizing its local utility but together all

13

layers aim towards maximizing some global utility. The theory has led to the modularized and

layered reformulation of the Network Utility Maximization problem. The reformulation of the

NUM (Kelly et al, 1998) problem based on the theory has been applied to re-engineer the TCP/IP

protocol stack with appreciable performance improvements. We refer the reader to Chapter 2 for

more details on the theory of Layering as Optimization Decomposition.

Whereas Layering as Optimization Decomposition is well formalized in the networking

community and proven to lead to more efficient, optimized, modular and transparent layered

networks, a similar formalization in the webservice composition lacks and equally to the best of

our knowledge, there exists no method that exploits or is inspired by the inherent advantages of

the theory. In this thesis, we argue that although Layering as Optimization Decomposition

formalism is rooted in the Network Utility Maximization problem, the complexity of issues

involved in the web service selection problem, as discussed in section 1.3 closely resemble the

NUM (Kelly, Maulloh and Tan, 1998) problem and therefore Layering as Optimization

Decomposition as used in the networking should inspire a reformulation of existing webservice

composition optimization strategies.

A primary objective this thesis is in understanding how Layering as Optimization Decomposition

could inspire the improvement in efficiency of the current MIP algorithmic solutions to the

problem of the service composition problem. A secondary objective is to understand how the

technique could be applied to reduce the burden on the user in dynamic webservice composition.

1.2 Statement of the Problem

Consider a Virtual Organization in which the Virtual Enterprise Broker offers a composite service

through several virtual enterprises that are interconnected via the Internet. On a service consumer

requesting the composite service, a business workflow with k sequential tasks has to be executed

to effect the service. Each task is executable by an appropriate webservice exposed on the Internet

by a virtual enterprise within the virtual organization. For each workflow task, there are n

alternative webservices. Each webservice has a total of qt webservice quality of service attributes

including but not limited to service availability, service reliability, service throughput, service

access cost, service reputation, security, service response time etc. At any one time, the QoS values

of the qt attributes vary from webservice to webservice. Further, the service consumer has

minimum QoS constraints expectations about the composite webservice being requested for. The

14

problem is: - efficiently autogenerate a sequence of k webservices that when executed, maximally

satisfies the QoS requirements of the service consumer. This is the dynamic composite webservice

selection problem. The problem is an essential ICT capability for collaborative virtual

organizations (Rabelo et al, 2007) as it affords virtual enterprise brokers and virtual enterprises the

business agility required to adaptively respond to complex time varying online consumer service

requests in a globally competitive market Mulongo & Flores, 1999). Despite its potential benefits,

over the last 10 years, due to the coupling of the factors discussed in 1.3, dynamic webservice

composition remains a multiple criteria decision making (MCDM) nondeterministic polynomial

hard optimization problem (Zeng et al, 2004; Seog et al, 2006; Mahboobeh and Joseph , 2011).

This limits the range of industrially relevant problems for which DWSC can find a high quality

solution within practically acceptable time (Mulongo et al, 2015; 2016).

Mixed Integer Programming, MIP is a well-known method for efficiently modeling most complex

optimization and decision problems in which the variables can take on a combination integer, real

or binary values. As such the technique has been widely applied to model and solve the DWSC

problem. There are two complementary MIP models in the literature for the dynamic webservice

composition problem. MIP exploiting a local planning optimization strategy, hereafter dubbed L-

MIP and MIP exploiting global planning strategy, hereafter S-MIP. The L-MIP technique is

provably polynomial time but lacks support for global inter workflow task constraints on

webservice quality of service, and therefore in some cases denies the service consumer an

opportunity to specify critical QoS constraint that span more than one business workflow task. In

addition, due to its local scope, the quality of L-MIP solutions is highly probable to be suboptimal.

For instance, Ardagna & Pernici (2007) show that on average, L-MIP yields solutions that are 20%

to 30% worse in quality compared to MIP using a global planning strategy. S-MIP on the other

hand is capable of generating optimal solutions, and is more efficient than naïve global planning

algorithms. However, when the service composition problem grows in complexity in the number

of webservices per task, or number of QoS constraints or a combination of these, existing S-MIP

is susceptible to exponential state space explosion and therefore practically constrained to small

scale webservice composition problems (Zeng et al, 2004). For example, Zeng et al (2004),

experimentally shows that beyond 40 webservices per workflow task, the run time performance of

S-MIP starts to severely dip. In addition, all existing multiple criteria decision making algorithms

to the problem require the service consumer to specify weight preferences and QoS constraints on

15

the entire range of relevant QoS attributes. This requirement can be very tedious to an end user

(Zeng et al, 2004), (Mulongo et al, 2015). Thus, dynamic webservice composition algorithms that

are more efficient and provide minimum guarantee on the solution optimality quality, without

sacrificing the ability of service consumers to capture global QoS constraints, and without

requiring the end user to interact with all QoS attributes and their constraints are urgently needed.

1.3 Research Goal

As explained in the preceding sections, the global planning mixed integer programming approach,

S-MIP suffers exponential state space explosion even though it supports both local and global

constraints and guarantees global optimality. On the other hand, the local planning mixed integer

programming models, L-MIP supports only local constraints and produces solutions that are less

quality compared to S-MIP, even though L-MIP is practically several orders faster than S-MIP.

Our main aim was to design a more efficient Mixed Integer Programming dynamic composite

webservice selection strategy that does not deny service consumers an opportunity to specify all

their critical local and global webservice QoS constraints. Our approach takes the S-MIP model

and converts it into a two layered model inspired by the concept of Layering as Optimization

Decomposition. The main output of the research is a new architectural model called “Service

Layered Utility Maximization”, SLUM model together with the associated mathematical models

for the dynamic composite webservice selection problem (see section 1.7 for an overview of

SLUM and section 2.10 for details). See also (Abiud W. M. et al, 2015; 2016a; 2016b) for

associated publications.

To know whether we reached our reach goal, our proposed architecture, SLUM was evaluated in

terms of two metrics: run time execution efficiency and solution quality against the S-MIP and L-

MIP models. Running time and solution quality are the main two metrics of evaluating

optimization models (Eitan, 1981). Therefore our research goal will be said to have been achieved

if the proposed architectural model, SLUM, satisfies the two requirements below:-

Requirement 1: The proposed two layer model, SLUM is faster than the (single layered) global

planning mixed integer programming model, SLUM and;

Requirement 2: The solution quality of the proposed two layer model, SLUM is at least as good

as that of the local planning mixed integer programming model, L-MIP.

16

1.4 Specific Research Objectives

Given the research goal stated in section 1.3, the specific research objectives that were pursued

were:-

1. Design a layered hierarchical mixed integer programming model for the composite

webservice selection problem following the concepts from the theory of Layering as

Optimization Decomposition

2. Evaluate the performance of the SLUM model against the single layered global planning

technique (S-MIP) and the local planning method (L-MIP) in terms of two metrics:

i. Running time (performance efficiency) and;

ii. Solution quality.

The two metrics, running time and Solution quality are the most common performance measures

for optimization models (Eitan, 1981), (Hoos et al, 2003). For details on the performance

evaluation methodology see chapter 3.

1.5 Research Questions

As explained in sections 1.1, 1.1.4 and section 1.2, it’s known that the running time of the S-MIP

is non deterministic polynomial and can be exponential in some cases especially when the number

of webservices grows larger. It’s also known that S-MIP produces more optimal solutions than L-

MIP. On the other hand, it’s also known that the running of L-MIP has a polynomial upper bound

and thus as empirically demonstrated in (Zeng et al, 2004), L-MIP is many orders of magnitude

faster than S-MIP. Similarly, it’s also known that L-MIP on average produces less optimal

solutions whose quality is on average in the range 70% to 80% relative to S-MIP. What is unknown

is how SLUM could perform in terms of runtime efficiency and solution quality relative to S-MIP

and L-MIP. This leads us to the research questions stated in section 1.5.1 and section 1.5.2.

1.5.1 Running Time

The overall research question concerning performance efficiency is:

 RQ1: For a composite webservice selection problem having a workflow with k tasks and v

alternative webservices per task, how does the runtime efficiency of SLUM compare with that of

S-MIP and L-MIP when each is used to solve the problem? The specific research questions arising

from this question are:

17

RQ1.1: How does the running time of SLUM grow as the number of service providers

per task increase?

RQ1.2: How does the running time growth of SLUM compare with that of S-MIP and

L-MIP?

RQ1.3: How much speedup is achievable when using SLUM over S-MIP to

autogenerate composite webservices given a business workflow having n webservices

per task?

RQ1.4: What is the minimum number of service providers per workflow task that a

virtual enterprise broker needs to have in order to benefit from the relative efficiency of

SLUM when compared to S-MIP?

 The significance of RQ1.1 is to derive a mathematical model that characterizes the performance

efficiency of SLUM as a function of the number of service providers per task. From the model, we

could infer the running time complexity either as linear, polynomial, exponential or a combination

of the same. Given that the composite webservice selection problem is still non deterministic

polynomial, the second rationale for RQ1.1 is that by deriving the running time model(s) of SLUM,

we are interested to investigate whether or not SLUM can guarantee polynomial time solution to

the problem. In case it does not, the problem then remains NP hard and our results will further

empirical evidence of the NP hardness of the composite webservice selection problem. If

otherwise, then we could conclude that the two layered approach proposed herein constitutes a

polynomial time solution to the problem that has been known to be NP hard. RQ1.1 is also a pre-

requisite to answering research question RQ1.2.

Using the model obtained after answering RQ1.1, we are mainly interested in benchmarking the

performance efficiency of SLUM against S-MIP. We will also gauge the performance efficiency

of SLUM against L-MIP. This seeks to establish whether SLUM is worse than S-MIP or better

and under what circumstances. This is the goal of RQ1.2.

In case our hypothesis that SLUM is faster than S-MIP turns out to be true, RQ3 aims to establish

how much faster on average should a virtual enterprise broker expect SLUM to be when compared

to S-MIP.

18

Sometimes, an algorithm can be faster on average than another algorithm only when the problem

size is very large enough, say in thousands or millions. Since the problem size in our case is the

number of virtual enterprises per task, SLUM wouldn’t be practically useful if its improved

speedup is realizable only for huge n values, since it’s unlikely that the number of virtual

enterprises per task is infinitely large. The goal of RQ1.4 is to determine the number of virtual

enterprises per task that a virtual enterprise broker should have in order to gain the minimum

possible speedup from SLUM. If RQ1.4 can be answered, then a virtual enterprise broker could

also estimate the speedup of SLUM at any number of virtual enterprises per service.

1.5.2 Solution Quality

The overall research question concerning solution quality is:-

 RQ2: How does the average solution quality of SLUM compare with that of L-MIP and S-MIP?

This leads us to the following specific research questions?

RQ2.1: What is the average relative solution quality (percentage accuracy of quality) of

the composite webservices generated by SLUM relative to S-MIP?

RQ2.2: What is the percentage difference in the relative solution quality by SLUM relative

to L-MIP?

In order to provide answers to the foregoing research questions, a system methodology for

analyzing and comparing the performance of the three algorithms is required. With respect to

efficiency/running time, algorithms can analyzed using two main approaches: theoretical

(mathematical) or empirical. In the theoretical approach, a mathematical model is developed that

characterizes the performance behaviour of the algorithm, and the algorithm is analyzed within

the model. The empirical approach involves running an algorithm and testing its performance

against specific problem instances and collecting performance data (Hoos, 2003), (Seogewick &

Flajolet, 2009). Empirical evaluation of algorithms complements theoretical/mathematical

approach (Coffin & Saltzman, 2000).

In section 2.14, we attempt to answer research questions RQ1.1 and RQ1.2 using

theoretical/mathematical analysis. The theoretical results could pre-empt some analytic

performance efficiency properties of SLUM independent of specific machine implementation

19

details – the basis of theoretical algorithm analysis in computer science. These results could

provide a benchmark on running time properties of the SLUM model against the benchmark

algorithms during empirical evaluation.

1.6 Overview of Our Proposed Approach

Towards our research goal stated in 1.3 and the two research objectives in section 1.4, this thesis

is about converting the well-known (single layered) global planning MIP based dynamic

webservice composition model originally formulated by Zeng et al (2004) which is the basis for

present MIP based webservice selection models that are based on MIP, into a multilayered MIP

model. Inspired by the formal theory of Layering as Optimization Decomposition (see section 1.1.5

and chapter 2), we propose a hierarchical two-layer Mixed Integer Programming model dubbed

SLUM: Service Layered Utility Maximization as in (Abiud et al, 2016); also synonymously

referred to as Hierarchical Multilayer Service Composition Model, HMSCM as in (Abiud et al,

2015).

 Instead of viewing dynamic composite service selection as a one shot monolithic complex

problem as it’s the case with all the existing strategies, motivated by the theory of Layering as

Optimization Decomposition, we view the service composition problem as a network with two

hierarchical layers in which one of the layers is a mixed integer optimization subproblem whose

objective is to maximize the utility of a service consumer on a subset of the QoS attributes. The

other layer is a mixed integer optimization subproblem whose objective is to maximize the utility

of the service provider (in this case, the virtual enterprise broker) on the remaining subset of QoS

constraints. Both layers exploit global planning allowing users to specify both global and local

constraints. The layer concerned with maximization of the utility of the service consumer is termed

as the Service Consumer Utility Maximization (SCUM) layer, while that one concerned with

maximization of the utility of the Service Provider as the Service Provider Utility Maximization

Layer (SPUM) (Abiud et al, 2015). The formulation of the SCUM subproblem is in terms of QoS

attributes that are a direct concern of the service consumer and are less technical in nature. The

SPUM subproblem is formulated in terms of low level technical attributes that would only be a

direct concern of the service provider. The layering is done in a manner that the optimization at

the SPUM layer is completely transparent to the service consumer i.e the end user is not required

20

to specify weight preferences and constraints explicitly on low level technical– this is instead

handled by the virtual enterprise broker, even though optimization of such QoS attributes indirectly

benefits the service consumer without their explicit knowledge. The two subproblem are then

sequentially solved beginning with the lower layer of the two layers such that the output solutions

of the lower layer becomes the inputs to the upper layer, and the output of the upper layer

constitutes the best composite service that meets the needs of the end user (and implicitly the needs

of the virtual enterprise broker. In chapter 2 and chapter 3, we show that together, the two layers

attempt to solve the global optimization objective and that our approach is more efficient and less

tedious to the end user than the state of the art. Two questions that arise are: 1) exactly what kind

of webservice QoS attributes belong to the SPUM layer and which ones belong to SCUM layer

and why? And 2). In which order are the subproblem solved – SCUM then SPUM or SPUM then

SCUM. Why? These questions are problems in themselves. We provide detailed answers to these

questions in chapter 2.

1.7 . Scope and Limitations of the Study

In section 1.1.3, we saw that there are a number of key issues that make the dynamic webservice

composition a complex multi-dimensional problem. In this section, we discuss what the study

focused on and what the study did not address and the reasons justifying the decisions.

1.7.1 Nature and Scale of the Virtual Organization

SLUM targets virtual enterprise brokers operating within global virtual organizations as described

in (Molina & Flores, 1999). The envisaged global virtual organization framework is that one in

1.7.2 Nature and Pattern of Business Workflows

Although the proposed model is generic enough, in this thesis, we assume workflow based service

composition only as defined in Rao et al (2004). To simplify analysis without loss of generality,

this thesis will only focus on sequential workflows even though it should not be hard to extend the

model to other complex workflow patterns. By focusing on sequential workflows only, we

avoided extraneous factors such as parallel performance issues that would arise when dealing with

workflows containing parallel gates. In any case, parallel tasks could be abstracted as a high level

sequential tasks. Moreover, in selecting the best composite service where a workflow contains a

parallel task, the task with the largest execution time is usually used which is essentially sequential.

21

1.7.3 Nature of the Service Environment

 The study does not address issues related to a changing service environment due to events such

as occurrence faults, new service exits and service entries in the middle of an ongoing webservice

composition – doing so would require replanning mechanisms. This is beyond the scope of the

study. Such issues have been substantively addressed in studies such as (Urban et al, 2011).

Further, the method proposed in this study could be used in conjunction with existing fault aware

replanning strategies, for example the one proposed in (Zeng et al, 2004).

1.8 Significance of the Study

1.8.1 Significance to Industry and Practitioners

 Dynamic webservice composition is an essential ICT infrastructure support service for

collaborative virtual organizations (Rabelo et al, 2007), Mulongo & Flores, 1999). In a globally

competitive market, DWSC affords virtual enterprise brokers and virtual enterprises the business

agility required to adaptively respond to complex time varying online consumer service requests

Mulongo & Flores, 1999). On the other hand, dynamic webservice composition gives the service

consumer all the benefits highlighted in section 1.1.2.

The study introduces more efficient and near optimal service composition strategy that could boost

applicability of dynamic webservice composition. Note that as explained in all the preceding

sections, the applicability of dynamic webservice composition is severely limited to virtual

organizations that operate a relatively small network of service providers due to computational

complexity of the problem. As virtual organizations, lead by virtual enterprise brokers span across

the globe, the need for efficient DWSC strategies will grow. The successful adoption of dynamic

webservice composition that is also efficient and near optimal would offer the benefits to various

stakeholders as outlined in subsections 1.8.1.1, 1.8.1.2 and 1.8.1.3.

22

1.8.1.1 Significance to Service Consumers

i. Improved likelihood of the service consumer obtaining highly customized quality

solutions because the best composite service is selected from a pool of many potential

solutions (Mulongo et al, 2016). Even in the event that no suitable solution is found

that satisfies the consumer, the user can be provided with the list of feasible solutions

and choose whether or not one of them nearly satisfies them.

ii. Through re-planning strategies, workflows that are dynamically bound to

webservices at runtime are more likely to survive failures through selection of

different execution paths hence boosting system reliability and customer experience.

iii. Enhanced convenience resulting from shorter turnaround times in online services.

1.8.1.2 Significance to Virtual Enterprise Brokers & Virtual Enterprises

 This study proposed a more efficient dynamic webservice composition strategy that could boost

adoption of dynamic webservice composition. In some real time Internet business applications

such as ultra-low latency trading platforms, response time is as good as the quality of service

delivered. Nielsen et al (1993; 2010), (Nah , 2004), (Akamai , 2009) and Nngroup (2014) note that

tolerable waiting limit of web application users is typically 4 seconds with 10 seconds considered

as annoying. Broadwell (2004) describes response time as a critical user centric performance factor

for online services alongside data quality. Nielsen et al (1993; 2010; Nah, 2004; Akamai, 2009;

Nngroup 2014) agree that response time is a critical determinant of customer retention as well

customer churn.

 Further, (AgileLoad, 2012) demonstrates that the computational logic within the server side of

the web applications accounts for the largest percentage of performance efficiency delays – 76%.

Thus improved runtime performance of dynamic webservice composition could enhance user

experience.

 Current methods of user centric dynamic webservice composition require that the user express

preferences and constraints on the entire set of available webservice QoS constraints. As stated

earlier, some QoS attributes could be too technical to be comprehensible by an average user. The

method proposed in this study, SLUM, in addition to efficiency gains and optimality, could

23

improve usability of dynamic webservice composition as SLUM does not require end users to

directly specify QoS constraints and weight preferences on low level technical QoS attributes.

24

1.8.2 Significance to the Research Community

The study introduces a new architectural thinking about the structure of the dynamic

composite webservice selection problem. The new thinking borrows the idea of Layering

as Optimization Decomposition and its combination with mixed integer programming– an

optimization approach that has been applied successfully in the communication systems

field. The study thus pioneers one of the possibly many layering schemes and layering

models that could be used to tackle the dynamic webservice composition problem and

structurally related problems. The following are some of the different types of researchers

that would find this work relevant.

i. Service computing researchers who may be interested in exploring improved layering

models or layering schemes based on this study.

ii. Other computer science researchers. Dynamic webservice composition as explained

in section 1.1 can be viewed as planning problem. Researchers from other areas of

computer science research could find relevance in exploring new applications of the

layered mixed integer programming approach introduced in the study.

iii. Experts in decision theory, optimization theory, management science and operations

research would find this work of interest either with a view to extending it in solving

related problems that require multiple criteria decision making.

1.9 Operational Definitions

There are key terms used throughout the rest of the thesis that:

i. Have interchangeable meanings and or ;

ii. Have overloaded meaning i.e could mean more than one thing or;

iii. Have different meanings in other domains.

These words are: virtual organization (VO), collaborative networked organization (CNO),

virtual enterprise broker, virtual enterprise, service provider, provider, service requestor,

service consumer, and consumer.

25

To resolve ambiguity in the usage of the above terms, in this thesis, the foregoing terms

will be used as explained in the following subsections.

1.9.1 Service Provider and Provider

In Service Oriented Architecture, from a business perspective, a service provider is the business entity that

offers a particular service to service consumers (IBM, 2004). From a technology view point, a service

provider is the software application component that enables the business service being offered by the

business entity by providing appropriate service responses to the service consumer (IBM, 2004). For the

purposes of this thesis, the term service provider shall be strictly used from the business view point as

explained here. This view is also consistent with the recent definition of a service provider according to

(Terlouw & Albani, 2013). Terlouw (2013) defines service provider as used in service oriented architecture

as the party that offers a service to consumers.

In addition, when viewed from a business angle, the word service provider and the word provider can be

used interchangeably (Terlouw & Albani, 2013). Thus in this thesis, the two terms are used interchangeably.

1.9.2 Service Consumer, Consumer and Service Requestor

 In Service Oriented Architecture, from a business perspective, a service consumer is the party that requests

a service offered by as a service provider (IBM, 2004). From a technology view point, a service consumer

is the client side software component that mediates the user requesting for the service and the service

provider (IBM, 2004). According to the webservice architecture framework by IBM (2004), term service

consumer and service requestor are used interchangeably and from the business perspective as opposed to

technology perspective. Further, the two terms service consumer and service requestor are used

interchangeable with the term consumer. This is consistent with the definition of the word consumer by

(Terlouw & Albani, 2013) i.e a consumer is the party that requests for a service offered by a provider.

26

1.9.3 Virtual Organization, Collaborative Virtual Organization and Collaborative

Networked Organization

In the open literature, the term virtual organization is often used rather liberally for example to imply an

organization where employees can telecommute. This is not the meaning ascribed to the term in this thesis.

The context of usage of this term is within the domain of electronic commerce involving business to

business collaborations. Precisely, in this thesis, the term virtual organization used as defined in (Molina

& Flores, 1999). Refer to section 1.1.2 for a detailed background on virtual organization. The term virtual

organization is also referred to as collaborative virtual organization or collaborative networked

organization (Rabelo et al, 2007; 2008). Unless explicitly stated otherwise, the meaning and usage of these

three terms in this words remains as such.

1.9.4 Virtual Enterprise Broker

Molina & Flores (1999) identifies, defines and describes the concept of virtual enterprise broker as a

fundamental component of the architecture framework for virtual organizations. As explained earlier in

section 1.1, according to the architecture framework for virtual organizations by Molina (1999), a virtual

enterprise broker is the consumer facing business entity, typically with:-

i. the expertise in analyzing market demands and complex consumer needs ;

ii. the expertise and responsibility in identifying business opportunities arising from the

market demands;

iii. the ability and responsibility to design complex value added services/products to meet the

demand;

iv. the ability and responsibility of identifying a set of industry specific expert business entities

called virtual enterprises (see section 1.9.5 for definition of the term virtual enterprise) to

contribute to the production and delivery of the complex product or service.

v. The responsibility to broker and manage the delivery of the service/product to the consumer.

This also involves setting up the requisite computing infrastructure required for consumers

to access the service, order and purchase the service and managing the quality of the service

being delivered to the consumer.

The thesis adopts the definition of the term as described in Molina & Flores (1999). Moreover,

since in the context of a virtual organization, the virtual enterprise broker is the business that

provides services to the consumer, from a consumer perspective, the definition of a virtual

enterprise broker then coincides with the definition and usage of the term service provider as used

in this thesis. For this reason, in this thesis, virtual enterprise broker and service provider are used

interchangeably.

27

1.9.5 Virtual Enterprise.

A virtual enterprise is another fundamental component within a virtual organization according to Molina &

Flores (1999). In the framework in (Molina & Flores, 1999), a virtual enterprise is a business entity

specialized in a particular industry domain e.g insurance, education, aviation, information technology and

so on. Typically, a single virtual enterprise might not have the competencies to wholly deliver a complex

product/service identified by the virtual enterprise broker ((Molina & Flores, 1999). The virtual enterprise

would then need a combination of virtual enterprises typically from different industry domains to deliver

the service (Molina & Flores, 1999).

1.10 Organization of this thesis

The rest of this thesis is organized as follows:-

Chapter two contains a review and analysis of literature related to dynamic webservice

composition, local planning, and global planning methods to dynamic webservice composition,

with a particular emphasis on the mixed integer programming solution to the problem. The theory

of Layering as Optimization Decomposition and how it has been used in the communication

networks community is discussed elaborately. Gaps in related literature are stated. Chapter two

also contains our proposed solution dubbed “SLUM: Service Layered Utility Maximization”

which uses a two layer mixed integer global planning to the dynamic webservice composition

problem. We first give a qualitative description of how the formulation of SLUM maps onto the

Layering as Optimization Decomposition conceptual framework justifying every design decision

made. This is followed a detailed description of the mathematical model underpinning SLUM. We

then describe how our proposed framework differs from the state of the art, discussing both its

relative strengths and relative limitations.

Based on our research objectives and research questions stated in section 1.4 and 1.5 respectively,

we go ahead in chapter two to derive some theoretical performance efficiency models related to

the running time of SLUM and derive a mathematical model that can be used to estimate the

speedup of SLUM in relation to S-MIP. The mathematical performance models can be found in

section 2.12. Later this model is verified experimentally in chapter four.

Chapter three, Methodology contains a detailed description of the experimental methods that were

used to verify and validate the proposed model and the corresponding theoretical performance

models. In part, the experimental methodology complements the theoretical analysis of chapter

28

two and on the other side, provides an empirical validation tool of the claims made under the

theoretical analysis approach. Under the experimental method, we begin by explaining the

performance metrics - CPU running time and Relative Solution Quality used to benchmark our

proposed solution in more details. This is followed by a detailed description of the experimental

protocol- the procedure that was followed to achieve implausible experimental results. It’s in this

section that we discuss how we addressed the various issues that could threaten validity of our

experiments. We then identify and discuss a set of complementary as well alternative methods of

analysis in the section titled “Performance Data Analysis Methodology”. The analysis methods

and tools discussed include: - Statistical Regression Analysis (linear, polynomial and exponential

regression), the L-Hospital’s Rule from differential calculus, the empirical relative complexity and

empirical relative complexity coefficients, parametric and nonparametric statistical tests , use of

central measures of tendency and lastly scaling curves . We justify the use of one or a combination

of these approaches over the other and the contribution of each method towards the understanding

of the performance behaviour and performance differences between our proposed method against

the baseline (S-MIP) and against the alternative algorithm (L-MIP). We also discuss the basis for

interpretation of various results.

Chapter four contains details on the specific experiments carried out and the results obtained. The

results are generally captured using tables and visually represented using scatter plots and where

appropriate bar graphs to show the performance of SLUM, S-MIP and L-MIP algorithms. Where

appropriate, a series of regression functions are obtained from the scatter plots, their goodness of

fit computed and their statistical significance tested, and results interpreted as per the basis

provided in the preceding section, “Performance Data Analysis and Interpretation methodology”.

Moreover, using the obtained regression functions the following are parameters are determined: -

expected growth of the function; this is based on the L-Hospital’s rule, the empirical relative

complexity and empirical relative complexity coefficients. From these parameters, a couple of

other quantities are derived. A series of equations are used appropriately to capture these

parameters. From the raw data that is tabulated, we also compute a number of descriptive statistics

based on arithmetic mean and show how they enrich the understanding of performances

differences among the three algorithms. Finally, a discussion of the empirical results follows. The

discussion is presented in a form that is designed to show the answers to the research questions.

Moreover, in our discussions we relate our empirical findings to the following: - the analytic

29

arguments, the theory and mathematical analysis presented in chapter two, theory from the rest of

computer science body of knowledge, and the results obtained from previous studies. We also

discuss any peculiar findings that cannot be immediately linked to any known theory.

Chapter five contains the conclusions obtained from the results. Here, we reflect on the dynamic

webservice composition problem as stated in chapter 1, and then highlight our major contributions

towards solving the problem. As we discuss our contributions, we also explain the limitations of

our approach informed by the results and our analytic considerations in chapter two, clearly

describing the conditions which our method would be preferred over mixed integer programming

using a local planning strategy and mixed integer programming using a global planning strategy.

We then give recommendations that help the virtual enterprise broker tackle the algorithm

selection problem as first described by John (1976), which in this case is “when should L-MIP, S-

MIP and SLUM be used for dynamic webservice selection problem ?”, This section also contains

highlights of future work given that dynamic webservice selection problem remains an active area

of research due to its significance, albeit with many issues that remain unresolved – this study

tackles just a tiny portion of the issues.

1.11 Chapter Summary

In this chapter, we introduced the concepts of dynamic webservice composition and virtual

organizations. We identified the main problem faced in solving the dynamic webservice

composition problem within virtual organizations. We then identified the two complementary

approaches that are currently used to tackle the problem: Local Planning using Mixed Integer

Programming and global planning using Mixed Integer Programming. The overall strengths and

weaknesses of these methods were discussed and gaps that necessitate further research were

identified. We also introduced the concept of Layering as Optimization Decomposition and

highlighted how the theory has been used to efficiently solve related optimization problems in the

communication networks field. We then articulated the problem statement followed a statement of

our research goal, which is Design a more efficient Mixed Integer Programming model that can

dynamically generate the best composite service taking into account both local and global QoS

constraints, and without requiring the service consumer to specify all QoS constraints. From the

research goal, two specific objectives were identified in section 1.4 and two main research

questions stated in section 1.5.We gave an overview of the proposed solution SLUM, which is

30

inspired by the theory of Layering as Optimization Decomposition. We then discussed the scope

of this study and explained the justification for the study. We gave operational definitions of key

terminologies that are used throughout the thesis. Finally, we gave an overview of how the rest of

the thesis is organized.

31

2 CHAPTER 2: LITERATURE REVIEW

As stated in chapter one, dynamic webservice composition is a non-deterministic polynomial hard

multiple criteria decision making problem. The goal of this study is to explore the use of a two

layer mixed integer programming model (SLUM) to tackle the problem. This chapter presents in

detail the literature that contributed to the formulation of the proposed model. In the section (2.1)

titled “Introduction to Service Oriented Architecture and Computing”, key concepts and models

that shall be referenced throughout this dissertation are discussed. Section 2.2 revisits the problem

of workflow based dynamic webservice composition in more elaborate terms. The structural model

and the process model underpinning webservice composition are discussed. In addition, the design

space complexity of DWSC is expounded. The rationale for this topic is to set the context of our

specific work within a larger body of existing issues related to DWSC.

In chapter one, we indicated that a majority of the existing algorithms (including MIP algorithms)

that combat the DWSC problem are based on the multiple criteria decision making, Simple

Additive Weight, SAW in (HC-L & K.Yoon, 1981). In section 2.3, we present and discuss in

details the naïve local planning utility maximization and the naive global planning utility

maximization mathematical models related to DWSC. The standard (single layer) mixed integer

programming model (S-MIP) for DWSC based on the work of Zeng et al (2004) is elaborated in

section 2.4 . While as will be later seen, the models in section 2 and section 2.5 contribute to the

mathematical foundation of our proposed solution, the work in section 2.5 contributes to the

structural and process models our solution, helping answer the question: how should the layering

be structured and in what order should the utility maximization process be done.

In section 2.6, the theory of Layering as Optimization Decomposition and how it has been used in

the communication networks field is presented. The general concepts will then be applied into the

proposed model.

In section 2.7, a review of the related work is presented. The related work reviewed is grouped as

follows. The focus is on those studies generally following the SAW method by Hwang & Yoon,

(1981) which is the basis for a majority of multiple criteria decision techniques for the service

composition problem. As explained in (Mulongo et al, 2015; 2016a), to the best of our knowledge,

no previous work has dealt with Layered Mixed Integer Programming Model for the webservice

32

composition problem before. Therefore other than our work in (Mulongo et al, 2015; 2016a), there

is no any previous related work.

In section 2.7, a summary of the gaps in literature are discussed. In section 2.8, similarities and

differences between our proposed solution and existing work is given.

In section 2.8, we highlight a summary of the gaps in the literature.

In section 2.9, we present our proposed model. We begin by presenting a qualitative model of

SLUM in section 2.9.1. Section 2.9.1 discusses the rationale for major architectural decisions e.g

what webservice QoS attributes should be placed within the SCUM layer and which ones should

be placed under the SPUM layer. It also attempts to answer the question, which of the layer serves

the other i.e should solve the SCUM subproblem first then SPUM second or vice versa and why?

Using, Layering as Optimization Decomposition theory discussed earlier, these questions are

answered. In summary, section 2.9.1 is about “ the structural view and the process view (without

the internal mathematical model details) of the dynamic webservice composition problem inspired

by the Network Utility Maximization Model , NUM problem and Layering as Optimization

Decomposition theory discussed in section 2.7. In section 2.10.2, formal mathematical models

underlying SLUM are presented. A Mathematical optimization model at the SCUM layer and

another one at the SPUM layer are detailed. Both models are based on the S-MIP. Finally, the

optimization process given the two mixed integer programming models is described. A summary

of how our proposed model addresses the research question: Design a more efficient Mixed Integer

Programming webservice composition strategy that can produce high quality solutions that are on

average near global optimal without: denying service consumers an opportunity to specify all their

critical local and global webservice QoS constraints.

In section 2.10, we present the man differences between our approach and the state of the art.

Section 2.11 outlines the two benchmark algorithms – one baseline – the S-MIP and the other as

an alternative – the L-MIP.

In section 2.12 we present mathematical performance models for the proposed model. This formal

model on one hand is verified experimentally in chapter 3. Conversely, the results that will be

obtained in chapter three can be checked against the formal models.

33

34

Table 1: Literature Review Road Map

Concept, Theory, Framework, Model, Method Section Contribution

Introduction to Service Oriented Computing & Service Oriented

Architectures

 2.2 SLUM

Dynamic Workflow based Webservice Composition 2.3 SLUM

 Local Planning Strategy for Webservice Selection 2.4 SLUM

Global Planning (general) based Service Selection 2.5 SLUM

Integer Programming Model for Service Composition 2.6 SLUM

Layering as Optimization Decomposition 2.7 SLUM

Related Work 2.8

Summary of the Gaps in the Literature 2.9 SPUM

Summary of Gaps in the Literature 2.9 SLUM

Proposed Systems Model (SLUM) 2.10 SLUM

 Qualitative and Architectural Model 2.10.1 SLUM

 Mathematical Models 2.10.2 SLUM

Differences between our Proposed Model and the rest 2.11 SLUM

Benchmark Algorithms 2.12

Research Questions 2.13 SLUM

Theoretical Running time performance results 2.14 SLUM, Phase

Transition Rates

2.1 Introduction to Service Oriented Architecture

Service Oriented Architecture (SOA) is paradigm for organizing and utilizing distributed

capabilities that may be under the ownership of different domains. Therefore a basic element

of SOA is the notion of a service (Picard et al, 2010). The notion of a service has multifaceted

meanings and definitions. As such there exists no precise definition and mutual understanding

of the term service (Terlouw & Albani, 2013). However, the debate about what a service is or

is not is beyond the scope of this work. Instead we will pick on working definitions that are

commonly used in literature.

35

A service is an interaction between a requesting party called a consumer and an offering party

called a provider or service provider or supplier (Terlouw & Albani 2013).

According to the Open Group (2007) and Picard et al (2010), Service Oriented Architectures

facilitate business agility in the following ways: - Service discoverability enables business to

expose functionalities that can be quickly discovered by service consumers. In virtual

organizations and virtual enterprises, this means that virtual enterprise brokers can easily locate

the partners given a business opportunity (Picard. et al, 2009). Another important benefit is service

reuse through service composition. Within enterprises, a business can easily combine a subset of

existing atomic services to create a new composite service with less software effort (Khan .H.L et

al, 2010).

Webservices are the most widely used technology to implement service oriented architectures. A

webservice is a software system designed to support interoperable machine to machine interaction

over a network. Discoverability is one of the properties of a webservice. This means that

webservice can be located and identified (usually via a URL) by other software systems over

Internet (Schahram & Wolfgang, 2005).

XML is the most widely used format for describing a web service although other formats such as

JSON can be used for REST webservices. For XML based services, The WSDL (W3C, 2001) is

the widely adopted language for describing the grammar and syntax of a webservice. With the

advent of the semantic web and semantic webservices, other description languages such as OWL,

OWL-S 1, WSML2, USDL, and WSDL-S 3 and WSMO have emerged. These languages seek to

enable fully automated discovery of webservices by adding semantic annotations to service

descriptions. Most of them are based on Artificial Intelligence concepts especially description

logics.

Figure 1 below is the webservice architectural model. The architecture shows the main actors,

components and operations supported by a service oriented architecture based on webservices

(IBM, 2004). This model is also the same the one described in (Dustdar& Schreiner, 2005). The

actors/components are service provider, service requestor /consumer and the components are the

service registry, the operations are found, publish, and bind.

36

37

Publish WSDL, UDDI

 WSDL, UDDI

 Find

 Figure 1 : A basic Webservices Architecture, Source (IBM, 2004)

2.1.1 Actors and Components of the Service Oriented Architecture

2.1.1.1 Service Requestor/Service Consumer

Service requestor or service consume from a business perspective, is the business or user that

requires certain functions to be satisfied. From an architectural perspective, this is the application

that is looking for and invoking or initiating an interaction with a service. The service requestor

role can be played by a browser driven by a person or a program without a user interface, for

example another Web service

2.1.1.2 Service Registry/Service Repository

Is a searchable registry of service descriptions where service providers publish their service

descriptions? Service consumers find services and obtain binding information (in the service

descriptions) for services during development for static binding or during execution for dynamic

binding. For statically bound service requestors, the service registry is an optional role in the

architecture, because a service provider can send the description directly to service requestors.

There exist other ways in which service consumers can obtain information about a service

Service

Requestor

Service Provider

Service

Service

Description

Service Registry

 Service Description

38

description: , a local file, FTP site, Web site, Advertisement and Discovery of Services (ADS) or

Discovery of Web Services

2.1.2 Basic Computational Operations in a Webservices Model

2.1.2.1 Publish Operation

A publish operation enables services to be accessible to service requestors through search

accessible, a service description needs to be published so that the service requestor can find it.

Where the service is published can vary depending upon the requirements of the application

2.1.2.2 Find Operation

Enables a service requestor to retrieve a service description directly or by querying the service

registry for the type of service required. Thus the find operation facilitates the process of service

discovery. The find operation can be involved in two different lifecycle phases for the service

requestor: at design time to retrieve the services interface description for program development,

and at runtime to retrieve the service’s binding and location description for invocation (IBM,

2004).

2.1.2.3 Bind Operation

Enables a service request to invoke a service at run time by use the binding details provided in the

service description.

A service and a service description constitute artefacts of a web service. Whereas a web service is

an interface described by a service description, the concrete implementation of the interface is

called a service (IBM, 2004). Extending this definition, a service is a software module deployed

on network accessible platforms, provided by the service provider. Service description contains

the details of the interface and implementation of the service. This includes its data types,

operations, binding information and network location. It could also include categorization and

other metadata to facilitate discovery and utilization by service requestors, for example in semantic

web services.

2.1.3 Webservice Publication

The publication of Web Services includes the production of the service descriptions and the

subsequent publishing. Publishing can use a variety of mechanisms (IBM, 2004). The service

description can be generated, hand-coded, or pieced together based on existing service interface

39

definitions. Developers can hand-code the entire service description, including the UDDI entry.

Tools exist to generate parts of the WSDL and potentially parts of the UDDI entry from meta-data

artifacts from the programming model and the deployment of the Web service executable.

A service description can be published using a variety of methods. These various methods provide

different capabilities depending on how dynamic the application using the service is intended to

be. The service description can be published to multiple service registries using several different

approaches. The simplest case is a direct publishes. A direct publish means the service provider

sends the service description directly to the service requestor. Direct publish can occur after two

business partners have agreed on terms of doing e-business over the Web, or after fees have been

paid by the service requestor for access to the service. In this case, the service requestor can

maintain a local copy of the service description but will need to occasionally update the service

whenever changes in the service description occur on the side of the service provider.

Slightly more dynamic publication uses DISCO or ADS. Both DISCO and ADS define a simple

HTTP GET mechanism to retrieve Web Services descriptions from a given URL. An enhanced m

service description repository would provide a local cache of service descriptions, but with

additional search capabilities. For service description repositories that span hosts within an

enterprise, a service provider would publish to a private UDDI server. There are several types of

private UDDI nodes that can be used depending on the scope of the domain of Web Services

published to it. Internal Enterprise Application UDDI node: Web Services for use within a

company for internal enterprise applications integration should be published to a UDDI node of

this kind. The scope of this UDDI node can be single application, departmental or corporate. These

UDDI nodes sit behind the firewall and allow the service publishers more control over their service

registry and its accessibility, availability and publication requirements. Portal UDDI node: Web

Services published by a company for external partners to find and use can use a portal UDDI node.

A portal UDDI node runs outside the service provider’s firewall or between firewalls. This kind

of private UDDI node contains only those service descriptions that a company wishes to provide

to service requestors from external partners. This allows companies to retain control of their

service descriptions, access to the UDDI node and quality of service for the UDDI nodes. Partner

Catalog UDDI node: Web Services to be used by a particular company can be published to a

partner catalog UDDI node. A partner catalog UDDI node sits behind the firewall. This kind of

40

private UDDI node contains only approved, tested and valid Web service descriptions from

legitimate business partners. The business context and meta-data for these Web Services can be

targeted to the specific requestor. E-Marketplace UDDI node: For Web Services that the service

provider intends to compete for requestors' business with other Web Services, the service

description should be published to an e-marketplace UDDI node or the UDDI operator node. E-

marketplace UDDI nodes are hosted by an industry standards organization or consortium and

contain service descriptions from businesses in a particular industry.

2.1.4 Webservice Discovery

The discovery of Web Services includes the acquiring of the service descriptions and the

consuming of the descriptions. Acquiring can use a variety of mechanisms. Like publishing Web

service descriptions, acquiring Web service descriptions will vary depending on how the service

description is published and how dynamic the Web service application is meant to be. Service

requestors will find Web Services during two different phases of an application lifecycle design

time and runtime.

At design time, service requestors search for Web service descriptions by the type of interface they

support. At runtime, service requestors search for a Web service based on how they communicate

or qualities of service advertised. With the direct publish approach; the service requestor caches

the service description at design time for use at runtime. The service description can be statically

represented in the program logic, stored in a file or in a simple, local service description repository.

Service requestors can retrieve a service description at design time or runtime from a service

description repository, a simple service registry or a UDDI server. The look-up mechanism needs

to support a query mechanism that provides find by type of interface (based on a WSDL template),

the binding information (that is, protocols), properties (such as QOS parameters), the types of

intermediaries required, the taxonomy of the service, business information, and so on. The various

types of UDDI servers have implications on the number of runtime binding Web Services to

choose from, the policy for choosing one among many, or the amount of prescreening that must

be done by the requestor before invoking the service.

UDDI servers can classified as either internal, partner catalog or e-Market place (IBM, 2004).

Internal UDDI repositories are those used to publish services within an enterprise, partner catalog

41

UDDI repositories are those shared among trusted business partners, e-Market place UDDI

repositories are accessible to any service requestor via the Internet.

Internal enterprise application UDDI servers and partner catalog UDDI servers will require no

prescreening to establish trust of the service. Service selection can be based on binding support,

historical performance, and quality of service classification, proximity, or load balancing.

E-marketplace UDDI nodes will have more runtime services to choose from. Some prescreening

must be done to verify that the Web service provider is a worthy partner. A service can be chosen

based on price promises, cost, presence on approved partners list, as well as binding support,

historical performance, quality of service classifications and proximity.

After a service description is acquired, the service requestor needs to process it to invoke the

service. The service requestor uses the service description to generate SOAP requests or

programming language-specific proxies to the Web service. This generation can be done at design

time or at runtime to format an invocation to the Web service. Various tools can be used at design

time or runtime to generate programming language bindings from WSDL documents. These

bindings present an API to the application program and encapsulate the details of the XML

messaging from the application.

2.2 Dynamic Workflow Based Webservice Composition

Web service composition involves combining a set of individual web services to respond to a

service request that cannot otherwise be achieved using any single service (Dustdar & Schreiner,

2005), (Bartalos & Bieliková,2011).Web service composition is a critical research challenge in the

realization of business agility (Rabelo et al, 2007).

Webservices composition takes different approaches and forms. In chapter 1, we saw that there

are two paradigms of webservice composition – one following the workflow based service

composition and the other following the Artificial Intelligence Planning approach. Further we saw

that workflow based composition can be static or dynamic. This thesis is dedicated to dynamic

workflow based service composition. In subsection 2.3.1.1, we formally define the notion of a

business process, a workflow and task. We then discuss the types of workflow operations. In

subsection 2.3.1.2, we go ahead to elaborate on the activities involved in dynamic workflow based

composition. To contrast dynamic webservice composition from static composition, we also

42

illustrate static workflow based service composition. A recap of the issues that make dynamic

workflow based service composition a hard optimization problem are discussed in subsection

2.3.1.3

2.2.1 Business Process, Workflows, Tasks and Workflow Patterns

As stated in chapter one, the scope of this work is limited to workflow oriented web service

compositions mainly because virtual enterprises as elaborated in chapter 1 have specific products

and services that are delivered to the public through well-defined and known business processes.

According to the Workflow Management Coalition1, a process is as a representation of a business

process in a form that supports automated manipulation such as modelling or enactment by a

workflow management system. A process is composed of a set of activities/tasks, each task

corresponds to the execution of given operations. A workflow is an automated business process.

According to the Business Process Modelling notation (BPMN), the execution of workflow tasks

can follow different logical patterns e.g sequential, parallel, exclusive OR and so on. BPMN also

defines different types of tasks based on the agent that executes them. Hence we have human tasks

that require human intervention, service tasks that can be executed by computer programs

automatically etc. This study is dedicated to workflows that are fully automated via webservices.

Figure 2 shows a sequential workflow whose tasks are executed by webservices. Figure 3

illustrates a workflow in which some tasks are performed in parallel, while figure 4 captures a

workflow in which at one of the steps one and only of the two tasks is executed based on some

business logic. Hence forth, our discussions are within the context of purely sequential workflow.

 Figure 2 : Example Sequential Workflow with webservice tasks

1 http://www.wfmc.org/

43

Figure 3 Example Complex Workflow with Parallel Webservice Tasks

Figure 3 shows a workflow with two parallel tasks and one sequential task.

Figure 4 Example Complex Workflow with Exclusive OR Gateway

In figure 4, either task A or task B will be executed based on some business rules then followed

by the execution of task C.

44

 Figure 5 Example Travel Planning Sequential Workflow

In the example in figure 5, we illustrate a pure sequential workflow based on a simplified version

of the well-known travel planning and reservation webservice composition problem. The business

process involves four sequential tasks. A customer makes an enquiry concerning available flights

and their details. If flight enquiry task is successfully executed, then the customer queries travel

insurance cover information that is related to the destination of the flight and then once satisfied,

enquires about availability of hotels in the destination area and finally once the first three tasks

satisfy the user, he makes enquiry about local taxis in the destination area. Eventually the process

of booking flight, cover and so on (not included here) might follow.

On the basis of workflow patterns, a distinction is made between simple operator and complex

operator webservice composition (Seog et al, 2005). In the context of workflow based

compositions, simple operator service composition is the one in which the workflow tasks are

connected by the sequential flow pattern only such as the one shown in figure 2, while complex

operator service composition involves workflows in which there are flow patterns other than the

sequential flow pattern. These patterns include the parallel gateway, the exclusive OR gateway etc

(Seog et al, 2005).

2.2.2 Dynamic Workflow Based Service Composition Process

 To better understand dynamic workflow based webservice composition, we first illustrate static

service composition. In static service composition, for each workflow task, a corresponding

service component is linked to the workflow task and design time and finally the workflow is

deployed Schahram & Wolfgang, 2005). This means that at runtime, the service component

associated with a particular task cannot be automatically changed. While this is an easier

45

composition strategy, it’s severely limiting. For example failure of any one of the component

services automatically implies failure of the workflow and therefore the service consumer does not

get desired outcomes (Mulongo et al, 2016a). Secondly, the technique is insensitive to specific

needs of a service consumer (Mulongo et al, 2016a). Figure 6 illustrates static workflow based

webservice composition.

Figure 6 Static Webservice Composition in Workflow Based Service Composition.

The dotted line without an arrow shows an association between an abstract task and a concrete

webservice. In static service composition as can be seen, each abstract workflow is associated

with exactly one sequence of concrete webservices. i.e, before execution of the workflow, there is

one to one mapping between the workflow and the composite service. Thus prior to workflow

execution, the sequence of webservices to be known in known in advance.

To address the deficiencies of static webservice composition, dynamic composition is needed to

automatically adapt to unpredictable changes in the service environment and to adapt to customer

requirements with minimal or no user intervention (Schahram & Wolfgang, 2005). In dynamic

service composition based on workflows, the services that bind to a workflow task are not known

in advance. For each workflow service task, a corresponding concrete webservice need to be

determined at run time. This flexibility means that there could be more than one concrete service

for each abstract task that can fulfill the task. The result is a set of possible sequences of concrete

webservices that can be used to realize a single abstract workflow. Usually then in dynamic

webservice composition, the problem is reduced to service selection problem. How do we select

46

the best composite service from the available sets to fulfill the user requirements specification?

Figure 7 shows dynamic webservice composition involved in the travel planning problem.

Figure 7 Illustration of Workflow based Dynamic Webservice Composition.

 In this diagram, each workflow task is associated with a pool or a community of webservices

capable of performing the workflow task. In this example we have chosen n=3 (number of tasks in

the business process) and m=2 (number of webservices in each service pool). It turns out that 8

possible sequences of concrete webservices can be selected to execute the workflow. Each

sequence constitutes a concrete composite service, composed be joining one service from the first

pool to the service in the second pool, then a flow from the service in the second pool to a service

in the third pool etc

A generic process framework for the dynamic webservice composition is shown in figure 8.

Figure 8: A generic Reference Architecture for Dynamic Webservice Composition: Source

(Rao et al, 2005)

47

From figure 8, the framework consists of actors, components and processes. The service requestor

performs the task of external specification. The service provide performs service specification.

The service repository contains a list of published webservices. Then there is a translator, evaluator

and execution engine. The role of the service composition system is to accept an external

specification, translate the specification into an internal specification, generate a process, and

search the repositories for the sequence of webservices that meet the external specification,

evaluate the best sequence of services and execute the sequence to produce results that meet the

external specification. This steps are detailed below.

2.2.2.1 External Goal Specification

During composition, the first step involves the service requestor specifying their requirements.

The requirements contain both the functional requirements and preferences. The preferences are

further constraints over the outcome the services. Together, the functional requirements and user

preferences form a goal. The goal is then linked to an existing business process. The goal is

decomposed into requests that can are then associated with a task within a business process. Each

business process task defines a unique functionality.

2.2.2.2 Service Discovery

Concrete webservices that match the given task within the business process are searched within

the service repository. One or more services may be found that match the functionality. In case of

more than one are found, a service selection strategy is needed to pick the best service.

2.2.2.3 Service Selection

Through the use of the evaluator, the best composite service is selected based on some

selection strategy

2.2.2.4 Process Execution

Each of the webservices within the composite service is bound to the corresponding service

task within the process/workflow. The task is then executed by the workflow/process

engine causing the transition to the next task within the workflow until the entire process

is completed.

48

2.2.3 Dimensions of Optimization Complexity in Dynamic Webservice Selection

2.2.3.1 High Dimensionality of Webservices Decision Variables and Constraints

Many strata of decision attributes or decision variables and the constraints enforced on

these variables have to be considered in order to select the best composite service that

fulfills the user’s functional and nonfunctional requirements. According to the

classification given in (Mahboobeh et al, 2011), the categories of quality (nonfunctional)

attributes include technical domain independent attributes such as response time ,

availability ; non-technical domain independent attributes such as service execution cost

and service reputation, domain dependent quality attributes such as refresh time for a traffic

monitoring service . In addition to these, there are domain dependent functional attributes.

For example in the travel reservation problem involving multiple component services,

flight cost is a decision attribute specific to a flight service, sum assured and premium

charged applies to a travel insurance component service only and hotel daily rate to a hotel

service only. Different users will express different preferences over the functional

attributes of a service. The multidimensionality of decisions involved in service

composition turns the service composition problem into a Multiple Criteria Decision NP

hard problem. The problem becomes more complicated as the number of decision

variables and constraints becomes larger as this leads to combinatorial space explosion.

Finding an optimal solution in polynomial time becomes harder and computationally time

consuming and may be infeasible altogether.

2.2.3.2 The large scale of candidate webservices with similar functionality

In virtual enterprises, several service providers are available that offer services with the

same functionality. As mentioned in chapter 1, different providers can be differentiated in

terms of the different attributes. Even when only a single attribute is the basis of service

selection optimization, that is, the service selection problem is a single attribute decision

problem, finding the best composite service from a large set of candidate services are

available per task is nontrivial. Generally, for an abstract service with n tasks with m

candidate services per task, yields a bipartite graph with mn
 different candidate execution

paths (Benatallah, 2004). To put this in perspective, a composition problem involving 4

tasks with 10 candidate services per task, results into 10,000 alternative composite services.

Adjusting m=100, gives 100000000 different composite services. Thus the search state

49

space exponentially explodes with increase in the size of m. Just like in the case of Multiple

Criteria Decision Making problem above, determining the best composite service in

polynomial time with increasing m for a single decision problem in polynomial time

remains a challenge.

2.2.3.3 Non Deterministic Nature of Component Webservices.

Component webservices do not operation in isolation. The context, which is the

circumstances or the facts surrounding the invocation of a service operation, can

significantly lead to multimodal time varying distributions of the software/service

operation [cit. Such facts include network link performance, CPU and memory utilization,

the service load etc at the time of service invocation. Service invocation time significantly

contributes to overall service composition time . How to accurately predict the most

efficient services so as to subsequently lead to efficient service composition environments

under non deterministic is a challenge.

2.2.3.4 The Scale of Services

The complexity of service selection increases with the number of services involved in the

composition process consequently increasing the search space. The issue is further

aggravated when considering several decision variables against each webservice. This

explodes the space further. For instance consider a 5 task business process and a service

repository containing 100 functionally similar webservices per task. If the services per task

are ranked against 1 variable only e.g service execution cost, then using a local

optimization strategy yields 500 searches + 500 comparisons =1000 computations using

the most naïve algorithm . Using global optimization would yield 1000 searches + 1005 =

10000000000 comparisons!

2.3 Local Planning Optimization Solution to Dynamic Webservice Selection

As pointed out in chapter 1, the optimization scope of dynamic webservice composition can

be local or global. Algorithms whose optimization scope is local are commonly referred to as

local planning algorithms within the webservices community. In local planning, the selection

of the most optimal composite service is performed at task level such the best composite

service is the sequence of the best atomic webservice selected from each workflow task (Zeng

et al, 2004). On the other hand, composite service selection algorithms that consider

50

optimization constraints across workflow tasks are called global planning algorithms (Zeng et

al, 2004). In general local planning algorithms for webservice composition are faster than their

global planning counterparts. On the other hand, the global planning algorithms generate more

quality solutions than their local planning counterparts. Because, webservice is multiple

criteria decision making problem, both existing local planning and global planning algorithms

for the problem make use of the Simple Additive Weighting method, SAW (MCDM) (Hwang

& Yoon,, 1981) in computing the utilities of each possible candidate solution.

In this section, we provide the mathematical formulation of the naïve local planning

optimization based on SAW. Two mains steps are described: Normalization and weighting.

2.3.1 Webservice Quality Attribute Vectors and Matrices

The input to the optimization problem is a set of M by Q matrices. Each matrix is a set of quality

attribute values of all candidate webservices capable of executing a given workflow task. For a k

length workflow, there are k such matrices. Thus M is the number of candidate webservices for a

given workflow task. Q is the number of quality attributes associated with each webservice. Each

row in the matrix is a quality vector V, against a single candidate web service. Each Vi has Q

elements. The jth element of Vi is the QoS value of the jth quality attribute against a given

webservice. The table below illustrates this.

51

Table 2: Local Planning Optimization Service Quality Matrix for a Single Workflow Task

Service Quality of Service Parameters (Decision Variables) (columns

identified by j)

A P T R C D

 W1 0.95 0.99 500 4 10 200

 W2 0.9 0.98 550 5 9 100

 W3 0.92 0.89 600 2 10 300

 W4 0.99 0.97 450 3 8 150

In table 3, there are four candidate webservices that can execute some workflow task. For each

webservice, there are six associated webservice QoS attributes denoted by A, P, T, R, C and

Where;

 A = Average availability of a component webservice

P = probability of success execution/execution success rate

T= Expected response time

C= cost of execution of a component service

R = reputation of a component service

D= standard deviation in response time of a component webservice

The four quality row vectors are :- V1 = (0.95,0.99, 500, 4,10,200) , V2 = (0.9,0.98,550,5,9,100),

V3 =(0.92,0.89, 600,2 ,10, 300), V4= (0.99, 0.97, 450, 3, 8,150).

Thus, V1 shows that the webservice W1 has an expected availability of 95%, probability of

successful execution 99%, expected response time of 500 ms, execution cost of 10 units, a

52

reputation of 4 (of 5) and deviation in response time of 200ms. On the other hand, the column

vector Va = (0.95, 0.9, 0.92, 0.99) contains availability quality values of the four services: W1,

W2, W3 and W4 respectively, Vp = (0.99, 0.98, 0.89,0.97) holds the reliability quality values of

W1, W2, W3 and W4, and so on and so forth.

2.3.2 Normalization/Scaling of Quality of Service Column Vectors

For some webservice quality attributes, increasing values are desirable. Such quality attributes are

termed as positive quality attributes (Zeng et al, 2004), (Abiud W.M et al, 2015). For example,

reliability, availability, throughput and reputation are positive quality attributes. On the other hand,

for some quality attributes such as response time, service access cost, decreasing values of the

attributes is desirable. Thus, this type of attributes is called negative quality attributes.

Since each webservice is associated with a mixture of positive and negative quality attributes, a

method of computing an aggregate utility value of each webservice on the set of quality attributes

is required. The Simple Additive Weight method mentioned earlier has been widely used. The

first step when using SAW, is the normalization phase and the second phase is weighting. In

normalization phase, every webservice quality attribute value is normalized such that the resultant

normalized value lies on the continuous interval (0,1).

Normalization works as follows. Quality attribute values are normalized column by column, one

column at a time. Negative web service quality variable scaled according to equation (2.1) and

positive web service quality variable scaled according to equation (2.2)

 F1= 𝑉𝑖𝑗= {(𝑄𝑗
max

– 𝑄𝑖𝑗)/(𝑄𝑗
𝑚𝑎𝑥 − 𝑄𝑗

𝑚𝑖𝑛) If 𝑄𝑗
𝑚𝑎𝑥 ≠ 𝑄𝑗

𝑚𝑖𝑛, 1 otherwise (2.1)

 F2 = 𝑉𝑖𝑗= {
 𝑄
𝑖𝑗− (𝑄𝑗

𝑚in)/(𝑄𝑗
𝑚𝑎𝑥 − 𝑄𝑗

𝑚𝑖𝑛) If 𝑄𝑗
𝑚𝑎𝑥 ≠ 𝑄𝑗

𝑚𝑖𝑛, 1 otherwise (2.2)

Referring to the example given in table 3, section 2.4.1, availability, probability of success and

reputation are positive quality attributes and hence the vectors A, P and R would be scaled

according to (2.2) while response time, execution cost and standard deviation are negative quality

attributes and consequently the values in the vector T, C and D would be scaled according to (1).

53

As an example, the scaling of the vector Va = (0.95, 0.9, 0.92, 0.99) yields V’a ’ = (0.56, 0, 0.22,

1) where V’a is the image of Va after scaling.

2.3.3 Weighting of Normalized QoS Row Vectors

During this phase, a weight value is assigned to each quality attribute such that the sum of the

weights is 1. All existing algorithms require that the service consumer specify the weights

(Mulongo et al, 2015; 2016). The weight assigned by a service consumer on a given quality

attribute is a measure of their degree of preference for that quality attribute. The larger the weight

value the more preferred the quality attribute.

Define the column vector W according to equation (2.3), such that (2.4) holds.

 𝑾 = ⟦

𝒘𝟏
𝒘𝟐
𝒘𝟑
…
𝒘𝑸

⟧ (2.3)

 ∑ 𝑤𝑗
𝑗=𝑄
𝑗=1 =1 (2.4)

Where wj is the weight assigned to the jth attribute in the quality matrix and Q is the number of

quality attributes.

For each task, for each row vector Vi, the utility value, U, of a webservice is then computed as per

equation (2.5)

 𝑈𝑖 = ∑ 𝑉𝑗𝑤𝑗
𝑗=𝑄
𝑗=1 (2.5)

2.3.4 Selection of the Best Composite Webservice

In the addition to specifying the preferences, the service consumer also specifies a set of local Qos

constraints C, such that each constraint is associated with one of the quality attributes in Q. In

naïve local planning, for each task, the quality vector of each webservice Vi, is check against the

relevant constraints in C. The webservice with the highest utility and that also satisfies all the

constraints in C is selected to execute the ith task in the workflow.

54

2.3.5 Analytic Runtime Performance Analysis of Naïve Local Planning

 There are three main operations involved in the naïve local planning. First, the determination of

the utility values of each webservice which takes nk operations. Second, for each webservice,

checking whether each quality attribute in Q respects the corresponding constraint in C. Thus for

one webservice, Q comparisons are required for establishing compliance to the established

constraints. Accordingly, for one workflow task with n candidate services, we have nC operations

and thus nkC for the entire workflow. Assume the worst case scenario where each and every

webservice per task obeys all the constraints in C. The third step is to select the service with the

highest utility for each task. This takes nk operations. In total, the major operations are 2nk + nkC

= nk(2 +C) = O(nkc). This is polynomial time. Hence as said in chapter 1, local planning

guarantees a solution within polynomial time. However, as noted before, local planning

composition schemes deny the user an opportunity to express inter task constraints such as the

total budget limit on service execution cost. Further local planning optimization is suboptimal. In

section 2.5, we discuss how the naïve global planning algorithm overcomes these limitations.

2.4 Global Planning Optimization Solution to Dynamic Webservice Selection

Figure 8 Illustration of Global Planning strategy for webservice Composition using a Bipertite

Graph

Consider the webservice Bipertite graph in figure 8 above. The first vertex set V1 has two

webservices W11 and W12 each capable of executing the first task of a workflow. The second vertex

set V2 contains two candidate webservices W21 and W22 each capable of executing the second task

in a workflow. The third vertex set V3 contains two webservices W31 and W32 each capable of

55

executing the third (and last) task of a three task workflow. The edge or arrow emanating from one

webservice in a vertex set Vi to another webservice in a vertex set Vi+1 is a possible execution path

(Zeng et al, 2004). The set of execution paths joining W11 ,W21 and W31 or W11 , W22 and W32 are

possible execution plans. In figure 9, there are such 8 execution plans which is the same as nk

where k is the number of workflow tasks and n is the number of candidate webservices per task.

Each execution plan constitutes a possible composite webservice.

In global planning optimization, utility maximization is subject to both local constraints and global

constraints across the entire workflow. To achieve this, the first step in global planning is to

compute aggregate QoS values of each execution path. Like in local planning optimization, what

follows is normalization, weighting, and then selection of the best composite webservice subject

to constraints set by the service consumer.

56

2.4.1 Composite Webservice QoS Aggregation Functions

Webservice QoS aggregation functions compute a single joint QoS value across the set of atomic

webservices within an execution plan or composite webservice (Zeng et al, 2004). Depending on

the nature of webservice QoS attribute, the aggregate QoS value of a composite may be additive,

multiplicative, arithmetic mean or the minimum of the QoS attribute values of the individual

webservices.

Consider the commonly used webservice QoS attributes as in (Shade et al 2012; Mahboobeh &

Joseph, 2011; Rajendran and Balasubramanie, 2009; Zeng. et al 2004) QoS attributes are captured

in table 2.4. The symbols associated with atomic service QoS attributes as well as composite

service QoS attributes are shown.

Table 3 . The set of webservice QoS Attributes and their Symbols: Source: Mulongo et al

(2015)

QoS Name Absolute

Symbol

Atomic Service

Symbol

Composite Service Symbol

Reliability R r
s rc

Availability A as ac

Throughput H hs hc

Execution Duration D ds dc

Execution Cost C cs cc

Reputation U us uc

Security Z zs zc

Using the symbols in table 2.4, for pure sequential workflows, the aggregate QoS values rc, ac
, h

c
,

dc
, c

c, uc and zc are computed as per the aggregation functions in table 2.5.

57

Table 4: Composite Service QoS Aggregation Functions –: Source: Mulongo et al (2015)

QoS Name Aggregation Function

Reliability rc
= ∏ 𝑟𝑠𝑖=𝑁

𝐼=1

Availability ac
= ∏ 𝑎𝑠𝑖=𝑁

𝐼=1

Throughput hc
= 1/𝑁(∑ ℎ𝑠𝑖=𝑁

𝐼=1)

Execution Duration dc
= ∑ 𝑑𝑠𝑖=𝑁

𝐼=1

Execution Cost cc
= ∑ 𝑐𝑠𝑖=𝑁

𝐼=1

Reputation uc
= 1/𝑁(∑ 𝑢𝑠𝑖=𝑁

𝐼=𝑁)

Security zc = 𝑚𝑖𝑛(∑ 𝑧𝑠𝑖=𝑁
𝑖=1

2.4.2 Composite Webservice Quality Attribute Vectors and Matrices

Like is the case with local planning, a M by Q matrix is generated. The number of rows M is the

number of composite webservices that are nk in number. Thus each row vector Vi is a composite

webservice in which the jth value is the jth aggregate QoS value associated with the composite

webservice.

2.4.3 Normalization of Composite Webservice QoS Vectors

Normalization of the aggregate QoS values is performed according to equations 2.1 and 2.2 above.

2.4.4 Weighting of Composite Webservice QoS Attribute Values

Equation 2.5 is used to compute the weighted utility value of each composite webservice.

2.4.5 Selection of the Best Composite Webservice

The naïve exhaustive global planning search algorithm evaluates each and every candidate

composite service against the constraints using some rule based logic (IF ELSE statements).

Although the strategy is bound to find an optimal solution, the search space can be exponential as

the number of atomic candidate webservices increase in size (Zeng et al, 2004), (Ardagna & Penci

, 2007). The problem is compounded with simultaneous growth in the number of sequential

workflow tasks, the number of QoS attributes and number of constraints. At the very least, an

effort of nk
 is required which can be exponential for large enough n.

58

2.5 Mixed Integer Programming Solution to Dynamic Webservice Selection

 Linear Programming (LP) and Mixed Integer Programming (MIP) are the most important

optimization techniques to efficiently model and solve real world optimization problems (Berthold

Timo et al , 2012), (Ed Klotz, & Alexandra M. Newman, 2012). A MIP problem is defined by a

maximization or minimization objective function, a set of integer and non-integer decision

variables, a set of constraints.

 In the area of webservices composition, Zeng et al (2004) & Ardagna and Pernici (2007) modelled

the webservices composition problem as an MIP problem and demonstrated that the MIP is far

more efficient than the naïve global planning optimization described in section 2.5. Similarly, local

planning technique can also be modelled as an MIP problem, in which case the resultant

optimization model can be solved faster than the naïve local planning.

The general procedure for modelling the webservice composition using MIP is to formulate an

objective function of the form in equation 2.6.

𝑀𝑎𝑥 ∑𝑖=𝑛𝑖=1 𝑉𝑗 ∑ 𝑥𝑖
𝑗

𝑗=𝑄
𝑗=1 (2.6)

 Where in equation (2.6) n is the number of candidate webservices, and 𝑉𝑗 as earlier defined is

the QoS vector containing Q quality attribute values. 𝑥𝑖
𝑗
 is a binary decision variable denoting the

selection or no selection of a webservice for a given task and is defined as per equation 2.7.

 𝑥𝑖
𝑗
= {

1, 𝑆𝑗𝑖 → 𝑇𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.7)

Where in equation 2.7:-

 𝑆𝑗 :- Is the set of candidate webservices against the jth workflow task

𝑆𝑗𝑖 is the ith webservice with the set 𝑆𝑗,

T, is the set of workflow tasks

𝑇𝑗 is the jth workflow task

𝑆𝑖 → 𝑇𝑗 means that 𝑆𝑖 is assigned to , 𝑇𝑗

59

 When the MIP is formulated based on a global planning approach, the vector Vj is determined by

applying the aggregation functions described in subsection 2.5.1 and the normalization procedure

described in 2.5.2. When the MIP is formulated based on local planning strategy, no aggregation

is done, and normalization is performed as described earlier.

The next step is formulating the constraints. One constraint to be enforced that only one and one

webservice (from the pool of candidate service can be assigned to a workflow task. This constraint

is captured in equation 2.8.

∑ 𝑥𝑖
𝑗
= 1,

𝑛𝑗
𝑖=1

 ∀𝑗 ∈ T (2.8)

 Let R, A and H be the reliability, availability and throughput thresholds set by the service

consumer on every an atomic webservice (in the case local planning) or composite webservice, in

the case of global planning. The following constraints are enforced. We have:

∏ 𝑟 ≥ 𝑅𝑖=𝑁
𝐼=1 (2.9)

Since the constraint in equation 2.9 is nonlinear, we linearize it by taking the logarithms on both

the L.H.S and R.H.S of 2.9 to get equation 2.10.

 ∑ log (𝑟𝑖=𝑁
𝑖=1) ≥ 𝑙𝑜𝑔 𝑅 (2.10)

Similarly, the availability constraint on composite service availability is expressed according to

(2.11).

 ∑ log (𝑎𝑖=𝑁
𝑖=1) ≥ 𝑙𝑜𝑔 𝐴 (2.11)

The constraint on composite service throughput at the SPUM layer is captured in equation 2.12

ℎ𝑐 = 1/𝑁(∑ ℎ𝑖=𝑁
𝑖=1) ≥ 𝐻 (2.12)

Further, let D, C, U and Z be the maximum execution duration, maximum total cost, minimum

reputation and minimum security values respectively. The constraints in equations 2.13 to 2.16

hold.

(∑ 𝑑𝑖=𝑁
𝑖=1) ≤ 𝐷 (2.13)

(∑ 𝑐𝑖=𝑁
𝑖=1) ≤ 𝐶 (2.14)

(∑ 𝑢𝑖=𝑁
𝑖=1) ≥ 𝑈 (2.15)

60

(∑ 𝑧𝑖=𝑁
𝑖=1) ≥ 𝑍 (2.16)

2.6 Layering as Optimization Decomposition

2.6.1 Decomposition as an Optimization Method in Engineering and Computer Science

In engineering and Computer Science, decomposition, is breaking a complex problem or complex

system into parts or components that are easier to conceive, understand, solve and program

(Songqing & Gary, 2009). Based on the goal of decomposition, (Kusiak and Larson 1995)

identifies three categories of decomposition: 1) product decomposition, 2) process decomposition

and 3) problem decomposition. In product decomposition, a system or product is decomposed into

its parts or components (Kusiak and Larson 1995). Such a decomposition promotes understanding

of a product or systems structure (Songqing & Gary, 2009). Process decomposition involves

problems in which there is flow of elements or information (Songqing Shan · G. Gary Wang,

2009). Taking the process of webservice composition as an example, it’s a multistep process

involving conveyance of information or elements from one stage to another. Problem

decomposition entails breaking a complex problem into subproblems. In Computer Science, this

is commonly referred to as divide and conquer. Problem decomposition is at the heart of intensive

research on the multidisciplinary design optimization (Kodiyalam and Sobieszczanski-Sobieski

2000; Simpson et al. 2004).

The overall benefits of decomposition, whether product, process or problem decomposition are

(Songqing & Gary, 2009):-

i) Maintainability and Modularity :-In the case of software systems, product

decomposition leads to reduced programming/debugging effort

ii) Efficiency:- Problem decomposition means solving computational subproblems is

more efficient using techniques such as parallel/concurrent computing and distributed

computing

iii) Enable multi-criteria analysis :- Where a single or multiple decision makers are

involved

iv) Improved Coordination :- improved coordination and communication between the

decomposed sub-problems

61

v) Enhance reliability and Robustness of optimization problems.

The goal of this thesis targets the second and third benefits, specifically exploiting the concept of

Layering as Optimization Decomposition. It’s worth noting that although the natural approach to

obtaining efficiency gains from decomposed subproblems in computer science is to use parallel or

distributed computing as stated in (ii) above, decomposition can also benefit from efficiency even

when the resultant subproblems are solved sequentially. This is possible because performance

gains arises from the observation that problem complexity grows more than linearly (Byod et al,

2003), and therefore the growth in complexity of the original problem is generally larger than the

sum of the parts.

2.6.2 Layering as Software Architecture Decomposition

From a software systems engineering viewpoint, layering is one of the software architecture

(structure) decomposition techniques in which a large complex software system into simpler

components called layers (Bachmann , 2000). The components are strictly ordered with one layer

A (the lower layer) providing services to another layer B (the upper layer) (Bachmann , 2000) .The

immediate advantage of layering is modularity, modifiability and portability (Bachmann , 2000).

The second advantage of layering is that it hides technical complexity of the computational details

of lower layers, with the topmost layer having the least technical details. Layering also promotes

loose coupling of components or functionality. Eventually layering boosts usability of a system.

Well known layering techniques in software engineering include the three layer Model View

Controller (MVC) pattern governing the design of interactive and database intensive applications.

Usability for instance emanates from the fact at the topmost layer, users are shielded from the low

level mechanics and jargon at the controller and model levels. Thus, the complex computational

details are hidden beneath. The second widely known exemplar of layering as an architectural

/structural decomposition style comes from the communication networks field – layered networks

based on the OSI model. In the OSI model, the lowest level issues such as bit rate control are

handled at the lowest layer and are far hidden from the end user. At the application layer, the user

can enjoy the benefits of the lower layers without being aware of their existence or understanding

the details under them. A fundamental question in layering is which layer should provide which

services and how should the layers be interconnected?

62

2.6.3 Layering as Optimization Decomposition

If optimization is the primary goal of problem decomposition (as seen in section 2.7.2), layering

could be used as a problem (or optimization) decomposition strategy. If this is the case, then the

third benefit of layering is to achieve efficiency in solving hard optimization problems. Layering

as Optimization Decomposition (Mung, 2006; Mung. et al., 2007; Low, 2013) is an emerging

formal theory that attempts to provide architectural as well as quantitative tools for understanding

and solving hard optimization problems in layered communication networks. Layering as

Optimization Decomposition theory perceives the task of solving a complex layered

communication network design optimization problem as the solution to multiple well-coordinated

sub problems, in which each layer is treated as a subproblem. Viewed this way, in addition to being

a product/system decomposition technique, layering is also a problem decomposition method. This

thesis does not aim at understanding the algorithmic and mathematical details of the framework

but rather the conceptual details of Layering as Optimization Decomposition, and how such

concepts could inspire the design of a more efficient mixed integer programming global planning

model for dynamic webservice composition. Conceptually, layering as optimization is defined by

two core ideas (Mung, 2006): The communication network is viewed as an optimizer and, the

communication protocols are viewed as distributed solutions to some global optimization problem.

The global optimization problem in this case is the Network Utility Maximization (NUM) problem

described by (Kelly et al, 1998). The technique works as follows (Mung, 2006), (Low, 2013):- A

set of many optimization decision variables are decomposed into subsets of decision variables.

Then each network layer being viewed as a subproblem iterates over a subset of the decision

variables, pursuing to optimize its local utility. Within each of the layers, the subproblem is

formulated a NUM problem. Interfaces between layers are modelled as functions of primal or dual

variables. When two optimization problems are such that the there is a common variable, y in the

objective functions of the two subproblems as in f(x,y) and f(x,z), then y is a primal or interface or

complicating variable (Byod et al , 2003). The problem: minimize f1(x) = f1(u1,y1) + f2(u2,y2) s.t

y1=y2 could be decomposed into two separate functions that are coupled by the constraint y1=y2 .

y1, y2 are the Lagrange dual constraints. Each layer below serves the layer above. Together, the

individual layers strive towards global optimality.

An important question in Layering as Optimization Decomposition is which layer performs what

functions or which layer pursues what objectives (Mung, 2006). This question can further be

63

rephrased as how layering should be done? Any solution to this question is referred to as a layering

scheme (Mung, 2006). As will be discussed in section 2.9, this question is at the core of this thesis.

The starting point to this question is to recognize the fact that the formulation of the optimization

problems is in the form of the NUM problem. The NUM problem involves two main objective

functions, depending on who is concerned with the outcomes of the network optimization process

(Mung, 2006):- sum of utilities by end users. The end user utilities could be functions of the

following variables: - rate, reliability, delay, jitter, power level and so on and so on. The second

objective function is the network wide cost function - functions of congestion level, energy

efficiency, network life time, joint error estimation etc. A second feature of NUM is that the end

users’ needs are at the forefront of network design (Mung, 2006). As much as optimization

objectives are pursued both from a user’s perspective and network operator perspective, the

optimization goal from the point of view of the network operator has to indirectly aim at

maximizing the end user utility, albeit without the direct knowledge of the user. For example, the

benefits of improved information coding and modulation techniques at the physical layer do not

only lead to reduced bit error rates (BER) but also enhanced reliable applications. While the

improvements at the lower levels benefit the end user, the user does not need to be aware of them.

This emphasizes the other advantage of layering which had discussed earlier –abstraction –

shielding the end user from technical complexity. Thus NUM can act as a benchmark of possible

layering schemes (Mung, 2006). But because NUM does not enforce any predetermine layering

scheme or layered network architecture, the choice of a layering scheme is left to human judgment

and skill (Mung, 2006). Hence different layering schemes to Layering as Optimization

Decomposition may lead to different layered network architectures that in turn may yield varying

levels of efficiency (Mung, 2006).

64

Table 5 : Multi-Layer Optimization Objectives in TCP/IP Layered Network, Source: (Steve Low

(2013)

Layer Optimization Objective Solution

Application Minimize response time Various Application Protocols e.g HTTP,SFTP

Transport Maximize Utility TCP

Network Minimize Path Cost IP

Link Reliability, Channel Access, Various MAC protocols

Physical Minimize Signal to Noise

Ratio, Maximize Capacity

etc

Various Physical Layer protocols

Whereas Layering as Optimization Decomposition is well formalized in the networking

community and proven to lead to more efficient, optimized, modular and transparent layered

networks, a similar formalization in the webservice composition lacks and equally to the best of

our knowledge, there exists no method that exploits or is inspired by the inherent advantages of

the theory. In this thesis, we argue that although Layering as Optimization Decomposition

formalism is rooted in the Network Utility Maximization problem, the complexity of issues

involved in the web service selection problem, as discussed in section 1.3 closely resemble the

NUM (Kelly et al, 1998) problem and therefore Layering as Optimization Decomposition as used

in the networking could inspire a more efficient reformulation of the existing (one layer) mixed

integer programming webservice composition optimization strategies.

2.7 Related Work

The problem of dynamic composite webservice selection has been studied extensively over the last

decade. The strategy taken in (Pan & Mao., 2013) uses a multi-agent model for automatic dynamic

webservices composition based on Artificial Intelligence Planning based on the OWLSPlan tool,

specifically targeting semantically annoted webservices based on the OWL-S service description

65

language. Similar to the approach in (Benatallah B. et al, 2004), a vector of quality attributes are

captured about a target service, and then the service composition problem is defined by specifying

an initial state and goal state using OWL. The plans the agents follow are captured using the PDD

language. OWL-S plan is then used to generate all possible execution path where each path is

possible solution (composite service) satisfying the service composition goal. Finally the

weighting formula used in (Zeng et al, 2004) is also used in (Pan & Mao., 2013) to compute the

overall score on each attribute and the service with the maximum score is chosen. A key benefit

of composition strategies based on OWLS-Plan is that OWL-S Plan allows online reactive

replanning in case of service failure during an ongoing composition process. However, in this

method it’s not apparent how externally end users express their constraints. In addition this, the

limitations related to the work in (Zeng et al, 2004) still remain in (Pan & Mao ,2013) i.e the lack

of separation of quality parameters into what could be considered standard quality attributes across

different consumers within the same application domain and consequently combinatorial

complexity arises. Note also that while in (Pan & Mao ., 2013). only OWL-S webservices are

targeted, our proposed method is a generic model independent of a specific service description

language – our approach makes the assumption that agents searching over webservices descripted

in a specific service language would need to implement a translator component whose function

maps to the translation module as defined in (Rao Jinghai and Xiaomeng Su ,2004).

Even though the approach taken in (Mahdi B. et al, 2012) follows a Fuzzy logic approach to service

composition involving multiple user defined quality attributes, the deficiencies related to

(Benatallah B. et al, 2004) can also be observed in (Bakhshi & Hashemi, 2012) in regard to search

space explosion and also in regard to the practicality of the method by which user express their

constraints. Regarding the method of expressing constraints, in (Bakhshi & Hashemi, 2012), users

express constraints as Fuzzy rules. A weighting approach is also used where a user assigns what

the authors call a Confidence Factor (CF) on the range [0, 1] where the CF denotes the importance

of each fuzzy rule. Thus rules that are more important from a user’s point of view are assigned a

higher CF value than the less important ones. We still maintain that in real life applications, not

many end users would firstly be able to specify their nonfunctional constraints using Fuzzy rules.

Moreover, if they did, it is difficult for end users to assign weights to rules and make sense out of

them. Further, since according to the approach suggested in this work, a fuzzy rule is constructed

by combining one or more QoS attributes ,e ach assigned a value such as low, high, very high etc

66

and then assigning a single value (the rank). Let A be the number of quality attributes and L be

the number of discrete values that are assignable to each of the attributes. Considering, the simplest

case where a fuzzy rule consists of only one attribute yields AL rules. To put this in perspective if

A =5 and L =4, this yields 20 rules. Obviously, this would be a taunting task to an average user to

assign CF values to 20 rules. As noted, the method suffers scalability due to exhaustive generation

of plans which is not efficient for a large number of constraints and services.

The authors in (Alifarai et al, 2010) propose a QoS based optimization on Mixed Integer

Programming. Although Zeng et al, (2004) earlier demonstrated that MIP is more efficient than

exhaustive search, we saw in section 1 that MIP is still susceptible to exponential explosion. The

deficiency in (Alifarai et al, 2010) can be said of the MIP techniques in (Gabrel. et al, 2013), (Yan,

2012) and (Ngoko et al, 2013). Moreover, Yan (2012) does not provide any justification for the

use of an MIP method based on Taylor expansion.

A Fuzzy logic based multiple criteria method is presented in (Yan, 2012). The method involves a

user expressing preferences by assigning a Confidence Factor (CF) on the range [0, 1] to Fuzzy

rules. A CF denotes the importance of each fuzzy rule. The higher the CF value the more important

the Fuzzy rule is relative to another rule. Two shortcomings observed on other approaches are

inherent in this approach. Firstly, the fact that a user has to express their preferences by specifying

confidence Factors, imply that the approach is limited to technical audience only. Lastly, the

complexity of the problem exponentially expands with an increase in the rule base.

A decomposition method for service selection based on Mixed Integer Programming is presented

in (Singh, 2012). The method works as follows: Global constraints are converted into local

constraints. Even though (Singh, 2012) claims reduced MIP model that can be solved in linear

time, neither details on how the decomposition method works nor are empirical results supporting

the hypothesis provided.

The two step Mixed Integer Programming algorithm by Alrifai et al (Virginie G. et al, 2013) is

based on decomposition of global constraints into local constraints. After the decomposition, local

optimization using local constraints follows. Firstly, each web service QoS attribute value is

partitioned into quantized levels for each web service in each service community. The goal is to

find the best combination of quantized values that will be used as upper bound constraints within

67

the second step. MIP is applied to find the best combination of values that satisfy the constraints.

In the second stage, a local planning selection algorithm is used to select the best web services.

The challenge with this approach is that expressing global constraints that will not be violated by

local constraints is a challenge. Further, the performance of the model is affected by the number

of quantity levels d. The larger the d the less efficient the model becomes and vice versa. The value

of d or range of d for which the model can perform better than conventional MIP remains unknown.

Thirdly, like all other techniques, the model is still too complex from an end user perspective and

therefore its utility is equally limited to technically sophisticated users.

Liu (2012) proposes a genetic algorithm for composite service selection. The advantage this has

over MIP based models is that Genetic Algorithms (GA) are more efficient for ultra large problem

sizes. However, GAs require configuration and tuning of extra parameters such as the population

size (Ngoko Y., Goldman A, and Milojicic D, 2013).

The main innovation by Ngoko Y., Goldman A, and Milojicic D. (2013) is a MIP global

optimization model for workflow based service compositions involving multiple cooperating

abstract composite service services. Moreover, the optimization model takes into account service

level agreement constraints. Generally the authors empirically show that their MIP global planning

model is more desirable than local planning in terms of optimality of solutions. However, only two

QoS attributes are considered during optimization so it remains unknown how the model can

behave as the number of QoS factor s grow larger.

Similar to (Singh, 2012) and (Gabrel et al , 2013)., our work in (Mulongo et al, 2015), also

described in section 2 of this paper, in general follows Mixed Integer programming with a

decomposition strategy to optimize composite web service selection. But unlike the rest, the work

in (Mulongo et al, 2015), , combines the well-known MIP global planning technique for web

service selection in (Zeng et al, 2004) with the emerging theory of Layering as Optimization

Decomposition (Mung, 2006; Steve Low, 2013). The distinctive features of this approach are: 1)

two distinct objective functions, one addressing the concerns of the end user and the other

addressing the concerns of the service provider. Although, in (Abiud W. M. et al, 2015), each layer

(sub problem) can viewed as a local optimization problem as within the scope of the entire

“network”, from a web service composition perspective, each of the local sub problem employs a

self-contained global planning method using the S-MIP technique in (Zeng et al, 2004) although

68

on a subset of constraints and subset of QoS attributes. This brings the second unique feature: 2)

that we are still able to express global constraints, and that these global user and service provider

constraints alike, are guaranteed not to be violated, 3) By using layering as a design time

architectural style, separating the concerns of the users from those of the provider, we not only

achieve more efficiency, but also derive simplicity that shields the average end user from the

complexity of technical jargon, and tediousness of having to capture constraints and weight

preferences on low level QoS attributes. All the other methods lack this feature.

There are dynamic service selection and composition strategies which do not necessarily consider

user defined constraints but strive to optimize operational performance quality of service attributes

such as availability, response time, throughput etc to ensure efficient service composition. Such

strategies confirm our argument that operational performance oriented QoS attributes should not

be explicitly specified by an end user of services but rather an implicit given. The methods

embedded in ADULA frameworks (Monsincat et al, 2010) fall under this category. ADULA is a

self-regulating webservices composition framework. ADULA (Monsincat et al, 2010) uses a

simple yet effective randomized probabilistic algorithm that aims to improve system throughput

by balancing service requests. The framework does this by distributing requests to those services

that recently performed better and are functionally equivalent to those that performed poorly. QoS

of services is measured primarily based on service response time thus faster services are selected

in favour of slower services. Slower services are put in quarantine for some time t. To ensure

fairness based on the on the observation that once slower services may become faster in the near

future and vice versa, the framework uses an adaptation method that is based on change of rate

(with respect to response time). A maximum time delta value is fixed say at 500 ms such that if

the difference between a service’s current response time and the previous response time exceeds

the delta value, then a change in the service’s state is reported and its state is updated accordingly

either as slow or fast. A weakness of this technique is however that the quarantine if the quarantine

period is too long, then currently slow services that could otherwise have become faster are starved.

The converse is true if the quarantine period is too small. Our proposed QoS model at layer 3 is

similar to this approach where a service with the highest performance is selected to participate in

the composition. However, one main difference exists between our work and the work in (Adina

et al, 2010). Our model jointly considers reliability and response time of a service whereas in

(Adina M et al, 2010) only response time is considered. The benefit our model has over the one in

69

ADULA is that we do not only select a service that is most likely to execute fastest but also the

one that has the highest chance of executing successfully.

2.8 A Summary of the Gaps in the State of the Art

From the foregoing discussions it’s irrefutable that all the existing dynamic webservice

composition algorithms have the following deficiencies:-

i. End user burden:- In all the existing multiple criteria utility based approaches (both local

and global planning), service consumers are required to specify their preferences by

supplying weight values for all the set of available webservice QoS parameters. When the

dimension of such variables is large, it not only becomes too tedious for the user but the

weight assignment process becomes less objective (Mulongo et al, 2015). For example it’s

too tempting to ask the end user to specify relative weights on QoS attributes like

throughput, reliability and availability etc ,first because any Internet user would always

expect that their service request is going to be successfully responded (100% expected

reliability), by implication 100% expected availability. Secondly, even if hypothetically,

users were willing to trade off reliability or availability for instance, the nuances of these

technical QoS terminologies can be too blurry to an end user for them to objectively assign

relative weights accordingly (Mulongo et al, 2015). An exception to this is the method

described in ADULA (Adina et al, 2010) which focuses on high throughput service

composition without involving the end user. The advantage of the model in ADULA

(Adina et al, 2010) is that end users are by implication shielded from the technical details

of the service composition while enjoying the efficiency of the underlying model. The

disadvantage is that the optimization strategy in (Adina et al, 2010) and related models is

purely system oriented and ignores the element of preferences specific to a particular

service consumer such as cost, reputation etc. There is a need for a framework of service

composition that allows the user to obtain near optimal solutions efficiently without having

to directly interact with all the quality attributes of the webservices.

ii. Exponential Explosion: - All the existing global planning strategies are flat structured.

Thus, as the number of candidate webservices grows larger, the algorithms suffer from

exponential state space explosion making them severely constrained when it comes to large

scale industrial scale service based applications. Zeng et al (2004) recommends that for

70

large scale service composition problems, composite webservice selection should be done

in hierarchical layered manner, applying global planning at each layer. However, to date,

to the best of our knowledge, such a framework lacks.

2.9 Proposed Solution: Service Layered Utility Maximization Model (SLUM)

The proposed method is based on the mixed programming global planning model described in

section 2.6. However, the deviation from the current practice is our fundamental rethinking about

the structure of the dynamic webservice composition problem. Instead of viewing the problem as

flat structure as is the case with all the state of the art, we view the problem as “a layered network”

with two layers. One of the layers strives to maximize end user utility on a subset of webservice

QoS variables, while the other layer attempts to maximize the service provider utility on another

subset of webservice QoS attributes. We show that together, the two layers strive towards a global

objective, which is to generate within the shortest time possible, the composite webservice that

maximally satisfies the utility of the service consumer. The union of the subsets constitutes the

entire range of QoS attributes and the range of QoS constraints over this range. At each of the two

layers, a mixed integer program is formulated in terms of the subset of QoS variables. The

subproblems are then solved sequentially in a layered fashion. Analytically, this formulation is

more likely to yield more efficient solutions due to space reduction. Space reduction arises in two

ways (see section 2.11), first the sum of the search space at the two layers grows much smaller

compared to the original problem as the input size grows larger. Secondly, since the subproblems

are solved sequentially in a layered manner, some services at the first layer could be eliminated,

further shrinking the overall search space across the two layers. In addition, the design inherently

shields end users from specifying their expectations on all the QoS constraints. This architectural

rethinking is inspired by the theory of Layering as Optimization Decomposition as described in

section 2.7. In section 2.10.1, we qualitatively describe how our proposed design maps on the

concept of Layering as Optimization Decomposition. In section 2.10.2, we describe the

mathematical models underlying the proposed design.

2.9.1 Qualitative Description of the SLUM Model

We cast the service selection problem onto the network utility maximization problem (NUM)

based on the formalism of Layering as Optimization Decomposition as follows. First, we view the

71

composite service composition as “a multi layered network” with each layer trying to achieve some

local optimality towards to global optimization objective. In the case of network design, the global

optimization problem is formulated as the basic NUM, generalized NUM or the stochastic NUM

problem. Then based on the NUM global optimization problem, layered variants of the NUM

(Kelly et al, 1998) problem are formulated and solved. In the case of service composition, there is

no universally agreed formulation of global “Service Utility Maximization” optimization model.

However, as stated in chapter 1, the MIP global optimization model by Zeng et al (2004) has been

widely adopted in the formulation of MIP solutions to service selection problems. In the place of

NUM therefore we have what we dub here as “basic Service Utility Maximization (SUM)” model,

referring to the MIP model in (2004). Then, we adapt the basic SUM model to fit the proposed

layered architecture leading to SLUM for Service Layered Utility Maximization Model. SLUM is

quantitatively described in section 2.11.2.

Secondly, we have to identify the “layers” in our “network”. Unfortunately, unlike in network

design where there are well established network models such as OSI and TCP/IP, no network

model or layered network formulation of the service selection problem exists today. Luckily we

can draw some analogies from the NUM problem. Based on existing work on QoS aware

webservice selection, we work backwards to identify a minimum number of “layers” in the

network. Here goes the analogy. The generalized NUM problem puts the end user at the forefront

leading to two types of optimization objective functions (Mung, 2006). 1) maximizing end users

sum of utility functions over variables like rate, reliability, delay , jitter and 2) a network wide cost

function determined by the network operator that can be functions of congestion, power efficiency

etc. Putting the service consumer at the forefront, we can see at least two similar objective

functions naturally arising in webservice composition problem. The following objectives can be

identified: The first objective is that the service consumer would like to get access to the composite

service at the minimum possible cost within the shortest possible time. Therefore from a consumer

perspective minimization of financial burden (which includes minimizing actual cost of accessing

the service and minimizing the financial risk) and minimization of service response time are key

concerns. Financial risk is associated with QoS factors like reputation and security .Thus from this

perspective, we have that the end user objective function is a utility function over the following

webservice QoS attributes: service execution cost, reputation, security and response time. On the

other hand, the most important performance parameter from a business perspective is throughput

72

–how many customers can be served in unit time. By implication, this extends to response time,

reliability, availability etc. Therefore in the global virtual organization case, the virtual enterprise

broker key objective is maximizing webservice total utility over throughput and other performance

factors that affect throughput including response time, reliability, and availability. From these two

objectives, we work backwards to formulate the two “layers” (subproblems) of our “network”:

SCUM and SPUM. The objectives of these two layers were introduced in section 1 and here we

summarize them in Table 6.

Table 6 : Multi-layer Webservice Optimization Objectives in the Proposed Model: SLUM,

Source: Mulongo et al (2015)

Layer Optimization Objective Solution

Service Consumer

Utility

Maximization

(SCUM)

Maximize the utility function over composite webservice

execution cost, reputation, security and response time

SCUM MIP

model

Service Provider

Utility

Maximization

(SPUM)

Maximize the utility function over response time, service

execution success, throughput ,availability

SPUM MIP

model

Third, we need to establish which of the two layers “serves” the other. This is the same as asking

the question: should the optimization process start at SPUM layer then SCUM layer (bottom up

service selection optimization) or from SCUM then SPUM (top-down service selection

optimization), does it matter which way? Starting with the last question, the answer is yes, the flow

of information during the optimization process using the layered approach matters. Assume a top

down approach is chosen. There is a possibility of selecting services with the lowest costs, lowest

financial risk and lowest response time at the SCUM layer but that have the worst reliability,

reliability and or throughput when evaluated at the SPUM layer. There are two possibilities. First,

if none of the composites meets the constraints at SPUM layer, then no solution is found. Second,

a subset or all the webservices may meet the threshold constraints on reliability and availability

73

but only marginally. The result is that such webservices will have a higher probability of failure

during execution whereas potentially more reliable but more costly and less efficient services were

“prematurely” dropped at SPUM (Mulongo et al, 2015). Conversely, if a bottom up optimization

approach is followed, there is a possibility that composite services with the highest throughput,

availability, reliability are chosen but may fail to meet the test at SCUM layer i.e either they do

not meet cost, financial risk or response time constraints. If they did meet only marginally, the

execution of the composite service may result in one of the following. Non responsiveness (web

service takes too long to respond), a higher cost burdens to user, or potential loss of cash due to

less trusted services.

The point is that bottom up and top down optimization approaches, each constitute a possible

layering scheme such that each layering scheme may yield different values to global optimization

objective resulting into different optimality values. So whether to follow the bottom up or top

down optimization layering scheme is a problem itself. This thesis does not address the problem

of which of the two schemes is better in efficiency or optimality. Instead, this the study took a top

down up approach –solve the SCUM problem first then afterwards the SPUM problem. The reason

is that end users objectives remain at the core. i.e reducing financial burden, financial risk and

reducing the time taken to access a service. The worry that less costly and more efficient but less

reliable and low throughput services that are more likely to fail during execution can resolved by

making the following observations. First, webservice reliability is a function of availability among

factors. A service that often fails during execution due to unavailability is less reliable. Fortunately,

availability is a QoS factor that can be captured as part of the service level agreements (SLAs)

between the virtual enterprise broker and the various virtual enterprises within the global virtual

firm. The SLAs will ensure that variability in service availability across virtual enterprises is within

acceptable bounds, in case the virtual enterprises were to remain within the global virtual market.

Secondly, webservices that are less responsive (large response times) have double negative impact.

One is that potential timeouts definitely ruin the reliability of the service- failure to execute

successfully. Second, the delay negatively impacts the overall system throughput. However, the

top down optimization approach automatically mitigates these drawbacks – since the utility

function accepts response time as part of the inputs and its output value is also restricted by the

constraints on response time, it means that resultant services are not only of low financial burden

but of high efficiency thus leading to overall increased throughput and reliability of the

74

composition system. Even more, our proposed MIP optimization algorithm at the SCUM layer

attempts to find all feasible solutions that are then promoted to the SPUM layer. This is done so as

to avoid early elimination of otherwise candidate webservices with higher reliability, availability

and throughput values. Thus, in our proposed layered scheme, the SCUM layer serves the SPUM

layer.

Fourth, we need to identify primal or Langrage dual variables between the SCUM and SPUM

layers, if at all there are. We observe that response time is a “coupling or primal or interfacing

variable” connecting SCUM and SPUM layer. We can eliminate the primal variable by

maintaining this variable at only one of the two layers. Since optimization is done top down, we

have that this variable is maintained at the SCUM layer only. There are two main reasons

motivating this decision. The first reason is to maintain the validity of our choice of the top down

optimization approach as explained in the preceding paragraph. The other and perhaps the most

important reason is premised on the empirical evidence the response time for distributed software

components exhibits time varying multimodal statistical distributions. We make allusions to

(Kounev S. , Gorton I & Sachas K, 2008). By implication, the distribution of response time of

webservices is a stochastic process. Therefore, to increase chances of more efficient services being

promoted from the SCUM layer to SPUM layer, response time must be one of the decision

variables to be considered in the first cycle of optimization, which happens by choice to be at the

SCUM layer. In the end, SCUM and SPUM layers are decoupled in decision variables but coupled

by data dependencies. Data dependency arises from the fact that the SPUM layer has to wait for

the outputs from the SCUM layer, which are then used as the input solution space of SPUM.

Fifth, we model the flow of data or information from one network layer to the next layer as the

flow of the webservice composition Bipertite graph. The original graph contains all candidate

webservices. As the graph flows through Layer 2 and Layer 1, some services are eliminated.

75

Table 7: Mapping the Concepts in Layering as Optimization Decomposition to the Proposed

SLUM model

Concept in Layering as

Optimization Decomposition

Concept Realization in SLUM Model

Layers: Layers in the OSI

Model

Two layers :- SCUM and SPUM

Relation between Layers SCUM layer serves SPUM layer i.e the output of SCUM layer

optimization is the input solution space to the SPUM

subproblem

Decision Variable Subsets  Integer and real Variables at SCUM layer related to

cost, reputation, and security and execution duration.

 Integer and real variables at SPUM are in terms of

reliability, availability, throughput and related low

level performance parameters.

 In addition, at layer, Boolean decision variables are

defined at each layer.

Dual/Langrage/Interface

Variables

None

Objective Functions :- At SCUM: Maximize the utility of the service consumer where

the utility is function of the subset of variables mentioned

above

At SPUM : Maximize the utility of the service provider

NUM : Network Utility

Maximization Model ((Kelly ,

et al, 1998)

The Mixed Integer Programming global planning model herein

S-MIP described in Zeng et al (2004)

76

Layering Scheme Topdown – SCUM then SPUM optimization (as opposed to

the other way round)

2.9.2 Mathematical Formulation of the SLUM Model

2.9.2.1 Introduction

We formally restate the composite service selection problem as follows:

Given the tuple,〈𝑅, 𝐹, 𝐺〉

Find: Pb∈ G that can execute F to satisfy R

Where;

i. R is the complex service request such that R = 〈𝑟1, 𝑟2, . . . , 𝑟𝑛 〉 where 𝑟𝑘 is an atomic service

request within R.

ii. F is a sequential abstract workflow such that F = 〈𝑡1, 𝑡2. . , 𝑡𝑛〉 where 𝑡𝑘 is a workflow task

within F such that the execution of tk leads to the fulfillment of rk. The tasks are sequentially

ordered as t1 → t2→,.., →tn ,

iii. G is the webservice composition Bipertite graph such that G is the N-tuple 〈𝑉1, 𝑉2, . . . , 𝑉𝑛〉

where Vk is a vertex set containing a list of functionally similar concrete webservices that can

execute the task tk . Therefore Vk is the data structure List<Wkj> where Wkj is the jth
 service

in Vk.. Each Wkj can be defined by the tuple 〈I, O, Q〉 where I is the set of input parameters, O is

the set of output parameters and Q is the set of QoS values associated with Wkj. Any complete

path constituted by a service drawn from V1, and another service from V2 , ..., and finally

another service from Vn consistutes a candidate solution. If m is the number of services in every

Vk.. then as shown earlier in section 1, there exists mn
 such candidate solutions or candidate

composite services. Therefore we need to find Pb,
 the best path (composite service) that

satisfies R.

77

This thesis is about solving for Pb
. In section 3.2.2 we elaborate how our SLUM model finds Pb

using the Service Layered Utility Maximization (SLUM) algorithm.

The two layered mixed integer solution, SLUM, to the problem above, involves the following

steps. Decomposing the set of webservice attributes into subsets such that one subset is assigned

to the SPUM layer and the other is assigned to the SCUM layer. Secondly, formulating the SPUM

optimization subproblem by specifying its objective function and constraints over the decision

variables at this layer. Thirdly, formulating the SCUM subproblem by specifying its objective

function and constraints in terms of its subset of decision variables. Lastly, solving the two

subproblems in a sequential (layered) manner, beginning with the SCUM subproblem then

winding in SPUM subproblem.

2.9.2.2 Webservice Quality of Service Decomposition

The original set of webservice QoS attributes, Q is divided initially into two disjoint partially

layered sets of QoS attributes, Q1 and Q2, such that Q1 is in SPUM layer and Q2 is assigned to

SCUM layer. Q2 contains all webservice QoS parameters related to the financial burden and

financial risk to be borne by the service consumer and one performance QoS parameter – response

time. Q1 contains the set of all performance parameters except response time. In practical SOA

applications, the quality of service attributes decomposition step should be performed by the

Virtual Enterprise Broker.

1.2.1.3 The SPUM layer Subproblem

2.9.2.3.1 SPUM Weight Assignment to QoS Parameters

As a first step, the Virtual Enterprise Broker should define a weight vector W1 in which the ith

element corresponds to a weight assigned to the ith QoS element in Q1 such that ∑ 𝑊1
𝑗𝑗=𝑛

𝑗=1 = 1. A

weight value assigned to a Qos parameter in Q1 indicates the relative priority of that QoS attribute

from a service providers point of view. Suppose W1 = [0.5, 0.2, and 0.3] for reliability, availability

and throughput respectively, then it means that the service provider is concerned about service

reliability more than any other QoS attribute. From the same example, the virtual enterprise broker

prefers services with a higher throughput than service which may have a higher availability with

78

smaller throughput values. The weights can be adjusted as service performance statistics evolve

over time.

2.9.2.2.1 SPUM Layer Objective Function Definition

At SPUM layer , the objective function of the SUM problem, F1 is to maximize the utility function

U1 over the set Q1, given the initial webservice graph G, the weight vector W1, the set decision

variables X1 subject to a set of constraints C1. X1 contains the set of decision variables at Layer 1,

while C is the set of constraints on X1. The objective is captured according (2.17) and refined

according to (2.18).

 𝑭𝟏= maximize⟦𝑼𝟏(𝑴𝟏
𝒄 ,𝑾𝟏) ⟧ (2.17)

The objective function 𝐹1 in (1) is translated as: maximize the value of the utility function U1

which takes as input, the QoS matrix M1
c and the weight vector W1. M1

c
 is the matrix containing

normalized aggregate QoS values for each candidate composite service (plan) on every QoS

attribute in Q1. i.e by adopting a notation similar the one used in (Benatallah, 2004), the rows

represent a candidate execution plan and the columns represent the jth QoS attribute and M1
cij

 is

the raw aggregate jth QoS value of the ith
 execution plan . To compute Mk

cij
, the aggregation

functions given in Table IV are used accordingly.

 Note that some QoS parameters can be positive while others negative. The QoS of positive

parameters increase with increasing values of the parameter. The QoS of a negative parameter

decline with increasing value of the attribute. For example in Table 2.4, execution duration and

execution cost are both negative QoS attributes and the rest are positive parameters. For this

reason, the matrix 𝑀1
𝑐 needs to be normalized. If 𝑀𝑘

𝑐𝑖𝑗
 is a positive parameter, we denote the

normalized image of 𝑀𝑘
𝑐𝑖𝑗

 by 𝑀𝑘
𝑐𝑖𝑗+

 or 𝑀𝑘
𝑐𝑖𝑗−

otherwise. 𝑀𝑘
𝑐𝑖𝑗+

and 𝑀𝑘
𝑐𝑖𝑗−

 are computed

according to the scaling functions given in (2.18) and (2.19) respectively.

𝑴𝒌
𝒄𝒊𝒋+

= ⟦𝑴𝒌
𝒄𝒊𝒋
−𝑴𝒌

𝒄𝒋𝒎𝒊𝒏
⟧/⟦𝑴𝒌

𝒄𝒋𝒎𝒂𝒙
−𝑴𝒌

𝒄𝒋𝒎𝒊𝒏
⟧ (2.18)

𝑴𝒌
𝒄𝒊𝒋−

= ⟦𝑴𝒌
𝒄𝒋𝒎𝒂𝒙

−𝑴𝒌
𝒄𝒊𝒋
⟧/⟦𝑴𝒌

𝒄𝒋𝒎𝒂𝒙
−𝑴𝒌

𝒄𝒋𝒎𝒊𝒏
⟧

(2.19)

79

 In both (2.18) and (2.19) :

i. If 𝑀𝑘
𝑐𝑗𝑚𝑎𝑥

−𝑀𝑘
𝑐𝑗𝑚𝑎𝑥

= 0 ,1 is returned.

ii. 𝑀𝑘
𝑐𝑗𝑚𝑎𝑥

 is the maximum value in the jth column

iii. 𝑀𝑘
𝑐𝑗𝑚𝑖𝑛

 is the minimum value in the jth column

iv. 𝑘, as usual is the SCUM optimization layer or SPUM optimization layer

We will denote the resultant matrix after scaling the matrix 𝑀𝑘
𝑐 by 𝑀𝑘

𝑐′.Thus the optimization

objective function at SPUM is revised to (2.20).

𝑭𝟏= maximize⟦𝑼𝟏(𝑴𝟏
𝒄′,𝑾𝟏) ⟧ (2.20)

By applying the Simple Additive Weighting, SAW (Hwang & Yoon,, 1981) to (2.20) as our utility

function, equation (2.21) holds.

𝑭𝟏 = 𝒎𝒂𝒙𝒊𝒎𝒊𝒛𝒆⟦𝑴𝟏
𝒄′ ∗ 𝑾𝟏⟧ (2.21)

 Equation 2.21 can be expanded to (2.22). (2.22) holds because in our case all SPUM layer QoS

variables are positive.

 𝑭𝟏 = 𝒎𝒂𝒙𝒊𝒎𝒊𝒛𝒆 ⟦∑ [𝑴𝟏
𝒄𝒊𝒋+𝒋=𝟑

𝒋=𝟏 ∗ 𝑾𝟏
𝒋
]⟧ (2.22)

2.9.2.2.2 Definition of SPUM Optimization Constraints

Let R, A and H be the reliability, availability and throughput thresholds set by the virtual enterprise

broker on every execution plan. We use the notation 𝐶𝑘𝑖 to denote the 𝑖𝑡ℎ constraint at the 𝑘𝑡ℎ

layer. When k=1, the following constraints are enforced. We have:

 𝑪𝟏𝟏: 𝒓𝒄 ≥ 𝑹 or ∏ 𝒓𝒔 ≥ 𝑹𝒊=𝑵
𝑰=𝟏 (2.23)

Since𝐶11: is nonlinear, we linearize it by taking the logarithms on both the L.H.S and R.H.S of

(2.23) to get (2.24).

 𝑪𝟏𝟏: 𝐥𝐨𝐠 𝒓𝒄 = ∑ 𝐥𝐨𝐠 (𝒓𝒔𝒊=𝑵
𝒊=𝟏) ≥ 𝒍𝒐𝒈 𝑹 (2.24)

80

 𝐶11 , as represented in (2.24) is the constraint on composite service reliability.

Similar to 𝐶11 , 𝐶12 , the availability constraint on composite service availability is expressed

according to (2.25).

𝑪𝟏𝟐: 𝐥𝐨𝐠 𝒂𝒄 = ∑ 𝐥𝐨𝐠 (𝒂𝒔𝒊=𝑵
𝒊=𝟏) ≥ 𝒍𝒐𝒈 𝑨 (2.25)

The constraint on composite service throughput at the SPUM layer is captured in (2.26).

𝑪𝟏𝟑: 𝒉𝒄 = 𝟏/𝑵(∑ 𝒉𝒔𝒊=𝑵
𝒊=𝟏) ≥ 𝑯 (2.26)

We need a binary variable to indicate whether or not a webservice 𝑊𝑆𝑗𝑖 is selected from the vertex

set 𝑉𝑖 ∈ 𝐺 to execute a workflow task, 𝑡𝑖. Conventionally this variable is represented as 𝑦𝑖𝑗 . In

this work, we will represent this variable as 𝑦𝑘
𝑖𝑗

 to reflect our layered architecture, where k is the

layer number. At k=1, constraints 𝐶14 and 𝐶15 hold. 𝐶14 indicates that a service can assume

𝑦1
𝑖𝑗

 value of 1 or a 𝑦1
𝑖𝑗

 value of zero. In (2.28), 𝐶15 dictates that only one service can be selected

from each vertex set 𝑉𝑖 to execute a task 𝑡𝑖 in the set F of workflow tasks.

 𝑪𝟏𝟒: 𝟎 ≤ 𝒚𝟏
𝒊𝒋
≤ 𝟏 (2.27)

𝑪𝟏𝟓: ∑𝒚𝟏
𝒊𝒋
= 𝟏, 𝒊 ∈ 𝑽𝒊 , ∀𝒊 ∈ F (2.28)

In addition to the above constraints, at layer 2, we introduce the binary variable𝑙2
𝑖𝑗

. 𝑙2
𝑖𝑗

 indicates

whether or not the service 𝑊𝑆𝑖𝑗 was selected during layer 2 SCUM optimization process. We

enforce the constraint in (2.29) to imply that only services previously selected during layer 2

optimization should be selected.

 𝑪𝟏𝟔: 𝟎 ≤ 𝒆𝟐
𝒊𝒋
= 𝟏 (2.29)

Thus the set of optimization constraints 𝐶1 at layer 1 contains 𝐶11, 𝐶12 , 𝐶13 , 𝐶14 , 𝐶15, 𝐶16:

81

2.9.2.3 The SCUM Layer Subproblem

2.9.2.3.1 Weight Assignment to QoS Parameters

As a first step, the service consumer should define a weight vector W2 in which the ith element

corresponds to a weight assigned to the ith QoS element in Q2 such that ∑ 𝑾𝟐
𝒋𝒋=𝒏

𝒋=𝟏 = 𝟏. A weight

value assigned to a Qos parameter in Q2 indicates the relative priority of that QoS attribute from a

service consumer point of view. Suppose W2 = [0.1, 0.4, 0.3, and 0.2] for execution duration,

execution Cost, reputation and security respectively, then it means that the service consumer cares

about cost more than any other QoS attribute. Recall that this differs from the state of the art where

the end user is always assumed to be responsible for specifying weight preferences over all QoS

attributes. With our approach, the end user can benefit from the optimization of parameters such

as throughput, reliability and availability without necessarily being aware of the optimization

process surrounding these parameters, just in the same way in the NUM problem, the end user can

benefit from improved physical layer forward error correcting codes while such details are

abstracted from them. After all, all service consumers always expect that whenever they access a

service it’s available and that it will execute successfully all the time. Consequently with our

methodology, end users have fewer QoS attributes over which to specify weights.

2.9.2.3.2 SCUM Layer Objective Function Definition

At layer 2, the objective function of the SCUM problem, F2 is to maximize the utility function U2

over the set Q2, given the webservice graph G1, the set decision variables X2 subject to a set of

constraints C2. X2 contains the set of decision variables at Layer 2 and C2 is the set of constraints

on X2. G
1⊑G i.e G1

 is the set of feasible solutions from Layer 1 or the set of candidate solutions at

Layer 2. G1
 may contain all or just a subset of paths from the original graph, G. This objective

function is stated according to (2.30).

𝑭𝟐= maximize⟦𝑼𝟐(𝑴𝟐
𝒄 ,𝑾𝟐) ⟧ 2.30)

By applying (2.17) and (2.18) and using the conventions adopted in this paper, (2.30) transforms

to (2.31). The objective function in (2.31) holds since at SCUM layer duration and cost are negative

parameters while reputation and security are positive parameters.

82

𝑭𝟐 = 𝒎𝒂𝒙𝒊𝒎𝒊𝒛𝒆 ⟦∑ [𝑴𝟐
𝒄𝒊𝒋−𝒋=𝟐

𝒋=𝟏 ∗ 𝑾𝟐
𝒋
] + ∑ [𝑴𝟐

𝒄𝒊𝒋+𝒋=𝟒
𝒋=𝟑 ∗ 𝑾𝟐

𝒋
] ⟧ (2.31)

2.9.2.3.3 SCUM Layer Optimization Constraints

Let D, C, U and Z be the extreme values set by the service consumer on composite service

execution response time, execution cost, reputation and security in that order. Here we define the

constraints on composite service execution duration, execution cost, reputation and security in

(2.32), (2.33), (2.34) and (2.35) respectively.

 𝑪𝟐𝟏: 𝒅𝒄 = (∑ 𝒅𝒔𝒊=𝑵
𝒊=𝟏) ≤ 𝑫 (2.32)

 𝑪𝟐𝟐: 𝒄𝒄 = (∑ 𝒄𝒔𝒊=𝑵
𝒊=𝟏) ≤ 𝑪 (2.33)

 𝑪𝟐𝟑: 𝒖𝒄 = (∑ 𝒖𝒔𝒊=𝑵
𝒊=𝟏) ≥ 𝑼 (2.34)

 𝑪𝟐𝟒: 𝒛𝒄 = (∑ 𝒛𝒔𝒊=𝑵
𝒊=𝟏) ≥ 𝒁 (2.35)

 In (2.32), (2.33, (2.34) and (2.35) the service consumer expects the best composite service:-

i. Not to take more than 𝐷 seconds before the consumer gets the final results to their service

request as conveyed by 𝐶21.

ii. To cost them not more than C units of money to access the business service provided by

the technical composite service as captured by 𝐶22.

iii. To have an average reputation of at least 𝑈 on the interval [1, 5].

iv. To have a security rating of not less Z on the average. The security associated with

accessing the business service in this case is the average of the each service provided by

each virtual enterprise.

 Just like with SPUM Layer , constraint on the allocation constraint 𝑦𝑖𝑗 are defined. Adopting our

notation, we have (2.36) and (2.37) with the usual meanings.

 𝑪𝟏𝟔: 𝟎 ≤ 𝒚𝟐
𝒊𝒋
≤ 𝟏 (2.36)

 𝑪𝟏𝟕: ∑𝒚𝟐
𝒊𝒋
= 𝟏, 𝒊 ∈ 𝑽𝒊 , ∀𝒊 ∈ F (2.37)

83

2.9.2.4 SLUM Optimization Solution Process

At SCUM layer, all feasible solutions are determined i.e all combination of services that can fulfill

the objective function 𝐹2 subject to the constraints set 𝐶2 are returned in a solution pool. The

reason for obtaining all feasible solutions as opposed to the optimal solution is so as to prevent

possibility of prematurely dropping a webservice which would have otherwise scored better than

a majority of the selected services.

 We define a Webservice to Task Assignment Matrix (STAM). At SCUM layer , we will denote

this matrix by L1.As an example, consider a two task workflow. Suppose initially before selection

there were 3 candidate services per task.

Before SCUM layer evaluation, this matrix is represented in tabular form as in table 8 and table 9

and after SCUM layer Optimization the matrix L1 is represented as shown in table 8 below.

84

Table 8: An Example Webservice to Task Assignment Matrix before SCUM Optimization, Source:

Mulongo et al (2015)

Workflow Task, i

Candidate Web service, j

1 2 3

1 0 0 0

2 0 0 0

Table 9: An example Webservice to Task Assignment Matrix after SCUM Optimization, Source

(Mulongo et al, 2015)

Workflow Task, i

Web service, j

1 2 3

1 1 1 0

2 1 0 1

During optimization at SCUM layer, for each service sij that is selected and assigned to a task i ,

yij is updated to 1.Suppose the resultant webservice to task assignment matrix after SCUM

optimization is as shown in table 9. The Webservice to Task Assignment matrix, L1 in table 9

indicates that:-

i. That services S11, S12 were selected for task 1 while service S13 was not selected for task 1

after SCUM layer optimization.

ii. Service S21 and S23 were selected for task 2 while service S22 was eliminated.

iii. Out of the 9 candidate solutions, only 4 feasible solutions were found. In this case only the

paths < S11, , S21 >, < S11, S23 >, <S12, S21 > and <S12, S23 > will be evaluated for performance

at the SPUM layer.

85

Thus during SPUM optimization process , the 𝑒2
𝑖𝑗

values of S11, , S12, S21, S23 will be 1 and only

these services will be evaluated at the SPUM layer.

Having selected webservices whose combination maximizes the utility of user preferences on

service execution cost, reputation etc and that meet the constraints defined on cost, reputation , at

SPUM layer, the goal is to select the service combination that maximizes utility on performance

related QoS subject to constraints defined on the performance QoS variables. The output of the

SPUM optimization process is therefore a set of service combinations that fulfill requirements of

both SCUM and SPUM layers. The solution at SPUM layer therefore consistutes Pb .

2.10 A Summary of How our Proposed Model Differs from the State of the Art

Our proposed architecture (SLUM), unlike all the existing approaches, employs a hierarchical

layered approach to the dynamic webservice composition problem. Our approach is inspired by

the theory of Layering as Optimization Decomposition. There are two layers, one attempting to

maximize service consumer utility, while the other layer strives to maximize the service provider

utility. The original set of quality attributes is split into two disjoint subsets. One subset of QoS

attributes is assigned to one of the layers while the other is assigned to the other. At each layer, a

global planning mixed integer program is formulated in terms of their corresponding subsets of

QoS attributes. The two subproblems are then solved sequentially so that the output of one of the

layers becomes the solution space to the remaining layer. Together, both layers attempt to solve a

global optimization problem- which is “Efficiently dynamically select the best composite service

from a pool of alternative webservices that are differentiated on a wide range of QoS attributes”.

Our proposed design and model improves on the existing approaches by filling the two gaps in

section 2.9 through the relative strengths outlined in section 2.10.1. On the other hand, the relative

limitations of our design are outlined in section

2.10.1 Relative Strengths

2.10.1.1 Reduced burden on the end user

In our strategy SLUM, service consumers specify weight preferences and QoS constraints on a

smaller set of QoS variables as opposed to the entire range of QoS attributes. Thus, this is less

laborious compared to the state of the art.

86

2.10.1.2 Reduced Problem Complexity Due to Space Reduction

As mentioned, exponential explosion in the search space with respect to number of webservices n,

means that the running time of MIP strategies and other global planning strategies is non

deterministic polynomial. Our proposed model combats the problem of space explosion inherently

as follows:-

i. Space Reduction through Decomposition (without Service Elimination)

Because of the two layer decomposition of webservice QoS attributes, each webservice QoS

matrix at each of the layers is nearly half the original webservice QoS matrix. We saw that for

global planning, given a fixed workflow of size k, the computational effort is proportional to nk.

But with the layered approach, the size of computational effort is reduced to 2 ((½)k nk). It’s

intuitive that as n→∞, 2 ((½)k nk) << nk . This supports the theory that decomposition, even when

done sequentially, improved efficiency results from the fact that growth in the complexity of a

computational problem as a function of the input size is more than linear. In chapter 3, we

investigate and analyze in details the runtime performance of SLUM relative to state of the art on

problem instances of varying sizes in n.

ii. Space Reduction through Decomposition with Webservice Elimination

 The efficiency gains in (i) above are not due to service elimination but due to superlinear growth

of computational problem complexity. However, in real scenarios, some webservices are likely to

be eliminated as described in section 2.10. This means that the overall computational effort while

using SLUM may be smaller than 2 ((½)k nk). Now, at the SCUM layer, the initial search space

would be nk composite webservices while at the SPUM layer, the search space given that some

services eliminated at SCUM layer is generally less than nk. This is results into further gains in

efficiency of our strategy compared to the state of the art. Let g1 be the search space at SCUM

layer. The computational effort at SCUM layer is proportional to nk. Let g2 be the search space at

the SPUM problem. Generally, 𝑔2 ≤ 𝑔1 . When 𝑔2 = 𝑔1 , it means no webservice was

eliminated at the end of SCUM and when 𝑔2 < 𝑔1 , it means some webservices were eliminated

during SCUM optimization process. In this study we will define Composite Service Phase

Transition Rate (CSPTR), denoted by ρ, as the ratio 𝑔2/ 𝑔1 . In chapter 3, this study also

investigates the relative runtime performance of SLUM under different ρ values.

87

2.10.2 Relative Limitations

Although the MIP formulation at each of the layers is global in scope and therefore SLUM yields

globally optimal solutions within the scope of the layer, the optimization scope at each layer does

not take into account the constraints at the other layer (Mulongo et al , 2015; 2016). As explained

in section 2.10 and in (Mulongo et al, 2015; 2016a), due to this limitation , depending on the

structure of the problem instance, in some cases, like local planning algorithms, the overall

solution quality of SLUM could be suboptimal when compared to flat structured (single layer)

global planning algorithms. However, note that unlike local planning algorithms, SLUM is able to

capture global constraints at each layer. Moreover, analytically, we envisage that although SLUM

might yield suboptimal solutions relative to state of the art single layer global planning MIP

algorithms, the solution quality of SLUM is on average better than that of local planning

algorithms. The theoretical explanation for this is that under local planning, optimization process

considers only n options (at a task level only) and thus ignores the other nk
-n composite service

options (Mulongo et al, 2016). On the other hand, SLUM at each layer considers (n/2)k
 maximum

options against a maximum possible (n)k and thus at the very least ignores (n)k- (n/2)k
 composite

service options (Mulongo et al, 2016). Since, in general (n)k- (n/2)k
 < nk

-n, n>4 at a fixed k, then

local planning algorithms are more likely to yield less optimal solutions on average than SLUM

(Mulongo et al , 2016). Thus, the study also investigated the solution quality of SLUM against the

mixed integer programming local planning approach to establish their performance differences in

terms of optimality.

In general, the optimality limitation of our solution is not a major issue especially if turns out to

be near optimal. This is so because, for problems of industrial relevance where optimal solutions

cannot be found in acceptable amount of time, suboptimal but more efficient approaches are often

sought (Tonci et al, 2009).

2.11 Benchmark Algorithms

Based on the research objectives as stated in section 1.4, the baseline algorithm in this study is the

single layer Mixed Integer Programming global planning model described in section 2.6. This

algorithm is dubbed S-MIP. By comparing our proposed two layer MIP solution SLUM, we

benchmark the efficiency as well as the solution quality of our solution. Since the solution quality

88

of S-MIP is conjectured to dominate the one for SLUM for all problem instances, the main

motivation for comparing SLUM against S-MIP on the solution quality parameter, is to determine

how close the solution quality of SLUM is on average to the global optimum. The alternative

algorithm chosen for our benchmark is the local planning algorithm described in 2.4 whose

formulation is based on mixed integer programming too. This algorithm is hereafter abbreviated

L-MIP. We already have an idea that the runtime efficiency of L-MIP like any other exact local

planning algorithms is theoretically proportional to nk(2 +C) (see section 2.4.5). Analytically this

is super faster than any conceivable global planning algorithm including SLUM. Hence, the main

reason for benchmarking SLUM against L-MIP is not to compare their relative runtime

performance efficiency but to establish their relative performance in terms solution quality, given

that as explained in section 2.11.2, both the two share the same limitation; they are both suboptimal

relative to the single layer global planning alternatives. But what is unknown is by how much is

one better than other in terms of solution quality.

Through these benchmarks, a major contribution of this work (see the conclusion chapter) is given

single layered global planning MIP algorithms, local planning MIP algorithm and two layered (or

layered) global planning MIP algorithms, which one is better under what conditions ? This

question is what (John, 1976) calls the algorithm selection problem?

2.12 2.12 Theoretical Performance Efficiency Assessment of SLUM Model

In order to provide answers to the research questions that were stated in section 1.5, a system

methodology for analyzing and comparing the performance of the three algorithms is required.

With respect to efficiency/running time, algorithms can analyzed using two main approaches:

theoretical (mathematical) or empirical. In the theoretical approach, a mathematical model is

developed that characterizes the performance behaviour of the algorithm, and the algorithm is

analyzed within the model. The empirical approach involves running an algorithm and testing its

performance against specific problem instances and collecting performance data (Hoos, 2003),

(Seogewick & Flajolet, 2009). Empirical evaluation of algorithms complements

theoretical/mathematical approach (Coffin & Saltzman, 2000).

In this section, we attempt to answer research questions RQ1.1 and RQ1.2 using

theoretical/mathematical analysis. The theoretical results could pre-empt some analytic

performance efficiency properties of SLUM independent of specific machine implementation

89

details – the basis of theoretical algorithm analysis in computer science. These results could

provide a benchmark on running time properties of the SLUM model against the benchmark

algorithms during empirical evaluation.

We begin by deriving mathematical function that describes the worst case performance of SLUM

under two special cases and then we obtain a generalized model. Suppose for some webservice

composition problem instance, the QoS constraints are such that all candidate webservices at the

beginning of SCUM optimization transit to the SPUM, layer. This represents the special case for

which ρ = 1. This case could happen (though rarely expected). This case deserves special attention

as it represents the most computationally expensive case to solve for our proposed model, and

generally depicts the performance property of SLUM as ρ approaches 100%. In this scenario, the

performance gain due to SLUM over S-MIP, if any, is due to space reduction purely due to

decomposition (and not due to elimination) as explained in section 2.10. We present this special

case in section 12.12.1.

The second special case is when for some problem instance, the QoS constraints are such that all

webservices at the SCUM layer are eliminated i.e no feasible solution is found at the SCUM layer

and by implication no feasible solution found globally. In this case, ρ = 0. This case is worth

attention because, it not only signifies infeasibility but of practical importance, it gives us an idea

of the performance behaviour of SLUM for a particular problem instance of size n when the rate

ρ approaches zero. The case is explained in section 12.12.2.

We then obtain a generalized mathematical function representing the efficiency of SLUM under

realistic scenarios, where some webservices that do not meet the QoS constraints at the SCUM

layer are eliminated, and some may be promoted for further optimization at the SPUM layer. In

the generalized case, the composite service phase transition rate ρ is such that 0 ≤ ρ ≤ 1. The

generalized case is presented in section 2.12.3.

In each of the three cases, we also obtain the relative speedup of SLUM with respect to SLUM and

with respect to L-MIP. When the speedup is in relation to SLUM.

The notations used in this section and the rest of the sections are given in the table 10 below.

90

Table 10 : Notations used in the Theoretical Performance Analysis of the Proposed Model (SLUM)

Notation Meaning

𝒒𝟏 The number of webservice QoS attributes at the Service Consumer Utility

Maximization Layer of the SLUM model

𝒒𝟐 The number of webservice QoS attributes at the Service Provider Utility

Maximization Layer of the SLUM model

qt The total number of webservice quality attributes such that 𝒒𝒕 = 𝒒𝟏 + 𝒒𝟐.

𝒌 The number of business workflow tasks

N The number of functionally similar webservices per workflow task.

Ωs or Ω Theoretical relative speedup of SLUM with respect to S-MIP

Ωl Theoretical relative speedup of SLUM with respect to L-MIP

g1 The total number of composite webservices available to SLUM before the start of

optimization at the SUM layer

g2 The total number of composite webservices available to SLUM at the end of

optimization at the SUM layer (or beginning of SPUM optimization process).

𝛒 Composite Service Transition Rate: ρ = 𝑔2/ 𝑔1

∊𝒊 The number of webservices that were eliminated against the ith workflow task at the

SCUM layer

tB The theoretical running time of SLUM

2.12.1 Special Case: Composite Service Phase Transition Rate 𝛒 = 𝟏

Conceptually, the initial set of possible composite webservices to be optimized using a global

planning strategy such as S-MIP is 𝑛𝑘.The time taken to solve the optimization problem in this

case is proportional to 𝑛𝑘. The time taken to solve a similar problem by L-MIP is proportional to

91

nk operations Consider that according to (Zeng et al, 2004) and so (Mulongo et al, 2015), a

webservice is modelled as a vector whose elements are the values of the various QoS attributes. In

S-MIP the size of each vector is 𝒒𝒕 . Thus, we have n candidate QoS vectors per task to be

optimized. In SLUM, at the SCUM layer, the size of each vector is 𝒒𝟏 in length, and at the SPUM

layer, the size of each (sub) vector is 𝒒𝟐. The size of each (sub) vector at the SCUM layer as a

proportion of the original vector having 𝒒𝒕 elements is [𝑞1/(𝑞1 + 𝑞2)]. Similarly, the size of each

(sub) vector at the SPUM layer as a proportion of the original vector is [𝑞2/(𝑞1 + 𝑞2)] .

Respectively, the number of (complete) vectors at the SCUM and SPUM layers are

[𝑞1/(𝑞1 + 𝑞2)] ∗ 𝑛 and [𝑞2/(𝑞1 + 𝑞2)] ∗ 𝑛 . Assuming, no webservice is eliminated at the

SCUM layer, the theoretical running time taken by SLUM to solve the two sequentially

decomposed subproblems is given by equation 2.38

 𝑡𝐵 = [[[𝑞1/(𝑞1 + 𝑞2)] ∗ 𝑛]]
𝑘 + [[𝑞2/(𝑞1 + 𝑞2)] ∗ 𝑛]]

𝑘]. (2.38)

Let [𝑞1/(𝑞1 + 𝑞2)] = ώ1 and [𝑞2/(𝑞1 + 𝑞2)] = ώ2 , equation 2.38 could be re-written as

equation 2.39

 𝑡𝐵 = [[ώ1 𝑛]]
𝑘 + [ώ2𝑛]]

𝑘] = (ώ1
k

 + ώ2
k) nk (2.39)

Considering that ≪ 𝑛 , the constant terms could be ignored, so that equation 2.39 could be

generalized according to equation 2.40.

 𝑡𝐵 = O(nk) (2.40)

Thus from equation 2.40, the conclusion is that theoretically, SLUM could be asymptotically as

worse as the single layered MIP solution, and for that matter SLUM could be non polynomial

deterministic. Hence, this compared to the running time of L-MIP which in the order of nk, means

L-MIP still outperforms SLUM by several orders of magnitude without further proof.

2.12.1.1 Deriving Relative Speedup with respect to S-MIP, Ωs Using L-Hospital’s Rule

 Even if two algorithms have the same worst case complexity class, one algorithm might be better

than the other on average. By applying L-Hospital’s rule, we can compare the relative growth of

two functions. Let, 𝑓(𝑥) and g(x) be two functions . L-Hospital’s rule states that n→ ∞
𝑓(𝑥)

𝑔(𝑥)
 =

92

lim 𝑥 → ∞
 𝜕 𝑓(𝑥)

𝜕 𝑔(𝑥)
 . Thus by applying the rule to equation 2.39, we obtain an expression for Ωs

as per equation 2.41

 (Ω𝑠) =
𝑛𝑘

((ώ1)𝑘+(ώ2)𝑘)(𝑛𝑘)
 =

1

((ώ1)𝑘+(ώ2)𝑘)
 (2.41)

 Given that [𝑞1/(𝑞1 + 𝑞2)] = ώ1 and [𝑞2/(𝑞1 + 𝑞2)] = ώ2 , and (𝑞1 + 𝑞2) = (𝑞𝑡) , equation

2.41 can be expanded and simplified to equation 2.42.

(Ω𝑠) =
(q𝑡)

𝑘

((q1)𝑘+(q2)𝑘)
=

(q1 +q2)
𝑘

((q1)𝑘+(q2)𝑘)
 (2.42)

When 𝑞1 ≈ 𝑞2 , from equation 2.42 , then (q1 + q2)
𝑘 > {[𝒒𝟏]

𝒌 + [𝒒𝟐]
𝒌 } . Hence Ω𝑠 > 𝟏.

Thus, the complexity of the sum of the parts of two the sequentially decomposed SLUM

subproblems grows much slower than the complexity of the whole. Thus, even without elimination

of any webservice at the SCUM layer, SLUM would theoretically perform faster than S-MIP.

When the number of QoS attributes at the SCUM layer equals the number webservice QoS

attributes at the SPUM layer (the ideal case), i.e q1 = q2, then, it’s easy to show that equation

2.43 holds.

The ideal case is when the ratio 𝒒𝟏: 𝒒𝟐 = 𝟏 i.e 𝒒𝟏 = 𝒒𝟐 , so that the original webservice

composition problem is sequentially decomposed into two equal layers in the number of QoS

attributes. In this case, equation (3) is further simplified to (4) and finally (5).

 (Ω𝒔) = (𝟐)𝒌−𝟏

(2.43)

Thus from equation 2.43, we see that provided 𝒒𝟏 = 𝒒𝟐 , the (Ω𝒔) is only dependent on the length

of the business workflow and the speedup is a power function of k.

Where 𝒒𝟏 ≠ 𝒒𝟐 , we show through the examples below that (Ω𝒔) < (𝟐)
𝒌−𝟏 and (Ω𝒔) gets much

smaller than (𝟐)𝒌−𝟏,tending towards 1 as the ratio 𝒒𝟏: 𝒒𝟐 𝒐𝒓 𝒒𝟐 : 𝒒𝟏 gets much larger than 1. Note

that the practical maximum limit of 𝒒𝟏/𝒒𝟐 is 𝒒𝒕 − 𝟏 , in which case we have 𝒒𝒕 − 𝟏 QoS

attributes at layer 1 and 1 QoS attributes at layer 2. Thus, more formally, let 𝑟 = 𝒒𝟏/𝒒𝟐 or =

 𝒒𝟐/𝒒𝟏 , whichever is larger. We show that as 𝑟 → 1, (Ω𝒔) → (𝟐)𝒌−𝟏 and 𝑟 → (𝒒𝒕 − 𝟏),Ω → 𝟏 .

93

 Example 1: k =2, 𝒒𝟏 = 𝒒𝟐 = 𝟒

This example considers a business workflow with two sequential tasks in which the number of

QoS attributes at layer 1 and layer is equal to 4 and therefore qt =8. Applying the generalized

equation in (4) we have (Ω𝒔) = [(𝟖)
𝟐] /{[𝟒]𝟐 + [𝟒]𝟐 }=2. Since 𝒒𝟏 = 𝒒𝟐 , we could also use (7)

directly to have (𝟐)𝟐−𝟏 = 𝟐

 Example 2: k =2, 𝒒𝟏 = 𝟒, 𝒒𝟐 = 𝟑

This example is motivated by the practical considerations of the SLUM model described in section

2.10 and also in (Abiud W . M et al, 2015), where the number of QoS at the layer 1 (the Service

Consumer Utility Maximization layer) is 4 i.e reputation, security, service execution duration and

service access cost, and three QoS attributes at the layer 2 (Service Provider Utility Maximization

layer) i.e reliability, availability and throughput. Note that according to the SLUM model [24], the

number of QoS attributes at either layer could be varied based on the practical guidelines in [24].

Since 𝒒𝟏 > 𝒒𝟐 , 𝑟 =
𝒒𝟏

𝒒𝟐
= 𝟏. 𝟑𝟑𝟑 and Ω = [(𝟕)𝟐] /{[𝟒]𝟐 + [𝟑]𝟐 }=49/25 = 1.96. Notice that

𝒓 = 𝟏. 𝟑𝟑𝟑 ≈ 𝟏 𝑎𝑛𝑑 Ω = 𝟏. 𝟗𝟔 ≈ 𝟐 .

Example 3: k =2, 𝒒𝟏 = 𝟔, 𝒒𝟐 = 𝟏

This is a hypothetical example where layer 1 has six QoS attributes and layer 2 has only one QoS

attribute – it demonstrates the effect of a high degree of imbalance between the number of QoS

attributes in the two layers on the magnitude of theoretical speedup of SLUM. Here we have 𝒓 =

𝒒𝒕 − 𝟏 = 𝟔 and Ω = [(𝟕)𝟐] /{[𝟔]𝟐 + [𝟏]𝟐 }=49/43 = 1.13. Notice that three QoS attributes at the

layer 2 (Service Provider Utility Maximization layer) i.e reliability, availability and throughput.

Note that according to the SLUM model [24], the number of QoS attributes at either layer could

be varied based on the practical guidelines in [24]. Since 𝒒𝟏 > 𝒒𝟐 , 𝑟 =
𝒒𝟏

𝒒𝟐
= 𝟏. 𝟑𝟑𝟑 and Ω =

 [(𝟕)𝟐] /{[𝟒]𝟐 + [𝟑]𝟐 }=49/25 = 1.96. Notice 𝑟 has reached the limiting value and Ω = 1.333 is

much closer to 1 than to (𝟐)𝒌−𝟏 or 2.

2.13.1.2 Deriving Relative Speedup with respect to L-MIP, Ωs Using L-Hospital’s Rule

Following the procedure of the previous section, from equation 2.41, (Ω𝒍) is given by equation

2.44.

94

 (Ω𝒍) =
𝑛𝑘

((ώ1)𝑘+(ώ2)𝑘)(𝑛𝑘)
 (2.44).

In equation 2.44, we see that the denominator high order term (𝑛𝑘) dominates the numerator term

𝑛 as k→∞. Hence (Ω𝒍) < 𝟏 . The conclusion is the L-MIP is much faster than SLUM under ρ = 1

2.12.2 Special Case: Composite Service Phase Transition Rate 𝛒 = 𝟎

When ρ = 0, it implies that in equation 2.41, ώ2 = 0. Equation 2.41 then transforms to equation

2.45

(Ω𝒔) =
𝒏𝒌

((ώ𝟏)𝒌)(𝒏𝒌)
 =

𝟏

((ώ𝟏)𝒌)
 =

(𝒒𝟏 +𝒒𝟐)
𝒌

((𝒒𝟏)𝒌)
 (2.45)

Since,
(𝒒𝟏 +𝒒𝟐)

𝒌

≫ ((𝒒𝟏)
𝒌) , then (Ω𝑠) > 1 . For 𝒒𝟏 = 𝒒𝟐 equation 2.46 follows.

(Ω𝑠) =
(𝒒𝟏 +𝒒𝟐)

𝒌

((𝒒𝟏)𝒌)
=

(𝟐𝒒𝟏)
𝒌

((𝒒𝟏)𝒌)
= (𝟐)𝒌 (2.46)

Recall from equation 2.43 that when 𝛒 = 1, (Ω𝒔) = (2)
𝑘−1 < (2)𝑘 . Thus the conclusion is that

as the transition rate approaches 0, the speedup of SLUM relative to SMIP tends to two times

larger than when the transition rate tends towards 1. For instance, when k=2 and = 1 , (Ω𝑠) = 2,

while when k=2 and 𝛒 = 0 , (Ω𝑠) = 4. Remember that 𝛒 = 0 means infeasibility and therefore

hitting the ceiling of (𝟐)𝒌 in practice might not be possible.

Similarly, when = 0 , Ω𝑙 is given by 2.47.

(Ω𝒔) =
𝒏𝒌

((ώ𝟏)𝒌)(𝒏𝒌)
 (2.47)

Again from equation 2.47, we see that SLUM is much slower in performance compared to L-MIP.

2.12.3 Generalized Case: Composite Service Phase Transition Rate, 𝟎 ≤ 𝛒 ≤ 𝟏

Before the start of SCUM optimization, there are 𝒏𝒌 candidate composite webservices, and as

usual the computational effort is upper bounded by 𝒏𝒌 . At the end of SCUM optimization, for

each workflow task, some webservices might be eliminated early. As defined earlier ∊I is the

number of webservices eliminated early against the ith task at the SCUM layer ,where (∊𝑖) ≥ 0.

Thus, at the end of SCUM layer optimization, for each task, (n−∊𝑖) candidate webservices got

95

promoted for a second round optimization at layer 2. Therefore the total number of composite

webservices promoted to the SCUM layer is (n−∊1) ∗ (n−∊2) ∗ … ,∗ (n−∊𝑘) = ∏ (n−∊𝑖)
𝑘
1 . It

follows that the total computational effort with elimination in consideration is given by equation

2.48 (𝒏𝒌(𝒒𝟏/𝒒𝒕)
𝒌 + ∏ (n−∊𝑖)

𝑘
1 (𝒒𝟐/𝒒𝒕)

𝑘) Therefore the generalized function of the speedup

of SLUM with respect to S-MIP under 0 ≤ ρ ≤ 1 is captured in equation 2.49.

(Ω𝒔) =
𝒏𝒌

 (𝒏𝒌(𝒒𝟏/𝒒𝒕)𝒌+ ∏ (𝐧−∊𝒊)
𝒌
𝟏 (𝒒𝟐/𝒒𝒕)𝒌)

 (2.48)

By dividing the numerator and the denominator of the R.H.S of equation 2.48 by 𝒏𝒌 we get

equation 2.49

(Ω𝒔) =
𝟏

 (𝒒𝟏/𝒒𝒕)𝒌+ (𝒒𝟐/𝒒𝒕)𝒌 (∏ (𝐧−∊𝒊)
𝒌
𝟏)/(𝒏𝒌)

 (2.49)

In equation 2.49, the ratio (∏ (n−∊𝑖)
𝑘
1)/(𝒏𝒌) happens to be the composite service phase transition

rate as defined in thesis in table 2.11. Hence in a more compact form, equation 2.49 could be re-

written as equation 2.50.

(Ω𝒔) =
𝟏

 (𝒒𝟏/𝒒𝒕)𝒌+ 𝛒(𝒒𝟐/𝒒𝒕)𝒌
 =

(𝒒𝟏+𝒒𝟐)
𝒌

 (𝒒𝟏)𝒌+ 𝛒(𝒒𝟐)𝒌
 (2.50)

 When 𝑞1 ≈ 𝑞2 , equation 2.50 transforms to equation 2.51.

(Ω𝒔) =
(𝟐)𝒌(𝒒𝟏)

𝒌

 (𝒒𝟏)𝒌+ 𝛒(𝒒𝟏)𝒌
=

(𝟐)𝒌

 𝟏+ 𝛒
 (2.51)

From equation 2.51, we can deduce the following:

i. Substituting ρ = 1 in the equation yields (Ω𝑠) = (𝟐)
𝒌−𝟏 , which confirms equation 2.43

ii. Substituting ρ = 0 in the equation yields (Ω𝑠) = (𝟐)
𝒌 , which confirms equation 2.46

iii. (Ω𝑠) has an inverse relationship with ρ and therefore for known k, a plot of the graph (Ω𝑠)

vs ρ is predicted to be a decreasing function.

96

2.13 Chapter Summary

This chapter reviewed the pertinent literature relevant to our research problem as defined in chapter

one. Through the review, we established the key concepts and theories involved in dynamic

webservice composition. Mathematical models for the two well-known approaches to dynamic

webservice composition: local planning and global planning were presented and discussed. We

then went into the details of the Mixed Integer programming model formulation for the problem.

The theory of Layering as Optimization Decomposition was presented. A survey of related work

was discussed and the gaps identified. We presented our proposed model SLUM that is based on

mixed integer programming and Layering as Optimization Decomposition. We gave an account

of the philosophy of the design behind it. This was followed by details of the mathematical

formulations of SLUM including a series of equations. We then gave a summary of the strengths

and limitations our approach in qualitative terms. A list of research questions worth investigation

were posed. Finally, theoretical results related to some of the research questions were established.

The key highlights of this chapter are that:-

i. Dynamic webservice composition remains NP hard multiple criteria decision problem.

ii. There exists gaps in the state of the art: - either a strategy is very efficient but does not support

global constraints or can support global constraints but very inefficient. All strategies require

the user to capture all the critical QoS constraints.

iii. The proposed model SLUM bridges the above gaps. It does not require a user to specify all

critical QoS constraints.

iv. From the theoretical results of section 2.14, SLUM is predicted to be much faster than the

standard global planning mixed integer programming models on average. The average

speedup of SLUM with respect to S-MIP could be on the interval [(𝟐)𝒌−𝟏 , (𝟐)𝒌] where k is

the number of sequential workflow tasks.

v. From the theoretical results in section 2.14, SLUM could be much slower than the local

planning strategy

vi. From the analytic considerations of section 2.10 and 2.11, SLUM could be less optimal on

average than S-MIP. At the same time, SLUM could be more optimal than L-MIP.

97

In the next chapter, we describe the experimental methodology that was used to validate our

analytic and theoretical claims about our model and to answer the research questions stated in this

chapter.

98

3 CHAPTER 3: METHODOLOGY

In this chapter, in section 3.1, we first give a summary of the research process that was followed

to pursue the research objectives and to answer the research questions that were outlined in chapter

one. In section 3.2, we detail research design followed. Section 3.3 outlines the tools that were

used to implement the three mixed integer programming optimization algorithms as well as the

tools that were used to conduct simulations. In section 3.4, we discuss the methods of data analysis

and interpretation. A summary of the chapter is given in section 3.5.

3.1 The Research Process

In line with the research objectives and research questions in chapter one, the study involved the

design of a new of optimization model called SLUM and the evaluation of performance of the

model against two related alternative optimization algorithms – S-MIP and L-MIP. According to

Hoos, 2003), (Bartz-Beielstein & Preub, 2014), (Barr, 2001), a general process model

recommended for the performance evaluation of optimization algorithms is shown in figure 9. This

process model has been widely adopted in studies such as (Coffin & Saltzman. 2000), (Hoos,

2003), (Hoos, 2009), (Hoos et al, 2014), (Mu & Hoos, 2015and Goldsmith in (Goldsmith Fredrick

Simon, 2009), (Levitin, 2011), (Nudelman, 2005). This study also adopted the process model in

pursuit of the research objectives and the research questions.

 This study adopted both theoretical and empirical methods in the analysis of the runtime efficiency

and solution quality of S-MIP and L-MIP.

99

 Figure 9: Research Process Framework, Source (Hoos , 2003 ; Seogewic, 2009)

In table 3 below, we highlight in summary, how the tasks undertaken in this study map onto the

overall research process framework in figure 9 above.

Table 11: Outline of the Overall Research Process adopted by the Study. Source (Hoos 2003 ; Seogewic, 2009)

 Process Step Approach in this study

1 Design a theoretic model/Algorithm In line with our first research objective, through literature

review, the study designed a two layer MIP model. The output

of this phase was the SLUM model. See section 2.9

2 Identify performance evaluation

objectives

The performance evaluation objectives are directly related to

our second research objective and to the six research questions

RQ1.1, RQ1.2, RQ 1.3, RQ1.4, RQ 2.1 & RQ 2.2. See section

3.1.1 for more details

3 Identify Performance Metrics With respect to our second research objective, two metrics were

identified – runtime efficiency and solution quality. The choice

for of these metrics is explained in more detailed in section 3.2

& section 3.3 for details

4 Implement Algorithm

100

 Involved choosing an appropriate optimization modelling tool.

In the study, we chose the Java Optimization Modeler (JOM).

See details in section 3.4.

5 Selection of Benchmarks This involved selecting sample problem instances that are used

as subjects to aid in the evaluation. Our study used synthetically

generated instances. See section 3.2 & 3.4 for details

6 Define Experimental Protocol For experimental evaluation, this involves the procedure

followed in collecting performance data e.g the system

environment, how measures were recorded and so on. We

describe this under the section 3.5 titled “experiment setup”

7 Define performance data analysis

methods

The study adopted both theoretic performance analysis (given

in section rigorous inferential statistical analysis , numerical &

empirical algorithmic complexity analysis based on regression

analysis,

8 Conduct Experiments Involved performing experiments to collect the performance

data and analysis of the results, interpreting the results and

comparing the empirical results with the theoretic performance

models and or previous results. See chapter four.

3.2 Research Design

This study sought to answer the research question below.

i. Research Questions Related to Runtime Efficiency

RQ1: For a composite webservice selection problem having a workflow with k tasks and v

alternative webservices per task, how does the runtime efficiency of SLUM compare with that of

S-MIP and L-MIP when each is used to solve the problem? The specific research questions arising

from this question are:

RQ1.1: How does the running time of SLUM grow as the number of service providers per task

increase?

RQ1.2: How does the running time growth of SLUM compare with that of S-MIP and L-MIP?

RQ1.3: How much speedup is achievable when using SLUM over S-MIP to autogenerate

composite webservices given a business workflow having n webservices per task?

101

RQ1.4: What is the minimum number of service providers per workflow task that a virtual

enterprise broker needs to have in order to benefit from the relative efficiency of SLUM when

compared to S-MIP?

ii. Research Questions Related to Solution Quality

 RQ2: How does the average solution quality of SLUM compare with that of L-MIP and S-MIP?

This leads us to the following specific research questions?

RQ2.1: What is the average relative solution quality (percentage accuracy of quality) of

the composite webservices generated by SLUM relative to S-MIP?

RQ2.2: What is the percentage difference in the relative solution quality by SLUM relative to L-

MIP?

The researcher adopted a scientific research approach to answer research question RQ1 which

relates to runtime efficiency and an empirical approach to answer research question RQ2 which

relates to solution quality.

Scientific approach to performance evaluation of computational algorithms combines both

theoretical models and experimental evaluation (Coffin & Saltzman, 2000; Hoos, 2003; Seogewick

& Flajolet, 2009). In scientific approach, a theoretical model is developed and then experiments

are performed to verify whether the theoretical model holds in practice (Coffin & Saltzman, 2000;

Hoos, 2003; Seogewick & Flajolet,, 2009). Scientific approach has the advantages of both

theoretical and empirical approach in that the empirical results can be checked for consistency with

the theoretical model and on the other hand, the practical performance limitations that cannot be

detected theoretically can be detected through real problem instances (Coffin & Saltzman, 2000;

Hoos, 2003; Seogewick & Flajolet,, 2009).

In the theoretical approach, a mathematical model is developed that characterizes the performance

behaviour of the algorithm in terms of the problem input size, and the algorithm is analyzed within

the model (Seogewick & Flajolet,, 2009). The analysis could make use of asymptotic worst case

analysis, average case analysis, and differential calculus using L-Hospital’s Rule. The advantage

of theoretical analysis approach is its rigor and its independence of implementation platform

details. Secondly, theoretical models are not susceptible to experimental bias and experimental

102

errors. The challenge of theoretical approach is how to choose a good model that is realistic, and

the need for mathematical details (Seogewick & Flajolet,, 2009). A second weakness of the method

is that some performance properties of an algorithm can be difficult to model mathematically.

Based on the rigor of theoretical analysis, this study conducted a theoretic performance asssement

of the runtime efficiency of SLUM, S-MIP and L-MIP and attempted to compare the efficiency of

the three models. From the theoretical perspective, the study attempted to answer research

questions RQ1.1, RQ 1.2 and RQ 1.3 as per section 2.12. The key results were:

i. The generic runtime efficiency model for SLUM is given by (𝒏𝒌(
𝟏

𝟐
)𝒌 +

 ∏ (n−∊𝑖)
𝑘
1 (

𝟏

𝟐
)𝑘) and that of S-MIP is given by 𝒏𝒌 and that of L-MIP is 𝒏𝒌. Here,

we see that L-MIP is polynomial time and many times faster than both SLUM and S-MIP.

Both S-MIP and SLUM are likely to be exponential in 𝑘. However, since (𝒏𝒌(
𝟏

𝟐
)𝒌 +

 ∏ (n−∊𝑖)
𝑘
1 (

𝟏

𝟐
)
𝑘
≪ 𝒏𝒌 for large enough 𝑛.

SLUM is generally faster than S-MIP by (Ω𝑠) =
(𝟐)

𝒌

 𝟏+ (𝒏𝒌/(∏ (𝐧−∊𝒊)
𝒌
𝟏))

 or (Ω𝒔) =
(𝟐)

𝒌

 𝟏+ 𝛒
 on

average. Where 𝛒 = (𝒏𝒌/(∏ (𝐧−∊𝒊)
𝒌
𝟏). And since 𝛒 is on the interval [0,1], the function

(Ω𝒔) =
(𝟐)

𝒌

 𝟏+ (𝒏𝒌/(∏ (𝐧−∊𝒊)
𝒌
𝟏))

 has values on the interval [(𝟐)𝒌−𝟏, (𝟐)𝒌] .

These theoretical results show that the speedup (Ω𝑠) attainable by SLUM relative to S-MIP on

average lies on the interval [𝟐𝒌−𝟏 , 𝟐𝒌] where k is the number of sequential workflow tasks.

The theoretical results also reveal that speedup in between the interval depends on the parameter

ρ, which we defined as the “composite service phase transition rate”. So for instance when k=2,

the average speedup of SLUM with respect to S-MIP is expected to be in the range [2, 4], which

is a significant performance gain. These theoretical results are useful and could provide a baseline

for benchmarking the results obtained through experimentation.

103

However, the theoretical analysis was not a sufficient means of evaluating the runtime performance

of SLUM and the benchmark algorithms because of the earlier mentioned limitations of theoretical

analysis. For this reason, we sought the empirical approach as a complementary method because :

i. In attempting to answer RQ2, the study sought to investigate how the performance of

SLUM and S-MIP compare initially for small values of n. Theoretical analysis cannot

detect some performance characteristics of an algorithm that could very useful in

practice. Empirical approach provide some details that highly generalized

mathematical models cannot. For example, an algorithm A that analytically is idealized

to be asymptotically better than another algorithm B could be worse in performance

initially or even on average when tested on real problem instances. Even better, the two

algorithms A and B could be equally bad or good asymptotically, but in practice, one

of them could be better than the other. Because asymptotic analysis might be irrelevant

for problems of practical essence (Hoos et al, 2003; Seogewick, & Flajolet, 2009),

(Goldsmith Fredrick Simon, 2009), it’s important to analyze initial as well average case

performance of an algorithm empirically. By adopting an empirical approach, we

wanted to understand the conditions under which SLUM scales better than the baseline

algorithm or performs worse than the baseline.

ii. The theoretical approach could not address the research question RQ1.4: What is the

minimum number of service providers per workflow task that a virtual enterprise

broker needs to have in order to benefit from the relative efficiency of SLUM when

compared to S-MIP?.

iii. Empirical analysis reflects real life implementations taking into platform dependent

factors, something that theoretical analysis falls short of (Hoos et al, 2003). Because of

the possibility of overgeneralizing when using theoretical analysis, the empirical

approach was followed as a tool of validating the theoretical/mathematical model. In

this case the two approaches become complementary. Coffin & Saltzman (200) notes

that theoretical analysis and empirical analysis can be used to complement each other.

Coffin & Saltzman (2000) for example notes that empirical performance models (EPM)

for an algorithm’s running time could be developed statistically to serve as an average

case equivalent of the theoretical running model.

104

Despite the foregoing justification for the use of empirical methodology, the empirical method has

a number of shortcomings that threaten validity and reproducibility of experiments, especially

where performance efficiency is concerned. Ahuja & Orlin (1996) for instance, remarks that

empirical studies involving CPU running time as a measure of algorithm performance suffer from

multiple sources of variability: programming language used, compiler, computer hardware, the

approach used to encode the algorithms into computer programs (which depends on the skill of

the programmer), problem input size parameter combinations and whether or not at the time of

measurements, other users were engaging the computing hardware that is used to execute the

experiments.

The study did not use theoretical analysis despite its advantages, to evaluate and analyze

performance relating to solution quality because it was too complex if not impossible to model the

solution quality mathematically as a function problem input size. This is because the solution

quality of an optimization algorithm depends on various other parameters such as the statistical

structure of the problem instance, the number of constraints, the left and right hand side

expressions of the constraints among others. Therefore, we were unable to answer research

question two using this approach. A majority of existing research on optimization algorithms in

general and composite webservice selection algorithms in particular use an empirical approach to

measuring the solution quality of an algorithm (see for example Zeng et al, 2004), (Ardagna &

Penci, 2005), (Mulongo et al, 2016).

In section 3.2.1 we illuminate more on the research design concerned with runtime performance

efficiency evaluation and in section 3.2.2 we shade more light on the research design relating to

solution quality. Issues discussed under each of the subsections are the sampling, sample size,

number of runs, dependent and independent variables.

105

3.2.1 Runtime Efficiency Study

3.2.1.1 Algorithms to be Evaluated.

The algorithms that were compared were S-MIP, L-MIP and S-LUM. Recall that all the three

algorithms use Mixed Integer Programming (MIP). Note also that both S-MIP and L-MIP are both

flat structured except that S-MIP uses global planning while L-MIP uses local planning. SLUM

on the other hand, uses global planning like S-MIP unlike the rest is two layered.

3.2.1.2 Dependent and Independent variables

The dependent variable in respect of runtime efficiency was CPU running time. It’s the most

widely used variable for measuring efficiency of algorithms empirically. See section 3.3 for a

justification on the choice.

The independent variables can be inferred from the theoretical performance models derived

theoretically. Based on the theoretical model (𝒏𝒌(
𝟏

𝟐
)𝒌 + ∏ (n−∊𝑖)

𝑘
1 (

𝟏

𝟐
)𝑘), there are three

variables that could be varied while the rest are fixed and the impact on the performance of SLUM

relative to the other two investigated. i.e , 𝒌, n, ∊𝑖 . However, there are two issues to be deal

with :

i. The variable ∊𝑖 is also a variable. That’s, the number of service providers eliminated

at layer might not be the same for each task. Thus for 𝒌 the number of eliminated

service providers are ∊1., ∊2, …, ∊𝑘. Unfortunately, ∊𝑖 is not a variable you

can directly set a priori since the number of services to be eliminated is further

dependent on the problem instances at hand and the optimization constraint expressions

and the value of the left hand side (L.H.S) of the constraint expression.

ii. And even if these parameters remained unchanged, it’s not still possible to know

beforehand what the values of ∊1., ∊2, …, ∊𝑘 would be until the experiments are

106

run.

The first issue was overcome by having to consider the joint effect of ∊1., ∊2, …, ∊𝑘 as

implied in the (𝒏𝒌(
𝟏

𝟐
)𝒌 + ∏ (n−∊𝑖)

𝑘
1 (

𝟏

𝟐
)𝑘). i.e we can investigate the effect

∏ (n−∊𝑖)
𝑘
1 on the runtime performance. However, recall that the ratio 𝒏𝒌/∏ (n−∊𝑖)

𝑘
1 is

the composite phase transition rate 𝛒. Thus in this study, the effect of the 𝛒 at a fixed n and k

was investigated as opposed to ∊𝑖.

This study will restricted the value of k at 2 and hence maintained two independent variables for

two reasons. Firstly, 𝑘 = 2 is the smallest size of any business workflow required for webservice

composition. Given that theoretically, we have an idea that both SLUM and S-MIP could have an

exponential runtime. By maintain k at the smallest possible value, and investigating the effect of

varying the number of service providers per task, if turns out that SLUM and S-MIP are empirically

exponential in runtime growth on a two task workflow, then their performance for larger k values

cannot be any better. This observation lets us to comprehensively test the impact of change in the

number of service providers on the runtime efficiency. Note that this research is about dynamic

webservice composition within virtual organizations, Virtual Organizations would typically span

the global (Rabelo et al, 2008) and likely to be operating tens to thousands of service providers per

task (Mulongo et al, 2015;2016a). On the other hand, the number of workflow tasks k are likely to

be much smaller the number of service providers per task, especially because virtual organizations

by their real motivation of existence have very lean business processes in their service delivery

(Molina & Flores, 1999). The third reason is that in order to answer the research questions,

sufficient samples of each of the three variables would be needed in order to sufficiently make a

conclusion about the effect each of the variables on the response time while the other two are fixed.

For example, based on existing studies such as (Zeng et al, 2004) at least eight samples of n would

be required. This study introduces another dimension, the 𝛒 value which lies on the range [0,1].

Although there are no previous studies that investigated the effect of 𝛒 on runtime efficiency , we

theoretically already know that when this parameter is set at the extreme values have the speedup

as [(𝟐)𝒌−𝟏, (𝟐)𝒌] at 𝛒 = 𝟏 and 𝛒 = 𝟎 respectively. We would have to have other 𝛒

107

values chosen between 0 and 1 fairly across the interval in order to investigate the response time

behaviour of SLUM when 𝛒 tends to 1, tends to 0, is somewhere midway between zero and 0.5

and midway between 0.5 and 1 and near 0.5. These are 5 additional values in addition to 0 and 1

bringing this number to 7 different values of 𝛒.

This kind of setup involving only two variables (n and 𝛒) would require 8 by 7 = 56 experiments

on one treatment (algorithm). Since we are comparing 3 algorithms, it would require 56 by 3 =168

experiments at the very minimum. If we were to further vary k say to 3, 4 and 5, this would result

to 504 experiments. The problem is not yet over. Since we analytically see that two of the

algorithms have an exponential scalability in k, it would have been time consuming to perform the

experiments on standard computers. As will be seen shortly, this study in fact performed 336

experiments 112 experiments for each algorithm.

 It could be argued that from
(𝟐)𝒌

 𝟏+ 𝛒
 , the contribution of k to the relative speedup of SLUM is much

larger than the contribution 𝛒, and therefore fix p throughout and vary 𝑘. This is true. However, in

addition to the considerations in the foregoing paragraphs about why we chose to fix k at 2, this

study the first one to attempt to define the concept of composite service transition rate and its

impact on the runtime efficiency. Although a generic theoretic speedup model
(𝟐)𝒌

 𝟏+ 𝛒
 was derived

in this study, it was desirable to investigate experimentally how 𝛒 impacts runtime efficiency. In

any case, at a fixed k, the impact of varying 𝛒 between 0 and 1 has a significant performance gain

over S-MIP, ranging between 200% to 400%.

3.2.1.3 Setting and Computing the Value of 𝝆 Experimentally

The issue that we cannot fix 𝛒 .directly before experiment run as identified in section 3.2.1.1

remains. We don’t know how many services per task will be eliminated and hence we can’t fix 𝛒

upfront. The study overcame this problem in the following way. At a fixed n and k, through a trial

and error process, the R.H.S values of the one of the SCUM optimization constraints was adjusted,

108

then experiments were performed. Recall from chapter two section 2.9, that as an example, the

following was one of the constraint expression for the total response time a service consumer

would be willing to wait. (∑ 𝒅𝒔𝒊=𝑵
𝒊=𝟏) ≤ 𝑫 (see equation 2.32). While holding the rest of the

constraints R.H.S, D is adjusted, experiments run, then the number of service providers eliminated

for task 1, task 2 and so on is observed and recorded. Consequently, , 𝛒 = 𝒏𝒌/∏ (n−∊𝑖)
𝑘
1

is then computed. Note that, we could adjust the R.H.s values of more than one constraint

simultaneously, provided we get the desired 𝛒 value at a given. Thus for example, let n=10, k=2

for some problem instance. Therefore, initially, there are 10 webservices per task. Say by setting

(∑ 𝒅𝒔𝒊=𝑵
𝒊=𝟏) ≤ 𝟏𝟎 , after phase one optimization process we have that ∊1.= 4 , ∊1.= 2 ,

∏ (n−∊𝑖)
𝑘
1 = (10 − 4) ∗ (10 − 2) = 48 , thus ρ =

48

100
= 0.48 . Thus, the

performance of SLUM at n=10, k=2 , ρ = 0.48 is reported. Having determined the

combination of constraint values that yielded the ρ = 0.48 , the experiments would be repeated

with n=10, k=2 , (∑ 𝒅𝒔𝒊=𝑵
𝒊=𝟏) ≤ 𝑫 for a number of runs for SLUM and then repeated while n=10,

k=2 and D is fixed for S-MIP and L-MIP.

3.2.1.4 Sampling the values for the phase transition rate 𝝆
 As said earlier, no previous study examines the effect of 𝛒 empirically on the runtime efficiency

of SLUM except our study in (Mulongo et al, 2016a). Thus the choice of the number of values of

𝛒 and which values of ρ should be sampled from the interval [0,1] was entirely guided by the

researcher. Nevertheless, a guiding principle adopted by the researcher as explained in section

3.2.1.1 is that, through the trial and error process described in section 3.2.1.4, for at a fixed n and

k=2, a 𝝆 tending to zero was sought. Note that while theoretically 𝝆 can assume zero, in practice

a 𝝆 value of zero is not possible as this would be signify lack of feasibility in the first phase of

optimization and the optimization process would in this case terminate prematurely. This value

helped investigate whether in practice, as 𝝆 → 𝟎, at k=2, the relative speedup tends to (𝟐)𝒌

=4. Similarly, the researcher through trial and error, set a value of 𝝆 = 𝟏, so that we investigate

109

the convergence of the speedup of SLUM to (𝟐)𝒌−𝟏 =2. Other values were set as follows.

Some values above 0.5, a value closer to or equal to 0.5, and some values below 0.5. This was

done through an exploratory process. Through this trial and error process, the followed 𝝆 values

of 0.0296,0.064, 0.13, 0.36, 0.45 and 0.6 were obtained. Note that since this is a two task workflow,

getting the square root of each of the 𝜌 values, would give the average number of atomic

webservices per task that were promoted per task from phase one to phase two. So that at 𝝆 =

0.0296, 0.13, 0.36, 0.45 and 0.6, 1the average number service providers promoted to layer are

respectively 17%, 25%, 36%, 60%,67%, 77%, 100% respectively. The researcher considered

this sample fairly representative and sufficient to infer implausible performance trend attributable

to 𝝆.

3.2.1.5 Sampling the values of the number of service providers per workflow task 𝒏

When benchmarking algorithms in terms of running time, the three issues to be considered are:- 1)

instance hardness- the researcher should focus on hard instances, 2) instance size. A range should

be provided for scaling studies and, 3) instance type. The researcher ought to provide a variety of

problem instances (Hoos, 2003; Barr, 2001). Problem instance type or variety can be achieved

through the use of real application instances or ensembles of instances from random distributions

Hoos, 2003).

The researcher chose 16 problem instances ranging from the simplest having five candidate

webservices per workflow task, to the hardest having 80 candidate webservices per workflow. In

between the two were instances whose size was a multiple of five. Therefore problem instances of

size n=5, 10, 15,… 80 were considered. The sixteen problem instances provide an adequate variety,

given that in a similar study in (Zeng et al, 2004), four problem instances were used. Similarly, the

hardness of the problems ranging from 5 to 80 is sufficient since in related such as (Zeng et al,

2004), the problem hardness in terms of number of webservices per task is varied from 10 to 40.

However, it’s worth noting, that while the instance type (statistical structure) affects the running

time of randomized algorithms, it does not affect the running time of exact algorithms (Mulongo

et al, 2016). Since all the three algorithms are exact algorithms, our focus was on how variation

110

in the problem instance size affects the running time of each of the three algorithms. In addition to

the considerations of previous related studies, the sample size chosen is sufficient for analysis

given that as explained in section 3.3, the study adopted rigorous inferential statistical analysis

techniques including empirical relative complexity analysis. These methods are powerful tools for

inferring runtime performance differences without requiring large samples (Coffin & Saltzman,

2016). This so because, for runtime growth, it’s the size of the problem (in this case the number of

service providers per task) that matters more than the number of samples i.e few samples with

reasonable empirical hardness are more desirable than many sample with low empirical hardness.

3.2.1.6 Problem Instances – the Subjects.

Problem instances variety can be achieved through the use of real application instances or

ensembles of instances from random distributions (Hoos, 2003). In this study, a problem instance

is the graph 𝑮𝟏=

{

 [
〈𝟎. 𝟗𝟗, 𝟎. 𝟗𝟓, 𝟏𝟎𝟎𝟎, 𝟓, 𝟒, 𝟏𝟎, 𝟐𝟎〉,
〈𝟎. 𝟗𝟏, 𝟎. 𝟖𝟓, 𝟖𝟎𝟎, 𝟑, 𝟑, 𝟐𝟎, 𝟓𝟎〉] ,

[
〈𝟎. 𝟗𝟎, 𝟎. 𝟖𝟖, 𝟏𝟎𝟎, 𝟑, 𝟒, 𝟒𝟎, 𝟐𝟎〉,
〈𝟎. 𝟗𝟓, 𝟎. 𝟗𝟎, 𝟖𝟎𝟎, 𝟓, 𝟓 𝟏𝟓, 𝟏𝟎〉,]

}

 in which the first matrix is a pool

of functionally similar webservices assigned for task 1 and the second matrix is a pool of

functionally similar webservices assigned to task 2. Therefore since we fixed the number of tasks

at 2, each problem instance had exactly two matrices.

Each vector within a matrix represent a sequence of different QoS values attached to a single

webservice. Each vector has seven QoS values. The values are respectively reliability, availability,

throughput, security, reputation, response time and service cost. The seven parameters as explained

in chapter one, chapter two and specifically section 2.9, are the most widely used QoS parameters

in the webservices research community due to their significance. The number of vectors per

webservice is equivalent to n, the number of webservices per task.

Therefore, each of the 16 problem instances mentioned in preceding section took the structure

above, having 5 by 7 matrix, 10 by 7 matrix, 15 by 7 matrix …, 80 by 7 matrix.

111

To generate a problem instance with the above structure, two webservices were programmed in

Java, each performing a different task in a composite workflow. Using SOAPUI, each of the

service was replicated using the SOAPUI mock services feature. Each replica of the webservice

would then generate a functionally similar real webservice. So for each webservice, 5 mock

webservices, 10 mock webservices , …, 80 mock webservices were generated. Each mock

webservice generated had a unique service endpoint. Using groovy scripts within each mock

service, the QoS properties were simulated through randomization. For reliability and availability,

each of the webservices was programmed to throw faults at random times and timeout, for response

time, the webservices were programmed to delay for a random number of seconds. For security,

random default values were assigned and so to reputation. Each webservice was invoked only once

at ago to generate and report their vector of QoS values. The QoS vectors of the first 5 webservices

for each task was saved to a unique file in the structure like the one above, the first 10, the 15 and

so on. Therefore 80, different files generated.

3.2.1.6 Runtime Performance Efficiency Metrics

When measured empirically, the running time of an algorithm can be captured using CPU time or

through the use of operations counts. The use of CPU running time often raises validity threats.

Ahuja & Orlin (1996) for instance, remarks that empirical studies involving CPU running time as

a measure of algorithm performance suffer from multiple sources of variability: programming

language used, compiler, computer hardware, the approach used to encode the algorithms into

computer programs (which depends on the skill of the programmer), problem input size parameter

combinations and whether or not at the time of measurements, other users were engaging the

computing hardware that is used to execute the experiments. Nevertheless, CPU running time still

remains the most widely used method for measuring algorithm running time (Coffin & Saltzman,

2000). On the other hand, operations count entails automatically counting the number of times an

algorithm executes major operations (Ravindra et al, 1996). Specific methods of how to implement

the operations count method empirically include the representative (bottleneck) operations counts

method proposed in (Ahuja & Orlin (1996) and the trend-prof tool utilizing execution operation

counts (Goldsmith Fredrick Simon, 2009). This method ideally targets to curtail the challenges of

experimentations based on CPU running time. However, the execution operation counts approach

is not devoid of limitations. In practice it might be difficult to establish which operations critically

112

affect performance and which ones are insignificant and should therefore be excluded (Mulongo

et al, 2016). Moreover, because the counting of such operations is automated through a profiler

such as the one in Goldsmith Fredrick Simon, 2009) the impact of the profiler on the program

(system) under test may be another source of variability that would be equally elusive to isolate.

This study adopted the CPU running time since its straight forward and popular. The mentioned

validity issues due to CPU running time are addressed in the experiment design approach and in

the choice of the analysis methods in section and respectively. The measurement units of time

were “seconds”. The choice for “second” as a unit of measure is motivated by two reasons: 1) the

second is the SI unit of time and 2) MIP algorithms take seconds to weeks to solve given problem

instances (Ed Klotz, and Alexandra M. Newman , 2012) therefore using the second is adequate

enough to ensure high precision and resolution of time measurements. For each problem instance,

the CPU running time was automatically tracked and recorded on successful termination of the

optimization process.

3.2.1.7 Experimental Protocol in Measuring CPU Time

In this section, we address several issues that need to be addressed during the actual processing of

running the experiments in order to ensure validity of results.

The time taken to find an optimal solution can be affected by the number of constraints. During

experimentation, all problem instances as well constraint inequalities remained unaltered at a given

combination of n, k and 𝝆 . The three algorithms were tested on the same problem instance, one

at a time until the entire ensemble of problem instances were exhausted. Given that different

sections of a program can take different times to execute, we only measured the time taken to for

each of the algorithms to execute the function getBestComposite Service (int opt Mode) in each of

the experiments. The Java function System.CurrentTimeMillis () was used to compute the time

lapse. Secondly, we ensured that each time the experiment was conducted, the CPU and Memory

Utilization of the computer used to conduct experiments remained fairly constant. We realized this

by having only the default auto start system services and processes running and only our Java

system prototype running during each experiment. Thirdly, the same computer was used

throughout the experiments. The computer had the following specifications: LENOVO, Windows

113

Professional 64 bit (6.1, build 7601), Intel Pentium CPU B960, 2 CPUs @2.20 GHz, 2GB RAM,

CPU Utilization, Physical Memory Utilization State at any one time fluctuated between 88% to

93% at any one time, averaging about 90% (or 1.43 GB of 2GB).

In addition to the above measures, to minimize effects of variance by chance in response time

observed on different values of n, within and between the two treatments, for every problem

instance, 10 consecutive measurements of time were taken one at time and the arithmetic average

value recorded. This was achieved by executing the workflow 10 times repeatedly. Ten (10) was

chosen because it’s statistically known that 4-10 repeated measurements are sufficient to

significantly reduce the random errors observed on measurements due to uncertainties in the

measurement environment. Moreover, for every problem instance, the time measurement on each

of the algorithms was immediately successive. For example, at n=10, 10 successive measurements

of time are taken on L-MIP, then 10 successive measurements on SLUM, then 10 successive

measurements on S-MIP. The process is then repeated for n=15, n=20 etc. This protocol differs

from the approach where for n=10, 15,20 .., 10 successive measurements are taken for L-MIP for

each n, then the procedure repeated for SLUM and then S-MIP. The first approach minimizes the

time gap between when measurements on the same subject (problem instance) but on a different

treatment (algorithm). This is meant to minimize the impact of intervening system state changes

with the passage of time. To put this in context, suppose, at n=10, 20 ,30, 40, 50,60,70 ,L-MIP

takes 5 seconds ,10 sec, 20 sec, 40 sec, 80 sec, 160, 320 sec to record ten time measures

respectively, if the first method is used the 10 measurements at n=10 on SLUM would be recorded

shortly after 5 seconds, while using the second approach, the 10 measurements at n=10 on SLUM

would be recorded after 635 seconds or approximately 10 minutes. If the for some reason, the CPU

memory utilization bursts within the 10 minutes delay, the pairwise comparison of the system

response time when using L-MIP vs when using SLUM at n=10 would be somewhat biased.

The same considerations as those stated in section 3.4.1 were taken into account when generating

benchmarks for solution quality (SQ) comparison. Unlike in 3.4.1, where the focus is on the

hardness, here the focus is how the SQ of SLUM and L-MIP compares on a variety of independent

problem instances. Hence for SQ, 40 randomly generated problem instances having n=2, 3, 4, ...,

114

41 webservices per task were used. In section 3.5, the choice of 40 problem instances aided in the

selection of appropriate statistical tests of significance as explained in section 3.5.

3.2.2 Solution Quality Efficiency Study

3.2.2.1 Algorithms to be Evaluated

The algorithms that were compared were S-MIP, L-MIP and S-LUM. Recall that all the three

algorithms use Mixed Integer Programming (MIP). Note also that both S-MIP and L-MIP are both

flat structured except that S-MIP uses global planning while L-MIP uses local planning. SLUM

on the other hand, uses global planning like S-MIP unlike the rest is two layered. Solution quality

3.2.2.2 Solution Quality Performance Metrics

A major goal of optimization algorithms is to generate a high quality solution from a large space

of alternative solutions within a reasonable amount of time. A common method to gauge the

solution quality of the solution value 𝑧 produced by algorithm 𝐴 (where A is hypothesized to be

suboptimal) on some optimization problem instance 𝑝, is to compare the value 𝑧 against a global

optimum value 𝑧∗ output by an algorithm 𝐵 that is known to produce a globally optimal solution

value 𝑧∗ for every 𝑝 ∊ 𝑃. We know that the S-MIP algorithm has the property that for every 𝑝 ∊

𝑃, 𝑧∗ is output. Let 𝑧𝐵and 𝑧𝐿 be the solution values produced by SLUM and L-MIP on the same

problem instance. We are interested in measuring the pairwise solution accuracy between 𝑧𝐵 and

𝑧∗ and 𝑧𝐿 and 𝑧∗ . Two commonly used metrics for comparing a suboptimal or approximate

algorithm with respect to an optimal one, in terms of solution accuracy are optimality ratio (OR)

and relation solution quality (RSQ). The two metrics have been used previously in studies such as

(Coffin & Saltzman, 2000) and Hoos, 2003). The quality metric is one of those discussed in (Eitan

, 1981). To make it more intuitive, we convert RSQ to a percentage by scaling it by 100 as per (1).

We denote the RSQ of SLUM with respect to SLUM as RSQB and RSQ of L-MIP with respect to

SLUM as RSQL so that (2) and (3) follows. The optimality ratio of L-MIP and SLUM are given

by equations 3.4 and 3.5 respectively.

RSQ = ([𝒛∗ − 𝒛)/(𝒛∗)] ∗ 𝟏𝟎𝟎) (3.1)

RSQL = ([𝒛∗ − 𝒛𝑳)/(𝒛∗)] ∗ 𝟏𝟎𝟎) (3.2)

115

 RSQB = ([𝒛∗ − 𝒛𝑩)/(𝒛∗)] ∗ 𝟏𝟎𝟎) (3.3)

 ORL = ([𝒛𝑳)/(𝒛∗)] ∗ 𝟏𝟎𝟎) (3.4)

 ORB = ([𝒛𝑩)/(𝒛∗)] ∗ 𝟏𝟎𝟎) (3.5)

3.2.2.3 Experimental Protocol in Measuring Solution Quality

The solution quality produced by an optimization algorithm is bound to be affected by not only

the number of constraints but also the coefficients of the constraint inequalities on the left hand

size, the boundary values on the right hand side of the constraint inequalities, and the values within

problem instances. We kept these factors invariant and same across the three treatment types during

each experimental setup. There was no need for taking several repeated measurements of the

solution values for each problem instance, since L-MIP, SLUM and S-MIP are exact algorithms

that guarantee to output same solution for a given problem instance no matter how many times the

algorithm is invoked on the same problem instance. This differs from probabilistic optimization

algorithms that are bound to yield different solutions at different times, other factors kept constant.

As noted earlier, the S-MIP (Zeng et al, 2004) algorithm guarantees global optimality while local

planning has no guarantee for global optimality i.e it may yield suboptimal solutions, as

experimentally illustrated in (Zeng et al, 2004). The SLUM algorithm in (Mulongo et al, 2015) is

hypothesized not to find globally optimal solutions at the “network level” in some cases since it

does not consider all QoS attributes at ago, even though it does guarantee optimality within each

layer (since global constraints across workflow tasks within a layer are considered). Thus both L-

MIP and SLUM are somewhat approximate optimization algorithms relative to S-MIP. Whether

or not SLUM or L-MIP finds a global optimum and if not how close the suboptimal solution is

from the global optimum may vary from problem instance to problem instance based on the

structure of the problem instance. To illustrate this, we will denote Gi as the input webservice QoS

graph to a problem instance Pi.. Gi contains k webservice QoS matrices where matrix M1, M2 .., Mk

corresponds to the set of webservices that can execute worklow task 1, task 2, task k

correspondingly. The vectors within each matrix are of a fixed length v where v is the number of

QoS attributes. Assume v=7 so the QoS attributes in consideration are the 7 QoS attributes

116

according to [48]. . For ease of readability, we use “{ }” to represent a graph, “[]” to represent a

matrix within a graph, “〈 〉” to represent a vector within a matrix, “,” is used to separate vectors

within a matrix, and matrices within a graph. Let 𝐺1 and 𝐺2 be two webservice QoS graph

instances defined according to equation 3.6 and equation 3.7. Examining the two graphs, G1 seems

somewhat systematically and selectively chosen because in each matrix of G1, one QoS vector

(webservice) dominates the other one on all the 7 QoS attributes such that selecting the dominant

(best) webservice from each matrix using L-MIP yields a solution global solution. Similarly,

selecting the best composite using SLUM will yield network wide global optimum because in layer

1, vector 1 of matrix 1 will be chosen and in layer 2 the same combination will be chosen. Thus if

for all problem instances, one vector in each matrix of the input webservice QoS graph dominates

the rest on all QoS attributes, it would give a false impression that S-MIP, SLUM and L-MIP all

yield globally optimal solutions all the time or all the three at least yield the same cost values

(whether optimal or not) for all problem instances.

 𝑮𝟏=

{

 [
〈𝟎. 𝟗𝟗, 𝟎. 𝟗𝟓, 𝟏𝟎𝟎𝟎, 𝟓, 𝟒, 𝟏𝟎, 𝟐𝟎〉,
〈𝟎. 𝟗𝟏, 𝟎. 𝟖𝟓, 𝟖𝟎𝟎, 𝟑, 𝟑, 𝟐𝟎, 𝟓𝟎〉] ,

[
〈𝟎. 𝟗𝟎, 𝟎. 𝟖𝟖, 𝟏𝟎𝟎, 𝟑, 𝟒, 𝟒𝟎, 𝟐𝟎〉,
〈𝟎. 𝟗𝟓, 𝟎. 𝟗𝟎, 𝟖𝟎𝟎, 𝟓, 𝟓 𝟏𝟓, 𝟏𝟎〉,]

}

 (3.6)

 𝑮𝟐=

{

 [
〈𝟎. 𝟗𝟏, 𝟎. 𝟖𝟏, 𝟏𝟎𝟎, 𝟓, 𝟏, 𝟏𝟎, 𝟐𝟎𝟎〉,
〈𝟎. 𝟗𝟕, 𝟎. 𝟕, 𝟖𝟎, 𝟏, 𝟒, 𝟒𝟎, 𝟏𝟎𝟎〉,] ,

[
〈𝟎. 𝟗𝟎, 𝟎. 𝟖𝟑, 𝟏𝟎𝟎, 𝟐, 𝟓, 𝟒𝟎, 𝟖𝟎〉,
〈𝟎. 𝟖𝟗, 𝟎. 𝟗𝟔, 𝟏𝟎𝟎, 𝟓, 𝟒, 𝟐𝟎, 𝟗𝟓〉,]

}

 (3.7)

On the other hand, contrary to G1, G2 appears to have a random structure and it’s not obvious which

webservice within each task is better than the other since some are better than the other on some

QoS attributes and worse on other QoS attributes. In this case, it’s likely that each of the three

algorithms will yield different cost values.

 Due to the sensitivity of solution quality to the structure of problem instances, to ensure

plausibility of results on solution quality, for each problem instance Pi, the graph Gi was randomly

117

generated. Both internal and external validity of results as far solution quality is concerned was

then ensured because (Mulongo et al, 2016):

i. The QoS matrices within each graph instance are randomized eliminating statistical bias.

Thus, any differences observed on objective function cost values on S-MIP, L-MIP and

SLUM are not due to mere chance of the structure of the problem ,for example systematic

dominance of one QoS vector over the rest for each workflow task.

ii. Each graph instance is independently generated from the other and therefore any

differences observed on optimality values across one graph instance is not dependent or

related to the other.

iii. The random graph instances generated have monotonically increasing number of QoS

vectors (webservices) per task. From a solution quality perspective, this increases the

variety of candidate solutions available.

3.3 Algorithm Implementation

The SLUM, L-MIP and S-MIP algorithms were all implemented in Java 7.0 using the Java

Optimization Modeler (JOM)2 tool version 1.15 with a GLPK3 linear programming optimization

solver. Each of these algorithms invoked a program function called getBestCompositeService (int

optMode) where “optMode” denotes optimization type. The enumeration values for the argument

is one of L-MIP=0, SLUM=1 and S-MIP=2.

2 www.net2plan.com/jom/
3 https://www.gnu.org/software/glpk/

118

3.4 Data Analysis and Interpretation

The study took a rigorous numerical and statistical approach to the analysis and interpretation of

the performance differences of S-MIP, SLUM and L-MIP. Our methodology is mainly informed

by the ideas in (Coffin & Saltzman, 2000), (Hoos, 2003; 2009; 2014), (Hoos & Mu, 2015), (Hoos

& Mu, 2015) and Goldsmith in (Goldsmith Fredrick Simon, 2009), (Annay Levitin, 2011),

(Nudelman, 2005). Using the ideas of (Coffin & Saltzman , 2000), (Nudelman, 2005), Hoos,

2003), (Goldsmith Fredrick Simon , 2009), (Hoos, 2009), (Hoos & Mu (2015), (Levitin, 2011), for

example, where appropriate, we derive statistical regression models through model fitting, that

describe the empirical scaling behaviour of each of the algorithms with respect to problem

instances of monotonically increasing hardness. If the metric is running time, and where

meaningful statistical scaling models relating the growth CPU time and the number of webservices

per task are obtained, the performance comparison of the three algorithms is first done using the

concept of empirical complexity (EC) as described in (Coffin & Saltzman , 2000) . EC gives

running time performance bounds (empirically) without regard to constant terms, just as is with

the case of theoretical algorithm analysis (see section 3.4.2.1). Secondly, where appropriate and

based on the regression models obtained, L-Hospital’ Rule as described in (Levitin, 2011), is used

to determine the average empirical performance of SLUM with respect to either S-MIP or L-MIP

(see 3.4.2.2 for details). If the pairwise regression models of SLUM and S-MIP or SLUM and L-

MIP, satisfy the conditions in 3.4.2.3, the concept of empirical relative complexity (Coffin &

Saltzman, 2000) is then used to quantify the initial as well the empirical asymptotic performance

of SLUM with respect to S-MIP or SLUM with respect to L-MIP. In addition to these techniques,

we define some descriptive statistical measures of analysis for running time in 3.4.2.5 to augment

the analysis. In case no meaningful statistical models for running time were obtained (unlikely to

be the case based on the analytic considerations of chapter 1), then the use of sample means or

medians coupled with normality or non-parametric tests as described in section 3.4.2.4 were

119

followed. We summarize the methods used to analyze runtime performance efficiency as follows:

i. Statistical regression models (linear, polynomial and exponential) where fitted on data to

capture the relationship between the CPU running time (in seconds) and the problem

instance size (number of webservices per workflow task, with a fixed number of tasks).

Goodness fit tests and significance tests were applied to the regression models. Regression

analysis helped us to answer the research question RQ1.1: How does the running time of

SLUM grow with increasing number of webservices per task?. The complexity class of our

proposed method was determined and compared with that of the baseline and the

alternative algorithms.

ii. Empirical Relative Complexity and Empirical Relative Complexity Coefficients (Coffin &

Saltzman, 2000) were used to compare the express the running time of the proposed

algorithm as a function of the baseline algorithm, S-MIP i.e , using an equation of the form

teB = β0 (teA)
β1

 ,where teB is the running time of SLUM , teA is the running time of S-MIP. β0

is parameter showing how many times SLUM performs faster (or slower) than S-MIP

initially (small sized problem instances) while (teA)
β1 is the number of times SLUM is faster

(or slower) than S-MIP asymptotically. To obtain the model teB = β0 (teA)
β1, first the

statistical regression models of both algorithms have to be obtained, and must each be

linear after a log transformation. This method was used to address the question RQ1.2:

How much speedup is achievable using SLUM over S-MIP?. Thus were able to determine

how many times SLUM was slower or faster than S-MIP initially and asymptotically using

this approach.

iii. Differential Calculus based on the L-Hospital’s Rule:- We used this method to compute

expected average speedup of the algorithm relative to S-MIP. This method also relied on

the statistical functions obtained from regression analysis. The expected speedup values

obtained empirically were compared to the theoretical speedup results described in chapter

2 that were also computed using L-Hospital’s Rule.

iv. Combining ii and iii above, other useful parameters were determined e.g what is the least

of number of webservices (virtual enterprises) per workflow task is required for SLUM to

be at least X times faster than S-MIP.

v. Sample Instantaneous Speedup was used to show the speedup of SLUM relative to S-MIP

120

at a particular value of n (Mulongo et al, 2016)

vi. Speedup – Phase Transition Graphs (Mulongo et al, 2016) were used to show the

relationship between the speedup of SLUM relative to S-MIP and various Composite

Service Phase Transition Rates.

vii. Mean was used to summarize the sample speedup, and the solution quality of the

algorithms for comparison purposes. For solution quality, parametric tests were used to test

significance in difference of mean values

viii. Graphs were generally used to visualize trends. We also used bar graphs to depict solution

quality of the algorithms.

In regard to solution quality, if meaningful regression models of relative solution quality with

respect to problem instance size (n) are derivable, the RSQ models could be used to describe the

scaling behaviour of RSQ with respect to n for SLUM and L-MIP. Further, if a scatter plot of RSQB

vs n and RSQL vs n or log RSQB vs n and log RSQL are strongly linear, then the slope test could

be used to detect performance solution quality performance differences between L-MIP and

SLUM. If no suitable model is derivable or the linearity condition is not satisfied, then either

normality tests or nonparametric tests as described in section 3.4.1.2 were used to detect RSQ

performance differences between the two algorithms. A similar approach is recommended by the

authors in (Coffin & Saltzman, 2000) and the effectiveness of the approach illustrated by the same

author on a wide range of optimization problems in (Coffin & Saltzman, 2000).

3.4.1 Analysis and Interpretation of Relative Solution Quality and Optimality Ratio

3.4.1.1 Detecting Solution Quality Difference between L-MIP and SLUM using Slope Test

As said earlier, this test is conducted if linearity exists between both the pairs RSQL vs n and RSQB

vs n or ln RSQL vs n and ln RSQB vs n. Equation 3.8 was used to generalize the function describing

the linear relation between RSQL vs or ln RSQL vs n, and equation 3.9 to mean the function

describing the linear relation between RSQB vs n or ln RSQB vs n.

 𝒚𝒊𝒏
𝟏 = 𝜷𝟎𝟏 + 𝜷𝟏𝟏𝒏 + €𝒏𝒊 , (3.8)

 𝒚𝒊𝒏
𝟐 = 𝜷𝟎𝟐 + 𝜷𝟏𝟐𝒏 + €𝒏𝒊 , (3.9)

Where 𝑦𝑖𝑛
1 = RSQL or 𝑦𝑖𝑛

1 = ln RSQL, 𝑦𝑖𝑛
2 = RSQB or 𝑦𝑖𝑛

2 = ln RSQB , 𝛽01 and 𝛽02 are the

121

intercepts representing heuristic effects (Coffin & Saltzman, 2000). , 𝛽11 and 𝛽12 are slopes, and

€𝑛𝑖 are random variations.

We set the null and alternative hypotheses in equation 3.10. If any of the null hypotheses is rejected,

then the two algorithms differ in RSQ performance. Further if H0 in equation 3.11 is accepted,

then it was concluded that the problem size effect on RSQL is the same as the problem size effect

on RSQB. Similarly if RSQB in (10) is accepted, then the heuristic effect on RSQB is equal on RSQ

in both algorithms.

 H0 : 𝜷𝟎𝟏 = 𝜷𝟎𝟐 vs H1 : 𝜷𝟎𝟏 ≠ 𝜷𝟎𝟐 (3.10)

 H0 : 𝜷𝟏𝟏 = 𝜷𝟏𝟐vs H1 : 𝜷𝟏𝟏 ≠ 𝜷𝟏𝟐 (3.11)

3.4.1.2 Detecting Solution Quality Performance Differences

To check for performance differences in solution quality between SLUM and L-MIP, we used the

paired Student t-test if the performance differences were normally distributed or non-parametric

tests otherwise. To determine normality of the distribution of the performance differences, we used

Shapiro Wilk test to test for normality of the performance differences between the pairs. Other

tests of normality include Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests (Razali &

Wah, 2011). However, Razal and Wah (2011) established that the Shapiro-Wilk test is more

accurate in detecting normality of distribution in data hence the rationale for our choice of the

method. With the Shapiro-Wilk test, we computed the statistic W and compared the value of W

against the critical value Wc at a significance level of 0.05. The more close the value of W is close

to 1 the more likely the data are normally distributed. If W is determined to be more than Wc then

it could concluded that there is no reason to believe that the data are not normally distributed,

otherwise we could concluded that the differences in RSQ values are not normally distributed. In

case the differences in RSQ values do not follow a normal distribution, we could use either the

sign test or the Wilcoxon matched pairs signed rank test. In section 3.3.3, we explained that our

optimization problem instances were randomly generated. Holdger H. Hoos (2003) states that if

the benchmark optimization problem instances are random in nature, the binomial sign test or

Wilcoxon matched pairs signed rank test could be used to detect performance differences

(assuming that the test of normality has failed on the data). Since the Wilcoxon tests assumes

122

symmetry of the data sample, we would choose the method if a histogram plot of the performances

differences was fairly symmetrical in shape. If on the contrary, the histogram was asymmetrical,

the sign test that has no symmetry assumptions could be used. In the case of using either of the

nonparametric, tests, the null hypothesis is that the median relative solution quality for SLUM and

L-MIP is the same at a 95% confidence interval. On the other hand, for the paired student t- test,

the null hypothesis is that the mean RSQB and the mean RSQL are equal.

3.4.2 Analysis of CPU Running time Performance Differences

3.4.2.1 Running time Analysis using Growth of Functions and Statistical Regression

Models

First, we define empirical complexity (EC) of an algorithm according to Coffin & Saltzman (2000)

as the function describing the growth of the empirical running time of the algorithm with respect

to the problem instance size n. Like the theoretical counterpart, the empirical complexity can be

regarded as the running time statistical regression model without the constant terms. For example,

suppose the statistical model capturing the growth of some algorithm is a polynomial of the form

𝛽1 𝑛
𝛽2 + 𝛽0 𝑛 + 𝑐, then as per the definition of Coffin & Saltzman (2000) , the EC of this algorithm

is denoted by 𝑂(𝑛𝛽2).

Here and henceforth, any regression model of the form in equation 3.12 will be said to belong to

the linear empirical complexity function 𝑂(𝑛), while any regression model of the form in equation

3.13 will be said to belong to the polynomial empirical complexity function 𝑂(𝑛𝛽2) and any

regression model of the form in equation 3.14 will be said to belong to the exponential empirical

complexity function (𝑂(𝑒𝑜(𝑛)) . For simplicity, let 𝐶𝑙 = 𝑂(𝑛) , 𝐶2 = 𝑂(𝑛
𝛽2) and 𝐶3 =

(𝑂(𝑒𝑜(𝑛)).

 Define 𝑇𝑒𝐿 (𝑛), 𝑇𝑒𝐴 (𝑛) and 𝑇𝑒𝐵 (𝑛) as the parameterized running time empirical functions of the

number of candidate webservices per workflow task n, of the local planning optimization strategy

as in (Zeng et al, 2004), S-MIP and SLUM respectively. We use 𝑇𝑒 (𝑛) to imply 𝑇𝑒𝐿 (𝑛), or 𝑇𝑒𝐴 (𝑛)

or 𝑇𝑒𝐵 (𝑛). Let 𝑔𝑙 , 𝑔𝑝 and 𝑔𝑒 respectively, be linear, polynomial and exponential functions of n

of the form in equations 3.12 ,3.13 and 3.14 respectively

 𝝁𝟏 = 𝒈𝒍 (𝒏) = 𝜷𝒏 + 𝒄 (3.12)

123

 𝝁𝟐 = 𝒈𝒑 (𝒏) = 𝜷𝟏 𝒏
𝜷𝟐 + 𝜷𝟎 𝒏 + 𝒄 (3.13)

 𝝁𝟑 = 𝒈𝒆 (𝒏) = 𝜷𝟎 𝒆
𝜷𝟏𝒏 (3.14)

We would like to establish the running time statistical regression function that significantly

describes𝑇𝑒𝐿 (𝑛) , 𝑇𝑒𝐴 (𝑛) and 𝑇𝑒𝐵 (𝑛) . To determine whether 𝑇𝑒 (𝑛) 𝜇𝑖 , i=1, 2 or , we used

statistical regression tests where the sample data points were fitted on the model 𝜇𝑖, i=1, 2, 3, one

at a time. The R2
 statistic was used to test goodness of fit of the model 𝜇𝑖 on the data. If the R2

<0.8, we automatically accepted the null hypothesis that 𝜇𝑖 does not fit the data. Otherwise, we

performed a further test to check if the percentage of fit is significant. We set p = 0.05. If the

computed p value is greater than 0.05, we accepted the null hypothesis that the model 𝜇𝑖 , despite

having an acceptable goodness of fit, does not significantly fit the data at p = 0.05. Otherwise we

accepted the alternative hypothesis that the R2 value is significant and hence the 𝜇𝑖 model fits the

data. The null hypothesis and alternative hypothesis are summarized as below.

𝑯𝟎 : 𝑻𝒆 (𝒏) ≠ 𝝁𝒊 𝐢𝐟, 𝑹
𝟐 < 𝟎. 𝟖 𝒐𝒓 (𝑹𝟐 ≥ 𝟎. 𝟖 𝒂𝒏𝒅 𝒑 > 𝟎. 𝟎𝟓) (3.15)

𝑯𝟏 : 𝑻𝒆 (𝒏) = 𝝁𝒊 𝐢𝐟, 𝑹
𝟐 ≥ 𝟎. 𝟖 𝒂𝒏𝒅 𝒑 < 𝟎. 𝟎𝟓 (3.16)

We used the Data Analysis ToolPack and the Real Statistics Resource Pack Microsft Excel 2013

plugins to perform the regression tests

It’s possible that for instance 𝑇𝑒𝐴 (𝑛) is significantly described by more than one kind of regression

model e.g 𝑔𝑝 (𝑛) and 𝑔𝑒 (𝑛) so that (15) and (16) follows.

𝑻𝒆𝑨 (𝒏) = 𝒈𝒑 (𝒏) (3.17)

𝑻𝒆𝑨 (𝒏) = 𝝁𝟑 = 𝒈𝒆 (𝒏) (3.18).

According to equation 3.17, 𝑇𝑒𝐴 (𝑛) ∊ 𝑂(𝑛
𝛽2) , 𝑠𝑖𝑛𝑐𝑒 𝑔𝑝 (𝑛) ∊ 𝑂(𝑛

𝛽2) and 𝑇𝑒𝐴 (𝑛) ∊

 (𝑂(𝑒𝑜(𝑛)) given that 𝑔𝑒 (𝑛) ∊ (𝑂(𝑒
𝑜(𝑛)) according to equation 3.18.

 In the case where the running time function is significantly described by two or three regression

models, then we concluded that 𝑇𝑒 (𝑛) is tightly empirically lower bounded by the smallest

empirical complexity class and upper bounded the largest empirical complexity class, noting that

𝐶𝑙 ≪ 𝐶2 ≪ 𝐶3 . We will use the notation 𝑇𝑒 (𝑛) 𝜇𝑖 to denote that the 𝑇𝑒 (𝑛) significantly fits

124

on the model 𝜇𝑖, 𝑇𝑒 (𝑛)≠𝜇𝑖, otherwise where I is a value on the closed interval [1,2,3]. Further,

we will use 𝑇𝑒 (𝑛) = { 𝜇2, 𝜇3} to imply both the models 𝜇2 and 𝜇3 significantly fit the function

𝑇𝑒 (𝑛)Thus, 𝑇𝑒 (𝑛) { 𝜇2, 𝜇3} →, 𝑇𝑒 (𝑛) ∊ {𝐶2,𝐶3} . If two of the three or all the three algorithms

are lower bounded by the same empirical complexity class, then we could conclude that on average,

theoretically the algorithms perform the same initially (ignoring the constant terms). If two of the

three or all the three algorithms are empirically upper bounded by the same empirical complexity

class, then we could conclude that on average, theoretically the algorithms perform the same

asymptotically (ignoring the constant terms). If the empirical lower bound of one algorithm X is

the empirical upper bound of the other algorithm Y , then clearly Y is far more efficient than X. If

two of the three or all the three algorithms share the same lower bound empirical complexity class,

as well as the upper bound empirical complexity class, then theoretically, we could conclude that

the algorithms have the same runtime performance. As an example, assume 𝑇𝑒𝐿 (𝑛) = { 𝐶1, 𝐶2} ,

𝑇𝑒𝐵 (𝑛) = { 𝐶2, 𝐶3} and 𝑇𝑒𝐴 (𝑛) = { 𝐶2, 𝐶3}. As per our definitions and criteria, we can conclude

that L-MIP is far faster than both S-MIP and SLUM, while both SLUM and S-MIP have the same

theoretical performance since both of them are have a polynomial lower bound and an exponential

upper bound.

3.6.2.1.1 Testing 𝑯𝟏 : 𝑻𝒆 (𝒏) = 𝝁𝟏

This is the most straightforward case. Using the “ (linear) regression feature in Data Analysis

ToolPack, we provided the 𝑇𝑒 (𝑛) values as Y variable values and n values as X variable values.

The output was recorded. In addition, a graph of 𝑇𝑒 (𝑛) 𝑣𝑠 𝑛 was drawn and a linear regression

trend line added using Microsoft excel native capabilities. The coefficient, intercept and R2
 values

obtained using excel trend line feature were then counterchecked against the corresponding values

obtained using the ToolPak addin.

3.6.2.1.2 Testing 𝑯𝟏 : 𝑻𝒆 (𝒏) = 𝝁𝟐

Recall that this test entails fitting 𝑻𝒆 (𝒏) on the polynomial regression model given in equation

3.13 and determining the parameters 𝛽0 𝛽1 , and c for some known 𝛽2 . In this work, we set 𝛽2 =

𝑘 = 2 thus making the assumption that 𝝁𝟐 is a quadratic function. This assumption is reasonable

in general, since we saw in section 1 that global optimization, algorithms conceptually take time

proportional to 𝑛𝑘 to generation of candidate composite webservices. Thus by setting 𝛽2 = 2 ,

125

equation 3.19 holds.

𝝁𝟐 =𝒈𝒑 (𝒏) = 𝜷𝟏 𝒏
𝟐 + 𝜷𝟎 𝒏 + 𝒄 (3.19)

 In equation 3.19, we have two independent variables n (X variable 1) and 𝑛2 (X variable 2). We

computed the range of values of 𝑛2 from known values of n. To test that 𝑻𝒆 (𝒏) is quadratic, we

used multiple linear regression analysis. This was accomplished using Excel Data Analysis

ToolPak, where we input the range of 𝑻𝒆 (𝒏) values in the Y input range and all the values in the

range X variable 1 and X variable 2. The output contains among other items the values of the

coefficients 𝛽1 𝑎𝑛𝑑 𝛽0 and the intercept C. In addition, a scatter plot of 𝑻𝒆 (𝒏) 𝒗𝒔 𝒏 was done in

Excel and polynomial regression fitted on the curve using Excel “Add Trend line” feature. The

coefficients and the intercept values and the R2
 values obtained using the scatter plot were

compared with those obtained using ToolPak.

3.6.2.1.3 Testing 𝐻1 : 𝑻𝒆 (𝒏) = 𝜇3

As described above, this test involved establishing whether or not 𝑻𝒆 (𝒏) fits on some exponential

function 𝜇2 (as in equation 3.14. Since 𝜇3 is of the form 𝛽0 𝑒
𝛽1𝑛 , if indeed 𝑻𝒆 (𝒏) grows

exponentially with respect to n then log 𝑻𝒆 (𝒏) should be linear with respect to n. Following this,

we transform equation 3.14 to equation 3.20 by taking natural logarithms on both sides.

 𝐥𝐧 𝑻𝒆 (𝒏) = 𝒍𝒏 𝜷𝟎 + 𝜷𝟏𝒏 = 𝜷′𝟎 + 𝜷𝟏𝒏 (3.20)

From equation 3.20 we applied linear regression using ToolPak where the Y Input range takes on

the range of ln 𝑇𝑒 (𝑛) and the X input range takes the range of values of n. The scatter plot

ln 𝑇𝑒 (𝑛) 𝑣𝑠 𝑛 is also drawn and linear trendline obtained in a manner similar to the one

explained in the preceding sections. Additionally the graph 𝑇𝑒 (𝑛) 𝑣𝑠 𝑛 (expected to be

exponential graphically) is drawn and exponential fitting using the Excel trendline feature done.

The 𝛽1 value obtained from ToolPak is directly crosschecked against the 𝛽1 values obtained from

the linear regression and exponential regression modes of the scatter plot ln 𝑇𝑒 (𝑛) 𝑣𝑠 𝑛 and

𝑇𝑒 (𝑛) 𝑣𝑠 𝑛 respectively. On the other hand, 𝛽′0 value obtained from the graph ln 𝑇𝑒 (𝑛) 𝑣𝑠 𝑛

is directly counterchecked against the intercept value obtained using ToolPak whereas the inverse

of 𝛽′0 or the inverse of the intercept value of the ToolPak output is checked against the 𝛽0 obtained

from direct exponential regression fitting of the curve 𝑇𝑒 (𝑛) 𝑣𝑠 𝑛.

126

3.4.2.2 Running time Expected Relative Speedup Analysis using Limits of Growth of

Functions

Once the performance regression models were established for each of the algorithms, the analysis

that followed in section 3.6.2.1 aimed to characterize the performance of each of the algorithms

into empirical complexity classes ignoring the constant terms. The analysis in 3.6.2.1 therefore is

tantamount to the theoretical analysis of algorithms. In this section, the algorithms that

theoretically share the same upper bound empirical complexity class are further analyzed for

average (practical) performance using differential calculus and L-Hospital’s Rule and limits theory.

The rationale for this analysis, is that even if the running time of two algorithms are characterized

by the same “worst case” empirical complexity, it’s of practical relevance to analyze which one is

better than the other on average .Using the example in 3.6.2, even if 𝑇𝑒𝐴 (𝑛) and 𝑇𝑒𝐵 (𝑛) have an

exponential time upper bound, it is likely that 𝑇𝑒𝐵 (𝑛) is better than 𝑇𝑒𝐴 (𝑛), at least informed by

the analysis in chapter two and also in (Mulongo et al, 2015;2016). In fact, it’s easy to quickly tell

from the scaling graphs of 𝑇𝑒𝐵 (𝑛) 𝑣𝑠 𝑛 and 𝑇𝑒𝐴 (𝑛) vs n. Moreover, the coefficients or constant

terms obtained through the statistical tests in 3.6.1.1 can hint which of the two algorithms grows

faster in running time, even if the two algorithms share the same upper bound empirical complexity

class.

We will term the performance efficiency gain (or loss) of SLUM with respect to either S-MIP or

L-MIP as n tends to infinity as SLUM Expected Speedup (SES). SES is a function or constants that

tells how many times SLUM is faster or slower than S-MIP (if SES is computed with respect to

S-MIP) or faster or slower than L-MIP (if SES is computed with respect to L-MIP). Let 𝑆𝐸𝑆𝑔 and

𝑆𝐸𝑆𝑙 represent SES with respect to S-MIP and SES with respect to L-MIP. Let 𝑓(𝑛) be the

empirical regression equation (function) representing the runtime function of SLUM and 𝑔(𝑛) be

the empirical regression equation (function) representing the runtime growth of either L-MIP or

S-MIP. Further, in this analysis, we use 𝑇𝑒 (𝑛) to refer to either 𝑇𝑒𝐴 (𝑛) or 𝑇𝑒𝐿 (𝑛).

To show that as 𝑛 → ∞, 𝑇𝑒 (𝑛) ≫ 𝑇𝑒𝐵 (𝑛) , we need to show that
 𝑇𝑒 (𝑛)

𝑇𝑒𝐵 (𝑛)
 → ∞, 𝑛 → ∞ . The

converse is to show that
 𝑇𝑒𝐵 (𝑛)

𝑇𝑒 (𝑛)
 → 0, 𝑛 → ∞. We adopt the former. Applying L-Hospital’s Rule,

equation 3.21 is true.

lim n→ ∞
 𝑻𝒆 (𝒏)

𝑻𝒆𝑩 (𝒏)
 = 𝐥𝐢𝐦 𝒏 → ∞

 𝝏 𝑻𝒆 (𝒏)

𝝏 𝑻𝒆𝑩 (𝒏)
 (3.21)

127

 Mathematically, the SES defined here is given by equation 3.22.

𝑺𝑬𝑺 = 𝐥𝐢𝐦 𝒏 → ∞
 𝝏 𝑻𝒆 (𝒏)

𝝏 𝑻𝒆𝑩 (𝒏)
 (3.22)

Thus 𝑆𝐸𝑆 is the slope of the function 𝑇𝑒 (𝑛) with respect to 𝑇𝑒𝐵 (𝑛) for large enough n. Two

outcomes are possible. The first case is that 𝑆𝐸𝑆 is a constant (real number). The second case is

that 𝑆𝐸𝑆 is a function of n. In the first case, to show that 𝑇𝑒𝐵 (𝑛) is more efficient than 𝑇𝑒 (𝑛),

it suffices to show that 𝑆𝐸𝑆 > 1, otherwise for the latter case, we have to show that the function

𝑆𝐸𝑆 → ∞, 𝑛 → ∞ . Consequently, we make the null and alternative hypothesis below.

 𝑯𝟎 : 𝑻𝒆 (𝒏) =≪ 𝑻𝒆𝑩 (𝒏) (3.23)

 𝑯𝟏 : 𝑻𝒆 (𝒏) ≫ 𝑻𝒆𝑩 (𝒏) (3.24)

𝐻0 will be accepted if 𝑆𝐸𝑆 ≤ 1 𝑜𝑟 𝑆𝐸𝑆(𝑛) → 0 , 𝑛 → ∞ .Otherwise 𝐻1

In the case where 𝑆𝐸𝑆 is a function of n, it’s essential to determine the value of n for which the

value of the slope > 1. We will call the value of n at which the expected speedup is more than 1

as the expected critical point and denote it by 𝑛𝐶𝐸 . The larger the 𝒏𝑪𝑬 the more remote the chances

are that a small scale virtual enterprise broker will benefit from the efficiency of our method as

opposed to an alternative technique. The significance of this is so that a virtual enterprise broker,

for instance can determine how many virtual enterprise service providers per workflow task the

broker needs in order to benefit from using our approach. Because we do not foresee a situation

where SLUM is faster than L-MIP, the analysis and determination of 𝑛𝐶𝐸 will only be with respect

to S-MIP.

3.4.2.3 Runtime Performance Correlation based on Empirical Relative Complexity

 The analysis in section 3.6.2.1 concerned characterizing the empirical complexity of L-MIP,

SLUM and S-MIP with an aim to determining and comparing their theoretical limits. In 3.6.2.2,

the analysis targeted (practical –all terms in the regression equation considered) average

performance of SLUM with respect to S-MIP. In this section, the analysis aims to compare the

initial practical and asymptotic practical performance of 𝑇𝑒𝐵 (𝑛) against 𝑇𝑒 (𝑛) , where 𝑇𝑒 (𝑛)

could be 𝑇𝑒𝐴 (𝑛) or 𝑇𝑒𝐿 (𝑛). The analysis is carried out using the method by Coffin

 & Saltzman (2000). If the regression model obtained by either plotting 𝑇𝑒𝐵 (𝑛) vs 𝑇𝑒 (𝑛) is linear

or by plotting ln 𝑇𝑒𝐵 (𝑛) vs ln 𝑇𝑒 (𝑛) is linear, then the resultant regression model of the form in

128

equation 3.25 can be used to tell whether 𝑇𝑒𝐵 (𝑛) is better or worse than 𝑇𝑒 (𝑛) initially and by

how much, and also show whether 𝑇𝑒𝐵 (𝑛) is better or worse than 𝑇𝑒 (𝑛) asymptotically and by

how much. This can be can easily be checked graphically. However, graphs wouldn’t quantify the

magnitude of relative differences initially and asymptotically. Also, the methods in preceding two

subsections cannot reveal these levels of detail.

Picking from 3.6.1, we saw that 𝑇𝑒𝐴 (𝑛) (𝑂(𝑒
𝑜(𝑛))) and 𝑇𝑒𝐵 (𝑛(𝑂(𝑒

𝑜(𝑛))). By plotting a graph

of ln 𝑇𝑒𝐵 𝑣𝑠 𝑙𝑛 𝑇𝑒𝐴 (𝑛) , a linear regression of the form in equation 3.25 holds. Note, 𝑡𝑒𝐴

= 𝑻𝒆𝑨 (𝒏).

From equation 3.25 we obtain equation 3.26.

𝒍𝒏𝑻𝒆𝑩 (𝒏) = 𝒍𝒏 𝜷𝟎 + 𝜷𝟏 𝒍𝒏 𝒕𝒆𝑪 + € (3.25)

 𝑻′𝒆𝑩 (𝒏) = 𝜷𝟎 𝒕𝒆𝒄
𝜷𝟏 (3.26)

Thus given the running time algorithm A (S-MIP), running time of algorithm B (SLUM) in terms

of 𝑡𝑒 can be estimated using (26). Coffin & Saltzman (2000) refers to the function 𝑂(𝑡𝑒
𝛽1) as the

empirical relative complexity of algorithm B relative to algorithm C and the parameter 𝛽1 as the

empirical relative complexity coefficient of algorithm B with respect to algorithm C, where

algorithm C is either L-MIP(algorithm L) or S-MIP (algorithm A). When 𝛽1 < 1 , then

empirically, B is asymptotically much faster than C (Coffin & Saltzman , 2000). . Otherwise when

𝛽1 > 1 , then , B is asymptotically much slower than C (Coffin & Saltzman , 2000) . As

n→∞,𝑻′𝒆𝑩 (𝒏) ≈ 𝑡𝑒𝐴
𝛽1 (Coffin & Saltzman , 2000). On the other hand, when 𝛽0 > 1, it means

that algorithm C is faster than B for small enough n, while when 𝛽0 < 1, it means that algorithm

C is slower than algorithm B for small enough n (Coffin & Saltzman , 2000). . We made two sets

of hypotheses, one on the parameter 𝛽0 and the other on 𝛽1 . The hypotheses are captured in

equations 3.27, 3.28, 3.29 and 3.30. The null hypothesis in equation 3.27 below claims that the

initial performance of both algorithms is equal while the corresponding alternative hypothesis in

equation 3.28 claims that the initial performance is not the same. 𝐻0 in equation 3.29 states that

the asymptotic performance of the two algorithms is the same while the alternative hypothesis 𝐻1

 𝑯𝟎 : 𝜷𝟎 = 𝟏 (3.27)

𝑯𝟏 : 𝜷𝟎 ≠ 𝟏 (3.28)

𝑯𝟎 : 𝜷𝟏 = 𝟏 (3.29)

𝑯𝟏 : 𝜷𝟏 ≠ 𝟏 (3.30)

129

3.4.2.4 Performance Difference Detection using Parametric/Non Parametric Tests

As explained earlier on, these tests shall be applied if the performance comparison between SLUM

vs S-MIP or SLUM vs L-MIP using the method in 3.6.2.3 is not feasible. Coffin & Saltzman

(2000) notes that CPU running times exhibit increasing non constant variance so that any attempt

to use tests with normality assumptions may not yield plausible results. To confirm this, we used

Shapiro Wilk test to test for normality of the performance differences between the pairs. If the data

were normally distributed, we use the paired student t-test, otherwise we use either the signed test

or the Wilcoxon matched paired test.

3.4.2.5 Runtime Analysis using Sample Instantaneous Speedup and Sample Mean Speedup

All the preceding methods of analysis are based on inferential statistics. Inferential statistics

provide more rigorous tools (than descriptive statistics) of estimating population parameters

based on sample data (Howel C. David, 2013). Nevertheless, descriptive statistics can be useful

tools in summarizing sample data (Howel C. David, 2013) .We define two descriptive statistics:

SLUM Sample Instantaneous Speedup (SSIS) and SLUM Sample Mean Speedup (SSMS). SSIS

and SSMS with respect to S-MIP and with respect to L-MIP are denoted as 𝑆𝑆𝐼𝑆𝑔, 𝑆𝑆𝑀𝑆𝑔, 𝑆𝑆𝐼𝑆𝑙

and 𝑆𝑆𝑀𝑆𝑙, and defined according to (31) , (32), (33) and (34) respectively.

𝑺𝑺𝑰𝑺𝒈 = (𝑻𝒆𝑳 (𝒏))/ (𝑻𝒆𝑩 (𝒏)) (3.31)

 𝑺𝑺𝑴𝑺𝒈 = (∑ 𝑺𝑺𝑰𝑺𝒈
𝑵
𝟏)/𝑵 (3.32)

𝑺𝑺𝑰𝑺𝒍 = (𝑻𝒆𝑳 (𝒏))/ (𝑻𝒆𝑳 (𝒏)) (3.33)

𝑺𝑺𝑴𝑺𝒍 = (∑ 𝑺𝑺𝑰𝑺𝒍
𝑵
𝟏)/𝑵 (3.34)

Where N is the sample size (number of problem instances).

Thus, SSIS is the speedup of SLUM for a specified problem instance of size n. 𝑆𝑆𝐼𝑆 < 1 means

that SLUM is slower than the alternative algorithm for some specific value of n. 𝑆𝑆𝐼𝑆 = 1, means

that SLUM has equal efficiency with the alternative algorithm for some n while SLUM is faster

than the alternative strategy for some n when 𝑆𝑆𝐼𝑆 > 1 . 𝑆𝑆𝑀𝑆 has a similar interpretation,

although over the set of all N sample problem instances. Similar to 𝑛𝐶𝐸 (see section 3.6.2.3) will

define 𝑛𝐶𝑆 as the value of n beyond which 𝑆𝑆𝐼𝑆 > 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑛𝐶𝑆 . Thus 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 < 𝑛𝐶𝑆 ,

130

𝑆𝑆𝐼𝑆 ≤ 1. Therefore, even without performing the detailed regression analysis, 𝑆𝑆𝐼𝑆, . 𝑆𝑆𝑀𝑆 and

𝑛𝐶𝑆 can pre-empt some interesting performance behaviour of SLUM. Because we do not foresee

a situation where SLUM is faster than L-MIP, we only determine 𝑛𝐶𝑆 will only be with respect to

S-MIP.

3.5 Chapter Summary

In this chapter we discussed the research methodology followed in order to study the runtime

performance efficiency and the solution quality of our proposed model SLUM against the standard

related models- S-MIP and L-MIP. We discussed the overall research process, followed by a

detailed discussion on research design. Research design addressed the issues concerning the

metrics of measurements of runtime efficiency and solution quality, in which respectively, CPU

time and relative solution quality (RSQ) were adopted. The design also addressed the issues of

sampling where for CPU time, 16 problem instances, having 5, 10, .., 80 service providers per task

and two tasks for each problem instance were chosen. The choice of 16 samples for CPU runtime

was found to be sufficient in relation to: i) previous related studies, ii) the fact that for CPU runtime,

the difficulty of the problem instance as opposed to merely the size of the sample, is more

important and iii. the methods of analysis and the nature of statistical tests applied were robust

enough i.e regression analysis, empirical relative complexity analysis and differential calculus.

Further, the composite phase transition rate values were seven and were distributed over the

interval [0.1], including the 0 and 1. The distribution was selected carefully so that we could

observe the behaviour of SLUM efficiency as the composite phase transition rate progressively

tends to zero and progressively tends to 1. For solution quality, 40 samples were determined as

the right sample size to evaluate differences in solution quality among the three algorithms. The

number was chosen because differences in mean performance was the only viable method for

assessing solution quality differences by the very nature of this metric and also in regard to

previous studies. Normality tests were identified as the method of analysis given that the sample

size was more than the minimum number 30 required for test of normality. Other issues discussed

were, the number of runs in which we determined for CPU runtime, 10 runs would be performed

for each experiment. This owes to the fact that measurements of CPU runtime taken even within

the same interval might have some variances. For solution quality, it was determined that only one

run was sufficient because the algorithms under text are deterministic in terms of the solution

131

returned. For this reason, provided the optimization variables remained invariant, running the same

experiment many times would still yield the same utility value of the objective function. We also

addressed the issue of how problem instances were generated and their structure. The answer here

was that simulated webservices were programmed to generate random vectors of seven QoS values.

The vectors of related webservices were packed into one matrix, leading to two matrices leading

to a n by 7 matrix, where n as said varied from 5, 10 , to 80.

132

4 CHAPTER 4: RESULTS AND DISCUSSIONS

The two specific research objectives of this study were:-

1. Design a layered hierarchical mixed integer programming model for the composite webservice

selection problem following the concepts from the theory of Layering as Optimization

Decomposition.

2. Evaluate the performance of the SLUM model against the single layered global planning

technique (S-MIP) and the local planning method (L-MIP) in terms of two metrics:

i. Running time (performance efficiency) and;

ii. Solution quality.

Objective number one was achieved by way of presenting the proposed Service Layered Utility

Maximization (SLUM) model as detailed in section 2.10, after conducting literature review.

Objective number two, roman number one was partially achieved through the theoretical

mathematical analysis presented in section 2.14. As explained in chapter 3, it was not possible to

mathematically model the relative solution quality of the algorithms prompting for an experimental

approach. Further the experimental approach as detailed in chapter 3, besides serving as a

verification tool of the theoretical results, was designed to answer the research questions outlined

in section 2.13, some of which could not be answered through theoretical mathematical analysis.

The research questions were:-

RQ1: For a composite webservice selection problem having a workflow with k tasks and v

alternative webservices per task, how does the runtime efficiency of SLUM compare with that of

S-MIP and L-MIP when each is used to solve the problem? The specific research questions arising

from this question are:

RQ1.1: How does the running time of SLUM grow as the number of service providers per task

increase?

RQ1.2: How does the running time growth of SLUM compare with that of S-MIP and L-MIP?

RQ1.3: How much speedup is achievable when using SLUM over S-MIP to autogenerate

composite webservices given a business workflow having n webservices per task?

133

RQ1.4: What is the minimum number of service providers per workflow task that a virtual

enterprise broker needs to have in order to benefit from the relative efficiency of SLUM when

compared to S-MIP?

RQ2 that was outlined in section 2.13 of chapter two. The question is, RQ2: How does the average

solution quality of SLUM compare with that of L-MIP and S-MIP? This leads us to the following

specific research questions:

RQ2.1: What is the average relative solution quality (percentage accuracy of quality) of the

composite webservices generated by SLUM relative to S-MIP?

RQ2.2: What is the percentage difference in the relative solution quality by SLUM relative to L-

MIP?

This chapter presents the experimental results of the study. The results are later analyzed in

response to the to the above research questions. Recall that the specific research questions were

designed towards addressing objective number two.

A significant amount of the results, analysis and discussions reported here can also be found in

(Abiud W. M. et al, 2016a). In sections 4.1 to 4.8 results on the running time behaviour of the

three algorithms are presented. Recall that from chapter two, we theoretically showed that the

running time growth TeB(n) and hence the speedup Ω of SLUM relative to the baseline algorithm

(S-MIP) varies directly as the initial number of webservices (virtual enterprise service providers)

per task n, and inversely as the composite service phase transition rate ρ. Hence, in this study, in

order to answer research questions RQ1, we designed the experiments such that the variation of

TeB(n) with n and the speedup Ω were reported at specific average values of ρ. Recall also from

chapter 3 that ρ cannot be determined directly a priori since at the start of the experiment, it’s not

possible to know how many webservices will proceed to phase two of the optimization process.

However, by varying one or some of the boundary values of the webservice QoS constraints, the

number of webservices that get promoted to phase two can be indirectly controlled. Holding the

set of input data set constant, we used a trial and error process, where we tuned some of the

constraints in order to achieve a desired average value of ρ. At the end of each experiment, the

mean value ρavg was computed. Since ρavg varies on the continuous closed interval [0,1], we

134

designed a number of experimental setups having ρavg values on this range. The experiment setup

were as follows.

 The first setup consisted of the case where ρavg= 0.0296 approaches zero, representing the special

case when ρ=0 as described in chapter two , section 2.14.2. This is the case where the average

speedup Ω relative to S-MIP is expected to be approximately 2k
 for large enough n. The second

experiment setup had ρavg=1, which is the special case described in chapter two section 2.14.1. As

per section 2.14.1, when ρavg=1, the average expected to be approximately 2k-1 for a large enough

n. The other experiments had ρavg values in between, specifically ρavg=0.61, ρavg=0.45, ρav=0.36,

ρavg=0.13 and ρavg=0.064.

In each of the above setups, k was fixed at 2 and the same ensemble of input problem instance set

was used. The problem instance set consisted of 16 problem instances having n=5, 10, 15, 80.

The results produced in each of the experiments were analyzed following the methodology

described in section 3.6.2:

i) Descriptive Statistics (Sample Instantaneous Speedup), Scatter plots of running time,

growth

ii) Statistical Regression Analysis to quantitative characterize the running time empirical

function. Makes use of the scatter plots in (i) above

iii) Expected Speedup using L-Hospitals Law to determine average speed up for large n.

Makes use of the regression functions in (ii) above

iv) Initial and asymptotic speedup using Empirical Relative Complexity analysis. Makes use

of the analysis in (ii) above.

At the end, we summarize the key results on running time in section 4.9.

In section 4.10, we present findings on solution quality of SLUM in relation to the two other

algorithms. The analysis follows the methodology established in section 3.4.1 of chapter three.

In section 4.11, we present a detailed discussions of the results. In our discussion, we link the

findings to our research questions. Further we explain our results linking them to the analytic and

theoretical considerations of chapter two. In this section, we also report any “an unexpected results”

that have no immediate scientific/theoretical basis.

135

4.1 Running Time Analysis when mean Composite Service Phase

Transition, ρ=0.0296

4.1.1 Running time Scaling Scatter Plots and Simple

Descriptive Statistics (Sample Speedup)

It can be observed that for each of the three algorithms, the time taken to find a solution is

consistently increasing with respect to n; figure 10 confirms this observation. Moreover, the

running time of SLUM, S-MIP and L-MIP nearly the same at n=5. Beyond n=5, the running time

of L-MIP is persistently lower than that of SLUM and S-MIP. In fact, both SLUM and S-MIP

running time grows more than double compared to L-MIP for every increment in n. For example,

when n=10, teA = 1.3, teB = 1.3 and tEl=0.68. Thus, at n=10, both SLUM and S-MIP are more than

two times slower than L-MIP. When n is doubled from 10 to 20, it’s possible to see that both

SLUM and S-MIP are about 4 times slower than L-MIP. Table 12 also shows that SLUM is

generally slower than S-MIP for all n<40 since we can see that for n<40, the SIS<1. On the other

hand, SLUM is consistently faster than S-MIP for n>40 since SIS>1 for all n>40.

Table 12: CPU Running time Data when Phase Transition Rate ρ 0.0296

N

teB(s) teA(s)

ln (teA) ln (teB) ln (teL) SISn N-

Squared
teL(s)

5 25 0.65 0.59 0.55 -0.53 -0.43 0.6 0.91

10 100 1.3 1.3 0.68 0.26 0.26 0.39 1

15 225 1.96 1.96 0.8 0.67 0.67 0.22 1

20 400 4.2 4 0.66 1.39 1.44 0.42 0.95

25 625 4.6 4.2 0.8 1.44 1.53 0.22 0.91

30 900 6.9 6.35 0.88 1.85 1.93 0.13 0.92

35 1225 9.9 9.6 0.88 2.26 2.29 0.13 0.97

40 1600 13.3 14.5 1 2.67 2.58 0 1.09

45 2025 15.8 22 1 3.09 2.76 0 1.39

50 2500 19.3 32.5 1.3 3.48 2.96 0.26 1.68

55 3025 22.5 40.3 1.4 3.7 3.11 0.34 1.79

60 3600 30 62 1.5 4.12 3.4 0.41 2.07

65 4225 37 87 1.66 4.46 3.61 0.51 2.35

70 4900 47 118 1.72 4.77 3.85 0.54 2.51

75 5625 60 155 1.9 5.04 4.09 0.64 2.58

136

Figure 10 Empirical Running Time Growth Scatter Plot of L-MIP, SLUM and SMIP ρavg

= 0.0296.

Therefore from table 3 and figure 10, we have that 𝑛𝑐𝑠 = 40.

Figure 11 below shows how the linear regression models of the running time growth of SLUM, S-

MIP & L-MIP at a fixed composite service phase transition rate p=0.0296.

The table 4 below shows a summary of the linear regression, regression and exponential regression

statistics for each of the three algorithms : SLUM, S-MIP and L-MIP.

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70 80

C
P

U
 R

u
n

n
in

g
Ti

m
e

 (
se

co
n

d
s)

Number of Webservices (Virtual Enterprises) per workflow task, n

S-MIP-Data Set I

SLUM-DataSetI

L-MIP

137

4.1.2 CPU Running Time Growth Analysis via Linear, Polynomial and Exponential

Regression

Figure 11 Empirical Running Time Growth Linear Regression Analysis at ρavg 0.0296

Table 13: CPU Running time Goodness of fit and Significance Results when Phase Transition

Rate ρ 0.0296

 Regression Model Type

Linear Regression Polynomial Regression Log-linear regression)

Algorithm R2 p1 pi R2 p1 p2 pi R2 pn pi

L-MIP 0.93 1.95

*10-5

0.000

4

0.97

8

0.86 0.00012

7

4.5*10-

6

0.23 0.08 0.35

S-LUM 0.86

8

4.3*

10-7

0.007 0.98

7

0.004 0.00000

1

0.024 0.97 1.5*10-

10

0.38

S-MIP 0.78 2.5*

10-5

0.007 0.98 6.6*10

-5

3.0*10-7 0.0025 0.99

5

4.0*10-

15

0.0000

4

teA = 1.8652n - 37.321

R² = 0.7597

teB = 0.7518n - 11.776

R² = 0.8687

teL = 0.0187n + 0.3693

R² = 0.9387

-50

0

50

100

150

200

0 10 20 30 40 50 60 70 80

C
P

U
 R

u
n

n
in

g
Ti

m
e

 (
Se

cn
d

s)

Number of Webservices (Virtual Enterprises) per workflow task , n

S-MIP-Data Set I

SLUM-DataSetI

138

 Figure 12 Empirical Running Time Growth – Polynomial Regression Curves at ρavg =

0.0296

Figure 12 above shows how the polynomial regression models of the running time growth of

SLUM, S-MIP & L-MIP at a fixed composite service phase transition rate p=0.0296. On the other

hand, figure 13 below shows the log-linear regression models of the running time growth of

SLUM, S-MIP & L-MIP at a fixed composite service phase transition rate p=0.0296. Note that as

described in chapter 3, the log-linear regression was used to text the exponential runtime growth

of each of the three.

teA= 0.0518n2 - 2.2816n + 21.426

R² = 0.9759

teB= 0.0144n2 - 0.3993n + 4.5309

R² = 0.986

teL= 0.0002x2 + 0.0027n + 0.5959

R² = 0.9784

-20

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70 80

C
P

U
 R

u
n

n
in

g
Ti

m
e

 (
se

co
n

d
s)

Number of webservices (virtual enterprises) per workklow task , n

S-MIP-Data
Set I

139

Figure 13 Empirical Running Time Growth – Log Linear Regression at ρavg = 0.0296

4.1.2 SLUM Expected Speedup via L. Hospital’s Law

Applying the L-Hospital’s Law, we compute the SLUM expected speedup (SES) as per the

methodology in chapter three. Using the statistics from figure 12 and figure 13, the SES value

under polynomial growth, SESP is determined as per equation 4.1 and. the SES function under

exponential growth is given equation 4.2.

𝑆𝐸𝑆𝑝 = lim
𝑛→∞

𝑑(𝑡𝑒𝐴)/𝑑((𝑡𝑒𝐵) =
0.0518

0.0144
= 3.6 (4.1)

 𝑆𝐸𝑆𝐸 = lim
𝑛→∞

𝑑(𝑡𝑒𝐴)/𝑑((𝑡𝑒𝐵) =
0.6231e0.0763n

0.904e0.0593n
0.6893e0.017n (4.2)

The function 0.6893e0.017n can be used to compute the expected speedup for a given number of

service providers per workflow task at ρ=1. To compute, nCE ,the critical value beyond which

TeL(n)= 0.0022x + 0.2327

R² = 0.057

ln TeB(n)= 0.0593n - 0.1011

R² = 0.959

ln TeA(n)= 0.0763n - 0.4731

R² = 0.9

-1

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80

ln
 T

e(
n

)

Number of webservices per workflow task (n)

L-MIP

SLUM

S-MIP

Linear (L-MIP)

Linear (SLUM)

Linear (S-MIP)

140

SLUM is faster than S-MIP, we could set the expected SES at 1.1 and solve the inequality in

equation 4.1.

 0.6893e0.017n ≥ 1.1 = 0.0117𝑛𝑙𝑛𝑒 = ln 1.1 → 𝑛 ≥ 8 (4.3)

Equation 4.3 means that if a virtual enterprise broker had at least 8 virtual enterprises per task, and

the current transition rate is 0.029, they would enjoy a 10% increase in speedup when using SLUM

instead of S-MIP.

Similarly, the least of number of service providers per task needed to achieve an expected speedup

of 3.6 is given as per equation 4.4 below.

0.6893e0.017n ≥ 3.6 = 0.0117𝑛𝑙𝑛𝑒 = ln 3.6 → 𝑛 ≥ 109 (4.4)

4.1.3 Initial and Asymptotic Speedup via Empirical Relative

Complexity under Exponential Growth

We plot log teB vs log teA as shown in figure 14. The relationship log teB vs log teA seems to be

strongly linear. We checked the significance of the relationship using the Microsoft Excel ToolPak

plugin, and obtained a p value of 0.01 for the intercept and a p value of 3.85 * 10-13
 for the X

variable. These results indicate that the linear relationship is not only strong but statistically

significant at a significance level of 0.05. The linear relationship allowed to us to compute the

values of 𝛽0 and 𝛽1 in the equations 3.25 and 3.26. We obtained 𝛽0 = 0.2506 𝑎𝑛𝑑 𝛽1 = 0.7833

→ 𝑡𝑒𝐵 = 1.28𝑡𝑒𝐴
0.783

 → 𝛽0 = 1.28 and 𝛽1 = 0.7833 . Since 𝛽0 > 1 , we reject the null

hypothesis in equation 3.27 and accept the alternative hypothesis of equation 3.28. Additionally,

𝛽1 < 1 and therefore we reject the null hypothesis in equation 3.29 and accept the alternative

hypothesis in equation 3.30. We thus conclude that S-MIP is 1.28 times faster than SLUM initially,

but SLUM is more efficient than S-MIP asymptotically since 𝑡𝑒𝐵 = 𝑡𝑒𝐴
0.783 for large enough teA.

141

Figure 14 Empirical Relative Complexity –log-log Scatter plot at ρavg = 0.0296

4.2 Running Time Analysis when Mean Composite Service Phase Transition,

ρ 1

4.2.1 Running time Scaling Scatter Plots and Simple

Descriptive Statistics

Table 5 presents the CPU runtime performance of SLUM and S-MIP with respect to problem

instances of increasing empirical hardness. As explained earlier, optimization inequality

constraints were tuned once such that for all problem instances, all candidate webservices

evaluated during stage one were all promoted for evaluation in phase 2. The goal was to ensure

that any variation in performance between SLUM and S-MIP is not attributed to the service

elimination effect. The data shows that until n=45, the performance of SLUM is marginally worse

than that of S-MIP. Beyond n=45, the performance of SLUM is steadily better than that of S-MIP.

Moreover the relative speedup of S-MIP Ssi increases steadily, starting at 1.017 when n=45 and

grows to 1.2 at n=120. The scatter plot in figure 15 and the SLUM Instantaneous speedup curve

(SISC) in figure 4.8 reinforce the observations.

ln TeB(n) = 0.7833ln TeA(n) + 0.2506

R² = 0.984

-1

0

1

2

3

4

5

-1 0 1 2 3 4 5 6

lo
g

Te
B

(n
)

log TeA(n)

142

Table 14: CPU Running time Data when Phase Transition Rate ρ 1

Figure 15 Empirical Running Time Growth Scatter Plot at ρavg = 0.0296

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120 140

C
P

U
 R

u
n

n
in

g
Ti

m
e

 (
Se

co
n

d
s)

Number of Webservices (Virtual Enterprises) per task n

S-MIP -p=1

SLUM at p=1

N TB (s) TA (s) Ssi N TB (s) TA (s) Ssi

5 0.62 0.56 0.9032 60 42.2 43.4 1.0284

10 1.37 1.3 0.9489 65 59.1 61 1.0321

15 1.86 1.7 0.9140 70 79.89 83.1 1.0402

20 2.64 2.4 0.9091 75 100.76 104.3 1.0446

25 3.87 3.49 0.9018 80 130.09 138.2 1.062354

30 5.3 5 0.9434 85 165.54 177 1.069211

35 7.45 6.95 0.9329 90 218.17 235 1.07712

40 10.7 10.5 0.9813 95 254.81 275.6 1.081592

45 15.74 16 1.0165 100 312.01 339.3 1.087455

50 22.2 22.4 1.0090 110 481.76 530 1.100139

55 31 31.6 1.0194 120 673.85 748 1.110038

143

Figure 16: Speedup Growth Curve vs Number of Service Providers per workflow task at

ρavg = 1

4.2.2 Statistical Regression Models: Linear, Polynomial &

Exponential

Exponential regression of the curves in figure 15 yielded the equations teA = 0.7793e0.0624n at R² =

0.9835 and teB = 0.8676e0.0605n at R² = 0.9836. Thus we conclude that both SLUM and S-MIP

exhibit exponential growth in running time. By substituting equation (10) with the two exponential

equations, and setting determined 𝑛𝑆𝑆𝐶=60 as the minimum number of webservices that would be

required for SLUM to be at least faster than S-MIP

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

0 20 40 60 80 100 120 140

ss
i

Number of webservices (virtual enterprises) n

144

 Figure 17 Empirical Running Time Growth:- Linear Regression Curves at ρavg = 1

Figure 17 above shows linear regression models/equations on each of the three algorithms – S-

MIP, SLUM and L-MIP when the composite service phase transition rate is unity i.e when all

webservices are promoted from the SCUM layer to the SPUM layer. On the other hand, figure 18

below shows the polynomial regression models for S-MIP, SLUM and L-MIP when the composite

service phase transition rate is unity.

Figure 18 Empirical Running Time Growth:- Polynomial Regression Curves at ρavg = 1

teA = 4.8428n - 152.82

R² = 0.6999

teB = 4.4149n - 137.73

R² = 0.711

-200

-100

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120 140

C
P

U
 R

u
n

n
in

g
Ti

m
e

 (
se

co
n

d
s)

Number of Webservices (Virtual Enterprises) per workflow task , n

S-MIP -p=1

SLUM at p=1

y = 0.0949x2 - 6.5538x + 86.398
R² = 0.9693

y = 0.0846x2 - 5.7392x + 75.403
R² = 0.9723

-100

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120 140

C
P

U
 R

u
n

n
in

g
Ti

m
e

 (
se

co
n

d
s)

Number of Webservices (Virtual Enterprises) per workflow task , n

S-MIP -p=1

SLUM at p=1

145

Figure 19 Empirical Running Time Growth :- Exponential Regression Curves ρavg =1

Figure 19 above shows exponential regression models equations on each of the three algorithms –

S-MIP, SLUM and L-MIP when the composite service phase transition rate is unity i.e when all

webservices are promoted from the SCUM layer to the SPUM layer. On the other hand, figure 18

below shows the polynomial regression models for S-MIP, SLUM and L-MIP when the composite

service phase transition rate is unity.

4.2.3 SLUM Expected Speedup via L-Hospital’s Law

Applying the L-Hospital’s Law, we compute the SLUM expected speedup (SES) as per the

methodology in chapter three. Using the regression equations from the figure 18 and figure 19,

the SES value under polynomial growth, SESP is determined as per equation 4.5 below and the

SES function under exponential growth is given equation 4.6

 𝑆𝐸𝑆𝑝 = lim
𝑛→∞

𝑑(𝑡𝑒𝐴)/𝑑((𝑡𝑒𝐵) =
0.0949

0.0846
= 1.12 (4.5)

 𝑆𝐸𝑆𝐸 = lim
𝑛→∞

𝑑(𝑡𝑒𝐴)/𝑑((𝑡𝑒𝐵) =
0.7793e0.0624n

0.8676e0.0606n
= 0.9e0.0018n (4.6)

teA = 0.7793e0.0624x

R² = 0.9835

teB = 0.8676e0.0605x

R² = 0.9836

0

200

400

600

800

1000

1200

1400

1600

0 20 40 60 80 100 120 140

C
P

U
 R

u
n

n
in

g
Ti

m
e

 (
se

co
n

d
s)

Number of Webservices (Virtual Enterprises) per workflow task , n

S-MIP -p=1

SLUM at p=1

146

The function 0.9e0.0018n can be used to compute the expected speedup for a given number of

service providers per workflow task at ρ=1. To compute, nCE ,the critical value beyond which

SLUM is faster than S-MIP, we could set the expected SES at 1.1 and solve the inequality in

equation 4.7

 0.9e0.0018n ≥ 1.1 = 0.0103𝑛𝑙𝑛𝑒 = ln 1.1 → 𝑛 ≥ 59 (4.7)

Equation 4.7 means that if a virtual enterprise broker had 59 virtual enterprises per task, and the

current transition rate is 1, they would enjoy a 10% increase in speedup when using SLUM instead

of S-MIP.

4.2.4 SLUM Initial and Asymptotic Speedup via Empirical

Relative Complexity Analysis

The growth behaviour of the two curves in figure 15 above hint non constant variance and

nonnormality of CPU running time. Thus according to Coffin & Saltzman (2000), a variance

stabilizing transformation (log transformation in this case) is required. The log-log scatter plot in

Figure 3 being a straight line confirms the heteroskedasticity of the CPU running time. From Figure

20, we infer that the empirical relative complexity coefficient of SLUM with respect to S-MIP β1

= 0.9684 while the constant term β0 =1.1 and thus conclude that initially, S-MIP is 1.1 times faster

than SLUM but asymptotically, SLUM is more efficient than S-MIP such that teB = teA
0.9684

 . This

means that if for instance the running time of S-MIP is 1000 seconds, the running time of SLUM

would be 10000.9684
 = 804 seconds.

147

Figure 20 SLUM Empirical Relative Complexity log-log Curve at ρavg = 1

Using figure 20, we can also compute the SLUM Expected Speedup function under exponential

growth. That’s, by considering that over the long run, the function for computing SLUM running

time as function of S-MIP running time is teB = teA
0.9684

 . For any teA, the rate of change (speedup)

of SLUM with respect to S-MIP is SES = teA / teA
0.9684

 = teA
0.0316

 . By plotting the function teA
0.0316

vs teA we obtain a graph showing how SES varies with teA for very large values. The graph is

depicted in figure 21. The goal was to empirically estimate the limit of the SLUM expected

speedup. Figure 21 reveals that the SES values are increasing with respect to teA. However, the

same figure reveals that the growth in SES is not infinite, but instead seems to approach a limiting

value of 2.

Table 15: Expected Relative Speedup of SLUM with respect to S-MIP for large teA values

at ρ 1

teA(seconds) teB(seconds) SES

1000 803.8962 1.243942

5000 3820.169 1.308843

10000 7474.807 1.337827

y = 0.9684x + 0.0999
R² = 0.9999

1.0000

0.0000

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

7.0000

1.0000 0.0000 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000

148

50000 35520.78 1.407627

100000 69502.43 1.438799

500000 330280.2 1.513866

1000000 646249.2 1.547391

10000000 6008970 1.664179

50000000 28555025 1.751005

100000000 1.789781

Figure 21 SLUM Expected Speedup Curve under Exponential Growth at ρavg =1

4.3 Running Time Analysis when Composite Service Phase Transition ρ=0.6

4.3.1 Running time Scaling Scatter Plots and Simple

Descriptive Statistics

 Table 7 below, gives a summary of the runtime results on the three algorithms- SLUM,S-MIP

and L-MIP when the composite service transition rate is 0.6.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20000000 40000000 60000000 80000000 100000000 120000000

SE
S

teA (Seconds)

149

Table 16: CPU Running time Data when Phase Transition Rate ρ 0.6

n n1 n2 g2 g1 p teA teB SSI ln teA ln teB

5 5 5 25 25 1 0.577 0.65 0.8876

92

-0.54991 -0.43078

10 10 10 100 100 1 1.4 1.5 0.9333

33

0.33647

2

0.405465

15 15 15 225 225 1 1.8 1.95 0.9230

77

0.58778

7

0.667829

20 20 20 400 400 1 2.4 2.6 0.9230

77

0.87546

9

0.955511

25 25 25 625 625 1 3.4 3.9 0.8717

95

1.22377

5

1.360977

30 30 30 900 900 1 5.1 5.2 0.9807

69

1.62924

1

1.648659

35 20 38 760 122

5

0.62040

8

7 6.9 1.0144

93

1.94591 1.931521

40 32 32 1024 160

0

0.64 10.7 8.5 1.2588

24

2.37024

4

2.140066

45 31 32 992 202

5

0.48987

7

15.6 11.3 1.3805

31

2.74727

1

2.424803

50 30 37 1110 250

0

0.444 22.6 15.1 1.4966

89

3.11795 2.714695

55 31 37 1147 302

5

0.37917

4

31.6 19.7 1.6040

61

3.45315

7

2.980619

60 33 32 1056 360

0

0.29333

3

44 26 1.6923

08

3.78419 3.258097

65 30 37 1110 422

5

0.26272

2

60.1 34 1.7676

47

4.09601 3.526361

70 32 27 864 490 0.17632 81 42 1.9285 4.39444 3.73767

150

0 7 71 9

75 28 35 980 562

5

0.17422

2

106 55.6 1.9064

75

4.66343

9

4.018183

80 25 35 875 640

0

0.13671

9

135 71 1.9014

08

4.90527

5

4.26268

Figure 22 Empirical Running Time Growth Curves at ρavg = 0.6

Figure 22 shows the runtime growth of SLUM vs S-MIP when the composite service phase

transition rate is 0.6. The red line shows the runtime curve for SLUM and the blue is the curve for

S-MIP.

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80 90

C
P

U
 R

u
n

n
in

g
Ti

m
e

 (
se

co
n

d
s)

Number of Webservices (Virtual Enterprises) per workflow task, n

S-MIP-Data Set I

SLUM-DataSetI

151

4.3.2 Statistical Regression Models: Linear, Polynomial &

Exponential at p=0.6

Figure 23 Empirical Running Time Growth :-Linear, Polynomial and Exponential

Regression Curves at ρavg = 0.6

4.3.3 Expected Speedup via L-Hospital’s Law

teA(l)= 1.5397x - 32.421
R² = 0.7723

teA(p)= 0.0392x2 - 1.7886x + 17.503
R² = 0.9821

teA(e) = 0.5918e0.0706x

R² = 0.9936

teB(l) = 0.8048x - 15.085
R² = 0.8097

teB(p) = 0.0181x2 - 0.7365x + 8.0346
R² = 0.9824

teB(e)= 0.7902e0.0579x

R² = 0.9879

-50

0

50

100

150

200

0 10 20 30 40 50 60 70 80 90

C
P

U
 R

u
n

n
in

g
Ti

m
e

 (
se

co
n

d
s)

Number of Webservices (Virtual Enterprises) per workflow task, n

S-MIP-Data Set I

SLUM-DataSetI

Linear (S-MIP-Data
Set I)

Poly. (S-MIP-Data
Set I)

Expon. (S-MIP-Data
Set I)

Linear (SLUM-
DataSetI)

Poly. (SLUM-
DataSetI)

Expon. (SLUM-
DataSetI)

152

Applying the L-Hospital’s Law, we compute the SLUM expected speedup (SES) as per the

methodology in chapter three. Using the regression equations from figure 23, the SES value under

polynomial growth, SESP is determined as per equation 4.8. The SES function under exponential

growth is given equation 4.9

 𝑆𝐸𝑆𝑝 = lim
𝑛→∞

𝑑(𝑡𝑒𝐴)/𝑑((𝑡𝑒𝐵) =
0.0392

0.0181
= 2.16 (4.8)

 𝑆𝐸𝑆𝐸 = lim
𝑛→∞

𝑑(𝑡𝑒𝐴)/𝑑((𝑡𝑒𝐵) =
0.5918e0.0706n

0.7902e0.0579n
= 0.74e0.0127n (4.9)

The function 0.74e0.0127n can be used to compute the expected speedup for a given number of

service providers per workflow task at ρ=0.6. To compute, nCE ,the critical value beyond which

SLUM is faster than S-MIP, we could set the expected SES at 1.1 and solve the inequality in

equation 4.1

 0.74e0.0127n ≥ 1.1 = 0.0094𝑛𝑙𝑛𝑒 = ln 1.1 → 𝑛 ≥ 10 (4.10)

Equation 4.10 means that if a virtual enterprise broker had 10 virtual enterprises per task, and the

current transition rate is 0.6, they would enjoy a 10% increase in speedup when using SLUM

instead of S-MIP..

Similarly, the virtual enterprise broker could be interested to determine at what value of n they

could achieve the expected speedup of 2.576 if the transition rate were 0.064. We solve the

equation in 4.11

 0.0094𝑛𝑙𝑛𝑒 ≥ 2.16 = 0.0094𝑛𝑙𝑛𝑒 = ln 2.16 → 𝑛 ≥ 81 (4.11)

4.3.4 Initial and Asymptotic Speedup via Empirical Relative

Complexity Analysis

The growth behaviour of the two curves in figure 22 hint non constant variance and nonnormality

of CPU running time. Thus according to Coffin & Saltzman (2000), a variance stabilizing

transformation (log transformation in this case) is required. The log-log scatter plot in Figure above

being a straight line confirms the heteroskedasticity of the CPU running time. From Figure 24, we

infer that the empirical relative complexity coefficient of SLUM with respect to S-MIP at ρ=0.6,

β1 = 0.82 while the constant term β0 =1.2 and thus conclude that at ρ==0.6 , SLUM is initially

153

slower than S-MIP but asymptotically faster than S-MIP. Initially S-MIP is 1.2 times faster than

S-MIP and asymptotically, SLUM’s running time is given by teB = teA
0.82

 . This means that if for

instance the running time of S-MIP is 1000 seconds, the running time of SLUM would be 10000.82

= 2888 seconds. This is equivalent to a speed of 3.4 times.

Figure 24 SLUM Empirical Relative Complexity –log-log Curve at ρavg = 0.6

4.4 Running Time Analysis when Composite Service Phase Transition,

ρ 0.45

4.4.1 Running time Scaling Scatter Plots and Simple

Descriptive Statistics

Table 8 below shows the runtime values of SLUM vs S-MIP at variable values of n when the

composite service phase transition rate is 0.45.

Table 17: CPU Running time Data when Composite Service Phase Transition Rate ρ 0.45

n ln(n) TB

(s)

TA (s) ln(TA) ln(TB) ρ1 ρ2 g1 g2 g2/g1 Ssi

5 1.609438 0.56 0.56 -0.57982 -0.57982 3 5 25 15 0.6 1

10 2.302585 0.87 1.3 0.262364 -0.13926 10 10 100 100 1 1.494253

ln teB = 0.8214lnteA + 0.1931
R² = 0.9962

-1

0

1

2

3

4

5

-1 0 1 2 3 4 5 6

lo
g

te
B

Log teA

154

15 2.70805 1.35 1.72 0.542324 0.300105 2 2 225 4 0.017778 1.274074

20 2.995732 1.9 2.4 0.875469 0.641854 2 1 400 2 0.005 1.263158

25 3.218876 3.9 3.8 1.335001 1.360977 25 25 625 625 1 0.974359

30 3.401197 5.4 5.2 1.648659 1.686399 30 30 900 900 1 0.962963

35 3.555348 6.5 7.6 2.028148 1.871802 30 28 1225 840 0.685714 1.169231

40 3.688879 8.6 10.7 2.370244 2.151762 32 32 1600 1024 0.64 1.244186

45 3.806662 10.91 16.3 2.791165 2.38968 31 32 2025 992 0.489877 1.494042

50 3.912023 15.6 22.4 3.109061 2.747271 30 37 2500 1110 0.444 1.435897

55 22.04 19.7 32 3.465736 2.980619 31 37 3025 1147 0.379174 1.624365

60 4.094345 25.9 43.7 3.777348 3.254243 33 32 3600 1056 0.293333 1.687259

65 4.174387 34 61 4.110874 3.526361 30 37 4225 1110 0.262722 1.794118

70 4.248495 44.1 82.5 4.412798 3.78646 32 27 4900 864 0.176327 1.870748

75 0 55.29 107 4.672829 4.012592 28 35 5625 980 0.174222 1.93525

80 71.7 134.18 4.899182 4.272491 35 28 6400 980 0.153125 1.871409

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12 14 16 18

C
P

U
 R

u
n

n
in

g
Ti

m
e

 (
se

co
n

d
s)

Number of Webservices (Virtual Enterprises) per workflow task, n

S-MIP

SLUM

155

Figure 25 Empirical Running Time Growth Curves at ρavg = 0.45

Figure 25 above shows the runtime growth of SLUM vs S-MIP when the composite service phase

transition rate is 0.45. The red line shows the runtime curve for SLUM and the blue is the curve

for S-MIP.

4.4.2 4.4.2 Statistical Regression Models: Linear, Polynomial

& Exponential at p=0.45

Figure 26 Empirical Running Time Growth – Linear, Polynomial and Exponential

Curves at ρavg = 0.45

4.4.3 SLUM Expected Speedup via L-Hospital’s Law

teA(l)= 7.7319x - 32.449
R² = 0.776

teA(p) = 0.9738x2 - 8.8225x + 17.215
R² = 0.9828

teA(e) = 0.5882e0.3545x

R² = 0.9929

teB(l) = 3.4784x - 12.188
R² = 0.8308

teB(p) = 0.3925x2 - 2.8013x + 5.6039
R² = 0.9867

teB(e) = 0.5679e0.3206x

R² = 0.9815

-50

0

50

100

150

200

0 2 4 6 8 10 12 14 16 18

C
P

U
 R

u
n

n
in

g
Ti

m
e

 (
se

co
n

d
s)

Number of Webservices (Virtual Enterprises) per workflow task, n

S-MIP

SLUM

Linear (S-
MIP)
Poly. (S-
MIP)
Expon. (S-
MIP)

156

Applying the L-Hospital’s Law, we compute the SLUM expected speedup (SES) as per the

methodology in chapter three. Using the regression statistics from figure 26, the SES value under

polynomial growth, SESP is determined as per equation 4.11. The SES function under exponential

growth is given equation 4.12.

 𝑆𝐸𝑆𝑝 = lim
𝑛→∞

𝑑(𝑡𝑒𝐴)/𝑑((𝑡𝑒𝐵) =
0.09738

0.03925
= 2.48 (4.11)

 𝑆𝐸𝑆𝐸 = lim
𝑛→∞

𝑑(𝑡𝑒𝐴)/𝑑((𝑡𝑒𝐵) =
0.5882e0.3545n

0.5678e0.3206n
= 1.036e0.0339n (4.12)

 The function 0.81e0.0115n can be used to compute the expected speedup for a given number of

service providers per workflow task at ρ=0.36. To compute, nCE ,the critical value beyond which

SLUM is faster than S-MIP, we could set the expected SES at 1.1 and solve the inequality in

equation 4.1

1.036e0.0339n ≥ 1.1 = 0.0351𝑛𝑙𝑛𝑒 = ln 1.1 → 𝑛 ≥ 3 (4.13)

Equation 4.13 means that if a virtual enterprise broker had 3 virtual enterprises per task, and the

current transition rate is 0.45, they would enjoy a 10% increase in speedup when using SLUM

instead of S-MIP.

Similarly, the virtual enterprise broker could be interested to determine at what value of n they

could achieve the expected speedup of 2.48 if the transition rate were 0.45. We solve the equation

in 4.14

 1.036e0.0339n ≥ 2.48 = 0.0351𝑛𝑙𝑛𝑒 = ln 2.48 → 𝑛 ≥ 25 (4.14)

4.4.4 Initial and Asymptotic Speedup via Empirical Relative

Complexity Analysis

The growth behaviour of the two curves in figure 25 hint non constant variance and nonnormality

of CPU running time. Thus according to Coffin & Saltzman (2000), a variance stabilizing

transformation (log transformation in this case) is required. The log-log scatter plot in figure 27

below being a straight line confirms the heteroskedasticity of the CPU running time. From Figure

27, we infer that the empirical relative complexity coefficient of SLUM with respect to S-MIP at

ρ=0.45, β1 =0.887 while the constant term β0 =0.94 and thus conclude that at ρ=0.45 , SLUM is

both initially and asymptotically faster than S-MIP. Initially SLUM is 1.06 times faster than S-

MIP and asymptotically, SLUM’s running time is given by teB = teA
0.887

 . This means that if for

instance the running time of S-MIP is 1000 seconds, the running time of SLUM would be 10000.887

157

= 458 seconds. Which is equivalent to a speed of 2.1 times.

Figure 27 SLUM Empirical Relative Complexity –log-log Curve at ρavg = 0.45

4.5 Running Time Analysis when Composite Service Phase Transition,

ρ 0.36

4.5.1 Running time Scaling Scatter Plots and Simple

Descriptive Statistics

 The data in table 9 and the figure 28 below show that the running time of both S-MIP and SLUM

increases none linearly as n grows larger. We also observe that initially, SLUM lags behind S-MIP

until n=35. Beyond n=35, the growth of SLUM is persistently slower than S-MIP. Beyond n=40,

the performance differences between the two algorithms become conspicuous. We also note that

the SLUM Sample Instantaneous speedup steadily increases as n grows larger. For example the

SIS value at n=35, n=40 , n=50, n=70 is 1.17,1.24, 1.53 , 1.84 respectively.

Table 9 below shows the runtime response time values of SLUM vs S-MIP when the composite

service phase transition rate at p value of 0.36. ρ1 is the number of services that were eliminated

y = 0.8872x - 0.061
R² = 0.9911

-1

0

1

2

3

4

5

-1 0 1 2 3 4 5 6

lo
g

te
B

log teA

158

for task 1 and ρ2 were the number of tasks that were eliminated for task 2. The product of g2 =

ρ2. ρ2 gives the number of composite services that transitioned to the SPUM layer. g1 is the

number of composite services available before the optimization process begins. The ration g2/g1

is the composite service transition rate at a given n.

Table 18: CPU Running time Data when Composite Service Phase Transition Rate ρ 0.36

N TB (s) TA (s) ρ1 ρ2 g1 g2 g2/g1 Ssi ln(TA) ln(TB)

5 0.625 0.57 3 1 25 3 0.12 0.912 -0.56212 -0.47

10 1.35 1.28 1 2 100 2 0.02 0.9481 0.24686 0.300105

15 1.89 1.88 2 2 225 4 0.0178 0.9947 0.631272 0.636577

30 5.3 5.1 30 30 900 900 1 0.9623 1.629241 1.667707

35 6.45 7.6 30 28 1225 840 0.6857 1.1783 2.028148 1.86408

40 8.6 10.7 32 32 1600 1024 0.64 1.2442 2.370244 2.151762

45 12.8 17.1 31 32 2025 992 0.4899 1.3359 2.839078 2.549445

50 15.7 24 30 37 2500 1110 0.444 1.5287 3.178054 2.753661

55 21.5 34.56 31 37 3025 1147 0.3792 1.6074 3.542697 3.068053

60 28 47.9 33 32 3600 1056 0.2933 1.7107 3.869116 3.332205

65 36.18 64 30 37 4225 1110 0.2627 1.7689 4.158883 3.588506

70 47.01 86.43 32 27 4900 864 0.1763 1.8385 4.459335 3.85036

75 59 110 28 35 5625 980 0.1742 1.8644 4.70048 4.077537

159

Figure 28 Empirical Running Time Growth Curves at ρavg = 0.36

4.5.2 Statistical Regression Models: Linear, Polynomial &

Exponential

Table 19. CPU Running time Regression Statistics when Phase Transition Rate ρ 0.36

 Linear Model Polynomial Model Exponential

Model

R²

(Linear)

R²

(POL)

R²

(EXP)

S-

MIP

1.36n - 26 0.0369n2 - 1.5558n +

13.018

0.5602e0.0732

n

0.76 0.9868 0.993

1

SLU

M

0.737n –

7.12.64

0.0173n2 – 0.6338n +

5.8815

0.6882e0.0617

n

0.81 0.9893 0.988

1

Table 10 above shows a summary of the linear, polynomial and exponential regression models at

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80

C
P

U
 R

u
n

n
in

g
Ti

m
e

 (
se

co
n

d
s)

Number of Webservices (Virtual Enterprises) per workflow task, n

Empirical Running Time Growth : Regression Analysis when ρavg = 0.36

S-MIP

SLUM

160

R² and their corresponding goodness of fit as shown by the R² values. Figure 29 below captures

the same statistics graphically.

Figure 29 Empirical Running Time Growth –Linear, Polynomial and Exponential

Regression Curves at ρavg = 0.36

4.5.3 Expected Speedup via L-Hospital’s Law

Applying the L-Hospital’s Law, we compute the SLUM expected speedup (SES) as per the

methodology in chapter three. Using the regression equations from the table in 10 and figure

section 29 above, the SES value under polynomial growth, SESP is determined as per equation

4.15. The SES function under exponential growth is given equation 4.16.

y = 1.3603x - 26.449
R² = 0.7633

y = 0.0369x2 - 1.5558x + 13.018
R² = 0.9868

y = 0.5602e0.0732x

R² = 0.9931

y = 0.7372x - 12.674
R² = 0.8107

y = 0.0173x2 - 0.6338x + 5.8815
R² = 0.9893

y = 0.6882e0.0617x

R² = 0.9881

-40

-20

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80

C
P

U
 R

u
n

n
in

g
Ti

m
e

 (
se

co
n

d
s)

Number of Webservices (Virtual Enterprises) per workflow task, n

S-MIP

SLUM

Linear (S-MIP)

Poly. (S-MIP)

Expon. (S-
MIP)

161

 𝑆𝐸𝑆𝑝 = lim
𝑛→∞

𝑑(𝑡𝑒𝐴)/𝑑((𝑡𝑒𝐵) =
0.0369

0.0173
= 2.13 (4.15)

 𝑆𝐸𝑆𝐸 = lim
𝑛→∞

𝑑(𝑡𝑒𝐴)/𝑑((𝑡𝑒𝐵) =
0.5602e0.0732n

0.6882e0.0617n
= 0.81e0.0115n (4.16)

The function 0.81e0.0115n can be used to compute the expected speedup for a given number of

service providers per workflow task at ρ=0.36. To compute, nCE ,the critical value beyond which

SLUM is faster than S-MIP, we could set the expected SES at 1.1 and solve the inequality in

equation 4.1

0.81e0.0115n ≥ 1.1 = 0.00932𝑙𝑛𝑒 = ln 1.1 → 𝑛 ≥ 10 (4.17)

Equation 4.17 means that if a virtual enterprise broker had 9 virtual enterprises per task, and the

current transition rate is 0.36, they would enjoy a 10% increase in speedup when using SLUM

instead of S-MIP.

Similarly, the virtual enterprise broker could be interested to determine at what value of n they

could achieve the expected speeup of 2.13 if the transition rate were 0.36. We solve the equation

in 4.18

 0.81e0.0115n ≥ 2.13 = 0.00932𝑛𝑙𝑛𝑒 = ln 2.13 → 𝑛 ≥ 81 (4.18)

4.5.4 Initial and Asymptotic Speedup via Empirical Relative

Complexity Analysis

The growth behaviour of the two curves in figure 28 above hint non constant variance and

nonnormality of CPU running time. Thus according to Coffin & Saltzman (2000), a variance

stabilizing transformation (log transformation in this case) is required. The log-log scatter plot in

Figure above being a straight line confirms the heteroskedasticity of the CPU running time. From

Figure 30, we infer that the empirical relative complexity coefficient of SLUM with respect to S-

MIP at ρ=0.36, β1 = 0.8437 while the constant term β0 =1.12 and thus conclude that at ρ=0.36 ,

SLUM is initially slower and asymptotically faster than S-MIP. Initially S-MIP is 1.12 times

faster than S-MIP and asymptotically, SLUM’s running time is given by teB = teA
0.8374

 . This means

162

that if for instance the running time of S-MIP is 1000 seconds, the running time of SLUM would

be 10000.8374
 = 331 seconds. Which is equivalent to a speed of 3.01 times.

Figure 30 SLUM Empirical Relative Complexity –log-log Curve at ρavg = 0.36

4.6 Running Time Analysis when mean Composite Service Phase

Transition, ρ=0.13

4.6.1 Running time Scaling Scatter Plots and Simple

Descriptive Statistics

Table 20.: CPU Running time Data when Composite Service Phase Transition Rate ρ 0.13

n TB

(s)

TA

(s)

ρ1 ρ2 g1 g2 g2/g1 Ssi ln(TA) ln(TB)

5 0.67 0.58 5 5 25 25 1 0.865672 -0.54473 -

0.4004

8

10 1.25 1.39 5 7 100 35 0.35 1.112 0.329304 0.2231

44

y = 0.8437x + 0.1116
R² = 0.9977

-1

0

1

2

3

4

5

-1 0 1 2 3 4 5

lo
g

te
B

log teA

163

15 1.76 2.1 7 8 225 56 0.248889 1.193182 0.741937 0.5653

14

20 2.25 2.75 8 4 400 32 0.08 1.222222 1.011601 0.8109

3

25 2.7 3.6 11 7 625 77 0.1232 1.333333 1.280934 0.9932

52

30 3.73 5.2 7 6 900 42 0.046667 1.394102 1.648659 1.3164

08

35 5.1 7.2 9 7 1225 63 0.051429 1.411765 1.974081 1.6292

41

40 6.3 10.9

9

4 6 1600 24 0.015 1.744444 2.396986 1.8405

5

45 8.88 16.1

3

10 6 2025 60 0.02963 1.816441 2.780681 2.1838

02

50 12.7 23.1 8 5 2500 40 0.016 1.818898 3.139833 2.5416

02

55 17.2

8

31.7 9 5 3025 45 0.014876 1.834491 3.456317 2.8495

5

60 23.1 44.4 7 6 3600 42 0.011667 1.922078 3.793239 3.1398

33

65 31 60.3 4 9 4225 36 0.008521 1.945161 4.099332 3.4339

87

70 42.9 85 4 7 4900 28 0.005714 1.98044 4.394449 3.7111

3

75 53.8 107 6 4 5625 24 0.004267 1.981352 4.672829 3.9852

73

80 68.7 140 5 6 6400 30 0.004688 2.037846 4.919981 4.2297

49

164

The data in table 11 above shows that the running time of both S-MIP and SLUM increases none

linearly as n grows larger. We also observe that initially, SLUM lags behind S-MIP until n=10.

Beyond n=10, the growth of SLUM is persistently slower than S-MIP. Beyond n=20, the

performance differences between the two algorithms become conspicuous. We also note that the

SLUM Sample Instantaneous speedup steadily increases as n grows larger. For example the SIS

value at n=5, n=10 , n=50, n=70 is 0.86,1.1, 1.8 , 1.98 respectively.

4.6.2 Statistical Regression Models: Linear, Polynomial &

Exponential

Table 12 below shows the S-MIP, L-MIP and SLUM linear, polynomial and exponential

regression equations and the goodness of fit statistics captured through the R² values.

Table 21: CPU Running time Regression Statistics when Composite Service Phase Transition

Rate ρ 0.13

 Linear

Model

Polynomial Model Exponential

Model

R²

(Linear)

R²

(POL)

R²

(EXP)

S-MIP 1.59n – 33 0.0405 n2 -

1.1849n + 10.864

0.634e0.0699n 0.76 0.98 0.99

SLUM 0.779n - 15 0.092n2 - 0.3843n

+ 3.7664

0.628e0.0597n 0.78 0.98 0.99

165

Figure 31 Empirical Running Time Growth – Linear, Polynomial and Exponential

Regression Curves at ρavg = 0.13

Figure 31 shows the linear, polynomial and exponential statistical regression models for S-MIP

and L-MIP at ρ=0.13.

4.6.3 Expected Speedup via L-Hospital’s Law under

Applying the L-Hospital’s Law, we compute the SLUM expected speedup (SES) as per the

methodology in chapter three. Using the regression equations from table 12 and figure 31., the

SES value under polynomial growth, SESP is determined as per equation 4.19. The SES function

under exponential growth is given equation 4.20.

 𝑆𝐸𝑆𝑝 = lim
𝑛→∞

𝑑(𝑡𝑒𝐴)/𝑑((𝑡𝑒𝐵) =
0.0405

0.0192
= 2.1 (4.19)

 𝑆𝐸𝑆𝐸 = lim
𝑛→∞

𝑑(𝑡𝑒𝐴)/𝑑((𝑡𝑒𝐵) =
0.634e0.0699n

0.628e0.0597n
= 1.01e0.0102n (4.20)

The function 1.01e0.0102n can be used to compute the expected speedup for a given number of

service providers per workflow task at ρ=0.13. To compute, nCE ,the critical value beyond which

y = 1.5779x - 33.223
R² = 0.7672

y = 0.0405x2 - 1.8665x + 18.443
R² = 0.9798

y = 0.6302e0.0699x

R² = 0.9927

y = 0.7797x - 15.503
R² = 0.7816

y = 0.0192x2 - 0.8563x + 9.0362
R² = 0.9817

y = 0.6268e0.0597x

R² = 0.9964

-50

0

50

100

150

200

0 10 20 30 40 50 60 70 80 90

C
P

U
 R

u
n

n
in

g
Ti

m
e

 (
se

co
n

d
s)

Number of Webservices (Virtual Enterprises) per workflow task, n

S-MIP

SLUM

Linear (S-MIP)

Poly. (S-MIP)

166

SLUM is faster than S-MIP, we could set the expected SES at 1.1 and solve the inequality in

equation 4.21

 1.01e0.0102n ≥ 1.1 = 0.0103𝑛𝑙𝑛𝑒 = ln 1.1 → 𝑛 ≥ 9 (4.21)

Equation 4.21 means that if a virtual enterprise broker had 9 virtual enterprises per task, and the

current transition rate is 0.13, they would enjoy a 10% increase in speedup when using SLUM

instead of S-MIP. Examining the data in table 1 above, we that at n=5, the speedup is 0.8 and at

n=10, the speedup is 1.32. Therefore a speedup of 1.1 should lie in between n=5 and n=10. Thus

the solution to equation 4.21 holds.

Similarly, the virtual enterprise broker could be interested to determine at what value of n they

could achieve the expected speedup of 2.1 if the transition rate were 0.13. We solve the equation

in 4.22

 1.01e0.01n ≥ 2.1 = 0.0103𝑛𝑙𝑛𝑒 = 2.1 → 𝑛 ≥ 72 (4.22)

167

4.6.4 Initial and Asymptotic Speedup via Empirical Relative

Complexity

Figure 32 SLUM Empirical Relative Complexity –log-log Curve at ρavg = 0.13

The growth behaviour of the two curves in figure 31 hint non constant variance and nonnormality

of CPU running time. Thus according to Coffin & Saltzman (2000), a variance stabilizing

transformation (log transformation in this case) is required. The log-log graph in figure 32 above

being a straight line confirms the heteroskedasticity of the CPU running time. From Figure 32, we

infer that the empirical relative complexity coefficient of SLUM with respect to S-MIP at ρ=0.13,

β1 = 0.851 while the constant term β0 =0.93 and thus conclude that at ρ=0.13 , SLUM is both

initially and asymptotically faster than S-MIP. Initially SLUM is 1.07 times faster than S-MIP

and asymptotically, SLUM’s running time is given by teB = teA
0.851

 . This means that if for instance

the running time of S-MIP is 1000 seconds, the running time of SLUM would be 10000.851
 = 357

seconds. Which is equivalent to a speed of 2.8 times.

y = 0.8513x - 0.0675
R² = 0.9975

-1

0

1

2

3

4

5

-1 0 1 2 3 4 5 6

lo
g

te
B

log teA

168

4.7 Running Time Analysis when mean Composite Service Phase Transition,

ρ 0.064

 4.7.1 Running time Scaling Scatter Plots and Simple Descriptive Statistics

Table 22: CPU Running time Data when Composite Service Phase Transition Rate ρ 0.064

n n1 n2 g2 g1 p teA teB SSI ln teA ln teB

5 3 4 12 25 0.48 0.577 0.65 0.887692 -0.54991 -0.43078

10 2 4 8 100 0.08 1.3 0.98 1.326531 0.262364 -0.0202

15 2 2 4 225 0.017778 1.8 1.39 1.294964 0.587787 0.329304

20 6 1 6 400 0.015 2.7 2.044 1.320939 0.993252 0.714909

25 2 3 6 625 0.0096 3.7 2.3 1.608696 1.308333 0.832909

30 3 3 9 900 0.01 5.2 3.4 1.529412 1.648659 1.223775

35 2 3 6 1225 0.004898 7.1 4.6 1.543478 1.960095 1.526056

40 2 4 8 1600 0.005 10.7 6.3 1.698413 2.370244 1.84055

45 2 5 10 2025 0.004938 16.3 9 1.811111 2.791165 2.197225

50 6 4 24 2500 0.0096 22.7 12.2 1.860656 3.122365 2.501436

55 2 4 8 3025 0.002645 31.6 17.4 1.816092 3.453157 2.85647

60 2 3 6 3600 0.001667 44 22.8 1.929825 3.78419 3.126761

65 30 37 1110 4225 0.262722 60.1 29 2.072414 4.09601 3.367296

70 7 4 28 4900 0.005714 81 34 2.382353 4.394449 3.526361

169

Figure 33 Empirical Running Time Growth Curves at ρavg = 0.064

The data in the table and the figure shows that the running time of both S-MIP and SLUM increases

none linearly as n grows larger. We also observe that initially, SLUM lags behind S-MIP until

n=10. Beyond n=10, the growth of SLUM is persistently slower than S-MIP. Beyond n=20, the

performance differences between the two algorithms become conspicuous. We also note that the

SLUM Sample Instantaneous speedup steadily increases as n grows larger. For example the SIS

value at n=5, n=10 , n=50, n=70 is 0.887,1.32, 1.5 , 2.38 respectively.

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80

C
P

U
 R

u
n

n
in

g
Ti

m
e

 (
se

co
n

d
s)

Number of Webservices (Virtual Enterprises) per workflow task, n

S-MIP

SLUM

170

 4.7.2 Statistical Regression Models: Linear, Polynomial & Exponential

Figure 34 Empirical Running Time Growth- Linear, Polynomial and Exponential

Regression Curves at ρavg = 0.064

The figure 34 above and the regression equations in table 14 below show that the growth curves

of both SLUM and S-MIP at ρ=0.064 has near perfect polynomial and a near perfect exponential

growth. However, while S-MIP has no linear growth since the R2 value for linear regression is

below 0.8 for S-MIP, SLUM exhibits some linear growth characteristics since R2=0.84.

teA(l) = 1.0577x - 19.037
R² = 0.7807

teA(p) = 0.0299x2 - 1.1849x + 10.864
R² = 0.9804

teA(e) = 0.5674e0.0727x

R² = 0.994

teB(l)= 0.4879x - 7.8628
R² = 0.8405

teB(p)= 0.0116x2 - 0.3843x + 3.7664
R² = 0.9933

teB(e)= 0.5326e0.0617x

R² = 0.9966

-20

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

C
P

U
 R

u
n

n
in

g
Ti

m
e

 (
se

co
n

d
s)

Number of Webservices (Virtual Enterprises) per workflow task, n

SMIP

SLUM

Linear (SMIP)

Poly. (SMIP)

Expon. (SMIP)

Linear (SLUM)

Poly. (SLUM)

171

Table 23: CPU Running time Regression Statistics when Composite Service Phase Transition

Rate ρ 0.064

 Linear Model Polynomial Model Exponential

Model

R² (LN) R²

(POL)

R²

(EXP)

S-MIP 1.0577n -

19.037

0.0299 n2 -

1.1849n + 10.864

0.5674e0.0727n 0.7807 0.9804 0.994

SLU

M

0.4879n -

7.8628

0.0116n2 - 0.3843n

+ 3.7664

0.5326e0.0617n 0.8405 0.9933 0.996

6

 4.7. 3 Expected Speedup via L-Hospital’s Law

Applying the L-Hospital’s Law, we compute the SLUM expected speedup (SES) as per the

methodology in chapter three. Using the regression equations from the table 14 , the SES value

under polynomial growth, SESP is determined as per equation 4.23. The SES function under

exponential growth is given equation 4.24.

 𝑆𝐸𝑆𝑝 = lim
𝑛→∞

𝑑(𝑡𝑒𝐴)/𝑑((𝑡𝑒𝐵) =
0.0299

0.0116
= 2.5776 (4.23)

 𝑆𝐸𝑆𝐸 = lim
𝑛→∞

𝑑(𝑡𝑒𝐴)/𝑑((𝑡𝑒𝐵) =
0.5674e0.0727n

0.5326e0.0617n
= 1.065e0.01n (4.24)

The function 1.065e0.01n can be used to compute the expected speedup for a given number of

service providers per workflow task at ρ=0.064. To compute, nCE ,the critical value beyond which

SLUM is faster than S-MIP, we could set the expected SES at 1.1 and solve the inequality in

equation 4.25

 1.065e0.01n ≥ 1.1 = 0.01065𝑛𝑙𝑛𝑒 = ln 1.1 → 𝑛 ≥ 9 (4.25)

Equation 4.25 means that if a virtual enterprise broker had 9 virtual enterprises per task, and the

current transition rate is 0.064, they would enjoy a 10% increase in speedup when using SLUM

instead of S-MIP. Examining the data in table 1 above, we that at n=5, the speedup is 0.8 and at

n=10, the speedup is 1.32. Therefore a speedup of 1.1 should lie in between n=5 and n=10. Thus

the solution to equation 4.25 holds.

Similarly, the virtual enterprise broker could be interested to determine at what value of n they

could achieve the expected speedup of 2.576 if the transition rate were 0.064. We solve the

equation in 4.26.

172

 1.065e0.01n ≥ 2.576 = 0.01065𝑛𝑙𝑛𝑒 = ln 2.576 → 𝑛 ≥ 88 (4.26)

 4.7.4 Initial and Asymptotic Speedup via Empirical Relative Complexity Analysis

Figure 35 SLUM Empirical Relative Complexity –log-log Curve at ρavg = 0.064

The growth behaviour of the two curves in figure 34 above hint non constant variance and

nonnormality of CPU running time. Thus according to Coffin & Saltzman (2000), a variance

stabilizing transformation (log transformation in this case) is required. The log-log scatter plot in

Figure above being a straight line confirms the heteroskedasticity of the CPU running time. From

tEB = 0.8488lnTeB- 0.1457
R² = 0.9951

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

ln
 T

e
B

(n
)

ln TeA(n)

173

Figure 35, we infer that the empirical relative complexity coefficient of SLUM with respect to S-

MIP at ρ=0.064, β1 = 0.84 while the constant term β0 =0.88 and thus conclude that at ρ=0.064 ,

SLUM is both initially and asymptotically faster than S-MIP. Initially SLUM is 1.15 times faster

than S-MIP and asymptotically, SLUM’s running time is given by teB = teA
0.84

 . This means that if

for instance the running time of S-MIP is 1000 seconds, the running time of SLUM would be

10000.84
 = 331 seconds. Which is equivalent to a speed of 3.01 times.

4.8 Summary of Key CPU Running Time Results

4.8.1 Variation of Running Time vs Number of Service

Providers under the various ρ values

Figure 36 below shows that generally the smaller the transition rate the slower the growth in

running time and the better the performance.

Figure 36 Summary -SLUM Running Time Growth at different composite service phase

transition rates

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90

R
es

p
o

n
se

 T
im

e

Number of webservices (virtual enterprises) per task , n

SIS-n ->p=0.36

SIS-n ->p=0.13

SIS-n ->p=0.6

SIS-n ->p=0.064

SIS-n ->p=0.029

SIS-n ->p=1

SIS-n ->p=0.014

174

4.8.2 Variation of Speedup vs Number of Service Providers

per task under the various ρ values

In the legend on of the graph in figure 37 below, SIS stands for ‘SLUM Instantaneous Speedup’

as defined earlier in chapter 3. SIS-n means the SIS value at given value of n, whereas the symbol

ρ carries the usual meaning as earlier defined in section 2.14.

Figure 37 Summary -SLUM Speedup vs Number of Service Providers per Task at different

phase transition rates

In figure 37, we plot the speedup that was observed against increasing number of service providers

per task at a given transition rate. The following can be observed. That at a constant transition rate,

the speedup of SLUM with respect to grows larger as the number of service providers grows larger.

However, we also see that the speedup hits a limit (does not grow infinitely). The third observation

is that reducing the transition rate accelerates increases the maximum speed achievable at any

number of service providers. For example the speedup at n=10, when p=0.029 is 1.5 times, against

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70 80 90

Sa
m

p
le

 S
p

e
e

d
u

p

Number of webservices (virtual enterprises) per task

SIS-n ->p=0.36

SIS-n ->p=0.13

SIS-n ->p=0.6

SIS-n ->p=0.064

SIS-n ->p=0.029

SIS-n ->p=1

SIS-n ->p=0.014

175

1.2 at p=0.13 and below 1 when p=1. These observations are expected as per the theoretical

performance models developed in chapter two where we found that the speedup and transition

rates are inversely related.

176

4.8.3 Expected Speedup vs Composite Service Phase

Transition Rates under Polynomial Growth

In table 24, the following conclusions can be drawn. First, the empirical speedup generally

increases with a decrease in transition rate. However, we note that the speedup at p=0.13 = 2.133 >

speedup at p=0.064 =2.1. We treat this as an outlier. The second conclusion is that the empirical

speedups are all smaller in value than their expected theoretical counterparts. This is expected

because of several reasons. The theoretical expected speeds have an assumption of n being very

large. Secondly, the theoretical model ignores constant terms which in practice could have

contributed to some performance inefficiencies in our model.

Table 24: Summary Data: Expected Speedup vs Phase Transition Rates under Polynomial

Growth

Ρ SLUM Polynomial

Function

S-MIP Polynomial

Function

Empirical

Speedup(Ωs

)

Theoretical

Speedup(Ωs

)

0.029

6

0.0144n2-0.3993n+ 4.530 0.0518 n2-2.2816n + 21.426 3.5972 4

0.064 0.0116n2-0.3843n + 3.766 0.0299n2- 1.1849n + 10.864 2.5779 3.7594

0.13 0.0192n2-0.8567n+

9.0362

0.0405n2- 1.8665n + 18.443 2.109375 3.5398

0.36 0.0173n2 - 0.634n + 5.886 0.0369n2-1.5558n +13.018 2.133 2.9411

0.45 0.3925n2- 2.8013n +

5.6039

0.9738n2- 8.8225n + 17.215 2.481 2.7586

0.61 0.0181n2-0.7365n+

8.0346

 0.0392n2- .789n + 17.503 2.17 2.484

1 0.0846n2-5.7392n+

75.403

0.0949 n2 -6.554n + 86.398 1.12 2

177

Figure 38 Summary – SLUM Expected Empirical and Expected Theoretical Speedup with

respect to phase transition rates

The figure 38 alongside depicts a plot of speedup vs composite service transition rate. Both the

empirical and theoretical curves are drawn. We deduce that both curves are decreasing functions.

We also observe that the empirical curve is under the theoretical curve.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.2 0.4 0.6 0.8 1 1.2

Ex
p

e
ct

e
d

 S
p

e
e

d
u

p

Composite Service Phase Transition Rate

Empirical Expected Speedup

Theoretical Expected Speedup

178

4.8.4 Expected Speedup vs Composite Service Phase

Transition Rates under Exponential Growth

Table 25: Exponential Expected Speedup functions under various Phase Transition Rates

Table 25 shows the speedup exponential functions at different transition rates. The functions can

be used to answer the question: How much speedup given n and given that the transition rate was

p? The solution is obtained by equating the function with the desired speedup and solving for n.

The results show that for all transition rates except where p=1, at n>=10, a speedup of 1.1 times is

guaranteed. The result mean that a virtual enterprise broker operating at least 10 service providers

per task, regardless of the transition rate (except in rare cases where p=1), they are guaranteed to

enjoy at least a 10% increase in efficiency by using SLUM over S-MIP. The functions could be

used to compute speedups at any other value of n.

ρ SLUM

Exponential

Function (teB)

S-MIP

Exponential

Function (teA)

Empirical Speedup

function

𝐥𝐢𝐦
𝒏→∞

𝒅(𝒕𝒆𝑨)/𝒅((𝒕𝒆𝑩)

nCE at Ω

1.1(Solve

𝐥𝐢𝐦
𝒏→∞

𝒅(𝒕𝒆𝑨)

/𝒅((𝒕𝒆𝑩) ≥ 𝟏. 𝟏

0.0296 0.904e0.0593n 0.6231e0.0763n 0.6893e0.017n 8

0.064 0.5326e0.0617n 0.5674e0.0727n 1.065e0.01n 9

0.13 0.6268e0.0597n 0.6302e0.0699n 1.01e0.0102n 9

0.36 0.6882e0.0617n 0.5602e0.0732n 0.81e0.0115n 10

0.45 0.5679e0.3206n 0.5882e0.3545n 1.036e0.0339n 3

0.61 0.7902e0.0579n 0.5918e0.0706n 0.74e0.0127n 10

1 0.8676e0.0605n 0.7793e0.0624n 0.9e0.0018n 59

179

4.8.5 Variation of Initial and Asymptotic Coefficients vs

Composite Service Phase Transition Rates

 Table 26 below shows the variation of initial performance of SLUM relative to S-MIP and the

asymptotic performance of SLUM with respect to S-MIP. A general trend is that SLUM is slower

than S-MIP initially since the β0>1 generally. Exceptions to this were noted e.g when ρ 0.064 ,

ρ 0.13 and p 0.45, where SLUM is marginally faster. The graph of β0 vs ρ in figure 39 shows

that the initial performance of SLUM is generally poorer than S-MIP. The reason for this is that

SLUM experiences the sequential overheads of having to select the best composite service in two

sequential phases, where S-MIP does only once (Mulongo et al, 2015).

180

 Table 26: Initial and Asymptotic Performance Coefficients vs Phase Transition Rates

(ρ) Log teB vs log teB Equation

Initial

Performance

Parameter

(β0)

Asymptotic

Performance :-

Empirical Relative

Complexity

Coefficient

1/(β1)

0.0296 log TeB(n) = 0.7833 log TeA(n) +

0.2506

1.28 0.7883 1.2685526

0.064 log TeB(n)= 0.8488 log TeA(n) -

0.146

0.8644 0.8488 1.1781338

0.13 log TeB(n)= 0.8513 log TeA(n) -

0.0675

0.94082 0.8513 1.174674

0.36 log TeB(n)= 0.8437log TeA(n) +

0.1116

1.1181 0.8437 1.1852554

0.45 log TeB(n)= 0.8872 log TeA(n) -

0.061

0.941 0.8872 1.1271416

0.61 log TeB(n) = 0.8214 log TeA(n) +

0.1931

1.213 0.8214 1.2174336

1 log TeB(n)= 0.9684 log TeA(n) +

0.0999

1.1 0.9684 1.0326311

181

Figure 39 Summary –Variation of Initial Performance Parameter β0 with respect to Phase

Transition Rate ρ

The graph in figure 39 shows how the initial performance of SLUM relative to that of S-MIP varies

with different values of the composite service phase transition rate ρ.

On the other hand, the converse is true for the empirical relative complexity β1, which generally

increases with an increase in ρ and reduces with a reduction in ρ. The graphs in figure 40 and 41

prove this. Since empirical relative complexity (Coffin & Saltzman, 2000) is a well-known

method of comparing the relative speeds of two algorithms, the direct correlation between our

method of transition rate , confirm the theoretical analysis that the speedup of SLUM was likely

to decrease with an increase in transition rate. This was equivalent to proving that increasing

transition rate increases the empirical relative complexity coefficient and vice versa, which this

study has achieved.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2

In
it

ia
l P

e
rf

o
rm

an
ce

 C
o

e
ff

ic
ie

n
t

Composite Service Phase Transition Rate

182

Figure 40 Summary –Variation of Empirical Relative Complexity Coefficient β1 with

respect to Phase Transition Rate ρ.

Figure 40 shows how the empirical relative complexity and hence how the asymptotic performance

of SLUM with respect to S-MIP varies with the composite service phase transition rate.

Figure 41 Summary –Variation of Inverse of Empirical Relative Complexity Coefficient

(1/β1) with respect to Phase Transition Rate ρ

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Em
p

ir
ic

al
 R

e
la

ti
ve

 C
o

m
p

le
xi

ty
 C

o
e

ff
ic

ie
n

t

Composite Service Phase Transition Rate

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2In
ve

rs
e

 E
m

p
ir

ic
al

 R
e

la
ti

ve
 C

o
m

p
le

xi
ty

C

o
e

ff
ic

ie
n

t

Composite Service Phase Transition Rate

183

4.9 Solution Quality and Optimality Results

Table 27: Solution Quality Performance Results

N

ZB

ZL

Z*

RSQB

RSQL

ORB

ORL

2 0.69 0.58 0.69 0.00 16.67 100.00 83.33

3 0.61 0.73 0.73 16.44 0.15 83.56 100

4 0.68 0.50 0.68 0.00 26.50 100.00 73.50

5 0.59 0.56 0.75 21.33 25.11 78.67 74.89

6 0.70 0.65 0.73 4.11 10.62 95.89 89.38

7 0.77 0.60 0.77 0.00 22.22 100.00 77.78

8 0.82 0.80 0.83 1.20 3.26 98.80 96.74

9 0.72 0.61 0.72 0.00 14.74 100.00 85.26

10

0.75 0.65 0.79 5.06 17.92 94.94 82.08

11 0.70 0.58 0.72 2.78 19.22 97.22 80.78

12 0.70 0.61 0.7 0.00 13.28 100.00 86.72

13 0.67 0.00 0.7 4.29 100.00 95.71 0.00

14 0.63 0.00 0.69 8.70 100.00 91.30 0.00

15 0.60 0.68 0.68 11.76 0.60 88.24 99.40

16 0.59 0.64 0.75 21.33 15.04 78.67 84.96

17 0.72 0.65 0.75 4.00 13.33 96.00 86.67

18 0.67 0.69 0.75 10.67 7.35 89.33 92.65

19 0.65 0.64 0.72 9.72 10.63 90.28 89.38

20 0.71 0.56 0.77 7.79 27.65 92.21 72.35

21 0.66 0.55 0.74 10.81 25.51 89.19 74.49

26 0.76 0.78 0.69 2.56 11.45 97.44 88.55

27 0.74 0.79 0.79 6.33 0.31 93.67 99.69

28 0.65 0.77 0.60 15.58 21.79 84.42 78.21

184

In table 27 above, the optimization solution values for SLUM, L-MIP and S-MIP respectively are

given in the columns labelled ZB, ZL and Z*
 for problem instances of varying size.. The rows in the

grey background denote infeasibility i.e no solution was found for the problem instances with the

given problem size. Such instances were excluded from analysis.

From the results, we observe that for every problem instance, S-MIP solution value Z*
 is the highest

value of the three algorithms, implying that S-MIP yields more quality solutions than both SLUM

and L-MIP. This result confirms our considerations in section 3.2.2. Thus the result allowed us to

compute RSQB, RSQL, ORB and ORL as defined in equations (2), (3), (4) and (5) respectively. In

table 1, a RSQ value of 100% denotes that no solution was found (or 100% error rate). For example,

we see that for the problem instances with n=13 and those with n=14, L-MIP failed to find a

solution where SLUM and S-MIP did. For fair analysis and comparison, we excluded results that

contained RSQ=100%. By computing the mean optimality ratio from the data provided, we

determine that the mean optimality ratio of SLUM ≈93b3T CVC %, implying an average error rate

(RSQ) of ≈7%. On the other hand, the mean ORL value of L-MIP is ≈88% or RSQL ≈12%. These

simple descriptive statistics suggest that SLUM generally generates more optimal solutions on

29 0.73 0.77 0.74 5.19 4.23 94.81 95.77

30 0.74 0.78 0.68 5.13 13.43 94.87 86.57

31 0.75 0.79 0.77 5.06 2.53 94.94 97.47

32 0.66 0.8 0.74 17.50 6.99 82.50 93.01

33 0.70 0.78 0.67 10.26 13.93 89.74 86.07

34 0.69 0.83 0.71 16.87 14.41 83.13 85.59

35 0.79 0.79 0.60 0.00 24.29 100.00 75.71

36 0.68 0.74 0.62 8.11 15.72 91.89 84.28

37 0.72 0.79 0.72 8.86 8.23 91.14 91.77

38 0.80 0.82 0.74 2.44 9.51 97.56 90.49

39 0.62 0.79 0.66 21.52 17.04 78.48 82.96

40 0.66 0.73 0.70 9.59 4.30 90.41 95.70

41 0.77 0.8 0.63 3.75 20.77 96.25 79.23

185

average than L-MIP by approximately 5%. We shortly validate this claim using one of the tests

described in section 3.5.1. Despite the fact that SLUM seems to have a larger mean OR or smaller

RSQ, there are some cases where L-MIP yields more quality solutions, for example, in table 1 L-

MIP is outperforms SLUM when n=16, 27, 39 etc. However, as visualized in figure 42 and figure

43, SLUM generally has more quality solutions than L-MIP. With reference to the problem

instances with n=3, n=9, n=12 , it can also be seen that both SLUM and S-MIP are able to obtain

a globally optimal solutions in some cases.

Our inferential statistical analysis followed the procedure established in section 3.5.1 to compare

the RSQB, vs RSQL, and therefore by implication ORB vs ORL. Figure 42 is a graph of RSQ vs n.

An alternative representation of the results is captured by the bar graph in figure 43. The curves

RSQB vs n and RSQL vs n both hint the following: the variation of RSQ vs n is nonlinear, and the

performance differences between RSQB and RSQB do not seem to be constantly increasing with n.

Thus, the slope test based on linear regression as described in 3.5.1.1 was not found to be an

appropriate comparison technique. The alternative approach detailed in section 3.5.1.2 was used

instead. Since our sample size N=38 and solution quality differences do not exhibit

heteroskedasticity, under the assumptions of the central limit theorem, we assume that the RSQ or

OR are normally distributed. We carried out a Shapiro Wilk test on the 38 sample performance

differences, to verify our normality assumption. We obtained W=0.93 against the critical value Wc

=0.938, at a significance of level of 0.05 and 38 degrees of freedom. The result confirms our

assumption of normality. Therefore, the paired Student t- test was used to verify the significance

of the 5% mean difference in solution quality between SLUM and L-MIP. The null hypothesis is

rejected if either t-stat< -t critical two tail or t-stat> t-critical two tail. The results of the significance

test are presented in table 2. In table 3 below, the t-stat = -3.182 and -t-critical two tail = -2.03.

Since -3.182 <-2.03, we reject the null hypothesis and conclude that there are more than 95%

chances that SLUM yields solutions with better quality by 5%.

186

Figure 42 Line Graph Showing Relative Solution Quality of SLUM & L-MIP

Figure 43 Bar Graph Showing Relative Solution Quality of SLUM and L-MP with respect

to S-MIP

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45

R
SQ

T
(%

)

Problem Instance (number of webservices per task)

Relative Solution Quality SLUM

L-MIP

0

5

10

15

20

25

30

2 4 6 8 10 12 16 18 20 22 24 26 28 30 32 34 36 38 40

R
SQ

Problem Instances (Number of webservices per task)

Relative Solution Quality

SLUM

L-MIP

187

Table 28 : Paired Student -t Test Results on SLUM & L-MIP Relative Solution Quality

4.10 Discussion of Results

As per section 1.5, the thesis sought to answer the research questions below:

RQ1: For a composite webservice selection problem having a workflow with k tasks and v

alternative webservices per task, how does the runtime efficiency of SLUM compare with that of

S-MIP and L-MIP when each is used to solve the problem? The specific research questions arising

from this question are:

RQ1.1: How does the running time of SLUM grow as the number of service providers

per task increase?

RQ1.2: How does the running time growth of SLUM compare with that of S-MIP and

L-MIP?

RQ1.3: How much speedup is achievable when using SLUM over S-MIP to

autogenerate composite webservices given a business workflow having n webservices

per task?

RQ1.4: What is the minimum number of service providers per workflow task that a

virtual enterprise broker needs to have in order to benefit from the relative efficiency of

SLUM when compared to S-MIP?

SLUM L-MIP

Mean 7.618157895 12.95210526

Variance 40.33246949 62.92169815

Observations 38 38

Pearson Correlation -0.034624739

Hypothesized Mean Difference 0

df 37

t Stat -3.182521967

P(T<=t) one-tail 0.00147773

t Critical one-tail 1.68709362

P(T<=t) two-tail 0.00295546

t Critical two-tail 2.026192463

188

RQ2 that was outlined in section 1.5 of chapter two is: How does the average solution quality of

SLUM compare with that of L-MIP and S-MIP? This leads us to the following specific research

questions:

RQ2.1: What is the average relative solution quality (percentage accuracy of quality) of

the composite webservices generated by SLUM relative to S-MIP?

RQ2.2: What is the percentage difference in the relative solution quality by SLUM relative

to L-MIP?

4.10.1 Running Time

RQ1.1: How does the running time of SLUM grow as the number of service providers per

task increase?

First, as per the results in section 4.8.1, we conclude that the running time growth of SLUM

increases as the initial number of webservices per task get larger. At the same time, based on the

empirical results, we conclude that the running time growth also grows larger the larger the

composite service phase transition rate ρ and grows slower for smaller values of ρ. Hence the

empirical results are in agreement with our theoretical model 𝑇𝐵 (𝑛) = (𝒏
𝒌(𝒒𝟏/𝒒𝒕)

𝒌 +

 ∏ (n−∊𝑖)
𝑘
1 (𝒒𝟐/𝒒𝒕)

𝑘)

We have determined that regardless of the value of the phase transition rate ρ, SLUM exhibits very

strong and very statistically significant polynomial running time growth in the number of service

providers per workflow task (see the results in section 4.2 to 4.8). This finding is consistent with

the theoretical model 𝑇𝐵 (𝑛) = (𝒏
𝒌(𝒒𝟏/𝒒𝒕)

𝒌 + ∏ (n−∊𝑖)
𝑘
1 (𝒒𝟐/𝒒𝒕)

𝑘) (see equation 2.48 in

chapter two). Given that k , 𝒒𝟏, 𝒒𝒕 and 𝒒𝟐 are generally much smaller than n and further k, 𝒒𝟏, 𝒒𝒕

and 𝒒𝟐 are fixed, the theoretical model in equation 2.48 is approximately a polynomial of degree

k. The statistical polynomial regression functions obtained under all the seven different values of

ρ had a degree of two (2) (see section 4.8 for a summary of the functions), which happens to the

value of k at 2 that was fixed for all the experiments. At the same time, in all the setups, we also

observed that SLUM exhibits a strong and statistically significant exponential growth in the

189

number of service providers, even though, generally, the exponential growth is not as strong as

polynomial growth at a fixed transition rate. This implies that for very large number of virtual

enterprise service providers per workflow task, our prosed model SLUM, is highly likely to suffer

exponential state space explosion, and thus not likely to guarantee polynomial time solution to

very large problems. In conclusion we could say that SLUM is superpolynomial and hence non

deterministic polynomial. This result is not surprising since as discussed in chapter one and two,

we saw that all Mixed Integer Programming algorithms suffer exponential state explosion for very

large problem sizes. The finding that SLUM has a superpolynomial running time growth despite

being faster than the state of the art (see previous and subsequent sections for evidence) is an

empirical reinforcement that the dynamic webservice composition problem remains NP hard.

RQ1.2: How does the running time growth of SLUM compare with that of S-MIP and L-

MIP?

In regard to RQ1.2, we determine that the running time of S-MIP is empirically bounded between

polynomial and exponential growth –this implies that the running time of S-MIP is

nondeterministic polynomial or superpolynomial. In a theoretical sense, we could conclude that

for an infinitely large number of service providers per workflow task, both SLUM and S-MIP are

equally bad in performance. This is expected because as per the analytic considerations of chapter

two, ignoring constant terms, the initial global search space for both algorithm is 𝒏𝒌. For very

huge n, this search space can require exponential effort (Benatallah, et al, 2004). However, as will

shortly be explained, in practice SLUM is much faster than S-MIP. On the other hand, we saw

that the running time growth of L-MIP has a polynomial upper bound. In a L-MIP is multiple

factors faster than both S-MIP an L-MIP. The result confirms the analysis in chapter two and also

reinforces the fining of previous studies that L-MIP is much faster than S-MIP.

As per the criteria in 3.5.2.1, we can conclude that the running time growth of L-MIP, TeL(n) is

empirically bounded between O(n) and O (nk) i.e 𝑂(𝑛) ≤ 𝑇𝑒𝐿(𝑛) ≤ 𝑂(𝑛𝑘), while TeB(n) and TeA(n)

are both empirically bounded between polynomial and exponential empirical complexity classes,

so that e 𝑂(𝑛𝑘) ≤ 𝑇𝑒𝐴(𝑛) ≤ 𝑂(𝑒
𝑜(𝑛)) and 𝑂(𝑛𝑘) ≤ 𝑇𝑒𝐵(𝑛) ≤ 𝑂(𝑒𝑜(𝑛)). On the basis of empirical

complexity, we therefore conclude that L-MIP guarantees solutions within polynomial time, while

both SLUM and S-MIP do not guarantee solutions in polynomial time since they have a

190

polynomial empirical lower bound but exponential empirical upper bound. Thus, L-MIP is far

more efficient than both SLUM and S-MIP.

Despite having found that both SLUM and S-MIP are superpolynomial theoretically, and therefore

are equally bad in theoretically, there are plausible practical performance differences between the

two methods. Looking at the graphs of running time for the seven different experimental setups,

and the summary statistics in section 4.8, it’s evident that irrespective of the transition rates, SLUM

is much faster than S-MIP (see the response to RQ1.3 for a more quantitative treatment of the

performance comparison between SLUM and S-MIP).

RQ1.3:- How much speedup is achievable when using SLUM over S-MIP to autogenerate

composite webservices given a business workflow having n webservices per task?

The answer to this question comes from figure 37, the plot of speedup vs number of service

providers for different transition rates and figure 38 having a plot of expected speeup vs transition

rates. We saw that at a constant transition rate, the speedup of SLUM with respect to grows larger

as the number of service providers grows larger. However, we also see that the speedup hits a limit

(does not grow infinitely). The third observation was that reducing the transition rate accelerates

increases the maximum speed achievable at any number of service providers. For example the

speedup at n=10, when p=0.029 is 1.5 times, against 1.2 at p=0.13 and below 1 when p=1. Figure

38 on the hand, shows that on average, it’s possible for virtual enterprise brokers to hit an average

speed up of 3.6 times when using SLUM. We see that:-

1. Based on the descriptive and inferential statistics in section 4.8.2 :- the speeup vs number of

service provi ers graph shows that :-

i. Virtual enterprise brokers with as low 10 to 20 service providers per workflow task

could enjoy speeups of up to 1.5 times when using SLUM as opposed to S-MIP.

ii. Virtual enterprise brokers with service providers per task in the range 30 to 50

could enjoy nearly two fold speed up when using SLUM instead of S-MIP.

iii. Virtual enterprise brokers with more than 60 service providers could enjoy more

than two times speedup.

2. Using the results in section 4.8.3 that are based on differential calculus using L-Hospital’s Rule.

We established that for any number of service providers that is large enough, virtual enterprise

191

brokers could expect a worst mean speedup of 1.1 times (10% efficiency gain) when the

transition rate approaches 100% and up to 3.6 times (260% gain efficiency gain) when the

transition rate approaches zero. Note that the transition rate depends on the current values of

webservices QoS attributes and the current QoS constraint models) of the problem instance.

Since we see that at 60 to 70 service providers per task, it’s possible to hit an average speed up

of 3.5 times, then the 260% improvement in speed is very practicable. In chapter two, we

established a theoretical model that captures the expected speedup of SLUM w.r.t. The model

is model Ω =
(𝟐)𝒌

 𝟏+ ρ
 . Thus a plot of Ω should exhibit inverse rational function. The empirical

expected speedups determined via L-Hospital’s rule (see section 4.8.3) confirm the inverse

trend between speedup and transition rate. Secondly, a comparison between the empirical

expected speedup values at given transition rates with the expected theoretical results are in

synchrony albeit with some deviations. However, note that the empirical values are all less

than their theoretical counterparts. This is expected because, as said earlier, theoretical models

do not take into account the practical limitations of the execution platform. The error deviations

could be attributed to: 1) machine dependent factors and 2) random errors. The conclusion is

that on average the virtual enterprise broker can practically expected speedups of up to
(𝟐)𝒌

 𝟏+ ρ
.

3. Using the method of empirical relative complexity analysis (see chapter 3) or Coffin &

Saltzman (2000), we have empirically demonstrated that even though both SLUM and S-MIP

could suffer exponential state space explosion, in practice, the running time of SLUM grows

much slower compared to S-MIP. The summarized results in section 4.8.4 show that for all

composite service phase transition rates ρ on the interval [0,1], the empirical relative

complexity coefficient β1 of SLUM with respect to S-MIP is less than 1. In fact, based on the

statistics, the mean value of β1 is about 0.85 and the modal value between 0.8 and 0.9 . A β1

value of 0.85 roughly corresponds to a transition rate value of 0.36. At ρ=0.36, the speedup is

about 2.1 times. Note that at k=2, transition rate of 0.36 means that more than half of the initial

service providers per task get promote for phase two optimization.

Although SLUM is generally much faster than S-MIP, using the empirical relative complexity

measure by Coffin & Saltzman (2000), we found that for a small number of webservices per task,

S-MIP is about 1.2 times faster than SLUM even though there were a few cases where SLUM is

192

initially an asymptotically better than S-MIP . We also used L-Hospital’s rule and limits theory to

arrive at 𝑛𝐶𝐸 = 22 i.e beyond 22 webservices per worklow task, SLUM has a relative speedup

larger than 1 and therefore faster than S-MIP. These results could be attributed to the fact that

initially, SLUM suffers the sequential overhead of having to formulate and instantiate the

optimization problem twice on two sequentially partitioned problem instances, first one at the

SCUM layer then later at the SPUM (Abiud et al, 2016). At a fixed transition rate, the overhead

is steadily overcome by the relative advantage of the layering as decomposition optimization

approach as n grows larger and beyond 22, the sequential overhead is completely overcome and

the superior performance of SLUM becomes apparent. This empirical result reinforces the

theoretical claim that even when decomposition is formulated on sequential algorithms, relative

performance speedups arise from the Superlinear growth of the problems being solved (Byod et

al, 2003).

 RQ1.4: What is the minimum number of service providers per workflow task that a virtual

enterprise broker needs to have in order to benefit from the relative efficiency of SLUM

when compared to S-MIP?

The answer to this research question comes from the analysis of the results as in subsections 4.2.3,

4.3.3, 4.4.3, 4.4.3, 4.5.3, 4.6.3 and 4.7.3, titled “ Expected Speedup via L-Hospital’s Law”. Under

exponential growth, in each of these sections, the speedup of SLUM with respect to S-MIP (SES)

is an exponential function in n. We have consolidated the results of these subsections in section

4.8.4. Figure 37 can also be quickly used to answer the question without rigorous mathematical

analysis.

From the results, we conclude that the minimum number of service providers beyond which SLUM

is faster than S-MIP depends on the transition rate. The lower the rate the lower the value 𝑛𝐶𝐸 , and

the better the case for the virtual enterprise broker. For instance, using the results in section 4.8.4

we see that to achieve a minimum speedup of 1.1 times, at any transition rate value 𝑛𝐶𝐸 ≤ 10.

This means that a virtual enterprise broker operating at least 10 service providers per task could

be guaranteed at least a 10% increase in efficiency when using SLUM as opposed to S-MIP. An

exception exists, where 𝑛𝐶𝐸=59 when the transition rate is 1. The implication is that is at any one

time whenever the transition rate is 1, at that point in time, any virtual enterprise broker having

193

less than 59 service providers per workflow task would not benefit from SLUM. However, in a

dynamic service environment, the transition rate will be seldom stationary and like said earlier,

will rarely be 1. This is to mean that the frequency of a virtual enterprise broker with as few

enterprises as ten per task are high.

From figure 37, we see that at a rate of 0.029, a virtual enterprise broker can enjoy a speedup of

1.5 at 𝑛𝐶𝐸=10, thus 10 becomes the minimum at this rate. At ρ=0.1 , the minimum value of 𝑛𝐶𝐸

is still 10 but a lower speedup of 1.3 times speedup. At ρ=0.6, the minimum value of n is 40

providers with 1.3 times speedup. At ρ=1, the minimum value of n is about 120 service providers

with 1.2 times speedup. However, given that ρ=1 represents an extreme (special) cases, it’s

unlikely that on the average case, a virtual enterprise broker with less than 120 service provider

would fail to enjoy the speedup of SLUM. From the graph in section 4.8.2, we can see that for all

transition rates except at ρ=1, SLUM performs better than S-MIP just above 30 service providers

per task. One method to validate this is by ρ=0.6 (a realistic but the most pessimistic value). At

k=2, ρ=0.6 means that more than 75% of service providers per task satisfied the QoS constraints

of layer optimization. For example, k=60, yields 3600 composite services initially. Sixty percent

transition rate, means a total of 2160 composite services proceeding to layer two for final selection,

which is roughly 47 out 60 services per task transiting. Having set ρ=0.6, and assuming

exponential growth (worst case), the exponential regression functions at ρ=0.6 could be used to

estimate the minimum number of service providers required for SLUM to have a speedup of at

least S times. From the results, at ρ=0.6, we have teA = 0.5918e0.0706n
 and teB = 0.7902e0.0579n

.

Applying L-Hospital’s rule as per the methodology established in chapter three, we have SLUM

Expected speedup at some value of n given as SES = 0.5918e0.0706n
 / 0.7902e0.0579n

 = 0.75e0.0127n

By solving the inequality 0.75e0.0127n
 ≥ 𝑺, one can estimate the minimum value of n required to

achieve at a speedup of at least S times. Let’s we have that S = 1.3 (20% increase in speed) . We

have 0.75e0.0127n
 ≥ 𝟏. 𝟑. Which yields 𝒏 ≥ 𝟐𝟕. Lowering S=1.2, yields 𝒏 ≥ 𝟐𝟎 and 𝒏 ≥ 𝟏𝟎 at

S=1.1. Thus, in general a virtual enterprise broker having at least 20 service providers per task is

guaranteed at least a 10% improvement in speed when using SLUM instead of S-MIP provi the

transition rate is less than 100%.

194

4.10.2 Relative Solution Quality of SLUM vs L-MIP with

respect to S-MIP

 RQ2.1: What is the average relative solution quality (percentage accuracy of quality) of the

composite webservices generated by SLUM relative to S-MIP?

 In response to research question RQ2.1, the results in section 4.9 indicate that the optimality ratio

of SLUM is about 93% on average. We conclude that SLUM suboptimal relative to S-MIP. This

finding confirms our analytic considerations of section 2.11 of chapter two, our early hypothesis

of our recent work in (Abiud et al, 2015) and the results in (Abiud W. M et al, 2016). The reason

for this result is because, although SLUM considers all global constraints eventually, it does so in

two layered steps, so that at one layer only global constraints related to the QoS attributes at that

layer are considered. Thus, while SLUM guarantees global optimality within each layer, it does

not guarantee the same at the network level because optimization at each layer does not take into

account the constraints at the other layer (Mulongo et al, 2015; 2016).

RQ2.2: What is the percentage difference in the relative solution quality by SLUM relative

to S-MIP?

We found that SLUM on average is significantly more optimal than L-MIP by approximately 5%.

We draw the conclusion that SLUM on average yields more quality solutions than L-MIP. The

reason why SLUM has a better solution quality performance could be qualitatively attributed to

the fact that while SLUM considers global constraints albeit in two partial steps, L-MIP does not

at all take into account global constraints, and thus, the chance of L-MIP ignoring potentially better

webservices across the workflow are higher than SLUM (Mulongo et al, 2016). A possible

quantitative explanation for the same observation is as follows (Mulongo et al, 2016): for each k

by n workflow, L-MIP only considers the QoS matrices of n webservices at a time. Given that

globally, the maximum number of possible solutions is nk
, for every optimization decision L-MIP

takes, L-MIP ignores the QoS of nk
-n other possible solutions. SLUM on the other hand, at each

layer, considers approximately only half of the QoS matrices per workflow task i.e recall that each

worklow task is mathematically represented as matrix. Each matrix contains a set of n QoS vector,

where each vector is a webservice. By considering only half of the QoS attributes at a time, SLUM

195

only considers n/2(half of the QoS information) options per task. Thus at each layer, SLUM

considers only (n/2)k
 possible options, while it ignores the remaining (n)k- (n/2)k

 options. At a

constant k, it is possible to show that (n)k- (n/2)k
 < nk

-n, n>4. For instance, let n=6 and k=2, (n) k-

(n/2)k
 =27 , while nk

-n = 30, and when n=60, k=2, (n)k- (n/2)k=2700 and nk
-n =3540. Since solution

quality depends on the variety of candidate solutions (Holdger Hoos, 2003) (see also chapter three),

SLUM has more chance of yielding more optimal solutions than L-MIP. Nevertheless, we also

observed that in some instances, L-MIP, despite ignoring a larger number of candidate solutions,

is able to produce solutions with better quality than SLUM. This isn’t surprising because, in

addition to the variety or set of candidate solutions considered, as illustrated in section 3.2.3.3, the

statistical structure of the problem instances (QoS matrices) can affect the quality of the solution

produced by one algorithm compared to the other. However, provided the problem instances are

random in nature, for a very large number of problem instances, with monotonically increasing

number of webservices per workflow task, there are more than 95% chances that SLUM will

produce more quality solutions than L-MIP as indicated by the statistical tests.

Even if L-MIP performs worse than SLUM on average, we observed that its mean optimality ratio

with respect to S-MIP is 87%. This is still an impressive performance. The study conducted by

Ardagna et al (2007) established that global planning MIP algorithms for webservice composition

outperform local planning MIP algorithms designed for the same task by 20% to 30% on average

in terms of solution quality. This implies that, at the very best, local planning MIP strategy has a

mean optimality of 80% according to Ardagna et al (2005). Although, our results report a figure

slightly larger than 80%, our finding that L-MIP has 87% mean solution quality, is a reinforcement

of the results by Ardagna et al (2007).

196

197

5 CHAPTER 5: CONCLUSIONS & CONTRIBUTIONS

In general, webservice composition is a critical business capability of modern virtual organizations

(Rabelo et al, 2007; 2008). Composite Web services can save a substantial amount of time and

cost for developing new software applications and enhancing the interoperability and collaboration

among the various virtual enterprises within collaborative virtual organizations (Dongsong et al,

2005). In particular, dynamic webservice composition (DWSC) is an important technological as

well as a business capability for enabling delivery of highly adaptable, customized and

personalized services to web service consumers (Mulongo et al , 2015;2016a; 2016b), (Farhan et

al, ,2010). DWSC could benefit a Virtual enterprise broker in the following ways (Abiud et al,

2016a):

i. Improved likelihood of the service consumer obtaining high quality solutions because the

best composite service is selected from a pool of many potential solutions. Even in the

event that no suitable solution is found that satisfies the consumer, the user can be provided

with the list of feasible solutions and choose whether or not one of them nearly satisfies

them.

ii. Through re-planning strategies, workflows that are dynamically bound to webservices at

runtime are more likely to survive failures through selection of different execution paths

hence boosting system reliability and customer experience.

However to autogenerate and adapt composite services that maximize the utility of various service

consumers whose preferences differ from time to time, remains a multiple criteria decision making

problem whose solution cannot be guaranteed in reasonable time. As explained in previous

chapters, Mixed Integer Programming (MIP) is the most appropriate method for efficiently

modelling decision problems that involve linear integer, real and binary variables. Current MIP

formulations for the webservice composition problem exploit two alternative strategies – local

planning which is demonstrably polynomial time but lacks the ability to capture global constraints

and therefore generally suboptimal. The alternative strategy is global planning, which can capture

both local and global constraints. The global planning MIP guarantees global optimality but cannot

guarantee a solution in polynomial time. All the existing global planning MIP methods for the

webservice composition problem follow a flat structured model in which one monolithic mixed

integer optimization program is formulated and solved in one shot (Mulongo et al, 2015; 2016a;

198

2016b). The limitation is that such MIP models grow faster in search space as the number of

optimization decision variables grow larger (Mulongo et al, 2015; 2016a). Other than performance

limitations, a second gap in all existing service composition strategies is that end users are required

to specify weights and QoS constraints on too many QoS attributes, some of which are too

technical to discern (Abiud W.M et al, 2015) – it can be too tedious for the end user (Zeng et al,

2004). Even though Benatallah (2004) hypothesizes that a hierarchical optimization approach to

the dynamic webservice composition problem could yield a more efficient solution albeit with

solution quality tradeoff, until this study there no such an approach.

In line with our research goal, this study aimed to design more efficient Mixed Integer

Programming dynamic composite webservice selection strategy that does not deny service

consumers an opportunity to specify all their critical local and global webservice QoS constraints.

This research goal was pursued through two specific research objectives. The research objectives

were:

i. Design a layered hierarchical mixed integer programming model for the composite

webservice selection problem following the concepts from the theory of Layering as

Optimization Decomposition.

ii. Evaluate the performance of the SLUM model against the single layered global

planning technique (S-MIP) and the local planning method (L-MIP) in terms of two

metrics:

i. Running time (performance efficiency) and;

ii. Solution quality.

In relation to the above research objectives, the study also sought to answer the following

two main research questions.

RQ1: For a composite webservice selection problem having a workflow with k tasks and

n alternative webservices per task, how does the runtime efficiency of SLUM compare with

that of S-MIP and L-MIP when each is used to solve the problem? The specific research

questions arising from this question are:

RQ2: How does the average solution quality of SLUM compare with that of L-MIP and

S-MIP? This leads us to the following specific research questions?

199

Through pursuing the above research objectives and seeking answers to the above research

questions, this study makes the contributions and conclusions described from section 5.1.

5.1 Contributions

5.1.1 A Two Layer Architecture and Model MIP Model for the Webservice Composition.

Our main contribution is that we have pioneered the application of the theory of Layering as

Optimization Decomposition (from a conceptual perspective) to solving the dynamic webservice

composition problem more efficiently using the global planning strategy described in chapter two.

Layering as Optimization Decomposition (Mung, 2006;2007) & (Steve Low , 2013) is an

architectural as well as mathematical framework that has been used to reformulate the classical

Network Utility Maximization (NUM) problem, so that it’s solved in a layered fashion, the results

being more optimal TCP/IP networks in efficiency, throughput and network resource allocation.

Although the theory has its roots in the communication networks field, this study has argued that

the dynamic webservice composition problem resembles the network utility maximization problem,

and consequently recast, the well-known (single layered) global planning mixed integer

programming model (S-MIP) for service composition pioneered by Zeng et al (2004), into a two

layered hierarchical MIP model called SLUM: Service Layered Utility Maximization model,

inspired by the conceptual aspects of the Layering as Optimization Decomposition theory.

The research output was a conceptual architecture together with the underlying mathematical

models. The two layered MIP model is documented in (Mulongo et al, 2015) and its performance

analysis presented in ((Mulongo et al, 2016a; 2016b). The key ideas in SLUM are as follows.

i. Like in network utility maximization problem, NUM (Kelly et al, 1998) based on Layering as

Optimization Decomposition, in SLUM, the original webservice composition problem is

partitioned in two MIP optimization problems – each subproblem is tackled at its layer. One

layer is concerned with the maximization of end user utilities. The objective function here is

formulated in terms of decision variables related to financial burden of the user and efficiency

i.e response time, reputation, etc. The other layer, is concerned with the maximization of the

utility of the virtual enterprise broker (and their service providers). The objective function at

the service provider layer is modelled in terms of low level technical webservice QoS

200

parameters such as throughput, availability, reliability etc. The mathematical optimization

model at each of the two layers follows the global planning MIP model originally defined in

Zeng et al (2004). The two MIP subproblems are then solved sequentially.

ii. Optimization at the Service Provider Utility Maximization layer is invisible to the end user

yet the efficiency benefits of the optimization at the service provider are propagated to the end

user without their knowledge. This form of abstraction is also employed in the network utility

maximization problem, where improvements in the physical layer performance due to novel

optimization algorithms at the physical layer are propagated to the application layer without

the awareness of the end user.

The study has analytically theoretically and empirically shown that the two layered MIP approach

is more efficient than the flat structured owing two main factors:-

i. Space reduction due to sequential decomposition. When a problem is decomposed and the

resultant subproblems solved sequentially (as opposed to a parallel solution), efficiency

benefits from the decomposition will still be achieved due to the theory that the complexity

of computational problems grows more than linearly as a function of the input size (Byod

et al,, 2003). The significance of this is that virtual enterprise brokers operating a workflow

that has k sequential tasks could benefit from faster average speed of up to 1.5 times using

a two layer global planning MIP strategy than using a single layer global planning to MIP

strategy, even in the absence of webservice elimination at the first phase of optimization.

More evidence for this contribution is given in sections 5.2.2 to 5.2.8, and can also be found

in (Mulongo et al, 2016b).

ii. Space reduction due to early service provider elimination. We have shown that other than

the relative speed gain due to superlinearity of the complexity of computation problems,

a two layered MIP architecture inherently benefits from further efficiency gains due to

early elimination of some service providers who do not satisfy the end user QoS constraints.

In particular, according to section 4.8.3 and (Mulongo et al, 2016a), we showed that in the

presence of elimination, a two layer global planning MIP model could be on average up to

4 times faster than the single layered global planning MIP model.

201

The performance efficiency results obtained provide an empirical proof that decomposition, even

when applied to problems sequentially, eventually yields significantly more efficient solutions due

to the super linearity of the complexity of computational problems as the problem size rises (Byod

et al,, 2003). Concurrently, the results support the thesis of layering as decomposition (Mung ,2006)

& (Low, 2012)), as a more efficient mathematical as well as architectural method for problems

that inherently can be reformulated in multiple layers of abstraction- we provide the first proof

where the composite webservice selection problem is concerned. Moreover, the results show that

the relative expected efficiency gain of layering as decomposition with respect to non-layered is

limited by the sequential overheads, hence achieving theoretical maximum expected speedup with

respect to S-MIP may not be feasible.

5.1.2 Runtime Performance Evaluation of the Two Layer MIP Model.

 Based on research question RQ1 above, the study makes several contributions to the body of

knowledge as regards the general runtime performance efficiency of SLUM, the initial as well

asymptotic performance of SLUM with respect to S-MIP and L-MIP and expected speedup of

SLUM with respect to S-MIP. The contributions & conclusions are described in subsections

5.1.2.1, 5.1.2.2, and 5.1.2.3.

 5.1.2.1 A Theoretic Runtime Performance Model for the Two Layer MIP Model

Starting with the specific research question:

 RQ1.1: How does the running time of SLUM grow as the number of service providers per

task increase?

 Through the analysis in section 2.12, the theoretical conclusion is that the runtime efficiency of

SLUM is given by𝒏𝒌(𝟏/𝟐)𝒌 + ∏ (n−∊𝑖)
𝑘
1 (𝟏/𝟐)𝑘.This theoretical performance

model constitutes our second major contribution to the body of knowledge.

More conclusions can be drawn from this model. Firstly, that unlike in flat structured workflow

based dynamic webservice composition approaches (L-MIP and S-MIP) in this case, the

performance of layered approaches such as the proposed model (SLUM) is not only affected by

the number of service providers 𝒏, and the number of workflow tasks , but also by the number of

service providers that are eliminated per workflow task at the SCUM layer, ∊𝑖. The larger the ∊𝑖

value the larger the efficiency and vice versa. Hence, the significance is that the magnitude of the

average speedup gains expected by virtual enterprise brokers from SLUM depends also on the

202

number of early eliminated service providers.

Secondly, that runtime growth of SLUM as the n grows larger, at a fixed k is likely to be

polynomial but also that at a fixed n, the runtime is likely to be exponential in k. The conclusion

therefore is that theoretically, SLUM’s runtime performance is superpolynomial and consequently

non deterministic polynomial. However, examining the coefficients of the model leads to the

conclusion that SLUM is theoretically more efficient than S-MIP, since the latter’s performance

model is given by 𝒏𝒌. Further, the SLUM runtime performance model shows that as anticipated,

SLUM has a poorer performance than L-MIP given that the latter’s runtime performance model of

the L-MIP is nk, which is linear time.

5.1.2.2 Empirical Runtime Performance Characterization of the Two Layer MIP Model

Through a series of experiments and using statistical regression analysis when k is fixed at 2, the

study found that SLUM has both very strong and statistically significant quadratic and exponential

runtime growth. Note that the quadratic growth is a polynomial growth when k=2. This consistutes

our third major contribution – the first empirical proof that a two layer MIP model for the dynamic

webservice composition problem is superpolynomial. Thus, our contribution here is in showing

the a key limitation of layered MIP approach to webservice composition which is “despite the two

layer MIP model having been proven to be on average and asymptotically more efficient than the

single layered one” (see subsequent subsections) it still suffers from exponential state explosion.

Through this finding, to the webservices research community, we provide further empirical

evidence that the dynamic composite webservice selection considering global constraints, remains

nondeterministic polynomial hard problem, and thus remains a significant problem deserving

further research (Abiud et al 2016;2016b).

 Given that SLUM is superpolynomial at k=2 and since k=2 is the smallest workflow in the number

of tasks and is already superpolynomial, and the absolute performance of cannot be better at larger

values of k, we therefore conclude that SLUM is generally superpolynomial both in theory in

practice for all k.

5.1.2.3 Theoretic and Empirical Relative Performance Evaluation of the Two Layer MIP

Model.

The contributions made under this section arise from the three research questions below:

203

RQ1.2: How does the running time growth of SLUM compare with that of S-MIP and L-MIP?

RQ1.3: How much speedup is achievable when using SLUM over S-MIP to autogenerate

composite webservices given a business workflow having n webservices per task?

RQ1.4: What is the minimum number of service providers per workflow task that a virtual

enterprise broker needs to have in order to benefit from the relative efficiency of SLUM when

compared to S-MIP?

 The study answered the research questions using both theoretical algorithm analysis and empirical

analysis following a series of experiments. The resultant contributions and conclusions are given

in section 5.1.2.3.1 to 5.1.2.3.5.

5.1.2.3.1 Complexity Analysis: SLUM & S-IMP are both theoretically

& Empirically Superpolynomial & L-MIP is Polynomial time.

Following the analysis from section 2.12, from a theoretical perspective, the SLUM runtime

performance model is given by TB = 𝒏𝒌(𝟏/𝟐)𝒌 + ∏ (n−∊𝑖)
𝑘
1 (𝟏/𝟐)𝑘 .S-MIP

performance model TA = 𝒏𝒌 and the L-MIP runtime performance model is TC = nk. Intuitively,

both S-MIP and SLUM are superpolynomial theoretically since for both algorithms, for a fixed n,

the runtime would grow exponentially in k, and grow in polynomial time in n with a degree of k,

for a fixed k. Thus, ignoring constant terms, we can conclude that both the two layer MIP (SLUM)

and the single layered MIP (S-MIP) are superpolynomial and equally bad in performance. As

explained in the preceding subsection, empirical results also confirmed that both SLUM and S-

MIP exhibit polynomial and exponential growth in runtime. On the other hand, L-MIP worst case

runtime growth not only polynomial time but multiple orders faster than both S-MIP and SLUM

i.e 𝑛𝑘 ≪ 𝒏𝒌 and 𝑛𝑘 ≪ 𝒏𝒌(𝟏/𝟐)𝒌 + ∏ (n−∊𝑖)
𝑘
1 (𝟏/𝟐)𝑘.

5.1.2.3.2 SLUM is much faster than S-MIP on average theoretically for

large values n for all k.

Although from a complexity analysis point of view SLUM and S-MIP are superpolynomial, from

the theoretical performance models, quantitatively, SLUM is significantly faster than S-MIP i.e

204

𝒏𝒌(
𝟏

𝟐)𝒌
+ ∏ (n−∊𝑖)

𝑘
1 (

𝟏

𝟐
)
𝑘
≪ 𝒏𝒌 . This brings us to our fourth main contribution- we derive

a theoretic SLUM speedup model relative to S-MIP. Based on the analysis of section 2.12,

Following the model(𝒏𝒌(𝒒𝟏/𝒒𝒕)
𝒌 + ∏ (n−∊𝑖)

𝑘
1 (𝒒𝟐/𝒒𝒕)

𝑘), the study introduced

the concept of Composite Service Phase Transition Rate ρ . ρ is the ratio of the number of

alternative composite webservices available after phase one optimization to the number of

alternative composite webservices available before the start of phase one optimization. Thus 𝜌 =

(∏ (n−∊𝑖)
𝑘
1)/(𝒏𝒌) and lies on the interval [0,1]. Using L-Hospital’s rule, we went ahead

to show that when the number of service providers per task is large enough, the expected speedup

of SLUM with respect to S-MIP is generally given by the, function
(𝟐)𝒌

 𝟏+ ρ
 . At ρ = 1, the

speedup is (2)𝑘−1 and at ρ = 0, speedup is (2)𝑘 . Hence, theoretically, we learn that the

average speedup
(𝟐)𝒌

 𝟏+ ρ
 is on the interval [(𝟐)𝒌−𝟏, (𝟐)𝒌] for a large enough n. Another lesson

learned from the theoretical model is that the average speedup is inversely proportional to ρ.

The average speedup model suggests that virtual enterprise brokers operating a large number of

service providers per task could expect an average speedup on the interval [(𝟐)𝒌−𝟏, (𝟐)𝒌] in

practice. For instance, for two task workflow, a speedup between 2 and 4 could be expected. We

also conclude that the expected relative SLUM speedup is inversely proportional to the composite

service phase transition rate ρ. This analysis also shows that for large enough n, SLUM is on

average many orders faster than S-MIP. Another important conclusion from the speedup model

(𝟐)𝒌

 𝟏+ ρ
 is that at ρ = 1, we have a speedup (𝟐)𝒌−𝟏. This is the average speedup arising from

pure sequential decomposition when all service providers are promoted from the SCUM layer to

the SPUM layer any speedup is not due to service provider elimination.

205

5.1.2.3.3 SLUM is much faster than S-MIP on average practically for

large values n on a two task workflow.

To verify the theoretical speedup model, the study conducted a series of experiments for a range

of problem instances with increasing empirical hardness in the number of service providers per

task at various values of the composite phase transition rate. The number of workflow tasks was

fixed at 2. The summarized empirical results in table 15 of section 4.8.3, table 16 of section 4.8.4,

and the Speedup vs ρ graph in figure 38 of section 4.8.3 leads to various conclusions and

contributions regarding the average empirical performance of our proposed two layer MIP model

versus the state of the art single layer MIP model:

i. The empirical speedup values obtained at all composite service phase transition rates

including at ρ =1, are greater than 1. We conclude that, SLUM is not only theoretically

faster than S-MIP on average, but also practically faster than S-MIP on average.

ii. Secondly, the empirical speedup values are larger at smaller ρ values and smaller at

larger ρ values. This empirical finding verifies the inverse relation between the

expected SLUM speedup and the composite phase transition rate as captured in the

theoretical model
(𝟐)𝒌

 𝟏+ ρ
. Hence for a fixed number of service providers per workflow

task, virtual enterprise brokers and hence service consumers will experience faster

relative speeds at time instants when the composite service phase transition rate is

higher than when it’s smaller in value.

iii. Thirdly, the empirical speedup ρ value, obtained via L-Hospital’s law tends towards

the corresponding theoretical value. For example, from table 4.8.3, at ρ = 0.0296,

expected theoretical speedup is 3.885 while the computed is 3.6. However, all empirical

expected speedups are below their theoretical counterparts by some error margin. The

conclusion is that although the empirical expected speedup approaches the estimated

theoretical speedup and hence fairly approximates the theoretical model, in practice,

it’s difficult to hit the envisaged theoretical maximum speedup gains (Mulongo et al,

2016a). This is due to sequential computational overheads incurred by the two layer

206

model that are not theoretically captured into the theoretical model (Mulongo et al,

2016a).

Fourth, the empirical speedup values at smaller ρ values are closer to their corresponding

theoretical values than at larger ρ values. This could be attributed to the fact that the sequential

overheads experienced by SLUM are larger at larger ρ and vice versa.

5.1.2.3.3 SLUM is about slower than S-MIP for small values of n below certain threshold

on a two task workflow.

If the two layered model is not faster than the single layered model until a certain minimum number

of service providers, then another question arising from RQ1.2 is: how faster is the single layered

model initially better than the layered model? Using empirical relative complexity (Coffin &

Saltzman, 2000), we established that although the initial relative performance of SLUM is also

dependent on the transition rate, SLUM is generally slower than the single layer MIP approach

initially when the number of service providers is below a certain threshold. Specifically, using the

empirical relative complexity analysis method, we established that on a two task workflow, the S-

MIP is about 1.3 faster than SLUM initially. Thus the conclusion is that single layered MIP models

could be more efficient for small scale webservice composition problems than the two layered

approach.

5.1.2.3.5 SLUM is practically asymptotically faster than S-MIP for

large values of n above a certain threshold on a two task workflow.

In addition the to initial and average performance comparison and in relation to RQ1.2, the study

sought to understand the empirical asymptotic performance of the two layer MIP model compared

with the single layered model. To do this, we used the empirical relative complexity coefficients

(Coffin & Saltzman ,2000). For ρ = 0.0296 (much closer to zero), we obtained an empirical

relative complexity coefficient of 0.783 compared with the 0.96 obtained when ρ = 1). For the

remaining five ρ values set at 0.064, 0.6, 0.45, 0.36, and 0.13 yielded empirical relative complexity

coefficients between 0.783 and 0.96 that were generally directly proportional to the transition rate.

The finding that the empirical relative complexity coefficients are directly proportional to

transition rate is a cross validation of the theoretical performance model obtained in chapter two.

The finding that at ρ = 1, the empirical coefficient is less than 1 means that even without service

207

elimination, SLUM is not only faster than S-MIP on average but also asymptotically. These results

provide an empirical evidence of our earlier theoretical conclusions that decomposition even when

done sequentially can lead to improved efficiency.

5.1.2.3.6 On a two task workflow, in practice at a fixed transition rate,

the relative speedup of SLUM grows larger as n grows larger and at a

fixed number of n.

 In regard to RQ1.3: How much speedup is achievable when using SLUM over S-MIP to

autogenerate composite webservices given a business workflow having n webservices per

task? The study also investigated the effect of varying the number of service providers per task at

a fixed ρ value on the running time of the two layered model compared to the single layered

approach. By plotting graphs of speedup vs number of service providers per task, for various ρ

values, we observed that the expected speedup of SLUM generally grows larger as the number of

service provider’s increase. For example at ρ = 0.36 , 𝑛 = 10, 40, 50 and 70 , the speedups were

1, 1.3, 1.5, and nearly 2 respectively. At ρ = 0.0296 , the speedups at n =10, and n=70 were 1.5

and 2.6 respectively. In general, we establish that the relative speedup of SLUM at a given value

can be determined from the exponential speedup functions derived at a particular value of k and ρ.

For example, at k=2 and ρ = 0.0296 , a virtual enterprise broker would expect0.6893e0.017n.

The exponential speedup functions can also be used to answer the research question:

RQ1.4: What is the minimum number of service providers per workflow task that a virtual

enterprise broker needs to have in order to benefit from the relative efficiency of SLUM

when compared to S-MIP?

To determine the minimum number of service provider nmin , the exponential speedup function at a

particular value of k and ρ can be used to compute nmin by setting the desired speedup value. For

example, at k=2 and ρ = 0.0296, to determine nmin needed to obtain a 50% gain, one would solve

the equation 0.6893e0.017n ≥ 1.5.

208

5.1.2.3.7 Relative Speedup of SLUM has an elastic limit with respect to

the number of virtual enterprises per task.

We observed that the speedup does not grow infinitely with the number of service providers but

rather hits a limit. From these results, we make an important contribution towards the

scalability/elasticity characteristics of layered MIP algorithms for the webservice composition

problem. The contribution is that beyond a certain value of n, virtual enterprise brokers would no

longer expect any more relative efficiency gains from the two layer MIP model.

5.1.3 Empirical Evaluation of SLUM’s Solution Quality and Optimality.

The main research question regarding solution quality was:

RQ2: How does the average solution quality of SLUM compare with that of L-MIP and S-MIP?

The results obtained show that layered MIP has an average solution quality of 93%, which is 7%

less optimal than the single layered. However, the same results showed that the local planning MIP

approach has an average solution quality of 87%, which is 5% less optimal less than the layered

MIP. The finding that L-MIP has an optimality of 87% reinforces the study in (Ardagna, 2007)

which established that L-MIP could be an average 20% to 30% worse than the global MIP strategy.

The conclusion is that a two layer MIP model is generally suboptimal but could on average produce

more quality solutions than the local planning MIP algorithms. Analytically, any scheme

exploiting layered optimization is bound to yield a suboptimal solution (Mung, 2006). Therefore

the proposed two layer MIP model was hypothesized to be suboptimal. However, the error

deviation of the two layered MIP model from the global optimum was unknown.

5.1.4 The Algorithm Selection Problem for the Virtual Enterprise Broker: S-MIP vs L-MIP

vs SLUM

Considering the foregoing, the overall and practical contribution is that for virtual enterprise

brokers to gain maximum benefit from dynamic webservice composition, there is a need to

combine the three techniques, given that none of the methods is adequate in all situations. This

transforms to what (John, 1976) terms as The Algorithm Selection Problem. In this case, the

question becomes, which of the three algorithms should the Virtual enterprise broker use under

what circumstances? Our contribution to this is that:-

209

i. In scenarios where there is no need for global webservice QoS constraints, the local planning

mixed integer programming is the most ideal technique to use especially in ultra-low latency

webservice enabled collaborative online stock trading platforms. In such web applications, the

tolerable waiting limit for end users is 2 seconds (Neilson, 1993;2009) , (Akamai, 2009) &

(Nah, 2004)

ii. Below 10 service providers per work task, the difference between SLUM and S-MIP is below

1 second. Where there are requirements for global constraints and strict requirements for 100%

optimality, the single layered global planning MIP is better than both SLUM and L-MIP since

SLUM does not guarantee global optimality whereas L-MIP lacks support for global

constraints and at the same time is suboptimal

iii. Where there is need to address global QoS constraints and the Virtual Enterprise Broker has

more than 10 service providers per workflow task, then SLUM is the best tradeoff.

iv. Based on (Mulongo et al, 2015), if there are no strict requirements on timelines and some

marginal error in solution quality is tolerable , then SLUM dominates over both S-MIP and L-

MIP because S-MIP is less efficient than SLUM while L-MIP is less optimal than SLUM.

v. If the target service consumers average users, and usability is a great concern, SLUM

dominates over S-MIP and L-MIP because unlike the rest, SLUM does not require users to

directly specify constraints on low technical parameters.

210

5.1.5 Methodological Contributions

When analyzing and comparing the performance of two or more composite webservice selection

algorithms, their running time, and consequently their relative average speedup can be analyzed

empirically as functions of the problem input size (in this case, the number of webservices per

task is the problem size). Further, the relative initial and asymptotic performance efficiency of

two algorithms could be analyzed graphically by plotting running time vs problem size, and even

more formally by exploiting the concept of empirical relative complexity as in (Coffin & Saltzman,

2000). All these approaches have been followed in this thesis (see section 4.1 to 4.7). However,

when comparing the relative performance of a layered composite service selection algorithm vs a

non-layered counterpart or even vs another layered algorithm, a second dimension arises- the

Composite Service Phase Transition Rate, ρ as defined by the author in this thesis, a method for

visualizing the variation of the relative performance of one algorithm with respect to the other as

a function of the rate ρ was needed. Previously, no study has explored such a method. In any case

as stated earlier, to the best of our knowledge, there exists no any other study that exploited the

concept of “a hierarchically layered mixed integer programming “model for the composite

webservice selection problem. The study fills the gap through the below contributions:-

5.1.5.1 Ω-ρ Graph

This type of graph shows how the speedup of an algorithm B relative to algorithm A varies with

increasing values of ρ. For example, in this work, figure 38 in section 4.8.3 shows the Ω-ρ graph

of our proposed SLUM algorithm with respect to the baseline algorithm S-MIP. The graph quickly

tells one that the relative speedup of SLUM with respect to S-MIP declines with increasing ρ value.

Where a mathematical model exists that correlates the relative speedup Ω with the transition rate

ρ, two Ω-ρ graphs can be plotted, one obtained through empirical analysis and another obtained

by substituting certain ρ values in the mathematical model. The empirical and theoretical Ω-ρ

graphs can then be compared where the empirical graph can be used to verify the theoretical model

and vice versa. This is exactly what this study did. Using figure 38 in section 4.8.3 as a reference,

we have one theoretical Ω-ρ graph and one empirical Ω-ρ graph. Both of the graphs confirm the

same general trend that the speedup of SLUM with respect to S-MIP declines with increasing

transition rate, thus validating the theoretical results of section 2.13.

211

Besides SLUM, future layered approaches to the composite webservice selection problem, may or

may not exploit mixed integer programming model. And even if they did, variations in the

formulation of the layered approach could be possible. Nevertheless, the invariant concept here is

that in any of the layered approaches, candidate composite services are bound to be eliminated as

they pass through the layers and thus the notion of “Composite Service Phase Transition Rate”

remains. Thus, the Ω-ρ graph is envisaged to be a useful tool of algorithm performance efficiency

comparison in the context of any layered approaches to composite service selection. In this case,

Ω-ρ graph becomes a vital visualization tool depicting effect of service elimination through the

phases on the relative performance of the new layered algorithm being investigated.

5.1.5.2 β0-ρ Graph

As explained throughout this study, other than average performance, the initial and asymptotic

performance of two algorithms can be compared more formally using the concept of empirical

relative complexity analysis as defined and explicated in (Coffin & Saltzman, 2000). The only

condition for this kind of analysis is that a log-log graph of the running times of both algorithms

must yield a graph that is significantly linear. This study takes the work of (Coffin & Saltzman,

2000) further to introduce the notion of β0-ρ graph. The graph shows how the relative initial

performance β0, of a layered algorithm B varies with the transition rate ρ. For example, in this

work, in section 4.8.5, figure 39 shows how the initial performance of our proposed model with

respect to S-MIP varies with ρ. In our case, the variation although somewhat noisy, shows that the

initial performance of SLUM is generally poorer than S-MIP and that the effect of ρ is almost

negligible.

5.1.5.3 β1-ρ Graph

This graph is very similar to the β0-ρ graph except that it shows the relative asymptotic

performance of a layered algorithm with respect to another (non-layered) as a function of the

transition rate. Figure 40 in section 4.8.5 captures this concept. The conclusion drawn from the β1-

ρ graph in figure 40 is that the asymptotic performance parameter β1 (computed as per Coffin &

Saltzman (2000)) and the phase transition parameter ρ are directly proportional to each other. Since

according to Coffin & Saltzman (2000) a larger value of β1 , where β1 is on the interval [0,1],

shows a poorer relative asymptotic performance than a smaller value, and given that from the

definition of the parameter ρ, and the derived speedup model
(2)𝑘

 1+ ρ
, for large enough n, the speedup

212

is poorer at larger ρ values, then the direct correlation between β1 and ρ is not a surprising result.

5.2 Limitations of the Study

The generalized theoretic SLUM speedup model
(𝟐)𝒌

 𝟏+ ρ
 has been be shown to approximately hold

in practice using a set of 112 experiments involving sixteen problem instances whose difficulty

ranged from 5 service providers per task to 80 problem instances per task (in steps of 5, two tasks

per work and seven ρ whose fairly spread between 0 and 1. Although, the empirical ρ values and

their theoretical counter parts were converging, the study showed that the empirical values were

all below their corresponding theoretical values. A limiting factor explaining this behaviour is the

runtime sequential computational overheads that SLUM has to overcome first before getting faster

than S-MIP (Abiud et al, 2016a).

Whereas the model
(𝟐)𝒌

 𝟏+ ρ
 generally suggests that SLUM’s speedup would be much larger at

larger k values, it would have been interesting to perform more experiments involving 𝒌 > 𝟐

e.g 𝒌 = 𝟐, 𝟑 in order to establish the scalability behaviour of SLUM relative to S-MIP at

larger 𝒌 at larger k values at different composite service phase transition rates and at different

number of service providers per workflow task. This would have helped illuminate the

circumstances and conditions under which SLUM is more beneficial than S-MIP for workflows

containing more than two sequential tasks.

5.3 Future Work

It would be desirable to explore further work on the scalability behaviour of SLUM with respect

to S-MIP on workflows larger than two sequential tasks.

Analytically due to decomposition and layering, the abstraction afforded by our approach

inherently shields end users from the burden of specifying weights and constraints on low level

213

performance attributes such as reliability, throughput etc. However, it would be desirable in future

to carryout qualitative usability studies to compare the user experience/ease of use of our model

against the baseline model in order to determine the effect of reduced end user QoS parameters on

the usability.

Layering as Optimization Decomposition is a science as well an art requiring human engineering

effort (Mung, 2006). There are more than one scheme of layering and each layering scheme could

lead to varying degree of runtime efficiency and optimality (Mung, 2006) as proven in the

communications network research. This being the pioneering work, we have only advanced one

of the possibly many MIP layering schemes that could follow from this one. Future work shall

explore alternative MIP layering schemes and their relative performance in terms of runtime

execution efficiency and optimality benchmarked. A starting point would be to investigate whether

reversing the optimization process in our two layer SLUM model, such that optimization begins

at the Service Provider Utility Maximization (SPUM) layer followed by the Service Consumer

Utility Maximization (SCUM) layer could yield any improvement in the relative speedup as well

as optimality of the SLUM model compared to when the reverse order is done. Recall that as per

the practical and philosophical considerations of this study (see section 2.10), the study adopted a

layered optimization process beginning with SCUM followed by SPUM.

This study pioneered a layered mixed integer approach to the dynamic composite webservice

selection problem. Specifically a two layer approach was formulated, again based on realistic

applications at the forefront as elaborated in section 2.10. Whether it’s for mere theoretical or

practical motivations, future work could explore N layered mixed integer programming approaches

to the problem, where N>2. Obviously, the complexity in analyses is expected to grow larger as

the number of layers increases. However, if approached well, new performance insights never

conceivable before could emerge.

214

6 REFERENCES

Afsarmanesh, H., Sargolzaei, M. & Shadi, M., 2012. A framework for automated service

composition in collaborative networks. Collaborative Networks in the Internet of Services, pp.63–

73.

AgileLoad, 2012. Web Applications Performance Symptoms and Bottlenecks Identification,

www.agileload.com, last accessed 30th December 2015.

Ahuja, R.K, Orlin, J.B, 1996. Use of Representative Operation Counts in Computational Testing

of Algorithms. Informs Journal on Computing, Vol. 8, summer.

Alifarai, M., Skoutas, D., Risse, T., 2010. Selecting Skyline Services for QoS based Web service

Composition, April 26-30, Raleigh NC, USA.

Amit G., Heinz, S. ,David, G., 2010. Formal Models of Virtual Enterprise Architecture:

Motivations and Approaches, PACIS 2010 Proceedings.

Ardagna, D., Pernici, B. , 2007. Adaptive Service Composition in Flexible Processes. IEEE Trans.

on Software Engineering. 2007.

Bachmann, F., 2000. Software Architecture Documentation in Practice: Documenting

Architectural Layers, Software Engineering Institute, Carnegie Mellon University.

Bakhshi, M., Hashemi, S.M, 2012. User Centric Optimization for Constraint Webservice

Composition Using a Fuzzy Guided Genetic Algorithm System. International Journal on

Webservice Computing Vol. 3, No 3., September 2012.

Barr, R.S ,2001. Guidelines for Designing and Reporting on Computational Experiments with

Heuristic Methods, March 16, 2001.

Bartalos, P., Bielikova, M., 2011. Automatic Dynamic Web Service Composition: A Survey and

Problem Formalization, Computing and Informatics Journal, Vol. 30, 2011, 793–827.

Bartz-Beielstein, T., Preub, M.,2014. Experimental analysis of optimization algorithms: Tuning

and beyond. In Theory and Principled Methods for the Design of Metaheuristics, pages 205–245,

215

Springer, 2014.Also available at

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.301.2339&rep=rep1&type=pdf.[Last

accessed March, 2016.

Berthold, T. et al, 2012. Solving mixed integer linear and nonlinear problems using the SCIP

Optimization Suite. Proceedings of the 24th RAMP Symposium held at Tohoku University,

Miyagi, Japan, 27th September 2012. Also available at http://orsj.or.jp/ramp/2012. Available as

ZIB-Report 24. [Last Accessed in May 2016].

Blum, A. & Merrick, F., 1997. Fast Planning Through Planning Graph Analysis. Artificial

Intelligence. Artificial Intelligence. Available at:

http://www.cs.cmu.edu/afs/cs.cmu.edu/user/avrim/www/Papers/planning.ps.gz.

Broadwell, P.M., 2004. Response time as a Performability Metric for Online Services, Report No.

UCB//CSD-04-1324, Computer Science Division, University of California, Berkeley.

Byod, S., Xiao, L.,Mutapcic, A., 2003. Notes on Decomposition Methods, Notes for EE3920,

Stanford University, Autumn, available at

http://web.stanford.edu/class/ee392o/decomposition.pdf [Last accessed 4th April, 2015].

Cook, S., 1971. The Complexity of Theorem Proving Procedures, STOC 71, Proceeding of the

third ACM Symposium on the Theory of Computing, pp 151-158,1971.

Camarinha-Matos, L.M. & Afsarmanesh, H., 2007. A comprehensive modeling framework for

collaborative networked organizations. Journal of Intelligent Manufacturing, 18(5), pp.529–542.

Available at: http://link.springer.com/10.1007/s10845-007-0063-3 [Accessed November 18,

2016].

Coffin, M.., Saltzman, M.J., 2000. Statistical Analysis of Computational Tests of Algorithms and

Heuristics, INFORMS Journal on Computing, Vol. 12, No. 1, Winter 2000.

David, H.C., 2013. Statistical Methods for Psychology, 8th Edition, ISBN-13: 978-1-111-83548-

4.

http://orsj.or.jp/ramp/2012.%20Available%20as%20ZIB-Report%2024
http://orsj.or.jp/ramp/2012.%20Available%20as%20ZIB-Report%2024
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/avrim/www/Papers/planning.ps.gz

216

Dongsong, Z., Minder, C., Lina, Z., 2005. Dynamic and Personalized Web Services Composition

in E-Business, Information Systems Management 22(3):50-65 · June 2005.

Eitan, Z., 1981. Measuring the Quality of Approximate Solutions to Zero-One Programming

Problems. Mathematics of Operations Research, Vol. 6, No. 3, August 1981, USA.

Farhan, K.H., Younus, J.M., Saba, B. , 2010. QoS Based Dynamic Web Services Composition &

Execution, International Journal of Computer Science and Network Security, Vol 7 (2), February,

2010.

Gabrel, V., Manuovrier, M., Murat, C., 2013. A linear Program for QoS web service composition

based on complex workflow. 2013.

H-CL, Yoon, K., 1981. Multiple Criteria Decision Making, Lecture Notes in Economics and

Mathematical Systems, Springer Verlag. J Op. Res Soc. Vol 49(3), pp 237-252, March 1998.

Hoos, H.H., 2003. Introduction to Empirical Algorithmics.

Hoos, H.H., 2009. A bootstrap approach to analysing the scaling of empirical run-time data with

problem size. Technical Report TR 2009-16, Dept. of Computer Science, University of British

Columbia, 2009.

Hoos, H.H., 2014. On the empirical scaling of run-time for optimal solutions to the travelling

salesman problem. European Journal of Operational Research, 238(1), 2014.

Hoos, H.H., Mu, Z., 2015. Empirical Scaling Analyser: An Automated System for Empirical

Analysis of Performance Scaling, GECCO ’15 July 11-15, 2015, Madrid, Spain, ACM ISBN 978-

1-4503-3488-4/15/07, DOI: http://dx.doi.org/10.1145/2739482.2764898, last accessed on 22nd

March 2016.

IBM, 2004.Patterns: Service-Oriented Architecture and Webservices. Available at

http://www.redbooks.ibm.com/redbooks/pdfs/sg246303.pdf [last accessed June 2016].

John, R.R, 1976. The Algorithm Selection Problem. Computer Science Technical Reports, Report

No. 75-76, Computer Science Department, Purdue, University.

http://www.redbooks.ibm.com/redbooks/pdfs/sg246303.pdf

217

Kautz H. and Selman B.(1992). Planning as Satisfiability, available online at

http://www.cs.cornell.edu/selman/papers/pdf/92.ecai.satplan.pdf. Last accessed on 5th April, 2015

Kautz H., Selman B., 2004. WALKSAT in the 2004 SAT Competition, available online at

http://www.cs.rochester.edu/~kautz/papers/walksat.pdf, . Last Accessed in May 2016.

Kelly F.P, Maulloh A,Tan T. ,1998. Rate Control for Communication Networks. Shadow Prices,

Proportional Fairness and Stability.

Kitching, M. ,2010. Decomposition and Symmetry in Constraint Optimization Problems, PhD

Thesis, Graduate Department of Computer Science, University of Toronto.

Klotz, E., Newman, A.M., 2012. Practical Guidelines for Solving Difficult Mixed Integer Linear

Programs.

Kounev S, Gordon I. and Sachs K. (Eds). SIPEW 2008, LNCS, 5119283-302, 2008, Springer

Verlag.

Kusiak, A., Larson, N., 1995. Decomposition and representation methods in mechanical design.

ASME J Mechanical Design 117(special 50th anniversary design issue):17–24.

Levitin A., 2011. Introduction to the Design and Analysis of Algorithms, 3rd Edition.

Lifschitz V., 2002. Answer set programming and plan generation. Artificial Intelligence, Vol. 138,

2002.

Liu, S.C, 2012. Applying Genetic Algorithm to Select Web services Based on Workflow Quality

of Service, Journal of Electronic Commerce, Vol 13(2), 2012.

Low, S., 2013. Scalable Distributed Control of Networks of DER, Computing & Math Sciences

and Electrical Engineering, Caltech University.

Mahboobeh M. and Joseph G.D, 2011. Service Selection in Webservice Composition. A

comparative Review of Existing Approaches, Springer- Verlag Berlin, Heidelberg, 2011.

Mancini, T., Flener, P., Monshi, A.H., Pearson, J., 2009. Constraint Optimization over Massive

Databases in Proceedings of the 16th International Conference RCRA workshop (RCRA 2009).

http://www.cs.cornell.edu/selman/papers/pdf/92.ecai.satplan.pdf
http://www.cs.rochester.edu/~kautz/papers/walksat.pdf

218

Molina A. , Flores M. ,1999. A Virtual Enterprise in Mexico: From Concepts to Practice”, Journal

of Intelligent and Robotics Systems, 26: 289-302.

Monsincat A., Binder, W., 2010. Automated Performance Maintenance for Service Compositions,

available at http://www.inf.usi.ch/phd/mosincat/adula.htm [last accessed 10th Nov. 2014]

Mulongo, A. W, Opiyo E. T.O, Odongo W O., 2015. A Hierarchical Multilayer Service

Composition Model for Global Virtual Organizations, Computer Science and Information

Technology 3(4):91-104, 2015. Also available at

http://www.hrpub.org/download/20150510/CSIT1-13503138.pdf [Last Accessed July 2016].

Mulongo, A. W, et al, 2016a: SLUM: Service Layered Utility Maximization Model to Guide

Dynamic Composite Webservice Selection in Virtual Organizations, Computer Science and

Information Technology Vol. 4, No. 2, 2016. Also available at

http://www.hrpub.org/download/20160430/CSIT2-13505724.pdf [Last Accessed July 2016].

Mulongo, A.W, et al (2016b): Superlinear Relative Speedup of the Service Layered Utility

Maximization Model for Dynamic Composite Webservice Selection in Virtual Organizations,

International Journal of Computer and Information Technology (IJCIT), Volume 5, Issue No.4,

July 2016. Also available at http://www.ijcit.com/archives/volume5/issue4/Paper050408.pdf [

Last Accessed July 2016].

Mung, C., 2006. Layering as Optimization Decomposition, Electrical Engineering Department,

Princeton University. Available online at http://www.ece.rice.edu/ctw2006/talks/ctw06-

Mung.pdf. [Last accessed 29th April 2016].

Mung C., Low, S.H, A., Calderbank, R., Doyle, J.C. , 2007. Layering as Optimization

Decomposition. Current Status and Open Issues, Electrical Engineering Department, Princeton

University.

Mung, C.,et al, 2007. Layering as Optimization Decomposition. Ten Questions and Answers,

available at http://web.stanford.edu/class/ee360/previous/suppRead/read1/layer_1.pdf [last

accessed June, 2016].

Mu, Z.X., Hoos, H.H., 2015. On the empirical time complexity of random 3-SAT at the phase

transition, in the Proceedings of IJCAI, 2015.

http://www.inf.usi.ch/phd/mosincat/adula.htm
http://www.hrpub.org/download/20150510/CSIT1-13503138.pdf
http://www.hrpub.org/download/20160430/CSIT2-13505724.pdf
http://www.ijcit.com/archives/volume5/issue4/Paper050408.pdf
http://www.ece.rice.edu/ctw2006/talks/ctw06-chiang.pdf
http://www.ece.rice.edu/ctw2006/talks/ctw06-chiang.pdf
http://web.stanford.edu/class/ee360/previous/suppRead/read1/layer_1.pdf

219

Nah H.H.,2004. A Study on tolerable waiting time. How long are web users willing to wait?

Behavior and Information Technology, Forthcoming.

Ngoko Y. , Goldman A, and Milojicic D. (2013). Service Selection in Webservice Compositions

Optimizing Energy Consumption and Service Response.

Nielsen, J. ,1993. Usability Engineering, Morgan Kaufmann, 1st Edition, September, 1993.

Nngroup (2014). http://www.nngroup.com/articles/response-times-3-important-limits/, updated

2014, Last accessed on 4th April, 2015.

Nudelman, E., 2005. Empirical Approach to the Complexity of Hard Problems: PHD Thesis 2005,

Stanford University.

Pan, S., Mao, Q., 2013. Case Study on Webservices Composition Based on Multi-Agent System.

Journal of Software, Vol. 8, No 4. April 2013.

Picard, W. et al., 2010. Breeding virtual organizations in a service-oriented architecture

environment. SOA Infrastructure Tools: Concepts and Methods, pp.375–396.

Rabelo J. Ricardo et al (2007). An Evolving Plug and Play Business Infrastructure for Networked

Organizations. International Journal of on Information Technology and Management, 2007.

Rabelo, R.J. et al., 2009. An evolving plug-and-play business infrastructure for networked

organisations. International Journal of Information Technology and Management, 8(3), p.260.

Available at: http://www.inderscience.com/link.php?id=24605 [Accessed November 18, 2016].

Rabelo R., Gusmeroli S. (2008). The ECOLEAD collaborative business infrastructure for

networked organizations. Pervasive collaborative networks PRO-VE 2008. Springer, New York,

2008.

Rajendran T. and Balasubramanie P., 2009. Analysis on the Study of QoS Aware Webservices

Discovery, Journal of Computing Vol. 1(2), December, 2009.

Rainer, A., 2005. Web Service Composition using Answer Set Programming

220

Rainer, A., Dorn, J. U. , 2009. MOVE: a generic service composition framework for Service

Oriented Architectures. IEE Webservices Challenge 2009.

Rao, J. , 2004. Semantic Web Service Composition via Logic Based Program Synthesis, PhD

Thesis, Department of Computer and Information Science, Norwegian University of Science and

Rao, J. & Su, X., 2005. A survey of automated web service composition methods. Semantic Web

Services and Web Process Composition, pp.43–54. Available at:

http://link.springer.com/chapter/10.1007/978-3-540-30581-1_5.

Schahram D., Wolfgang, S., 2005. A Survey on Web Services Composition.

Seogewick, R., Flajolet, P. 2009. An Introduction to the Analysis of Algorithms, Second Edition,

Princeton University. Available online at http://aofa.cs.princeton.edu/lectures/lectures13/AA01-

AofA.pdf . [Last accessed 18th May, 2016].

Seog, C.O., Dongwon, L. & Soundar, R.T.K., 2006. A comparative illustration of Artificial

Intelligence.

September 14, 2009 - Akamai Reveals 2 Seconds as the New Threshold of Acceptability for e

Commerce Web Page Response

Timeshttp://www.akamai.com/html/about/press/releases/2009/press_091409.html, [Last

Accessed 4th April, 2015].

Shade, K.O., Akinde Ronke O, A.O. & Samuel, O.O., 2012. Quality of Service (Qos) Issues in

Web Services. IJCSNS International Journal of Computer Science and Network Security, 12(1).

Singh K.A (2012). Global Optimization and Integer Programming Networks. International Journal

of Information and Communication Technology Research.

Simon, G.F., 2009. Measuring Empirical Computational Complexity, PhD Thesis, Department of

Electrical Engineering and Computer Science, University of California at Berkeley, USA.

Songqing, S., Gary, W.G, 2009. Survey of Modeling and Optimization Strategies for High

Dimensional Design Problems with Computationally Expensive Black Box Functions, Springer

Verlag, Published Online August, 2009.

http://link.springer.com/chapter/10.1007/978-3-540-30581-1_5
http://aofa.cs.princeton.edu/lectures/lectures13/AA01-AofA.pdf
http://aofa.cs.princeton.edu/lectures/lectures13/AA01-AofA.pdf

221

Terlouw, L.I, Albani, A, 2013. An Enterprise Ontology-Based Approach to Service Specification,

IEEE Transactions on Services Computing, Vol. 6, NO. 1, January-March 2013.

The OpenGroup (2007). Service Oriented Architecture. Available at

https://www.vanharen.net/Player/eKnowledge/service_orientated_architecture_soa_.pdf [Last

Accessed June 2016].

Tramontani, A., 2008. Enhanced Mixed Integer Programming, PhD Thesis. Available at

https://core.ac.uk/download/files/330/11012104.pdf. [Last accessed on 30th April 2016].

Xu, B. et al , 2011. Towards Efficiency of QoS driven semantic webservice composition for large

scale service oriented systems, Sringer, 211, DOI 10.1007/s11761-011-0085-8.

Yan, F., 2012. Global Optimization Method for Web services composition based on QoS,

International Conference on Engineering and Business Management, 2012.

Urban, S.D., Gao, L., 2011. A Survey of Transactional Issues for Web Service, Composition and

Recovery, Int. J. Web and Grid Services, Vol. 10 (10), 2011.

Yu, L., 2005a. Cmodels for Tight Disjunctive Logic Programs, In Proc. of WCLP, 2005.

Yu, L., 2005b. Disjunctive Answer Set Programming via Satisfiability, In Proc. of Workshop on

ASP, 2005.

Zeng, L. et al., 2004. QoS-aware middleware for Web services composition. IEEE Transactions

on Software Engineering, 30(5), pp.311–327.

Zeng et al (2009). Configurable Composition and Adaptive Provisioning of Web Services3, IEEE

Transactions on Service Computing Vol. 2(1), January, 2009.

Zhu, X., 2006. Discrete Two-Stage Stochastic Mixed-Integer Programs with Applications to

Airline Fleet Assignment and Workforce Planning Problems, PhD Thesis, Department of

Industrial Systems Engineering, Virginia Polytechnic Institute and State University.

W3C (2001). Web Services Description Language (WSDL) 1.1 W3C Note 15 March 2001.

Available at http://www.w3.org/TR/wsdl.html.W3C (2013) http://on.cs.unibas.ch/owls-

api/index.html [Last accessed 8th July 2013.

https://www.vanharen.net/Player/eKnowledge/service_orientated_architecture_soa_.pdf
https://core.ac.uk/download/files/330/11012104.pdf
http://on.cs.unibas.ch/owls-api/index.html
http://on.cs.unibas.ch/owls-api/index.html

222

Appendix 1: Composite Webservice Subgraph Program Logic

223

Appendix 2: Composite Webservice Selection Model in Java Optimization Modeler

224

Appendix 3: Experiment Setup

SOAPUI

JAVA SOAP
client

Java Optimization Modeler –
MIP Composite Service

Selection Engine

2 by n by 7 webservice QoS Matrix File

SLUM S-MIP L-MIP

 In the setup above, SOAPUI was used to generate n mock webservices per task. As explained in

the methodology section, each mock service generated a random vector of 7 QoS values when

invoked by a Java SOAP client. The output vector is then store in a file. The data structure stored

in the file is three dimension. The first dimension represents the number of workflow tasks, which

as explained was fixed at 2 The second dimension is the number of QoS vectors, which map to the

number of webservices per task and the last one is the number of QoS attributes, which was fixed

at 7. The Java Optimization Modeler (JOM) is a Mixed Integer Programming Library. The

composition engine was built on top of JOM. The input to the engine is a 2 by n by 7 graph. The

engine based on the configuration, gets the file as input, selects one of the three algorithms to

process the input file. The output is one or a 2 by 7 QoS matrix, where the first vector is the best

webservice for task 1 and the second vector is the best webservice for task 2.

225

