
 `

University of Nairobi

School of Computing and Informatics

Development of a Scalable Microservice Architecture for Web Services using OS-level

Virtualization

Presented by : Khakame Peter Wamboko

 P56/P/8256/2004

Supervisor : Robert Oboko

A Project Report Presented to the School of Computing and Informatics in Partial

Fulfillment of the Requirements for the Award of Degree of Master of Science In

Information Systems

University of Nairobi

 2016

 `

ii

DECLARATION

I declare that this thesis is my original work and has not been submitted elsewhere for

examination, award of degree or publication. Where other peoples work or my own work

has been used, this has properly been acknowledged and referenced according to

University of Nairobi‘s Requirements.

………………………………… ………………………………..

Signature Date

Khakame Peter Wamboko

P56/P/8256/2004

This Thesis is submitted for examination with our approval as supervisor(s)

………………………………… ………………………………..

Signature Date

Dr Robert Oboko

School of Computing & Informatics

University of Nairobi

P.O. BOX 30197-00100

NAIROBI

Robertoboko@uonbi.ac.ke

iii

DEDICATION

This work is dedicated to mankind whose livelihoods can be improved by better use of

emerging virtualization technologies.

iv

ACKNOWLEDGEMENTS

I wish to thank my supervisor Dr Robert Oboko for his guidance and support. His

invaluable insights about research have formed the basis of this thesis. I also wish to

thank my colleagues whom we worked together under the supervision of Dr Oboko. The

members of teaching and support staff at the Computing and Informatics department

deserve special thanks for their support throughout the course.

I also wish to acknowledge the support I received from family members, my mum Resah

Khakame, my brother Saul Wamocha and my friend Yona Eteneh.

My thanks to my Wife, Tabitha Adhiambo and my three daughters Milkah, Maria and

Sara Joy who stood by me throughout my masters course. They tolerated my working late

and my not being available to take them out on holidays.

Lastly I thank God for having given the life and good health to enable me completes this

work despite the challenges that I faced.

v

TABLE OF CONTENTS

DECLARATION .. ii

DEDICATION …………………………………………………………………………...iii

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES ... xiv

LIST OF ACRONYMS .. xv

ABSTRACT……………… ... xviii

CHAPTER ONE: INTRODUCTION ... 1

1.1 Background ... 1

1.1.1 The Universal Scalability law ... 1

1.1.2 Service Oriented Architecture (SOA) ... 2

1.1.3 Microservice Architecture ... 3

1.2 Problem Definition. .. 3

1.3 The Solution to the Problem. .. 6

1.4 Purpose… .. 6

1.5 Scope of the Study ... 7

1.6 Related Work .. 7

1.7 Organization of the Thesis .. 8

CHAPTER TWO: LITERATURE REVIEW ... 9

2.0 Introduction ... 9

2.1 Definition of Terms... 9

2.1.1 Microservices .. 9

2.1.2 Continuous Delivery ... 9

2.1.3 Continuous Integration.. 10

2.1.4 Configuration Management .. 10

2.1.5 DevOps.. ... 10

2.1.6 OS-Level Virtualization .. 10

2.1.7 Docker… ... 11

2.1.8 Monolithic Architecture .. 12

2.1.9 Software Application .. 13

2.1.10 Process 13

vi

2.1.11 Web Service .. 13

2.1.12 Software Architecture ... 13

2.2 Principles of the Microservice Architecture ... 14

2.2.1 Microservice Architectural Constraints .. 15

2.3 Conceptual design ... 17

2.3.1 Software functional components... 17

2.4 REST Architectural Styles and Architectural Constraints 17

2.5 Microservices Architectural Style... 18

2.6 Characteristics of Microservices ... 19

2.6.1 Independent Technology Stacks ... 19

2.6.2 Independent Scaling .. 19

2.6.3 Independent Evolution of Features ... 21

2.6.4 Stable Interfaces – Standardized Communication .. 21

2.6.5 Componentization via Services... 21

2.6.6 Favors Cross-Functional Teams ... 22

2.7 Challenges to a Microservice Architecture ... 23

2.8 Microservice Architecture , DevOps and Containers ... 24

2.8.1 DevOps is a Prerequisite to Successfully Adopting Microservices 24

2.9 Cloud Computing .. 24

2.9.1 Characteristics and Benefits of Cloud Computing.. 25

2.9.2 Cloud Computing Service Delivery Models ... 26

Table 2: Various cloud computing service delivery Models ... 27

2.9.3 Deployment Models .. 29

Figure 9: The docker Architecture and design principles .. 34

Docker API…… .. 34

2.11.1 Scaling up microservices with Docker compose ... 40

2.11.2 Scaling up microservices with Docker Swarm ... 41

2.11.3 Scaling up Microservices Kubernetes ... 47

2.11.4 Scaling up microservices with Apache Mesos ... 50

2.12 Containerized Application Management .. 51

2.13 Docker Plugin Architecture .. 54

vii

2.14 Volume Plugins ... 56

2.15 Network Plugins.. 57

2.15.1 Types of Container Networking ... 57

2.15.2 Container Networking Standards ... 59

2.15.2.1 Container Networking Model ... 59

2.15.2.2 Container Networking Interface... 62

2.15.2.3 Container Network Model and Container Networking Interface 62

2.15.2.4 Container Networking in OpenStack .. 63

2.15.3 Network Driver Plugins ... 63

2.15.3.1 Weave. ... 63

2.15.3.2 Calico... 64

2.15.4 Microservices Discovery Techniques .. 64

CHAPTER THREE: METHODOLOGY ... 68

3.0 Introduction ... 68

3.1.1 Research Methodology ... 68

3.1.2 Problem Definition and Analysis .. 68

3.1.3 Defining objectives of a solution .. 68

3.1.4 Artifact Design & Development ... 69

3.1.5 Artifact Demonstration ... 69

3.1.6 Artifact Evaluation .. 69

3.1.7 System Development Methodology .. 69

3.1.8 Architectural Design ... 70

3.2 System Development Process ... 70

3.2.1 DevOps.. ... 70

3.2.2 The Software Deployment Pipeline .. 72

3.2.3 Faster Deployments .. 73

3.2.4 Docker Support for continuous Deployment Pipeline .. 73

3.3 Continuous Integration.. 74

3.3.1 Version Control System .. 74

3.3.2 CI server ………………………………………………………………………….74

3.3.3 Build Management .. 76

viii

3.3.3.1 Maven… ... 76

3.3.3.2 Gradle….. .. 76

3.4 System Testing .. 77

3.4.1 Unit Testing .. 78

3.4.2 Integration testing ... 79

3.4.3 Automated Microservices Testing .. 79

3.5 Scalability Experiments .. 79

3.0 Data analysis ... 81

3.6 Scalability Model .. 81

3.7 System Evaluation .. 83

CHAPTER FOUR : MICROSERVICE SYSTEM DESIGN, IMPLEMENTATION AND

TESTING .. 85

4.1 Principles of the Microservice Design .. 85

4.1.1 Responsible for One Single Capability ... 85

4.1.2 Individually Deployable.. 86

4.1.3 Consisting of One or More Processes ... 87

4.1.4 Owns its Own Data Store .. 87

4.2 Microservice Design Patterns ... 88

4.2.1 The Aggregator Pattern ... 88

4.2.2 Proxy Pattern ... 88

4.2.3 Pipeline Pattern ... 89

4.3 Scalable Microservice Design .. 90

4.4 Front-End Microservice Architecture .. 91

4.4.1 JavaScript .. 91

4.4.2 Node.JS.. .. 92

4.4.3 Angular 2 ... 92

4.4.4 Angular 2 Architecture ... 93

4.5 Backend Microservice Architecture .. 95

4.5.1 Concurrency programming Models ... 95

4.5.1.1 Reactive Extensions ... 95

4.5.1.2 AKKA… ... 96

ix

4.5.1.3 Futures…... 98

4.5.1.4 Reactive Streams .. 98

4.6 Microservice Architecture Frontend and Backend Implementation 98

4.6.1 Frontend JavaScript Development Tools .. 98

4.6.2 JavaScript Based frameworks and libraries. .. 99

4.6.3 Microservice Development Using JHipter Framework .. 100

4.6.4 The Registry .. 101

4.6.5 The API Gateway ... 102

4.6.6 Creating Microservices .. 102

4.6.7 Running the Microservices Using Docker Compose .. 102

4.7 The Data Store Design ... 103

4.7.1 Data Consistency .. 103

4.7.2 Contention Free Access to Shared State ... 103

4.7.3 Implementation of Distributed Data Stores .. 106

4.7.3.1 Implementing Distributed Data Stores Using Containerization............................. 106

4.7.3.1.1 Software Defined Storage ... 107

4.7.3.1.2 SDS Solution Providers .. 108

4.7.3.2 Testing Software Defined Storage ... 109

4.7.3.2.1 Crate… .. 109

4.8 Test Results for Validation of Scalable Architecture ... 111

4.9 Performance evaluation ... 115

4.10 Automated Testing ... 117

CHAPTER FIVE : RESULTS ANALYSIS ... 120

5.1 Introduction ... 120

5.2 What Factors are Influencing the Adoption of Microservices 120

5.2.1 Virtualization .. 120

5.2.2 Containerization .. 121

5.2.3 Internet of Things .. 121

5.3 Results Analysis .. 122

5.3.1 Model Validation .. 123

5.3.2 Scalability Testing .. 124

x

5.4 Automated Software Testing .. 124

CHAPTER SIX : CONCLUSIONS AND RECOMMENDATIONS 126

6.1 Introduction ... 126

6.2 What Factors are Influencing the Adoption of Microservice Architecture 127

6.3 To what Extend Can Containerization Enhance Design and Implementation of

Microservice Architecture? ... 127

6.4 To What Extend Can Microservice Architecture Improve the Scalability of Web

Services? .. 127

6.5 To What Extend Can Microservices Testing be Automated? 128

6.6 Recommendations for Future Work .. 129

REFERENCES.. ... 130

APPENDIX A1.. ... 134

KUBERNETES ORCHESTRATOR : .. 134

APPENDIX A2.. ... 137

SWARM ORCHESTRATOR:.. 137

APPENDIX C…. .. 140

 CONTAINER START DELAY MEASUREMENTS .. 164

xi

LIST OF FIGURES

Figure 1: Amdahl's and Gunther Laws governing how throughput varies with increasing no of

processors (Gunther, 2007). ... 2

Figure 2: Monolithic architecture showing how various service are lumped together into a single

process ... 12

Figure 3: Microservice Mechanisms for enabling loose coupling ... 15

Figure 4: Microservice Architecture Conceptual Model ... 17

Figure 5: Microservice Hierarchical Tree .. 18

Figure 6: Functional scalability i.e Y-axis scalability .. 20

Figure 7: Illustration showing how Conway's law applies to system design in a given organization

(Martin Fowler et al , 2014) ... 22

Figure 8: Comparison of OS-Level Virtualization and Full virtualization (Source: Docker Inc.) 31

Figure 9: The docker Architecture and design principles .. 34

Figure 13: Docker public or private Registries. .. 39

Figure 14: Open Container layered architecture.[Docker Inc] .. 40

Figure 15: Swarm Orchestration Architecture [Docker Inc].. 44

Figure 16: The components of Docker Swarm cluster based on Raft Consensus Algorithm 46

Figure 18: Kubernetes Master-slave design illustrating its microservices and container based

architecture (Marko Lukŝa, 2016) .. 49

Figure 19: Mesos two level orchestration architecture .. 51

Figure 20: Docker plugin Architecture showing the extensions and interfaces to other systems .. 55

Figure 21: The Docker volumes plugin architecture.. 57

Figure 22: The Container Network Model (CNM) .. 61

Figure 23: A DevOps Based Software Development Cycle [Adoted from Software Testing] 71

Figure 24: DevOps is an inter displinary approach to software development. 72

Figure 25: Stages of a deployment pipeline ... 72

Figure 28: Gradle combines the best features from other build tools. 76

file:///C:/Users/Khakame/Documents/Msc%20Project%20%20Final%20report-16-11-2016.docx%23_Toc467053671
file:///C:/Users/Khakame/Documents/Msc%20Project%20%20Final%20report-16-11-2016.docx%23_Toc467053671
file:///C:/Users/Khakame/Documents/Msc%20Project%20%20Final%20report-16-11-2016.docx%23_Toc467053673
file:///C:/Users/Khakame/Documents/Msc%20Project%20%20Final%20report-16-11-2016.docx%23_Toc467053674
file:///C:/Users/Khakame/Documents/Msc%20Project%20%20Final%20report-16-11-2016.docx%23_Toc467053676
file:///C:/Users/Khakame/Documents/Msc%20Project%20%20Final%20report-16-11-2016.docx%23_Toc467053676
file:///C:/Users/Khakame/Documents/Msc%20Project%20%20Final%20report-16-11-2016.docx%23_Toc467053679
file:///C:/Users/Khakame/Documents/Msc%20Project%20%20Final%20report-16-11-2016.docx%23_Toc467053686
file:///C:/Users/Khakame/Documents/Msc%20Project%20%20Final%20report-16-11-2016.docx%23_Toc467053690

xii

Figure 29: Gradle key features ... 77

Figure 30: Test Setup used to measure container start up times on Amazon Web Services (Jeff

Nickoloff , 2016) .. 80

Figure 31: Data analysis steps using R ... 81

Figure 32: The Aggregator Design Pattern .. 88

Figure 33:The Proxy Pattern .. 89

Figure 34: The Pipeline Pattern ... 90

Figure 35: Microservice Architecture implementation .. 91

Figure 36: Angular 2 Architecture .. 93

Figure 37: Non-blocking interplay between actors and futures .. 98

Figure 38: Microservice Architecture implementation on the JVM using the JHipter 3.6 tooling

 ... 101

Figure 39: JHipster CLI for development of Microservices .. 102

Figure 40: Docker Swarm cluster creation automation script. ... 110

Figure 41: Validation of usability model using dataset1 (courtesy Nickoloff 2016) 112

Figure 42 : Validation of usability model using dataset2(courtesy Nickoloff 2016) 113

Figure 43: Determination of sigma and kamma coefficients for the scalability model based using

regression analysis. .. 114

Figure 44: Layering of a cluster to abstract scalability away from the microservices to the

orchestration layer .. 114

Figure 45: Obtained Results –Variation of throughput vs the number of containers 116

Figure 46: Test report integration tests conducted by the Continuous Integration server 119

Figure 47: Expected behavior of throughput vs no of containers. (courtesy Gunther, 2007). . 123

Figure 48: Mean container start up measurements for 10 containers showing the 90
th
 percentile

and 99
th
 percentile .. 140

Figure 49: Mean container start up measurements for 20 containers .. 140

Figure 50: Mean container start up measurements for 30 containers .. 141

Figure 51: Mean container start up measurements for 40 containers .. 141

file:///C:/Users/Khakame/Documents/Msc%20Project%20%20Final%20report-16-11-2016.docx%23_Toc467053695
file:///C:/Users/Khakame/Documents/Msc%20Project%20%20Final%20report-16-11-2016.docx%23_Toc467053697
file:///C:/Users/Khakame/Documents/Msc%20Project%20%20Final%20report-16-11-2016.docx%23_Toc467053698
file:///C:/Users/Khakame/Documents/Msc%20Project%20%20Final%20report-16-11-2016.docx%23_Toc467053700
file:///C:/Users/Khakame/Documents/Msc%20Project%20%20Final%20report-16-11-2016.docx%23_Toc467053707
file:///C:/Users/Khakame/Documents/Msc%20Project%20%20Final%20report-16-11-2016.docx%23_Toc467053707
file:///C:/Users/Khakame/Documents/Msc%20Project%20%20Final%20report-16-11-2016.docx%23_Toc467053709

xiii

Figure 52: Mean container start up measurements for 50 containers .. 141

Figure 53: Mean container start up measurements for 60 container .. 142

Figure 54: Mean container start up measurements for 10 containers .. 142

xiv

LIST OF TABLES

Table 1: Characteristics of Cloud Computing.. 26

Table 2: Various cloud computing service delivery Models .. 27

Table 3: start delay vs Number of containers measurements ... 112

Table 4: Throughput vs Number of containers based container start delay time 115

Table 5: Measurements of throughput(tput) as the number of containers is increased from one to

414 ... 134

Table 6: measurements of throughput(tput) as the number of containers is increased from one to

500 ... 137

xv

LIST OF ACRONYMS

HTTP Hyper Text Transport Protocol

API Application Programming Interface

SCM Source Control Management

SBT Simple Build Tool

OS Operating System

SOA Service Oriented Protocol

REST Representational State Transfer

IDE Integrated Development Environment

SMA Scalable Microservice Architecture

IP Internet Protocol

DNS Dynamic Name System

IT Information Technology

SAAS Software AS A Service

SOAP Simple Object Access Protocol

ESB Enterprise Service Bus

LXC LinuX Containers

VM Virtual Machine

CPU Central Processing Unit

WSDL Web Service Description Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

IEEE Institute of Electrical &Electronics Engineers

SLA Service Level Agreements

xvi

NIST National Institute of Standards

KVM Kernel Virtual Machine

VMM Virtual Machine Monitor

PAAS Platform As A Service

NIST Infrastructure As A Service

UTS Unix Time Sharing

PID Process ID number space

SDN Software Defined Networking

CNM Container Networking Model

BGP Border Gateway Protocol

CQRS Command Query Responsibility Segregation

SRV Record SeRVice Record

LAN Local Area Network

RPC Remote Procedure Call

AMQP Active Message Queuing Protocol

DSRM Design Science Research Methodology

CMM Capability Maturity Model

CMMI Capability Maturity Model Integration

AUFS Advanced multi layered Unification FileSystem

SHA Secure Hash Algorithm

CI Continuous Integration

CD Continuous Delivery

SDK Software Development Kit

UI User Interface

POM Project Object Model

xvii

XML eXtented Markup Language

DSL Domain Specific Language

EIP Enterprise Integration Pattern

BDD Behavior Driven Development

SVN SubVersioN

VCS Version Control System

IRC Interactive Realtime Communication

CORBA Common Object Request Broker Architecture

DCOM Distributed Component Object Model

TLS Transport Layer Security

VXLAN virtual extensible local area network

gRPC Google Remote Procedure Call

 MACvlan Media Access Control virtual local area network

IPvlan Internet Protocol virtual local area network

OPEX Operation Expenditure

CAPEX Capital Expenditure

SLA Service Level Agreement

xviii

ABSTRACT

This thesis discusses Microservice Architecture and how it can facilitate web services

scalability using containerization. The microservice architectural style is an approach to

developing a single application as a suite of small services, each running in its own

process and communicating through standard API. The Microservice Architecture is used

to foster separation of components that creates a more effective environment for building

and maintaining highly scalable applications. Monolithic applications are made of

modules that are all tightly coupled together and have to be developed, deployed and

managed as one entity, since they all run as a single OS process. Changes to one part of

the application require a redeployment of the whole application, and the lack of hard

boundaries between the components, over time, results in the increase of complexity.

Further monolithic applications are not designed to run in the cloud without making

major redesign and modifications. Scalable cloud native applications on the other hand,

may require big changes in the application code and which may not always possible

within the timeframes of the fast changing business environments. Monolithic

applications present a steep learning curve to new developers and may consume more

man-hours before a change introduced by developers is reflected in production. This is

mainly due to friction experienced between various development teams. For a scalable

architecture every microservice is packaged as a container before deployment to any

platform that supports containerized deployments. Each container is uniquely addressable

using an IP. Docker architecture is extensible and works with other software development

tools to realize a scalable build and deployment system for microservices. This thesis

employs Docker Engine, Docker Machine, Docker Compose and Docker Swarm to

realize the scalability of the Microservice Architecture. Docker Swarm is a middleware

within the orchestration layer that abstracts the complexities arising from the

Microservice Architecture. This abstraction simplifies the design and implementation of

the microservices and enhances the scalability of the system by eliminating the

contention delay and minimizes the coherency delay. From the results obtained by

making measurements of container start up delay it was observed that Docker swarm

scales linearly as the number of containers in increased. It was also noted that design of

Docker Swarm orchestration software are based on Microservice Architecture hence their

linear scalability. The main contributing factor of Docker Swarm scalability is the Raft

consensus algorithm. This algorithm is the also playing a big role distributed databases.

In order to investigate the scalability of the backend services we used the crate database

running on cluster of machine managed by Docker swarm. It was observed that Docker

swarm really simplifies the scalability of many online web services. This trend was also

observed in Continuous Integration and Testing. Docker swarm based orchestration is

and will remain to viable candidate for simplifying the scalability of microservices and

web services.

1

CHAPTER ONE: INTRODUCTION

1.1 Background

The evolution of the modern cloud drastically changed the way developers build and

deploy applications. In its Top 10 Strategic Technology Trends for 2016 (Gartner

Research, 2015), states that ―The mesh app and service architecture are what enables

delivery of apps and services to the flexible and dynamic environment of the digital

mesh. This architecture will serve users' requirements as they vary over time. It brings

together the many information sources, devices, apps, services and microservices into a

flexible architecture in which apps extend across multiple endpoint devices and can

coordinate with one another to produce a continuous digital experience. IT will

increasingly deliver services as cloud services in the mesh app and service architecture,

supported by software-defined application architectures, containers and microservices. IT

needs a DevOps mindset to bring together development and operations in support of

continuous development, and continuous integration and delivery‖

Software architecture has witnessed increasing interest from both the academia and

Software industry. There has existed various software architecture for distributed systems

including but not limited to Common Object Request Broker Architecture (CORBA),

Distributed Component Object Model (DCOM), and Service Oriented Architecture

(SOA). Most of these designs were led by consortium of large software Vendors and had

little backing from the open source community.

1.1.1 The Universal Scalability law

It‘s been proven that blocking of any kind, anywhere in the system will measurably

impact scale due to:

• Contention: waiting for queues or shared resources.

• Coherency (Crosstalk): the delay for data to become consistent.

Amdahl‘s Law tells us that the maximum speedup using P processors for a parallelizable

fraction F of the program is limited by the remaining (1-F) fraction of the program that is

running serially, on one processor or redundantly on all processors. According a study by

(Neil J. Gunther, 2007) , blocking would actually reduce concurrency as a system is

scaled and this holds true today. Gunther‘s Law is famously referred to as the Universal

2

Scalability Law and is graphically illustrated in figure 1 below. In thesis we shall

investigate this law and use this model to improve scalability of web services using OS-

Level Virtualization. The no. of processors can be interpreted to mean the number of

servers, virtual machines or containers.

Figure 1: Amdahl's and Gunther Laws governing how throughput varies with

increasing no of processors (Gunther, 2007).

1.1.2 Service Oriented Architecture (SOA)

SOA is based on good principles such loose coupling but lacks clear guidelines on how to

decompose an application in smaller units. SOA is also dependent on complex

communication mechanisms such as SOAP and Enterprise Service Bus (ESB). Iron.io,

one of the software vendors using Microservice Architecture (Iron.io White Paper 2015)

observed that while this pattern provided a framework for building effective application

architectures, its practice has generally been ineffective due to unnecessarily complex

abstractions and legacy protocols. Developers would attempt to use SOA to connect a

wide range of applications that all spoke a different language, requiring an extra layer for

an Enterprise Service Bus. This leads to archaic and costly configurations that cannot

keep up as the technology and business landscape evolved.

3

1.1.3 Microservice Architecture

Microservice Architecture is being adopted by Software as a Service (SaaS) and Function

as a Service (FaaS) vendors due to the need to shorten software development cycles from

several months to minutes. In this regard Microservice Architecture is one of the

prerequisites for agile methodologies based on DevOps. DevOps principles advocate for

automation of most tasks of software deployment and are more inclined to use cloud

computing technologies such as virtualization. Both Microservice Architecture introduces

challenges such as increased inter process communication, high fault rate, increased

number of tests and the need for consistency in the distributed data stores . Various

desperate tools have been used to address these challenges. One tool based on OS-Level

virtualization introduced by a Silicon Valley startup called Docker is proposed as a

means to simplify realization of Microservice Architecture.

The Microservice Architecture was pioneered by web scale companies (Netflix, Amazon,

eBay, twitter), and is a paradigm shift for service development for fast-moving business

needs. Microservice Architecture has accelerated innovation in this companies by

enabling them to meet digital business challenges. With flexible and fast-evolving

architecture for service provisioning based on small team management and industrialized

deployments, Microservices can be a fast path to capturing huge value from new

technologies, thinking and philosophy.

1.2 Problem Definition.

Monolithic Architecture fails by increasing friction between teams due to centralized

code base such as RDBMS

1. The Monolithic Architecture is a tightly coupled system. Every module in entire

system is locked together because each component must use the centralized code

base.

2. Centralized code bases are a high friction architecture hence the need to decouple

and federate so that everyone can make changes independently of each other.

4

Monolithic applications are made of modules that are all tightly coupled together and

have to be developed, deployed and managed as one entity, since they all run as a single

OS process. Changes to one part of the application require a redeployment of the whole

application, and the lack of hard boundaries between the components, over time, results

in the increase of complexity. Further monolithic applications are not designed to run in

the cloud without making major redesign and modifications. Scalable cloud native

applications on the other hand, may require big changes in the application code and

which may not always possible within the timeframes of the fast changing business

environments. Monolithic applications present a steep learning curve to new developers

and may consume more man-hours before a change introduced by developers is reflected

in production. This is mainly due to friction experienced between various development

teams.

Adopting Microservice Architecture quickly accelerates innovation while at the same

time introducing complexity. The following problems are inherent in Microservice

Architecture.

1. Given that every microservice will have its own data store, full consistency after a

transaction cannot be achieved and one has to settle for eventual consistency or

casual consistency.

2. Microservices introduces many dynamic parts that require constant testing,

monitoring and configuration in order to maintain acceptable of quality of service.

3. There is need to choose and implement an inter-process communication

mechanism between the microservices based asynchronous messaging.

This thesis seeks to address the problem of limited scalability inherent in monolithic

architecture by using OS-Level virtualization or containerization. Though Monolithic

systems are simpler to implement, their scalability is hampered by the inability to rapidly

and iteratively introduce change to specific functional components. Since it is impossible

to scale various functional components of a monolith independently, this architecture is

inefficient and costly when web applications are hosted in the cloud. Monolithic

architecture is not well suited for cloud environment and agile technologies. The main

problem is how to reduce the time it takes for any change to the system to be reflected in

5

production. There is the need for smaller development teams working on smaller units of

software that only encompass one function.

6

1.3 The Solution to the Problem.

The solution to the problem is can be achieved using two-pronged approach:

1. Minimize friction. This can be achieved by decentralizing the database and any

other centralized code base by adopting microservices, containerization and

DevOps.

2. Lower risk. Risk is detrimental in complex systems. Risk can be reduced by

continuous testing and continuous delivery.

Microservice Architecture is proposed as means to decompose a large application with

several functions into smaller single function units. Microservice Architecture enables

independent scaling of different functional units while allowing iterative development

cycles to handle the challenges posed by rapidly changing business requirements and

environments. Each microservice has its own data store and can flexibly choose a suitable

technology stack that provides the required elasticity, responsiveness and resiliency.

Microservice Architecture lends itself to the agile software development methodology

and is more appropriate to use the DevOps approach. DevOps ensures that agility is

extended to cover both software development and deployment. DevOps reduces the time

it takes for change introduced in a system to be reflected in production. Hence DevOps

puts a lot of emphasis on continuous and automated deployment. To address this

requirement we intend to use OS-Level virtualization mechanism called containerization.

Containerization is a light weight OS-level virtualization and is a software abstraction

mechanism for making software portable across many platforms. Every software

component is handled in a similar manner regardless of its functionality. Every

Microservice should be build packaged, shipped and deployed using a container.

Containers are more efficient and cost effective than traditional virtual machines hence it

is highly recommended mechanism that facilitates elasticity and efficiency of web

services.

1.4 Purpose

The main aim of this thesis is to develop and test a scalable Microservice Architecture for

web services

7

Main Research Question

What reference architecture can best serve as the foundation for scalable web services?

From the main research question, we derived the following specific questions:

1. What factors are influencing the adoption of Microservice Architecture?

2. To what extend can containerization enhance design and implementation of

Microservice Architecture?

3. To what extend can Microservice architecture improve the scalability of web

services?

4. To what extend can Microservice testing be automated?

1.5 Scope of the Study

This thesis will be limited to development and testing of scalability of Microservice

Architecture using Docker Engine as the container platform and Docker Swarm as the

Container Orchestration mechanism running on Linux platform.

1.6 Related Work

According to a study (Jeff Nickoloff, 2016) both Kubernetes and Docker Swarm were

tested in clusters of 1000 nodes provided by Amazon Web Services. The study examined

at the times it took both orchestration engines to start a new container when their

respective clusters were 10 percent, 50 percent, 90 percent, 99 percent, and 100 percent

full. According to Nickoloff, Kubernetes had longer start up times at the different

percentiles. In contrast, Swarm did not start to suffer until its cluster was 90 percent full.

He concluded that the reason for the difference is due to the algorithms and simplicity of

thier architecture. He released the test results for third party inspection and reuse. In this

thesis we shall use his raw test results to validate the performance of the Swarm

orchestration layer using scalability model based on universal scalability law. In this

thesis we shall use a workbench tool developed by Docker Inc.

In a study (Joab Jackson, 2016) conducted by Jewell while working for Codenvy Inc,

Docker Swarm was embedded into its Che on-demand developer workspace

software, after evaluating a number of different container orchestration providers,

including Kubernetes. In the evaluation process, Codenvy looked at three essential

https://aws.amazon.com/
http://thenewstack.io/eclipse-che-provides-portable-shared-development-workspaces-built-runtimes/
http://thenewstack.io/eclipse-che-provides-portable-shared-development-workspaces-built-runtimes/

8

criteria: latency and speed of container activation, linear container scalability on physical

nodes, and a low configuration footprint. Docker Swarm excelled in all three categories.

The results showed that a custom Che software installation into a new account took less

than 10 minutes and can scale to support thousands of nodes, or hundreds of thousands of

workspace containers.

1.7 Organization of the Thesis

The thesis is organized as follows:

 Chapter 2 gives background details on OS-level and Hardware-based

virtualization and how Containers based on Docker Architecture can be used to

realize a scalable Microservice Architecture. We discuss in the details the design

of orchestration software including Docker Swarm, Kubernetes, Mesos, Kontena

and Hypernetes.

 Chapter 3 outlines the Methodology employed to realize the objective and

address the questions that the study proposes to answer. The Research

methodology is based on Design Science while the System Development

methodology is Agile using the DevOps principles. The Software development

methodology is highly influenced by containerization.

 Chapter 4 splits the web services into two tiers namely the frontend and the

backend. Design of the frontend and backend is discussed with a view of

highlighting software patterns that are informing the development of scalable web

services. Testing of the Microservice Architecture is done for the frontend,

backend and database. In the testing we show how containerization can enhance

the scalability of web services.

 Chapter 5 analyzes of results and recommendations for future work. Given that

Containerization, Microservices and DevOps are fast changing technologies, there

is need for further investigation of these trends and thinking.

 Chapter 6 draws conclusions based on our findings of this research based on the

objectives of this research.

9

CHAPTER TWO: LITERATURE REVIEW

2.0 Introduction

The increasing number of connected devices is exponentially rising. According to

(Gartner Research, 2015) the number of mobile devices will increase from the current six

billion to twenty billion by the year 2020. In recent years the Microservice Architecture e

has become popular for building web applications (Adrian Cockcroft, 2014), Twitter

(Jeremy Cloud, 2013). Microservices is Architectural style that realizes a single Software

System as many small individual loosely coupled applications which communicate over

a network. Each application has its own software development lifecycle. This decoupling

allows many small teams to work on individual applications. All applications then

converge to deliver one software product to the users, who perceive the whole

architecture as one single system. The Microservice Architecture approach allows faster

delivery of smaller incremental changes to an application.

On one hand, the Microservice Architecture approach builds on Agile Methodology and

DevOps principles. The DevOps philosophy is the realization that software development

(Dev) and operations (Ops) teams need to communicate and collaborate to enable

organizations to shorten the time it takes to transform developed software into running

services. DevOps employs some practices that are well suited with use of virtualization.

Virtualization, OS-level virtualization or Docker containerization in particular is key to

automating most of the software deployment operations. In the following section we

define the terms that are used in this thesis.

2.1 Definition of Terms

2.1.1 Microservices

An architectural style, that extends SOA principles by decomposing of an application

into single-purpose, loosely coupled services managed by cross-functional teams (Martin

Fowler et al, 2014).

2.1.2 Continuous Delivery

Continuous Delivery (Humble et al, 2010) is a software development discipline that

enables on demand deployment of software to any environment. With Continuous

Delivery, the software delivery life cycle will be automated as much as possible. It

10

leverages techniques like Continuous Integration and Continuous Deployment and

embraces DevOps.

2.1.3 Continuous Integration

Continuous Integration is a software development approach where members of a team

integrate their work regularly leading to multiple integrations per day. Each integration

test is verified by an automated build to detect integration problems as quickly as possible

(Martin Fowler et al, 2014).

2.1.4 Configuration Management

Configuration management or infrastructure automation -refers to monitoring and

controlling changes to the software code base. It‘s a necessary practice for establishing

and maintaining consistent product performance, especially in DevOps environments.

2.1.5 DevOps

DevOps is a set of practices intended to reduce the time between committing a change to

a system and the change being placed into normal production, while ensuring high

quality. DevOps is a cultural and technical movement that focuses on building and

operating high-velocity organizations (Chef 2014, IBM 2014).

DevOps is an IT organizational model in which system administrators work side-by-side

with developers in a single, coordinated, agile environment. DevOps also breaks down

organizational walls, and it promotes a fundamentally different way of solving IT

problems (Rackspace, 2015).

2.1.6 OS-Level Virtualization

OS-level virtualization is a technology that partitions the operating system and creates

multiple isolated Virtual Machines (VM). An OS-level VM is a virtual execution

environment that can be forked instantly from the base operating environment (Yang Yu,

2007; J. Lakshmi, 2010; Mathijs J.S, 2014).

OS-level virtualization has been widely used to improve security, manageability and

availability of today‘s complex software environment, with small runtime and resource

11

overhead, and with minimal changes to the existing computing infrastructure (Pasa

Maharjan, 2011).

2.1.7 Docker

Docker is an open-source project that automates the packaging, shipping and deployment

of applications using containers, by providing an additional layer of abstraction and

automation of OS-Level Virtualization on Linux (Vladimír Jurenka, 2015). Docker

engine quickly wraps up any application and all its libraries and dependencies into a

lightweight, portable, self-sufficient container that can run on any Linux based system

(Kavita Argarwal, 2015).

12

2.1.8 Monolithic Architecture

A monolithic Architecture dictates that an application consist of components that are all

tightly coupled together and have to be developed, deployed and managed as one entity,

since they all run as a single OS process and scales by replication of all functions on

multiple servers (Martin Fowler et al, 2014).

Figure 2: Monolithic architecture showing how various service are lumped

together into a single process

13

2.1.9 Software Application

A Software application is the implementation of capabilities and virtualization by

building and deploying a set of instruction through coding using a programming

language. The users of an application are able to observe its real-world effects during

operation. It is becoming a common trend to implement most capabilities through

software i.e. Software defined Networking, Network Function Virtualization and

Software Defined Storage.

2.1.10 Process

An Operating System process is the concrete representation of an software application at

runtime. One process always belongs to one application and software application may

have many running processes. A process instance exists during execution, while a

process type is a logical entity embodying the opportunity to execute process instances of

it. A process type usually manifests itself in some way in the source code of an

application.

2.1.11 Web Service

A web service facilitates the availability of capabilities of an application to other

applications via a network. Web services enable communication between program

functions, without the necessity of middleware. The possible ways of access are defined

through a service interface.

2.1.12 Software Architecture

According to the Institute of Electrical and Electronics Engineers (IEEE) Software

Architecture is “the fundamental organization of a system embodied in its components or

modules, their relationships to each other, and to the environment, and the principles

guiding its design and evolution”. This definition is fairly generalized and applies to

other types systems. In His PhD thesis (Roy T. Fielding 2000) stated that ―software

architecture is an abstraction of the run-time behavior of a software system and not just a

property of the static software source code‖.

14

(Wilde et al, 2011; Ian Gorton, 2011) define software architecture as ―structures of the

system, which comprise software elements, the externally visible properties of those

elements, and the relationships among them‖.

2.2 Principles of the Microservice Architecture

The core principles of the Microservice Architecture are:

1. no components are privileged (privilege);

2. all components communicate in the same simple way (uniform communication);

3. components can be composed from other components (composition)

Because microservices are small they are easier to compose and it matters a great deal

less what your implementation language is. In fact, microservices may be completely

disposable, as rewriting your functionality is not that much work. Microservices

communicate over the network using messages. Is it immaterial to the Microservice

Architecture what data format the messages use, or the protocols by which they are

transported. Microservices are entirely defined by the messages they accept, and the

messages they emit. From the perspective of an individual microservice instance, and

from the perspective of the developer writing that microservice, there are only messages

arriving, and messages to send. In deployment, that microservice instance may be

participating in a request/response configuration, or a publish/subscribe configuration, or

any number of variants. The way in which messages are distributed is not a defining

characteristic of the Microservice Architecture. All distribution strategies are welcome

without prejudice.

A network of microservices is dynamic. It consists of large numbers of

independent processes running in parallel. You are free to add and remove an

instance of a services at will. This makes scaling, fault tolerance, and continuous

delivery practical, and low risk. Naturally you will need some automation to

control the large network of services. This is where OS-level virtualization or

containerization comes in. Containerization is becoming the preferred means of

automating the building, packaging and deployment of microservices.

Containerization enables automation and gives you real control of your software

15

development and deployment system, and immunizes you against human error.

Your default operational action is to add or remove a single microservice instance,

and then to verify that the system is still healthy. This is a very low-risk procedure

compared to big bang monolith deployments.

2.2.1 Microservice Architectural Constraints

A microservice network can deliver on the principles by meeting a small set of

architectural constraints. These are transport independence, pattern matching, and

additivity. Transport independence is the ability to move messages from one microservice

to another without requiring microservices to know about each other. When one

microservice needs to know about another microservice, in order to send it a message,

this is a fatal flaw. It breaks the privilege principle, as the receiver is privileged from the

perspective of the sender. You are no longer able to compose other microservices over

the receiver, without also changing the sender.

Figure 3: Microservice Mechanisms for enabling loose coupling

Pattern-matching is the ability to route messages based on the data inside the message.

This is the capability that lets you dynamically define the network. It allows you to add

and remove, on the fly, microservices, and to do so without affecting existing messages

or microservices.

Pattern-matching is also subject to varying levels of application. The allocation of

separate URL endpoints to separate microservices via a load-balancer matching HTTP

16

request path is an example of pattern matching. You need pattern-matching that is deep

enough to express business requirements, yet simple enough to make composition

workable. Hence to some extend one will be required to use service bus to achieve

pattern marching that embodies business rules.

The additivity principle embodies the ability to change a system by adding new parts.

The essential constraint is that other parts of the system must be immutable. Systems with

this characteristic can deliver very complex functionality, and be very complex

themselves, and yet maintain low levels of technical debt. Technical debt is a measure of

how hard it is to add new functionality to a system. The more technical debt, the more

effort it takes. A system that supports additivity is one that can support ongoing

unpredictable changes to business requirements.

A Microservice Architecture that relies on the business logic of individual microservices

to determine the destination of messages will require changes in both the sender and

receiver when adding new functionality. Additivity is stronger if you use intelligent load-

balancers, pattern-matching, and dynamic registration of new upstream receivers to shield

senders from changes to the set of receivers. You can achieve near perfect additivity

using peer-to-peer service discovery.

Microservices can plausibly address the needs of custom enterprise software. By aligning

the software architecture of the system more closely with the real intent of the business,

software projects can have far more successful outcomes. Real business value can be

delivered faster. Microservice systems approach minimum viable product status faster,

and thus can be put into production sooner. Once in production they make keep up with

changing requirements easier.

Waste and rework, also known as refactoring, is reduced because complexity within each

microservice cannot grow to dangerous levels. It is more efficient and easier to write new

microservices to handle business change, than to modify old ones. As a software

developer, the evolutionary approach to systems building offered by microservices allows

you to make a bigger professional impact. It allows you to be successful by making the

best use of your time.

17

2.3 Conceptual design

2.3.1 Software functional components

Software functional component is reasonably large-scale code structure within an

application, with a well-defined API, that could potentially be swapped out for another

implementation. Microservice Architecture is an extension of component-based software

system and is distinguished by the fact that the code base is divided into discrete pieces

that provide services through well-defined, limited interactions with other components.

2.4 REST Architectural Styles and Architectural Constraints

Fielding definition (Roy T. Fielding, 2000) of architectural style involves architectural

constraints. Fielding defines Architectural style as a ―coordinated set of architectural

constraints that restricts the roles/features of architectural elements and the allowed

relationships among those elements within any architecture that conform to that style‖.

For this reason, consistent with his definition, he introduced REST through a set of

constraints, i.e. client–server, stateless, cache, and uniform interface.

REST is a set of constraints that inform the design of scalable hypermedia web

applications. REST architectural style claims that these constraints will result in an

architecture that works well in the areas of scalability, resiliency, usability, and

accessibility. It seems to be accepted nowadays that REST indeed does lead to designs

Figure 4: Microservice Architecture Conceptual Model

18

that are less tightly coupled than the more established architectures that have been

informing the design of distributed systems and enterprise IT architectures.

2.5 Microservices Architectural Style

Each user request is satisfied by a sequence of services

•Most services are internally available

•Each service communicates with other services through service interfaces

While there is no precise definition of Microservice architectural style, there are certain

common characteristics such as automated deployment, intelligence in the endpoints, and

decentralized control of languages and data.

Microservice

Gateway API

Microservice Microservice Microservice

Microservice Microservice Microservice

Microservice

Microservice Microservice

Microservice Microservice

Figure 5: Microservice Hierarchical Tree

19

2.6 Characteristics of Microservices

2.6.1 Independent Technology Stacks

Each service is implemented on its own technology stacks

 The technology stack can be selected to fit the task at hand

 Teams can also experiment with new technologies within a single Microservices

 No system-wide standardized technology stack also means

 No struggle to get your technology introduced to the canon

 No piggy-pack dependencies to unnecessary technologies or libraries

 It‗s only your own dependency hell you need to struggle with

 Selected technology stacks are often very lightweight

 A Microservices is often just a single process that is started via command

line.

2.6.2 Independent Scaling

Scalability is the ability of a system, network, or process to handle a growing amount of

work in a capable manner or its ability to be enlarged to accommodate that growth

(Wikipedia). According to Amazon ―a service is said to be scalable if when we increase

the resources in a system, it results in increased performance in a manner proportional to

resources added‖.

20

Figure 6: Functional scalability i.e Y-axis scalability

[adopted from Martin L. Abbott et al, 2015].

X-Axis scalability

X-axis scaling consists of running multiple copies of an application behind a load

balancer. If there are N copies then each copy handles 1/N of the load. This is a simple,

commonly used approach of scaling an application.

Z-Axis scalability

Z-axis scalability is achieved commonly used to make data stores more elastic. Data is

partitioned (a.k.a. sharded) across a set of servers based on an attribute of each record.

Y-Axis scalability

Unlike X-axis and Z-axis, which consist of running multiple, identical copies of the

application, Y-axis axis scaling splits the application into multiple, different services.

Each service is responsible for one or more closely related functions.

Each Microservices can be scaled independently

 Identified bottlenecks can be addressed directly

 Data sharding can be applied to Microservice as needed

 Parts of the system that do not represent bottlenecks can remain simple and un-

scaled

21

2.6.3 Independent Evolution of Features

Microservices can be extended without affecting other services

 For example, you can deploy a new version of a service without re-deploying the

whole system

 You can also go so far as to replace the service by a complete rewrite. This is

achieved through API versioning. A new API is introduced while the old can only

be retired after the service consumers have migrated to the new API. In practice

the service may have several stable API versions.

2.6.4 Stable Interfaces – Standardized Communication

Communication between Microservices is often standardized using HTTP(S), gRPC and

AMQP – battle-tested and broadly available transport protocols. HTTP has been proven

as the dominant protocol on the World Wide Web that is highly scalable.

REST – uniform interfaces on data as resources with known manipulation means

 Client-Server: Separation of logic from user interface

 Stateless: no client context on the server

 Cacheable: reduce redundant interaction between client and server

 Layered System: intermediaries may relay communication between client and

server (e.g. for load balancing)

 Code on demand: serve code to be executed on the client (e.g. JavaScript)

 Uniform interface

JSON – simple data representation format

REST and JSON are convenient because they simplify interface evolution.

2.6.5 Componentization via Services

Interaction mode: share-nothing, cross-process communication

22

 Independently deployable (with all the benefits)

 Explicit, REST-based public interface

 Sized and designed for replaceability

 Upgrading technologies should not happen big-bang but in an incremental

manner.

2.6.6 Favors Cross-Functional Teams

Conway’s Law

―Any organization that designs a system (defined more broadly here than just information

systems) will inevitably produce a design whose structure is a copy of the organization's

communication structure‖ (Conway et al , 1968).

The Microservices employs a different approach, splitting up into services organized

around business capability. Such services take a broad-stack implementation of software

for that business area, including user-interface, persistent storage, and any external

collaborations. Consequently the teams are cross-functional, including the full range of

skills required for the development of user interface, database, and project management.

Figure 7: Illustration showing how Conway's law applies to system design in a given

organization (Martin Fowler et al , 2014)

23

.

2.7 Challenges to a Microservice Architecture

Any application architecture that attempts to solve issues of scale does have a number of

concerns, given the complex nature of distributed systems. Decoupling an application

into independent services means that there are now more moving parts to maintain.

Complex Orchestration

While a key benefit of Microservice is its streamlined orchestration capabilities, more

services means maintaining more deployment flows.

Inter-Service Communication

Decoupled services need a reliable, effective way to communicate while not slowing

down the whole application. Delivering data over the network introduces latency and

potential failure, which can interfere with the user experience. A common approach is to

introduce API Gateway to coordinate all communication between users and services.

Data Consistency

As with any distributed architecture, ensuring consistency is a challenge, both for data at

rest and data in motion. Multiple replicated databases and constant data delivery can

easily lead to inconsistencies without the proper mechanisms in place.

Maintaining High Availability

Ensuring high availability is a requirement in any production system. Microservice

provides more effective isolation and scalability; however, the uptime of each service

contributes to the overall availability of applications. Each service must then have its own

distributed measures implemented to ensure application wide availability.

Testing

While keeping code and dependencies tight means a simpler development environment

for specific services, it does introduce challenges with testing as it relates to the entire

application. Services will often need to communicate with each other or rely on a data

24

source or API. Testing one service independently would then require a complete test

environment to be effective.

2.8 Microservice Architecture, DevOps and Containers

2.8.1 DevOps is a Prerequisite to Successfully Adopting Microservices

Microservices, DevOps and Containers are very interrelated and like birds of same

feathers flock together. Monolithic application when split into Microservices enables

higher modularity that leads to more coherent set of functions that are independent of the

rest of the system. DevOps is the practice each team uses to build and operate these

Microservices, allowing each team to have a shared success story amongst the diverse set

of roles of the entire system. Containers have become the way these Microservices are

packaged, deployed, and released on infrastructure. This leads to better infrastructure

utilization, and simplifies the way a change is moved from a development enviroment to

the production environment.

As monolithic applications are incrementally functionally decomposed into foundational

platform services and vertical services, you no longer just have a single release team to

build, deploy and test your application. Microservice Architecture results in more

frequent and greater numbers of smaller applications being deployed. DevOps is what

allows you to do more frequent deployments and scale to handle the growing number of

new teams releasing frequent changes. Containerization facilitates and end-to-end

pipeline for software lifecycle. DevOps is a prerequisite for being able to successfully

adopt Microservice at scale in a given organization (IBM, 2015).

2.9 Cloud Computing

The vast development of cloud computing technology in recent past has substantial impact to

Service provisioning landscape as more and more enterprises begin to adopt this technology. The

term "Cloud Computing" is currently a hot and highly discussed topic in both technical,

economic, and research world. It is used for describing what happens when applications

and services hosted in remote data centres such as Amazon, Azure or Cloud Foundry.

Actually, cloud computing is not so new, however, more currently though, cloud

computing refers to many different types of services and applications being delivered in

25

the internet cloud. Cloud computing definition remains unclear. Many people within the

industrial and academic community have attempted to define what "Cloud Computing"

really is, and what typical characteristics it presents

A formal definition for cloud computing is given by (Buyya et al. 2009) as "Cloud is a

parallel and distributed computing system consisting of a collection of inter-connected

and virtualized computers that are dynamically provisioned and presented as one or more

unified computing resources based on service-level-agreements (SLA) established

through negotiation between the service provider and consumers."

According to National Institute of Standards and Technology (NIST) Cloud computing is

defined as ―a model for enabling ubiquitous, convenient, on-demand network access to a

shared pool of configurable computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction‖ (P. Mell et al 2011). This cloud model

is composed of five essential characteristics, three service models, and several evolving

deployment models.

2.9.1 Characteristics and Benefits of Cloud Computing

One of the important characteristics possessed by cloud computing is elasticity, which is

the ability to dynamically scale up or scale down computing resources whenever required

to match with system workload within a very short time frame (typically within minutes).

Through elasticity, users of cloud computing could avoid risk of over-provisioning

(underutilization) and under-provisioning (saturation). Other notable characteristics

including on-demand self-service, resource pooling, and multi-tenancy (multiple

customers can use the same computing infrastructure and network, which result in

increase of utilization rate). (Jula, Sundararajan, & Othman, 2014)

The essential characteristics of Cloud Computing are extracted from its definition (Mell

& Grance 2011, Mahmood & Hill 2011) and are summarized in the Table 1.

26

Table 1: Characteristics of Cloud Computing

On demand self-service Enables the users to access and consume

computing capabilities with limited

interaction between user and service provider.

Broad network access The computing capabilities and resources are

available online and can be used by different

users through standardized mechanisms.

Resource pooling Heterogeneous computing resources can be

combined and automatically assigned to serve

different users based on a multi-tenant model.

Highly Scalable Every computing capability and resource can

be provisioned rapidly, elastically and/or

automatically to scale horizontally or

vertically.

Metrics provision Provide monitoring, controlling and reporting

for billing purpose and transparency between

the service provider and the user

automaatically.

The aforementioned characteristics can imply various benefits for the potential

customers. The most important benefits of Cloud Computing are the following:

(Mahmood & Hill 2011).

 Cost Reduction is achieved by avoiding CAPEX for software and hardware

acquisition. Massive cost reduction for OPEX and training.

 Scalability are achieved by adopting virtualization technology, resulting in

innovation and change capacity for the organization

 Access to various IT Services for a small and medium enterprises are availed at

per second/minute billing.

 Cloud Ecosystems provide disaster recovery and business continuity plans

through regional distribution of resources.

 Availability users can access their resources in a ubiquitous manner.

2.9.2 Cloud Computing Service Delivery Models

Three different cloud computing service delivery models could be distinguished (Jula et

al., 2014; Rimal, Jukan, Katsaros, & Goeleven, 2010; Mell & Grance 2011). Four more

27

service models are emerging. These are Container as a Service , Function as a Service,

DataBase as as Service and Docker Based PaaS (Alex Williams et al, 2016).

Table 2: Various cloud computing service delivery Models

Service Model Description Example Service

Container as a

Service

Encapsulates several parts of the software

development lifecycle such as Container

orchestration and registries

Amazon EC2

Container Service,

Docker cloud

Function as a

Service or

Backend as a

Service

Based on ―serverless‖ architecture where you

don‘t have to manage the infrastructure used

to execute your code: scaling, availability,

patching and so on are taken care by the

service itself.

AWS Lambda, Google

Cloud Function,

IronWorker

Database as a

Service

A shared, consolidated platform to provision

database services using a self-service model

for provisioning those resources with

Elasticity to scale out and scale back

database resources .

Amazon DynamoBD,

Google‘s Firebase,

Oracle 12c

Software as a

Service (SaaS)

Service Providers) offer the computing

capability which is deployed on a Cloud

infrastructure. The consumers can access the

applications through a web browser or a

program interface. The software is installed

in the Data centre where it can be managed,

controlled and updated.

 Gmail, Google Docs,

YouTube, Facebook,

SalesForce.com.

Platform as a

Service (PaaS)

The consumers are provided with platform

where they can deploy their applications.

The platform provides programming

languages, tools and libraries which can be

used by the consumers to build and run their

own applications.

Elastic Beanstalk,

Microsoft Azure.

28

Docker-based

PAAS

This kind of infrastructure is build from

ground up using containerization platform

such Docker

Deis, Flynn, Cloud

Foundry and

Openshift

Infrastructure

as a Service

(IaaS)

The consumer is provided with fundamental

computing resources such as storage,

networks or processing. The consumer can

use these computing resources to deploy and

run applications or even operating systems.

(EC2, Windows Azure

Virtual Machines,

Google Compute

Engine.

Serverless architecture

Serverless architecture is an emerging trend that is quickly gaining momentum. The idea

is to be able to run server-side code without worrying about the messy details of

provisioning and setting up servers. You write code, upload it and it starts running. All

the complications of managing the infrastructure, provisioning servers, auto-scaling,

installing languages and frameworks are eliminated and hidden away by the vendor.

Examples include AWS Lambda and Google Cloud Function. According to (Danilo

Poccia , 2016) the introduction of AWS Lambda, the abstraction layer is set higher,

allowing developers to upload their code grouped in functions, and let those functions be

executed by the platform.

Iron.io a startup has also introduced IronWorker as a serverless architecture that allows

engineers to program machines to execute code in reaction to certain circumstances. It

can assist in the process of cleaning up data as it comes in, delivering notifications at

scale, sending out emails, or handling mobile check-ins quickly.

IronWorker can be used for a wide range of purposes. IronWorker service and its

IronMQ message queue service can be run on public clouds or in on-premises data

centers. According to (Ivan Dwyer, 2016) whereas AWS Lambda is limited to Node.js,

Java and Python, IronWorker can work with those as well as Clojure, Go, .NET, PHP,

Python, Ruby, and binary code.

http://deis.io/
https://flynn.io/
http://martinfowler.com/articles/serverless.html
http://highscalability.com/blog/2015/12/7/the-serverless-start-up-down-with-servers.html
https://www.manning.com/books/serverless-architectures-on-aws

29

Google Cloud Function is a simplified approach for developers to create single-purpose,

stand-alone functions that respond to Cloud events without the need to manage a server

or runtime environment.

Going serverless requires a slightly different approach to application design. The backend

service is broken down into stand-alone functions that perform a single task in response

to a user action or event. In serverless architecture, the backend is composed of thin,

single-purpose microservices that are event driven and the business logic shifts from the

backend to the client. It becomes the main orchestrator, calling various functions to

perform some action for the user when needed.

Serverless architecture requires very smart clients that know about and talk to a wide

range of remote functions. While mobile app developers have had rich frameworks and

platforms that allowed them to build complex logic on the client easily, things weren‘t so

simple for web applications. But thanks to rich client-side application frameworks like

Angular 2 and a fast HTTP/2 protocol, it is now possible to build complex applications

seamlessly into the browser. This will help drive the serverless trend even further.

2.9.3 Deployment Models

In the previous section the most important service models were discussed. These services

can be deployed in various ways.

Private Cloud

The Cloud-based solution is provisioned and used by a single enterprise. Private Clouds

inherit the characteristics of Cloud Computing (e.g., elastic service provisioning,

virtualization etcetera) and provide more benefits to the enterprise (Armbrust, et al.,

2009).

Community Cloud

The community Cloud is similar to the private Cloud but the community Cloud is owned

and shared among a group of organizations. It is important that these organizations must

share the same concerns such as policy, mission, compliance considerations and security

requirements (Mell & Grance 2011).

https://en.wikipedia.org/wiki/AngularJS
http://codeahoy.com/2016/04/23/what-is-http2/

30

Public Cloud

The public Cloud is when the provisioning of Cloud-based solutions is publicly available

for open use. The services are ubiquitous and available through an Internet connection

but this deployment model is poses many security and privacy concerns (Armbrust et al.

2009, Mell & Grance 2011).

Hybrid Cloud

Hybrid Cloud blends at least two distinct deployment models (e.g., public, private or

community Cloud) which are tailored to provide data and application portability. In that

way some of the resources are residing on premise while others are outsourced

(Mahmood & Hill 2011).

31

2.10 Virtualization Technologies

The virtualization techniques of interest to our study can be grouped into two categories:

Full virtualization and Operating System-level (OS-level) virtualization. The foundation

of the Full virtualization is hardware emulation. A host machine provides emulated

hardware environments for its guests to run their individual operating systems as if they

are running in a real machine. Most of the well-known virtualization solutions belong to

those categories, VMware and Kernel Virtual Machine (KVM). Conversely, in a

container-based virtualization, the OS kernel of the host machine is shared by the entire

host. The host machine isolates guests into different virtual machines, which mimic a

new dedicated running environment for each guest and prevent them from accessing

unrelated resources (Tam Le Nhan, 2013).

2.10.1 Full Virtualization

Full virtualization, also known as the original virtualization technology, refers to that

whole virtual machine that simulates the complete underlying hardware, including

processors, physical memory, peripherals, etc. It is not necessary to make any

modification to run operating systems or other system software in a virtual machine. The

Docker layered architecture diagram is shown on the left in Figure 8.

Figure 8: Comparison of OS-Level Virtualization and Full virtualization (Source:

Docker Inc.)

32

2.10.2 Linux Based Containers

LXC (Linux Container is a standard virtualization solution for Linux. LXC utilizes

several kernel features to achieve the virtualization goal, such as kernel namespaces and

control groups. Kernel namespaces enable a group of processes to have their own

namespace and thereby isolating these processes from any process not in the same

namespace.

2.10.3 Choice of Virtualization Platform

Full virtualization offers the best isolation and resource protection mechanisms.

Operating system-level (OS-level) virtualization provides the best performance and

service density at the expense of isolation.

OS-Level virtualization was chosen due of its low overhead, small footprint and resulting

higher container density. This is an important consideration for Web services that are

typically built for commodity hardware. Among different OS-Level virtualization

applications, we choose Linux based Container called Docker.

2.10.4 Design Through Abstraction

A system may be composed of many levels of abstraction and many phases of operation,

each with its own software architecture. A web based system consists of servers,

databases, clients, load balancers and gateways.

Software architecture represents an abstraction of system behavior at that level, such that

architectural elements are delineated by the abstract interfaces they provide to other

elements at that level (L. Bass et al, 1998). Within each element may be found another

architecture, defining the system of sub-elements that implement the behavior

represented by the parent element‘s abstract interface. This recursion of architectures

continues down to the most basic system elements: those that cannot be decomposed into

less abstract elements. The concept of containerization is a means of abstracting system

behavior so that that a container may hide the inner components from a developer who

intends to use this container in system design. A virtual machine is a container that can

house several other containers that are at different levels of abstraction. All the details of

33

how the container provides the required functionality and runtime behavior is hidden

from the outside world. The container only exposes a uniform interface so that it can

interact with other systems at that level. This is the principle on which Docker is based.

Mechanical systems follow similar abstractions. A car only exposes a uniform interface

to the driver but within a car there are several levels of system abstractions. Within the

car we have other systems such as the engine, the electronic control unit and the

Transmission system whose inner workings the driver requires not to know so as to drive

the car.

2.10.5 Software Architecture Abstraction Through Containerization

Software architecture abstraction has been made possible by advances in virtualization.

Running any software on any hardware platform was made possible by the introduction

of Virtual machines. A virtual machine runs on top off a Virtual Machine Monitor

(VMM) or Hypervisor. The hypervisor acts as an interface between the virtual machine

and the underlying Kernel or Hardware. The cloud computing paradigm is based the

concept of virtualization. Containerization though not new concept is a subject of much

debate in the last two years. This was after Docker Inc. popularized Containers in 2013.

Within two years Docker containers which are based on LinuX Containers (LXC) is

promising to change the course of virtualization and the whole cloud computing

ecosystem.

Docker containers go further, adding layers of abstraction and deployment management

features. Among the benefits of this new infrastructure technology is that, containers that

have these capabilities reduce coding, deployment time, and OS licensing costs. The VM

model blends an application, a full guest OS, and disk emulation. In contrast, the

container model uses just the application‘s dependencies and runs them directly on a host

OS. Containers do not launch a separate OS for each application, but share the host

kernel while maintaining the isolation of resources and processes where required. A

Docker application container takes the basic notion of LXCs, adds simplified ways of

interacting with the underlying kernel, and makes the whole portable (or interoperable).

34

2.10.6 Docker Architecture

Figure 9: The docker Architecture and design principles

Docker consists of at least four parts: the command line interface (CLI), docker engine ,

containerd and runC.

Docker API

The Docker daemon has a remote API and this is in fact what the Docker command-line

tool uses to communicate with the Docker engine. But because the API is documented

and public, it‘s quite common for external tooling to use the API directly. This enables all

manners of tooling, from mapping deployed Docker containers to servers, to automated

deployments, to distributed schedulers. As you embrace Docker over time, it‘s likely that

you will increasingly find the API to be a good integration point for this tooling. This

API has made it possible to integrate Docker to other technologies such as Software

Defined Networking and distributed Filing and storage.

35

Docker Client

The Docker client natively supports 64-bit versions of Linux , Mac OS X and Windows

due to the Unix underpinnings of these operating systems. To develop with Docker on

non-Linux platforms, you will need to leverage virtual machines or remote Linux hosts to

provide a Docker server. However this state of affairs is changing with the introduction

of docker for windows and OS.

Docker Engine

Docker engine release 1.12+ consists of the following features

 Orchestration: comes with inbuild orchestration capability using Swarm. The

inbuild Swarm is simple to use and enhances container security through use of

TLS.

 DNS round robin load balancing: It‘s now possible to load balance between

containers with Docker‘s networking. If you give multiple containers the same

alias, Docker‘s service discovery will return the addresses of all of the containers

for round-robin DNS.

 VLAN support : VLAN support has been added for Docker networks, so you can

integrate better with existing networking infrastructure.

 IPv6 service discovery: Engine‘s DNS-based service discovery system can now

return AAAA records.

 Yubikey hardware image signing: this is the ability to sign images with

hardware Yubikeys.

 Labels on networks and volumes: You can now attach arbitrary key/value data

to networks and volumes, in the same way you could with containers and images.

 Better handling of low disk space with device mapper storage:

36

The dm.min_free_space option has been added to make device mapper fail more

gracefully when running out of disk space.

 Consistent status field in docker inspect: This is a little thing, but really handy

if you use the Docker API. Docker inspect now has a Status field, a single

consistent value to define a container‘s state (running, stopped, restarting, etc).

 Containerd

This is Docker runtime for managing containers. Containerd improves on parallel

container start times so if you need to launch multiple containers as fast as possible.

containerd‘s API is very simple. It is build with gRPC for performance as well as the

ability to easily create client libraries. The basic request to start a container via the API is

to only provide the path to the OCI bundle and the ID for the container. By keeping the

API simple we minimize the changes in the API when new features are added.

RunC

runC is the first implementation of the Open Containers Runtime specification and the

default executor bundled with Docker Engine. Future versions of Engine will allow you

to specify different executors, thus enabling the ecosystem of alternative execution

backend without any changes to Docker itself. By separating out this piece, an ecosystem

partner can build their own compliant executor to the specification, and make it available

to the user community at any time – without being dependent on the Engine release

schedule or wait to be reviewed and merged into the codebase. This loosely coupled

design opens up new possibilities. This can facilitate Engine restarts/upgrades without

restarting the containers, improving the availability of containers. In addition one is able

to restart containerd and your containers will keep running.

Docker works with your operating system to package, ship, and run software. You can

think of Docker like a software logistics provider. It is currently available for Linux-

based operating and plans are underway to port it to most popular operating systems.

Several software vendors at a Docker Conference held on 22
nd

 June 2015 in San

https://github.com/opencontainers/runtime-spec

37

Francisco agreed to form an alliance called Open Container Initiative to push for standard

format for the container ecosystem. Declaring a standard container format, and providing

reference software for running such a standardized container, is an important step.

Docker is not a programming language, and it is not a framework for building software.

Docker is a tool that helps solve common problems installing, removing, upgrading,

distributing, trusting, and managing software. Docker is open source, which means that

anyone can contribute to it and it has benefited from a variety of perspectives.

It is common for companies to sponsor the development of open source projects. In this

case, Docker Inc is the primary sponsor.

2.10.7 Benefits of Containerization .

Containers are Lightweight

Not only is Docker quicker than a traditional VM to spin up, it‘s more lightweight to

move around, and due to its layered filesystem it‘s much easier and quicker to share

changes with others.

Rapid application deployment – containers include the minimal runtime requirements,

libraries and dependencies of the application, allowing them to be deployed quickly.

Portability across machines –A container can be transferred to another machine that

runs Docker, and executed there without compatibility issues.

Version control and component reuse – you can track successive versions of a

container, inspect differences, or roll-back to previous versions.

Sharing – you can use a remote repository to share your container with others.

Lightweight footprint and minimal overhead – Containerized images are typically

very small, which facilitates rapid delivery and reduces the time to deploy new

application.

38

Simplified maintenance – Containerization reduces effort and risk of problems with

application dependencies.

2.10.8 Docker Containers and the Cloud Ecosystem

 Images – A Docker image is made up of filesystems layered over one another. At

the base is a boot filesystem, bootfs, which resembles the typical Linux boot

filesystem. An image contains the whole filesystem that will be available to then

application, and other metadata, such as the path to the executable that should be

executed when the image is run.

 Registries – A Docker Registry is a service that stores your Docker images and

facilitates easy sharing of those images between developers and machines.

When you build your image, you can either run it on the same machine that

you‘ve built it on, or you can push (upload) the image to a registry and then pull

(download) it on another computer and run it there. Some registries are public,

allowing anyone to pull images from it, while others are private, only accessible

to certain people or machines.

 Containers –A running Docker Image is called container and is a process

running on the machine that has Docker daemon. A container is resource

constrained, meaning it can only access and use up the amount of resources

(CPU,RAM, etc.) that are allocated to it.

39

2.10.9 Docker Machine

In early 2015, Docker announced the beta release of Docker Machine, a tool that makes it

much easier to set up Docker hosts on bare metal, cloud, and virtual machine platforms.

The easiest way to install Docker Machine is to visit the GitHub releases page and

download the correct binary for your operating system and architecture. Currently, there

are versions for 32- and 64-bit versions of Linux, Windows, and Mac OS X.

2.10.10 Open Container Ecosystem

There is a massive community aligning to use Docker mainly developers and system

administrators. Like the DevOps movement, this has facilitated better tools by applying

code to operations problems. Where there are gaps in the tooling provided by Docker,

other companies and individuals have stepped up to offer viable and open source

solutions. That means they hosted on public repositories and can be modified by any

others to fit their needs.

Figure 10: Docker public or private Registries.

Docker
Pull

Local
Registry

Docker
Index

Docker
Registry

Requested

image

D
O

C
K

ER

lookup

install

lookup

Retrieve

Public and Private
Docker meta
services

Pull

Your computer

User

40

The figure below illustrates how the container architecture is layered. Note the layering

of different services to simplify container management. As Docker enters its maturity it

will interact will the various layers of technologies.

Figure 11: Open Container layered architecture.[Docker Inc]

2.11 Docker Extensions

For Docker to be really useful in supporting distributed application it has to posses the

following capabilities.

Portable across environments: You want to be able to define how your application will

run in development, and then run it seamlessly in testing, staging and production.

Portable across providers: You want to be able to move your application between

different cloud providers and your own servers, or run it across several providers.

Composable: You want to be able to split up your application into multiple services.

2.11.1 Scaling up microservices with Docker compose

41

Docker compose is a tool for defining and running complex applications with Docker.

With Compose, you define a multi-container application in a single file, then spin your

application up in a single command which does everything that needs to be done to get it

running. Using Compose is basically a three-step process.

1. Define your app‘s environment with a Dockerfile so it can be reproduced

anywhere.

2. Define the services that make up your app in docker-compose.yml so they can be

run together in an isolated environment:

3. Lastly, run docker-compose up and Compose will start and run your entire app.

The main function of Docker Compose is the creation of Microservice Architecture,

meaning the containers and the links between them. But the tool is capable of much

more.

2.11.2 Scaling up microservices with Docker Swarm

Docker Swarm solves one of the fundamental limitations of Docker where the containers

could only run on a single Docker host. Docker Swarm is native clustering for Docker. It

turns a pool of Docker hosts into a single, virtual host.

Swarm terminology

This section introduces some of the concepts unique to the cluster management and

orchestration features of Docker Engine 1.12.

SwarmKit

The cluster management and orchestration features embedded in the Docker Engine are

built using SwarmKit. Engines participating in a cluster are running in Swarm mode. You

enable Swarm mode for the Engine by either initializing a Swarm or joining an existing

Swarm.

A Swarm is a cluster of Docker Engines where you deploy services. The Docker Engine

CLI includes the commands for Swarm management, such as adding and removing

http://blog.codeship.com/containers-for-microservices/
https://docs.docker.com/engine/swarm/key-concepts/#Services-and-tasks

42

nodes. The CLI also includes the commands you need to deploy services to the Swarm

and manage service orchestration.

When you run Docker Engine outside of Swarm mode, you execute container commands.

When you run the Engine in Swarm mode, you orchestrate services.

Node

A node is an instance of the Docker Engine participating in the Swarm cluster. To deploy

your application to a Swarm cluster, you submit a service definition to a manager node.

The manager node dispatches units of work called tasks to worker nodes. Manager nodes

also perform the orchestration and cluster management functions required to maintain the

desired state of the Swarm. Manager nodes elect a single leader to conduct orchestration

tasks.

Worker nodes receive and execute tasks dispatched from manager nodes. By default

manager nodes are also worker nodes, but you can configure managers to be manager-

only nodes. The agent notifies the manager node of the current state of its assigned tasks

so the manager can maintain the desired state.

Services and Tasks

A service is the definition of the tasks to execute on the worker nodes. It is the central

structure of the Swarm system and the primary root of user interaction with the Swarm.

When you create a service, you specify which container image to use and which

commands to execute inside running containers.

In the replicated services model, the Swarm manager distributes a specific number of

replica tasks among the nodes based upon the scale you set in the desired state. For global

services, the Swarm runs one task for the service on every available node in the cluster.

A task carries a Docker container and the commands to run inside the container. It is the

atomic scheduling unit of Swarm. Manager nodes assign tasks to worker nodes according

to the number of replicas set in the service scale. Once a task is assigned to a node, it

cannot move to another node. It can only run on the assigned node or fail.

https://docs.docker.com/engine/swarm/key-concepts/#Services-and-tasks

43

Load Balancing

The Swarm manager uses ingress load balancing to expose the services you want to make

available externally to the Swarm. The Swarm manager can automatically assign the

service PublishedPort or you can configure a PublishedPort for the service in the 30000-

32767 range.

External components, such as cloud load balancers, can access the service on the

PublishedPort of any node in the cluster whether or not the node is currently running the

task for the service. All nodes in the Swarm cluster route ingress connections to a running

task instance.

Swarm mode has an internal DNS component that automatically assigns each service in

the Swarm a DNS entry. The Swarm manager uses internal load balancing to distribute

requests among services within the cluster based upon the DNS name of the service

Swarm Orchestration Architecture

 A Swarm is a decentralized and highly available group of Docker nodes. Each node is a

self-contained orchestration subsystem that has all the inherent capabilities needed to

create a pool of common resources to schedule Dockerized services.

A Swarm of Docker nodes creates a programmable topology, enabling the operator to

choose which nodes are managers and which are workers. This includes common

configurations like distributing managers across multiple availability zones. Because

these roles are dynamic, they can be changed at any time through the API or CLI.

Managers are responsible for orchestrating the cluster, serving the Service API,

scheduling tasks (containers), addressing containers that have failed health checks and

much more. In contrast, worker nodes serve a much simpler function, which is executing

the tasks to spawn containers and routing data traffic intended for specific containers. In

production environments, we strongly recommend having nodes designated as either

―managers‖ or ―workers‖. In this mode, managers do not execute containers, thus

reducing their workload and attack surface. Separately, one of Swarm mode‘s security

44

advances is that worker nodes do not have access to information in the datastore or the

Service API. Worker nodes can only accept work and report on status. Thus, a

compromised worker node is limited in the damage it can do to the system.

Managers and workers have different communication requirements in terms of

consistency, speed and volume; therefore, they use two distinct communication methods.

Raft is used to share data between managers for strong consistency (at the cost of write

speed and limited volume) while gossip is used between workers for fast communication

and high volume (albeit with only eventual consistency). And communication between

managers and workers has separate requirements still. The one thing that they all have in

common is that they have encrypted communication by default; mTLS.

Figure 12: Swarm Orchestration Architecture [Docker Inc]

Raft Consensus algorithm

According to (Diego Ongaro et al , 2014) Raft is simple and understandable cluster

consensus protocol. At any given time each server is in one of three states: leader,

follower, or candidate. Under normal operation there is exactly one leader and all of the

other servers are followers. Followers are passive: they issue no requests on their own but

45

simply respond to requests from leaders and candidates. The leader deals with all client

requests and if a client contacts a follower, the follower redirects it to the leader.

When a node is given the role of manager, it joins a Raft consensus group to share

information and perform leader election. The leader is the central authority maintaining

the state, which includes lists of nodes, services and tasks across the Swarm in addition to

making scheduling decisions. That state is distributed across each manager node through

a built-in Raft store. Non-leader managers act as hot spares and forward API requests to

the current leader. The system is therefore fault tolerant and highly available.

Having an integrated distributed data store allows for many optimizations that could have

not been achieved using a generic store – this results in our built-in orchestration system

being extremely fast. A major optimization is that the entire Swarm state is kept in-

memory resulting in instant reads. This read optimization is highly beneficial to a critical

orchestration; reconciling state which is a read-heavy workflow. Typically, a scheduler

has to perform hundreds of reads: read the list of nodes, read what other tasks are running

on those nodes, and so on. With the read optimization, there is an increase in velocity,

which results from removing the need for hundreds of read network round-trips to the

external database.

The final optimization is in how efficiently the data is persisted both in terms of size

(protocol buffers) and performance (domain specific indexing). We can instantly query

from memory the containers that are running on a given machine, the containers that are

unhealthy for a specific service, etc.

Manager-Worker Communication

Worker nodes talk to manager nodes using gRPC, a fast protocol that works extremely

well in harsh networking conditions, allows communication through internet links (built

on HTTP/2) and has built-in versioning (so that different worker nodes running different

versions of Engine can talk to the same manager node). Managers send workers sets of

tasks to run. Workers send managers the status of the tasks in their assignment set, and a

heartbeat so the managers can confirm that the worker is still alive.

46

As the diagram below illustrates, the dispatcher component of the manager code is what

ultimately communicates with workers. It is responsible for dispatching tasks to each

worker, while the worker (through it‘s executor component) is responsible for translating

those tasks into containers and creating them.

Figure 13: The components of Docker Swarm cluster based on Raft Consensus

Algorithm

Based on the diagram above, let‘s briefly walk through what happens as a Docker service

is created and ultimately spawns that set of containers:

Service creation

User sends the service definition to the API. The API accepts and stores the service state

before forwarding the request to the Orchestrator.

47

 Orchestrator reconciles desired state (as defined by the user) with the actual state

(what‘s currently running on the Swarm). It will pick up the new service created by

the API and respond to that by creating a task (assuming in this case, the user

requested only one instance of the service)

 Allocator allocates resources for tasks. It will notice a brand new service (created by

the API) and a new task (created by the orchestrator) and will allocate IP addresses

for both.

 Scheduler is responsible to assign tasks to worker nodes. It will notice a task with no

node assigned and therefore will start scheduling. It tries to find the best match (based

on constraints, resources, …) and finally, it will assign the task to one of the nodes

 Dispatcher is where workers connect to. Once workers are connected to the

Dispatcher, they wait for instructions. In this way, a task assigned by the scheduler

will eventually flow down to the worker.

 Service update

 Users update a service definition through the API (e.g. change from 1 to 3 instances).

API accepts and stores.

 Orchestrator reconciles desired vs actual. It will notice that even though the user

wants 3 instances, only 1 is running and will respond to that by creating two

additional tasks.

 Allocator, Scheduler and Dispatcher will perform the same steps as explained above

and the two new tasks will land on workers

2.11.3 Scaling up Microservices Kubernetes

Kubernetes is an open source project to manage a cluster of Linux containers (Docker

and rkt) as a single system, managing and running containers across multiple hosts,

offering co-location of containers, service discovery and replication control. It was

started by Google and now it is used by several Software vendors. Kubernetes 1.4 has

added more capabilities such as

48

 users will be able to set up services that span multiple clusters that can even be

hosted across multiple clouds.

 support for stateful applications (think databases). The project now also features

improved autoscaling support.

 support for rkt as an alternative container runtime to Docker‘s runtime.

 support for twice as many nodes in a cluster as before (up to 2,000) and services

can now span different availability zones

The design of Kubernetes is a combination of microservices and small control loops and

this achieves a desired emergent behavior by combining the effects of separate,

autonomous entities that collaborate. This is an improved design choice in contrast to a

centralized orchestration system, which may be easier to construct at first but tends to

become brittle and rigid over time, especially in the presence of unanticipated errors or

state changes.

A Kubernetes cluster is composed of two parts:

1. the Kubernetes Control Plane- is highly scalable microservice based and

loosely coupled components which controls and manages the whole Kubernetes

system, and

2. worker nodes-Containerized hosts which run the actual applications you deploy

in the Kubernetes cluster.

The components of the control plane are (Marko Lukŝa, 2016)

 the API Server, which you use to communicate with and perform operations on

the Kubernetes cluster,

 the Scheduler, which is responsible for scheduling your apps (assigning a worker

node to each deployable component of your application),

 the Replication Controller, which performs cluster-level functions, such as

replicating components, keeping track of worker nodes, etc.,

 etcd, a reliable distributed store that stores the whole cluster configuration

persistently.

The worker nodes, on the other hand, run:

49

 Docker, which actually runs your containers,

 Kubelet, which talks to the master node and controls Docker on that node,

 Kube Proxy, which proxies and load balances network traffic between your

application

components.

Figure 14: Kubernetes Master-slave design illustrating its microservices and

container based architecture (Marko Lukŝa, 2016)

Thanks to the advent of Linux namespaces, VMs, IPv6, and software-defined

networking, Kubernetes can take a more user-friendly approach that eliminates these

complications: every service gets its own IP address, allowing developers to choose ports

rather than requiring their software to adapt to the ones chosen by the infrastructure, and

removes the infrastructure complexity of managing ports.

Kubernetes derivatives

Asian telecommunications giant Huawei Technologies has released its own container

orchestration engine, the Cloud Container Engine (CCE). CCE is based on Kubernetes.

CoreOS launched a project called Stackanetes, which was designed to run OpenStack as

http://thenewstack.io/openstack-gets-self-healing-coreoss-new-kubernetes-based-stackanetes/

50

an application on your infrastructure, just like any other application. In effect,

Stackanetes uses the Kubernetes orchestration engine to manage a distributed OpenStack

deployment.

Learning from Google‘s over ten years experience of running every application inside

container, Mirantis has decided to make OpenStack more scalable and manageable by

running it using Kubernetes. By packaging OpenStack services so they can be managed

by Kubernetes, Mirantis is addressing many of OpenStack‘s scaling, management and

operational challenges, making it, in theory, as scalable as any microservice.

2.11.4 Scaling up microservices with Apache Mesos

Mesos architecture is quite different from Kubernetes. The main difference in the design

is that Mesos employs two-level scheduler architecture. Delegating the actual scheduling

of tasks to frameworks, the master can be a very scalable light-weight piece of code. It

enables rapid growth in the number of frameworks that Mesos supports since there is no

need to add in brand new code to the Mesos master and slaves modules every time a new

framework is iterated. Instead, developers can focus on their application and framework

http://www.thenewstack.io/tag/Kubernetes

51

of choice.

Figure 15: Mesos two level orchestration architecture

2.12 Containerized Application Management

According (Alex Williams, 2016) it takes roughly 16 man-hours per year per VM for

patching, updating the OS, antivirus, etc. And this is for infrastructures that are

reasonably automated. If they‘re not automated, it probably takes longer. Multiply that by

the number of VMs in your environment, that‘s a lot of OPEX. Kubernetes on the other

hand is a great system, but it requires a lot of manpower to install and maintain. It

requires a lot of resources. When you look at reasons why it‘s not taking off faster, it‘s

that there‘s a learning curve.

The cluster management tools that are dominating the container orchestration scene

include Docker Swarm, Kubernetes and Mesos. All these tools comes with varying user

52

cases and it is difficult to rely on one and omit others. Under production environment it

may be possible to have containerized management tools that fully automates the cluster

management tasks using various orchestration tools. In the following subsections we look

various such attempts.

Kontena

Kontena is an open-source system for deploying, managing, scaling and monitoring

containerized applications across multiple hosts on any cloud infrastructure. It is

primarily targeted for running applications composed of multiple containers, such as

elastic, distributed micro-services.

The architecture of Kontena is influenced by both Docker Swarm and Kubernetes, so it

had some opportunities to learn from those projects‘ mistakes and successes. Like

Kubernetes, it works at a level of abstraction higher than containers; the primitive

building components of Kontena are called services. The other main components of

Kontena‘s architecture are the grid, services, the master node, host nodes and the Kontena

CLI.

The Master Node

Similar to Kubernetes, Kontena works on a master-slave architecture. Unlike some other

container orchestration solutions, this master node doesn‘t provide any of the underlying

processing power, and its purpose is purely for management and to provide audit logging.

Kontena‘s next construct — called host nodes — are what provide the processing power

and run the physical Docker containers.

The Host Nodes

Each host node is an actual bare metal or virtual Linux machine, such as an AWS EC2

instance or Digital Ocean Droplet. Each host node is assigned to one — and only one —

grid, and communicates with the master node over a secure web socket. Kontena can be

configured to automatically provision and assign new nodes to grids when additional

capacity is necessary. Host nodes can also be deallocated by Kontena when traffic slows

down. All logging and statistics are saved by the master node, as host nodes are also

potentially ephemeral.

53

Kontena CLI

 If you have played with docker-compose, you will find configuring Kontena very

intuitive. While not a one-to-one match, Kontena‘s kontena.yml files are very close to

docker-compose.yml files. In fact, you can even have a base docker-compose.yml file

that you can then extend and reference using a kontena.yml file. Kontena‘s strengths lies

in

 Easy installation and ease of use: Kontena works off the shelf—on any public

cloud, on-premises or hybrid—and requires minimum effort to install. The

platform requires no maintenance and includes automatic updates, which enables

developers to spend more time working on what matters the most – their own

software and applications.

 Scalability: Unlike many other platforms, Kontena is feasible for running even

the smallest container workloads and it may be scaled up when needed. This

scalability means developers have just the right-sized tool for their unique

organization needs.

 Open source: Kontena is open source and integrates with other, complementary

open source software as well as leading software-as-a-service offerings aimed at

monitoring and logging. This minimizes vendor lock-in and ensures developers

have a wide array of options available to them.

Kontena version 0.15 supports the following features.

 CLI plugins - CLI functionality can be extended with plugins. All

provisioning features are now available as a separate plugins.

 Health checks - It's now possible to configure health checks for each service.

 Let's Encrypt support - Support for issuing Let's Encrypt certificates using

DNS challenge.

 Load Balancer Sticky Sessions - Now it's possible to configure load balancer

to use sticky sessions.

Kontena proposes a more complete and automated container that includes more

functionality — such as scheduling, orchestration, network overlay, load balancing and

54

secrets management — so that developers using containers do not have to search for and

bond together the many individual components on their own for enterprise use.

2.13 Docker Plugin Architecture

During the Docker Conference held on 22
nd

 June 2015 Docker announced a plugin

architecture. The Docker ecosystem of tool-makers is growing exponentially. The value

of plugins is to integrate this ecosystem seamlessly with the Docker Engine.

Customization leads to applications that fit the end users‘ needs better. This extensibility

must retain Docker‘s portability, consistency and ease of use. That is the idea behind

Docker plugins: one set of interchangeable tools via one Docker open platform. A user

can swap out a plugin and replace with another without having to modify their

application. You can swap in different volumes, networking, composition or scheduling

framework, depending on user preferences and the special requirements of each user‘s

applications.

 Volume Plugins, which allow third-party container data management solutions to

provide data volumes for containers which operate on data, such as databases,

queues and key-value stores and other stateful applications that use the file

system.

 Network Plugins, which allow third-party container networking solutions to

connect containers to container networks, making it easier for containers to talk to

each other even if they are running on different machines.

In both cases, the plugin mechanism takes a piece of core functionality that Docker

already provides, and allows users and tool-makers to load, or write, plugins that extend

that functionality in cool, new and interesting ways.

55

Figure 16: Docker plugin Architecture showing the extensions and interfaces to

other systems

56

2.14 Volume Plugins

Starting with version 1.8, Docker introduced support for third-party volume plugins.

Existing tools, including Docker command-line interface (CLI), Compose and Swarm,

work seamlessly with plugins. Kubernetes 1.3+ has also good support for volume plugins

(databases)

According to Docker, volume plugins enable engine deployments to be integrated with

external storage systems and data volumes to persist beyond the lifetime of a single

engine host. Customers can start with the default local driver that ships along with

Docker, and move to a third-party plugin to meet specific user storage requirements.

Further volume plugin enable containerized applications to interface with filesystems,

block storage, object storage , software defined storage.

Currently, Docker supports more than a dozen third-party volume plugins for use with

Azure File Storage, Google Compute Engine persistent disks, NetApp Storage and

vSphere.

Basics of Volume Plugin Architecture

Docker ships with a default driver that supports local, host-based volumes. When

additional plugin are available the same workflow can be extended to support new

backends.

The third party volume plugins are installed separately, which typically ship with their

own command line tools to manage the lifecycle of storage volumes. Docker‘s volume

plugins can support multiple backend drivers that interface with popular filesystems,

block storage devices, object storage services and distributed filesystems storage.

57

Docker Volume Plugin Architecture

Typical Operations Supported By Volume Plugins

Flocker works with mainstream orchestration engines such as Docker Swarm, Kubernetes

and Mesos. It supports storage environments ranging from Amazon Elastic Block Store

(EBS), GCE persistent disk, OpenStack Cinder, vSAN, vSphere and more.

2.15 Network Plugins

Container networking technology is a great enabler for scalable microservices. Container

networking types of concern to us include:

• Overlay

• Underlay

2.15.1 Types of Container Networking

Container networking types can be categorized based on IP-per-container versus IP-per-

pod models and the requirement of network address translation (NAT) versus no

translation needed.

Overlay

Overlays employ tunnels to deliver communication across and between hosts. Many

tunneling technologies exist, such as virtual extensible local area network (VXLAN).

Docker client

Docker

Daemon

Plugin client

Plugin

Daemon

Storage

Backend 1

Basic volume

create and delete

operations

Vendor-specific

volume snapshot and

copy operations

Vendor supported

Backend drivers

Storage

Backend 2

Storage

Backend 3

Storage

Backend 4

Figure 17: The Docker volumes plugin architecture

58

VXLAN has been the tunneling technology of choice for Docker libnetwork, whose

multi-host networking entered as a native capability in the 1.9 Docker engine release.

Multi-host networking requires additional parameters when launching the Docker

daemon, as well as a key-value store. Some overlays rely on a distributed key-value store.

If you‘re doing container orchestration, you‘ll already have distributed key-value store

lying around. Docker Swarm has inbuilt support for overlay networking.

Underlays

There are two types of underlay networking based namely media access control virtual

local area network (MACvlan) and internet protocol vlan (IPvlan). Both network drivers

are conceptually simpler and eliminates the need for port mapping and are more efficient.

MACvlan

MACvlan allows creation of multiple virtual network interfaces behind the host‘s single

physical interface. Each virtual interface has unique MAC and IP addresses assigned,

with a restriction: the IP addresses need to be in the same broadcast domain as the

physical interface. MACvlan networking is a way of eliminating the need for the Linux

bridge, NAT and port-mapping, allowing you to connect directly to the physical

interface.

The host cannot reach the containers. The container is isolated from the host. This is

useful for service providers or multi-tenant scenarios, and has more isolation than the

bridge model.

IPvlan

IPvlan is similar to MACvlan in that it creates new virtual network interface and assigns

each a unique IP address. The difference is that the same MAC address is used for all

pods or containers on a host i.e. same MAC address of the physical interface. Best run on

kernels 4.2 or newer, IPvlan may operate in either L2 or L3 modes. Like MACvlan,

IPvlan L2 mode requires that IP addresses assigned to sub interfaces be in the same

subnet as the physical interface. IPvlan L3 mode, however, requires that container

networks and IP addresses be on a different subnet than the parent physical interface.

59

MACvlan and IPvlan

When choosing between these two underlay types, consider whether or not you need the

network to be able to see the MAC address of the individual container. In this sense,

IPvlan L3 mode operates as you would expect an L3 router to behave.

Docker is experimenting with Border Gateway Protocol (BGP). While static routes can

be created on top of the rack switch, projects like goBGP have sprouted up as a container

ecosystem-friendly way to provide neighbor peering and route exchange functionality.

Although multiple modes of networking are supported on a given host, MACvlan and

IPvlan can‘t be used on the same physical interface concurrently. In short, if you‘re used

to running trunks down to hosts, L2 mode is for you. If scale is a primary concern, L3 has

the potential for massive scale.

2.15.2 Container Networking Standards

There are two container networking specification initiatives namely

 Container Networking Model

 Container Networking Interface

2.15.2.1 Container Networking Model

Container Network Model (CNM) formalizes the steps required to provide networking

for containers while providing an abstraction that can be used to support multiple

network drivers. Libnework is the canonical implementation of the CNM. Libnetwork

provides an interface between the Docker daemon and network drivers. The network

controller is responsible for pairing a driver to a network. Each driver is responsible for

managing the network it owns, including services provided to that network like IPAM.

With one driver per network, multiple drivers can be used concurrently with containers.

Libnetwork

Libnetwork implements Container Network Model (CNM) which formalizes the steps

required to provide networking for containers while providing an abstraction that can be

used to support multiple network drivers. Libnetwork provides a unified API for

integrating networking solutions from Weave, Nuage, Cisco, Microsoft, Calico,

60

Midokura, and VMware into Docker. Finally Libnetwork implements the Container

Network Model (CNM).

The CNM contains a number of different constructs

• Endpoint

• Network

• Sandbox

61

Figure 18: The Container Network Model (CNM)

Endpoint

A network interface can be used for communication over a specific network. Endpoints

join exactly one network and multiple endpoints can exist within a single Network

Sandbox.

Network

A Network is a uniquely identifiable group of Endpoints that are able to communicate

with each-other directly. An implementation of a Network could be a Linux bridge, a

VLAN, VPN etc. A network consists of many endpoints. You could create network A

and B that are completely isolated.

NETWORK A

Docker container

Network sandbox

Endpoint Endpoint

Docker container

Network sandbox

Endpoint Endpoint

NETWORK B

Docker container

Network sandbox

Endpoint Endpoint

62

Sandbox

An isolated environment that houses Network configuration for a Docker Container. This

includes management of the container's interfaces, routing table and DNS settings. A

Sandbox may contain many endpoints from multiple networks.

2.15.2.2 Container Networking Interface

The CNI (Container Network Interface) project consists of a specification and libraries

for writing plugins to configure network interfaces in Linux containers, along with a

number of supported plugins. CNI concerns itself only with network connectivity of

containers and removing allocated resources when the container is deleted. Multiple

plugins may be run at one time with a container joining networks driven by different

plugins. CNI plugins support two commands to add and remove container network

interfaces to and from networks. Add gets invoked by the container runtime when it

creates a container. Delete gets invoked by the container runtime when it tears down a

container instance.

2.15.2.3 Container Network Model and Container Networking Interface

Both container standardization models democratize the selection of which type of

container networking may be used for creating and managing network stacks for

containers. Both models allow containers to join one or more networks. And each allows

the container runtime to launch the network in its own namespace, segregating the

application/business logic of the container to the network to the network driver.

CNI supports integration with third-party IPAM and can be used with any container

runtime while CNM is designed to support the Docker runtime engine only. With CNI‘s

simplistic approach, it‘s been argued that it‘s comparatively easier to create a CNI plugin

than a CNM plugin.

These models promote modularity, composability and choice by fostering an ecosystem

of innovation by third-party vendors who deliver advanced networking capabilities. The

orchestration of network micro-segmentation can become simple API calls to attach,

detach and swap networks.

63

2.15.2.4 Container Networking in OpenStack

OpenStack is a framework for managing, defining, and utilizing cloud resources. The

official OpenStack website (www.openstack.org) describes the framework as ―open-

source software for building private and public clouds.‖ According to (V.K. Cody

Bumgardner, 2015) OpenStack Software delivers a massively scalable cloud operating

system.

According to the online publication (Alex Willams et al 2016), OpenStack is rapidly

becoming a core building block for companies such as AT&T, Verizon, BMW,

Volkswagen, and Walmart, that are building private cloud infrastructures. OpenStack has

become an integration engine that bridges the union of containers, bare metal and virtual

machines. OpenStack brings these resources together in one platform and supports a

variety of networking and scaling approaches and storage options.

OpenStack delivers choice, scalability and the flexibility to adopt new technologies.

Initially focused on infrastructure automation for virtual machines, OpenStack supports

container networking through two projects namely Kuryr and Magnum.

Kuryr

Kuryr, a project providing container networking, currently works as a remote driver for

libnetwork to provide networking for Docker using Neutron as a backend network

engine. Support for CNM has been delivered and the roadmap for this project includes

support for CNI.

Magnum

Magnum, a project providing Containers as a Service (CaaS) and leveraging Heat to

instantiate clusters running other container orchestration engines, currently uses non-

Neutron networking options for containers.

2.15.3 Network Driver Plugins

2.15.3.1 Weave

Weave uses open vSwitch architecture and containerized applications are interlinked and

appear to be plugged into the same network switch, with no need to configure port

http://www.thenewstack.io/tag/OpenStack

64

mappings, links, etc. Services provided by application containers on the weave network

are accessible to the outside world, regardless of where those containers are running

(weaveworks, 2015).

2.15.3.2 Calico

Calico employs the underlay solution for interconnecting Virtual Machines or Linux

Containers. Instead of a vSwitch, Calico employs a vRouter function in each compute

node. The vRouter uses the existing L3 forwarding capabilities of the Linux kernel,

which are configured by a local agent (―Felix‖) that programs the L3 Forwarding

Information Base with details of IP addresses assigned to the workloads hosted in that

compute node (Cloudsoft, 2015)

Calico provides high scalability because it‘s based on the exact same principles as the

Internet, using Border Gateway Protocol (BGP) at the control plane. With well-known

implementations BGP is able to comfortably handle tens of thousands of distinct routes.

 And because Calico connects virtual machines or containers directly via IP, it scales

beyond the data center and natively supports cloud connectivity across any geographic

distribution.

2.15.4 Microservices Discovery Techniques

Service discovery is a mechanism for locating where the Microservices are hosted. Once

you have several microservices forming your application, your attention inevitably turns

to knowing where on earth everything is. Perhaps you want to know what is running in a

given environment so you know what you should be monitoring. Maybe it‘s as simple as

knowing where your customer service is so that those Microservices that use it know

where to find it. Or perhaps you just want to make it easy for developers in your

organization to know what APIs are available so they don‘t reinvent the wheel.

DNS

DNS has a host of advantages, the main one being it is such a well-understood and well-

used standard that almost any technology stack will support. Unfortunately, while a

number of services exist for managing DNS inside an organization, few of them seem

https://github.com/weaveworks/weave

65

designed for an environment where we are dealing with highly disposable hosts, making

updating DNS entries somewhat painful.

Dynamic Service Discovery

The downsides of DNS as a way of finding nodes in a highly dynamic environment have

led to a number of alternative systems, most of which involve the service registering

itself with some central registry, which in turn offers the ability to look up these services

later on. Often, these systems do more than just providing service registration and

discovery.

Ectd

Etcd is an open-source distributed key-value store that serves as the backbone of

distributed systems by providing a canonical hub for cluster coordination and state

management.

Etcd is written in Go and uses the Raft Consensus protocol. Raft is a protocol for multiple

nodes to maintain identical logs of state changing commands, and any node in a raft node

may be treated as the master, and it will coordinate with the others to agree on which

order state changes happen in.

Zookeeper was originally developed as part of the Hadoop project. It is used for an

almost bewildering array of use cases, including configuration management,

synchronizing data between services, leader election, message queues, and as a naming

service.

Like many similar types of systems, Zookeeper relies on running a number of nodes in a

cluster to provide various guarantees. This means you should expect to be running at least

three Zookeeper nodes. Most of the smarts in Zookeeper are around ensuring that data is

replicated safely between these nodes, and that things remain consistent when nodes fail.

Zookeeper is often used as a general configuration store, so you could also store service-

specific configuration in it, allowing you to do tasks like dynamically changing log levels

or turning off features of a running system.

Consul

Like Zookeeper, Consul supports both configuration management and service discovery.

But it goes further than Zookeeper in providing more support for these key use cases. For

66

example, it exposes an HTTP interface for service discovery, and one of Consul‘s killer

features is that it actually provides a DNS server out of the box; specifically, it can serve

SRV records, which give you both an IP and port for a given name. This means if part of

your system uses DNS already and can support SRV records, you can just drop in Consul

and start using it without any changes to your existing system.

Consul also builds in other capabilities that you might find useful, such as the ability to

perform health checks on nodes. This means that Consul could well overlap the

capabilities provided by other dedicated monitoring tools, although you would more

likely use Consul as a source of this information and then pull it into a more

comprehensive dashboard or alerting system.

Consul heavily relies on a RESTful HTTP interface for everything from registering a

service, querying the key/value store, or inserting health checks. This makes integration

with different technology stacks very straight forward.

Microservices Interprocess Communication

Each microservice instance is housed in its own container hence there must exist a

mechanism for inter-container communication. The lethal combination of HTTP and

JSON resulted in a new Architectural style called REST. REST has become wildly

popular among web developers. Many applications rely on REST even for internal

serialization and communication patterns. But HTTP is not the most efficient protocol for

exchanging messages across services running in the same context, same network, and

possibly the same machine. HTTP‘s convenience comes with a huge performance trade-

off, hence the need for finding an optimal communication framework for microservices.

gRPC

gRPC, is based on client- server architecture whereby application can directly call

methods on a server application on a different machine as if it was a local object, making

it easier for you to create distributed applications and services. gRPC is based around the

idea of defining a service, specifying the methods that can be called remotely with their

parameters and return types. On the server side, the server implements this interface and

67

runs a gRPC server to handle client calls. On the client side, the client provides the same

methods as the server.

When compared to REST, gRPC offers better performance and security. It heavily

promotes the use of SSL/TLS to authenticate the server and to encrypt all the data

exchanged between the client and the server. gRPC uses HTTP/2 to support highly

scalable APIs. The use of binary rather than text minimizes the payload. HTTP/2 requests

are multiplexed over a single TCP connection, allowing multiple concurrent messages to

be in flight without compromising network resource usage. It uses header compression to

reduce the size of requests and responses.

Multi-Language Support

gRPC clients and servers can run and talk to each other in a heterogenous environments.

For example, you can easily create a gRPC server in Java with clients in Go, Python, or

Ruby.

gRPC uses protocol buffers, Google‘s open source mechanism for serializing structured

data. Proto3 is the latest version of protocol buffers and is recommended because it has a

slightly simplified syntax, some useful new features, and supports lots more languages.

This is currently available in Java, C++, Python, Objective-C, C#, JavaNano (Android

Java), Ruby, JavaScript and Go language generator with more languages in development.

 …. .

…. .

68

CHAPTER THREE: METHODOLOGY

3.0 Introduction

In study we employ two types of methodologies that are conducted concurrently. The

research methodology will however inform the system development methodology.

3.1.1 Research Methodology

In this research, a research methodology called Design Science Research Methodology

(DSRM) is employed. DSRM is about solving problems by introducing artifacts in a

context. The artifact that we propose is a scalable Microservice Architecture for Web

Service. Research phases that have to be carried out in DSRM are (Peffers, Tuunanen,

Rothenberger, & Chatterjee, 2007):

1) Problem definition & analysis (evaluation of current practice)

2) Defining objectives of a solution (what would a better artifact accomplish?)

3) Prototype design & development

4) Prototype demonstration (finding a suitable context then use the artifact to

solve problems)

5) Prototype evaluation (observing how effective it is in solving problem)

6) Communication.

3.1.2 Problem Definition and Analysis

After this point usually the process iterates back to step (2) or (3). Following this DSRM

method, we first investigate the market to gain insight on the state of the art relating to

Microservice Architecture (step 1 in DSRM). Based on the findings of this market

analysis, we will identify issues associated with the platforms with respect to scalability

which provides motivation for the need of a new platform. Common technology used,

architecture components and functionality gaps will be acknowledged as well. Step (1)

will be covered by chapter 1 and 2 in this report.

3.1.3 Defining objectives of a solution

In the next step (2), we will propose requirements and architecture components that need

to be incorporated into the platform design based on literature study. This phase is

69

necessary to illustrate the inadequacy of solutions in the market in achieving our project

goals. We will carry out literature study in the topics of web application architecture,

system level virtualization and scalability.

3.1.4 Artifact Design & Development

Subsequent step (3) in DSRM is about artifact design and development. Based on the

findings of steps 1, 2 and 3, we will construct an architecture design of our platform in

this chapter 4. We will first study what architectural design principles to implement and

accordingly, its design specification and requirement.

3.1.5 Artifact Demonstration

 Chapter 4 in this report corresponds with Step (4) which deals with artifact

demonstration. We will find a suitable context in order to demonstrate the feasibility of

our architecture design by means of a prototype. The case selection will be based on

consideration from literature.

3.1.6 Artifact Evaluation

In addition, we will select a tool to test the principles of the architecture design. After

constructing the prototype using appropriate tools and components, the prototype is

validated using one microservice. In the last section is Chapter (6) which corresponds to

Step (6) in DSRM research phase, we conclude this thesis with discussion of results then

point out recommendations for future researchers.

3.1.7 System Development Methodology

The system development methodology used will be Agile development methodology.

This methodology is preferred because it is iterative and incremental and so allows the

assessment of the projects direction throughout the development lifecycle. The

methodology also supports addition of features to a system incrementally which is

important especially when dealing with web applications. The overall model of the

system will be created and the features added incrementally until all the objectives are

met.

70

Agile development methodology will follow iteratively through the following steps:

 Requirements analysis

 Architecture and design (features design).

 Development and evaluation of the features.

The steps will be carried out as a continuous and iterative process as defined in the agile

development methodology.

3.1.8 Architectural Design

This stage is involves understanding of the problem by studying an organizational setting

and identify the different services offered by an organization and its partners. Each

service is designed independently and integrated to form a complete system. The

components of the system include

 Messaging services

 Discovery services

 Service directory

 Data security service

3.2 System Development Process

Most of the software development processes (also known as the software life cycle), are

being replaced by more agile methodologies.

3.2.1 DevOps

At the core of DevOps thinking is the realization that software development (Dev) and

operations teams need to collaborate closely to enable organizations shorten the time it

takes to transform developed software into running services

71

Figure 19: A DevOps Based Software Development Cycle [Adoted from Software

Testing]

DevOps is associated with agile and goes further to employ continuous integration,

configuration management, virtualization, and cloud computing. It puts emphasis on

automated and repeatable allocation and configuration of execution environments. In an

effort to break the barriers between development and operations, speed up delivery, and

enhance the supplied solutions, DevOps employs some approaches that are well suited

with use of virtualized infrastructure.

DevOps is an extension of agile development methodology that emphasizes on the

automation of packaging, deployment and testing using appropriate tools. The specific

goals of a DevOps approach span the entire delivery pipeline including improved

deployment frequency, which can lead to faster time to market, lower failure rate of new

releases, shortened lead time between fixes, and faster mean time to recovery in the event

of a new release crashing or otherwise disabling the current system. Simple processes

become increasingly programmable and dynamic, using a DevOps approach, which aims

to maximize the predictability, efficiency, security, and maintainability of operational

processes. Very often, automation supports this objective.

72

Figure 20: DevOps is an inter displinary approach to software development.

3.2.2 The Software Deployment Pipeline

Continuous delivery introduces the concept of a deployment pipeline, also referred to as

the build pipeline. A deployment pipeline represents the technical implementation of the

process for getting software from version control into your production environment.

Commit stage

The main stakeholder of this phase is the development team as it provides feedback about

broken code and finds ―bugs.‖ The job of this stage is to compile the code, run tests,

perform code analysis, and prepare the distribution.

Automated acceptance test stage

Functional and nonfunctional requirements are met by running automated tests.

Manual test stage

Verifies that the system is actually usable in a test environment. Usually, this stage

involves QA personnel to verify requirements on the level of user stories or use cases.

Release stage

Either delivers the software to the end user as a packaged distribution or deploys it to the

production environment.

The following tasks can be automated using build tool

 Compiling the code

Commit

stage

Automated

Acceptance

Testing stage

Manual

Testing stage

Release

stage

Figure 21: Stages of a deployment pipeline

73

 Running unit and integration tests

 Performing static code analysis and generating test coverage

 Creating the distribution

 Provisioning the target environment

 Deploying the deliverable

 Performing smoke and automated functional tests

Docker has been chosen as a tool to facilitate faster and simplified deployments because

it gives a useful abstraction layer on which to build, deploy and manage a software

system.

3.2.3 Faster Deployments

If you are pushing an application or release candidates between environments frequently,

as is typical in a Continuous Delivery world, this is a huge win. This is because only the

application code and binaries that has changed in that build need to be shipped onto your

servers, even though you are benefiting from pushing a lightweight ‗virtual machine‘

with all of the repeatability benefits that that brings. If your Continuous Integration server

is pushing out hundreds of release candidates into environments per day, this quickly

becomes a win.

3.2.4 Docker Support for continuous Deployment Pipeline

Continuous deployment is a set of automation practices that reduces lead time and

improves the reliability, quality, and overhead of software releases. Implementing

continuous deployment requires some work, but it has a very positive impact on a project.

By establishing a sound deployment pipeline and keeping all of your environments—

from development to test to production—as similar as possible, you can drastically

reduce risks in the development process and make innovation, experimentation, and

sustained productivity easier to achieve.

With such an array of environments, repeatability again becomes important. Efficiency in

shipping the containers between environments also becomes much an issue. Docker to a

large extend simplifies this, making moving images through a pipeline easy and fast.

74

3.3 Continuous Integration

3.3.1 Version Control System

A tool that manages and tracks different versions of software or other content is referred

to generically as a version control system (VCS) or a source code manager (SCM). The

aim is to develop and maintain a repository of content, provide access to historical

editions of each datum, and record all changes in a log. In this thesis, the term version

control system (VCS) is used to refer generically to any form of revision control (Scott

Chacon et al, 2010).

Git is a powerful, flexible, and low-overhead version control tool that makes

collaborative development a pleasure. Linus Torvalds designed Git to initially support the

development of the Linux Kernel. Currently Git used for diverse range of projects and

works well across all operating systems. For example two or more individuals can write a

book to completion without ever meeting using Git. For main characteristics that make

Git suitable for scalable development you are referred to a book titled version control

with Git (Jon Loeliger, 2009).

3.3.2 CI server

Continuous Integration, in its simplest form, involves a tool that monitors your version

control system for changes. Whenever a change is detected, this tool automatically

compiles and tests your application.

If something goes wrong, the tool immediately notifies the developers so that they can fix

the issue immediately. Continuous Integration can also help you keep tabs on the health

of your code base, automatically monitoring code quality and code coverage metrics, and

helping keep technical debt down and maintenance costs low. The publicly-visible code

quality metrics can also encourage developers to take pride in the quality of their code

and strive to improve it. Combined with automated end-to-end acceptance tests, CI can

also act as a communication tool, publishing a clear picture of the current state of

development efforts. And it can simplify and accelerate delivery by helping you automate

75

the deployment process, letting you deploy the latest version of your application either

automatically or as a one-click process.

The CI/CD workflow for most CI servers is as described below

 Developer commits changed code to a repository

 Repository notifies CI server via a webhook of the change

 CI server initiates a CI/CD build, executing the following:

 Spin up a new container for the CI/CD build

 CI server prepares the container based on specifications provided in a

Dockerfile that exists in the repository (if provided)

 Upon success, CI server creates a Docker image based on the final

state of the CI/CD build container

 CI server then pushes the Docker image to Docker Hub in the

designated repo with the generated tag.

 Upon pushing the changed image to Docker Hub, the new image is then deployed

into a full-topology test environment (this can be automatically deployed when

the new image is created or manually deployed).

 Functional/Integration tests are then executed automatically upon successful

deployment.

 Software versions ready for user acceptance will be deployed manually for smoke

testing by users.

 Upon successful testing, the immutable Docker images that have been tested can

then be deployed to any production environment running the Docker Engine.

76

3.3.3 Build Management

3.3.3.1 Maven

Maven is more than a project management tool since it encompasses a project object

model, a set of standards, a project lifecycle, a dependency management system, and

logic for executing plugin goals at defined phases in a lifecycle.

Maven is based on the central concept of a build life cycle. The process for building and

distributing a particular artifact or project is clearly defined. For developers to use

Maven, they must learn a small set of commands that enable them to build any Maven

project. The Maven Project Object Model (POM) ensures that the project is built

correctly.

3.3.3.2 Gradle

Microservice Architecture proposes multiple programming languages, each of which is

best suited to implement a specific problem domain. This makes Gradle the best tool for

Microservices polyglot programming which gives developers the freedom to choose the

best programming tools for the job at hand. Compared to other tools, Gradle build scripts

are declarative and readable. Writing code in Groovy instead of XML significantly cuts

down the size of a build script and is far more readable.

As shown in figure 28 Gradle has combined the best techniques from older tools such as

Ant, Ivy, Maven, Gant to produce a better software build automation too.

Figure 22: Gradle combines the best features from other build tools.

77

Scalable Builds

Web applications with several microservices are becoming a reality. Building and testing

minor code changes can be cumbersome. What you need is a tool that‘s capable of

rebuilding the parts of your software that actually changed. It reliably determines for you

the tasks need to be skipped, built, or partially rebuilt. Because your build clearly defines

the dependencies between microservices, Gradle takes care of rebuilding only the

necessary parts.

Gradle command forks a daemon process, which not only executes your build, but also

keeps running in the background. Subsequent build invocations will piggyback on the

existing daemon process to avoid the startup costs.

Figure 23: Gradle key features

3.4 System Testing

Due to introduction of many dynamic parts after adopting Microservice Architecture,

Software testing should be given a lot of attention and support. This should be

supplemented with monitoring tools to foster visibility into the system.

78

3.4.1 Unit Testing

A unit test in microservice is just like in other systems, can be understood as running the

smallest piece of testable software to determine whether it behaves as expected. This

testing is where we hope to catch most of the bugs in the system and it is the most

frequently executed testing compared to other kinds of tests.

Reasons for unit testing

To give a developer very fast feedback about whether the implemented piece of code is

good in isolation. This test is also critical in the code refactoring activities where small-

scoped tests can timely help ensure quality of the code restructuring as we go.

79

3.4.2 Integration testing

Integration testing is a testing method which collects relevant modules together and

verifies they collaborate as expected, by exercising communication paths among them to

detect any incorrect assumptions each module should interact with other modules under

test. In Microservice Architectures this testing is typically used to verify interactions

between the layers of integration code and any external components that they integrate to.

The external components could be data stores, other microservices and so on.

Another important external integration test is the test against communication between

two microservices. Very often a proxy component is used to encapsulate message passing

between two remote services, marshalling requests and responses from and to the

modules are actually process the request. Containerization based on Docker is an

important tool in ensuring that test data in one environment can be used in another

environment.

3.4.3 Automated Microservices Testing

Testing your code is an important activity of the software development lifecycle. It

ensures the quality of your software by checking that it works as expected. In this study

we chosen to use Gradle build management tool because it integrates with a wide range

of Java and Groovy unit testing frameworks.

3.5 Scalability Experiments

In order to measure the performance and scalability of the Docker Swarm and Kubernetes

orchestration mechanisms, the test bench was set up on Amazon Web Services Cloud . In

each case the container start delay times were measured.

80

Figure 24: Test Setup used to measure container start up times on Amazon

Web Services (Jeff Nickoloff , 2016)

Both Kubernetes and Swarm were tested in clusters of 1000 nodes on Amazon Web

Services.

We repeated this experiment on premise setup using five nodes running on Intel core 3

8GB RAM. Our results are as captured by the benchmarking tool as shown in appendix

B. The test cluster consisted of five machines created using Docker machine using the

VirtualBox Driver. Docker Swarm was used to create the cluster of five machines. Two

of the machines were designated as cluster managers wherby one was the cluster leader

and the other manager was on standby mode to take-over in the event that the leader

failed. The whole process of virtual machine creation was automed using

https://aws.amazon.com/
https://aws.amazon.com/

81

3.0 Data analysis

Figure 25: Data analysis steps using R

3.6 Scalability Model

Scalability can be defined as a mathematical function, a relationship between independent

and dependent variables (input and output). This is the type of formal definition you need

to model and analyze scalability.

The most important part of understanding such a scalability model is choosing the correct

variables to describe the way systems really operate. According to (Neil J. Gunther,)

definition, work is the driving factor of scalability. Useful ways to think about work

include, to mention a few,

• Units of work (requests).

• The rate of requests over time (arrival rate).

• The number of units of work in a system at a time (concurrency).

• The number of customers, users, or driver processes sending requests.

Neil Gunther‘s Universal Scalability Law (USL) provides a formal definition of

scalability, and a conceptual framework for understanding, evaluating, comparing, and

82

improving scalability. It does this by modeling the effects of linear speedup, contention

delay, and coherency delay due to crosstalk.

An ideal system of size 1 achieves some amount λ of throughput X, in completed

requests per second. Because the system is ideal, the throughput doubles at size N=2, and

so on. This is perfect linear scaling:

...
1

)(
N

NX

 Equation 1

The λ parameter defines the slope of the line. I call it the coefficient of performance. It‘s

how fast the system performs in the special case when there‘s no contention or crosstalk

penalty. Here are two ideal systems, with λ of 1800 and 800, respectively.

Contention appears in most systems at some point, for example as a final stage in scatter-

gather processing when assembling multiple intermediate results into a single output. As

parallelization increases, contention becomes the limiting factor. This is codified in

Amdahl‘s Law, which states that the maximum speedup possible is the reciprocal of the

serialized (non-parallelizable) portion of the work. If I add a term to the denominator

expressing the serialized fraction of the work, and multiply it

by the coefficient of serialization σ, it becomes Amdahl‘s Law:

...
)1(1

)(

N

N
NX

 Equation 2

The last bit is the crosstalk penalty, also called the consistency or coherency penalty.

Crosstalk potentially happens between each pair of workers in the system (threads, CPUs,

servers, containers, virtual machines etc). You probably remember that the number of

edges in a fully connected directed graph is n(n − 1). The USL adds a term to represent

the amount of crosstalk, multiplied by the coefficient κ:

...
)1()1(1

)(

NNN

N
NX

 Equation 3

According to Little‘s law, the mean number of requests resident in a system (N) is equal

to the throughput (X) times the mean response time (R).

83

..XRN Equation 4

This relationship is valid for stable systems, in which all requests eventually complete. If

you use Little‘s Law to solve the USL for response time as a function of concurrency, the

result is a quadratic function:

...
)1()1(1

)(

NNN
NR Equation 5

Determination of the constants using regression

The R software was used to test the scalability model and using this software it was

possible to determine the constants lambda (), sigma() and kamma() using

regression.

Because the USL is a model, it can assist you extrapolate system behaviour under load

beyond what you can observe. The USL‘s maxima predicts the system‘s highest

throughput, so it‘s a way to assess a system‘s capacity. It can help you get a better idea of

how close you are to the system‘s maximum capacity.

The USL has a few nice properties that make it suitable for this type of capacity planning:

 It‘s uses ―black box‖ approach in whichs data that‘s usually easy to get.

 Gathering data and using regression to analyze it is also easy.

 USL is a simple model, without complex mathematics.

 USL is highly intuitive when compared to most other approaches.

3.7 System Evaluation

The system will be evaluated using one microservice application. Based on this

microservice demonstration will be carried out on how to build the microservice and

package it appropriately for unit and integration Testing. Finally the microservice will be

packaged as Docker container. Using this container a demonstration illustrating scalable

Microservice Architecture will be conducted.

Quantitative Scalability Experimental Measurements (QSEM) an approach to

quantitatively evaluate the scalability of Web-based applications and other distributed

systems. The analysis uses readily-obtained data from straightforward measurements of

84

throughput at different numbers of microservices or nodes. The results provide an

understanding of the application's scalability that makes it possible to extrapolate

behavior to higher numbers of microservices or nodes with confidence. The QSEM

method consists of seven steps.

1. Identify critical Use Cases

2. Select representative scalability scenarios

3. Determine scalability requirements

4. Plan measurement studies

5. Perform measurements

6. Evaluate data

7. Present results

85

CHAPTER FOUR : MICROSERVICE SYSTEM DESIGN,

IMPLEMENTATION AND TESTING

4.1 Principles of the Microservice Design

The following design specification will guide the development and

implementation of a scalable Microservice Architecture.

1. A microservice is responsible for one single capability

2. A microservice is individually deployable

3. A microservice consists of one or more processes

4. A microservice owns its own data store

This list of characteristics should help you recognize a well-formed microservice when

you see one, and it will also help you scope and implement your own. By incorporating

these design specifications, you‘ll be on your way to getting the very best from your

microservices and producing a composable, scalable, and resilient system as a result.

Throughout this chapter, I‘ll be showing how these specifications should drive the design

and development of microservices. Now let‘s look briefly at each specification in turn.

4.1.1 Responsible for One Single Capability

The statement ―do one thing and do it well‖ has guided the design of Unix Modules and

has proved very successful. This principle was borrowed by Object Oriented

Programming and renamed Single Responsibility Principle (Martin C. Roberts et al,

2006). A microservice should implement exactly one capability. That way the

microservice will have to change only when there is a change to that capability.

Furthermore, we should strive to have the microservice fully implement the capability, so

that only one microservice has to change when the capability is changed. There are two

types of capabilities in a microservice system:

A business capability is something the system does that contributes to purpose of the

system, like keeping track of users' shopping preferences or calculating prices. A very

86

good way to tease apart which separate business capabilities a system has is to use

Domain Driven Design.

A technical capability is one that several other microservices need to use to integrate to

some third-party system for instance. Technical capabilities are not the main drivers for

breaking down a system to microservices. They are only identified when you find several

business-capability microservices needing the same technical capability.

4.1.2 Individually Deployable

A microservice should be individually deployable. You should be able to deploy a change

in a microservice to the production environment without deploying (or touching) any

other part of your system. The other microservices in the system should continue running

and working during the deployment of the changed microservice and continue running

once the new version is deployed.

Being able to deploy each microservice individually is important for several reasons. For

one, in a microservice system, there are many microservices, and each one will

collaborate with several others. At the same time, development work is done on all or

many of the microservices in parallel. If we had to deploy all or groups of them in lock

step, managing the deployments would quickly become unwieldy, typically resulting in

infrequent and big, risky deployments. This is something we very much want to avoid.

Instead, we want to be able to deploy small changes to each microservice very frequently,

resulting in small, low-risk deployments. To be able to deploy a single microservice

while the rest of the system continues to function, the build process must be set up with

this in mind: Each microservice has to be built into separate artifacts or packages.

The deployment process must also be set up to support deploying microservices

individually while other microservices continue running. For instance, you might use a

rolling deployment process where the microservice is deployed to one server at a time, in

order to reduce downtime.

87

The fact that we want to deploy microservices individually affects the way they interact.

Changes to the interface of a microservice usually must be backwards compatible so that

other existing microservices can continue to collaborate with the new version the same

way they did with the old. Furthermore, the way microservices interact must be robust in

the sense that each microservice must expect other services to fail once in a while and

must continue working as best it can. One instance of microservice failing – for instance,

because of a short period of downtime during deployment – must not result in other

microservices failing, only in reduced functionality or in slightly longer processing time.

4.1.3 Consisting of One or More Processes

A microservice must run in a separate process, or indeed in separate processes, if it‘s to

remain as independent of other microservices in the same system as possible. The same is

true if a microservice is to remain individually deployable. This is achied through

containerization.

4.1.4 Owns its Own Data Store

 A microservice owns the data store where it stores the data it needs. This is another

consequence of wanting the scope of a microservice to be a complete capability. For most

business capabilities, some data storage is needed.

The fact that each microservice owns its own data store makes it possible to use different

database technologies for different microservices depending on the needs of each

microservice. One microservice for example, one might use MySQL Server to store

product information, whereas the Product Pricing Microservice might store each product

prices in Redis, and the Recommendations Microservice might use an ElasticSearch

index to provide recommendations. The database technology chosen for a microservice is

part of the implementation and is hidden from the view of other microservices.

This approach allows each microservice to use whichever database is best suited for the

job, which can also lead to benefits in terms of development time, performance, and

scalability. But one consequence of a microservice owning its own data store is that you

can swap out one database for another later on.

88

4.2 Microservice Design Patterns

Several design patterns for microservices have emerged but three are becoming popular.

4.2.1 The Aggregator Pattern

The most simplistic pattern used with microservices is the aggregator pattern (). It is

already well known from the Enterprise Integration pattern catalog and has proven to be

useful outside Microservice Architecture. The primary goal of this pattern is to act as a

special filter that receives a stream of responses from service calls and identifies or

recognizes the responses that are correlated.

Once all the responses have been collected, the aggregator correlates them and publishes

a single response to the client for further processing. In its most basic form, aggregator is

a simple, single-page application (e.g., JavaScript, Angular 2) that invokes multiple

services to achieve the functionality required by a certain use case.

4.2.2 Proxy Pattern

The proxy pattern allows you to provide additional interfaces to services by creating a

wrapper service as the proxy(Fig. 22). The wrapper service can add additional

functionality to the service of interest without changing its code. The proxy may be a

simple pass-through proxy, in which case it just delegates the request to one of the

Client

Aggregator

Load

balancing

Service A

Cache Datastore

Service A

Cache Datastore

Service A

Cache Datastore

Figure 26: The Aggregator Design Pattern

89

proxied services. It is usually called a smart proxy when additional logic is happening

inside the proxy service. The applicable logic varies in complexity and can range from

simple logging to adding a transaction.

Figure 27:The Proxy Pattern

4.2.3 Pipeline Pattern

In more complex scenarios, a single request triggers a complete series of steps to be

executed. In this case, the number of services that have to be called for a single response

is larger than one. Using a pipeline of services allows the execution of different

operations on the incoming request (Fig. 23). A pipeline can be triggered synchronously

or asynchronously, although the processing steps are most likely synchronous and rely on

each other. But if the services are using synchronous requests, the client will have to wait

for the last step in the pipeline to be finished.

Client

Proxy

Load

balancer

Service A

Cache Datastore

Service A

Cache Datastore

Service A

Cache Datastore

90

4.3 Scalable Microservice Design

Many web application development frameworks have evolved to support concurrent

programming techniques. In this thesis we have chosen to use Sails due to its in build

capabilities to simplify web application development through auto-configuration and

other features as explained in the following section.

Client

Load

balancer

Service A

Service B Service C

Cache

Cache Cache

Datastore

Datastore Datastore

Figure 28: The Pipeline Pattern

91

4.4 Front-End Microservice Architecture

The user interface is currently a subject under very serious discussion and research with

many frameworks being development to improve on responsiveness, resiliency and

scalability of the frontend to web applications. In this section we look at various front end

tooling and frameworks that work together with many backends hence their suitability

for polygot programming. The web user interface is dominated by JavaScript that run

with browsers. However this trend is shifting to have Javacript run natively on mobile

phones without the need for browsers. Therefore JavaScript remains the common

denominator for any user interface for web applicatios.

4.4.1 JavaScript

Since 2005 after the Ajax revolution, Javacript is a language of choice for running web

applications in browsers (e.g. Gmail and Google Maps). JavaScript comes with its own

limitations and frameworks such Angular, Google Web ToolKit (GWT) have been

engineered with workarounds to circumvent this limitations. GWT for examples employs

Java to develop the rich user interface while Angular 2 uses Typescript. The code in

either Java or Typescript which are statically typed languages capable of catching must

errors at compile time is the transcompiled into JavaScript the lingua franca for many

Figure 29: Microservice Architecture implementation

92

browsers. TypeScript is a superset of JavaScript but like Java it allows you to define new

types. Declaring variables with types rather than the generic var opens the door to new

tooling support, which you will find to be a great productivity enhancer. TypeScript

comes with a static code analyzer, and as you enter code in your TypeScript-aware IDE

(Eclipse, WebStorm/IntelliJ Idea, Visual Studio Code, Sublime Text, etc.) you‘re guided

by context sensitive help suggesting the available methods in the object or types of the

function argument. If you accidentally use an incorrect type, the IDE will highlight the

erroneous code.

4.4.2 Node.JS

Node is predominantly a platform for JavaScript applications. All JavaScript based web

frameworks are build on Node. Such frameworks include Express, Sails, Angular 2 and

react.js just to mention a few. There are several JavaScript Libraries such jQuery,

Bootstrap, Knockout that requires Node to run.

Node is a platform build on build on Chrome‘s JavaScript runtime for easily building

scalable network application that can run on resource constrained devices. Node uses V8,

a virtual machine that powers chrome, for server-side programming. V8 has high

performance because it cuts out the middleware because it compiles straight into native

machine code instead of using JVM or an interpreter.

4.4.3 Angular 2

Angular 2 is a second generation of lightweight JavaScript based frameworks that can

support writing of large, maintainable and extensible web applications. Angular 2 is an

open source web application framework that offers unique tools for web application

developers due to a well supported code base, vibrant community, and rich ecosystem of

web components for extension.

Angular 2 has the following features that promises a more scalable architecture for web

applications and services.

Mobiles Fast- Inbuilt support for mobile features such as touch events and smartphone

memory constraints.

93

New standards support-Support for future browsers has been taken care off

Performance-JavaScript was not initially intended for writing sophisticated applications

and neither did browsers. Hence Angular 2 introduces workarounds to alleviate these

shortcomings.

Web components- Angular 2 introduces extensibility and Modularity via use of web

components

Dependency Injection-supports a popular re-usability mechanisms that are used in

Enterprise web application frameworks such as Spring and .NET.

Routing-Routing is a system, method or convention for getting your user to the right

place in your application based on the URL they request.

Angular 2 is written in Typescript, a super-Script of JavaScript that adds optional

sophisticated languages features to JavaScript. Use of Typescript instead of Pure old

JavaScript enhances Code Maintenance and makes detection of Bugs easier during

compile time.

Figure 30: Angular 2 Architecture

4.4.4 Angular 2 Architecture

94

In addition, Angular 2 includes several in build services:

Dependency Injection: This is a way to create and manage the services included in

Angular or which you write. One you have defined a service, the dependency injection

system is responsible for finding it when needed by a component and making it available

where and when you need it. Dependency Injection is a design pattern that inverts the

way of creating objects your code depends on. Instead of explicitly creating object

instances (such as with new) the framework will create and inject them into your code.

Router: This is responsible for associating URL paths with parts of your application. So,

when the user requests http://www.myapp.com/api/product/{id}, the application will

display the product page view whose id is 123 and when a user requests

http://www.myapp.com/offer/{id} the application will display the offers page relating to

a given product id.

Renderer: As a developer you don‘t often deal directly with the renderer but it is

responsible for rendering your component‘s view to the user while hooking up the code

defined in the component‘s controller class.

Keeping the rendering engine in a separate module allows third-party vendors to replace

the default DOM renderer with one that targets non browser-based platforms. For

example, this allows reusing the application code across devices, with the UI renderers

for mobile devices that use native components. This means that Angular 2 component

code is decoupled from the actual runtime environment, which gives you more flexibility

since the code isn't necessarily tied to a particular environment (browser, mobile, server,

web worker, etc). A custom Angular 2 2+ renderer is already implemented in the

NativeScript framework, which serves as a bridge between JavaScript and native iOS and

Android UI components. With NativeScript you can reuse the component‘s code by just

replacing the HTML in the template with XML. Another custom UI renderer allows to

use Angular 2 with React Native, which is an alternative way of creating native (not

hybrid) UI‘s for iOS and Android.

Change detection: This is responsible for watching your application for changes caused

by the user entering data, information arriving from a database request or when some

other event occurs. When it detects a change, it kicks of any needed updates or follow on

http://www.myapp.com/offer/%7bid%7d
http://angularjs.blogspot.com/2016/03/code-reuse-in-angular-2-native-mobile.html?view=classic
http://angularjs.blogspot.ru/2016/04/angular-2-react-native.html

95

actions. This is what allows you to type information into an Angular 2 form and have it

instantly update on another part of the page.

4.5 Backend Microservice Architecture

Most software houses, open source communities and research institutions are converging

on common software designs that are scalable. It is becoming clear that polygot

programming is being embraced. However new programming languages are emerging

particularly suitable for the clouding computing or cloud native. In this design we

identified two critical barriers to scalability as contention and crosstalk. Contention

degrades scalability because parts of the work can‘t be parallelized and queue up, so

speedup is limited. Crosstalk introduces a coherency penalty as workers (threads, CPUs,

Containers, Virtual Machines, Servers etc) communicate to share and synchronize

mutable state. To address these two issues using employ software abstraction techniques

based on containerization. This abstraction layer is added between you application layer

and operating system/Machine layer as illustrated in fig. This layer is called

Orchestration. Many web application development frameworks have evolved to support

concurrent programming techniques. In this following section we discuss some common

software patterns that are informing the evolution of Microservice Architecture.

4.5.1 Concurrency programming Models

4.5.1.1 Reactive Extensions

Reactive Extensions is a library that was developed by Microsoft to make it easy to work

with streams of events and data. In a way, a time-variant value is by itself a stream of

events; each value change is a type of event that we subscribe to and updates the values

that depend on it.

Rx makes it easy to work with the streams of events by abstracting them as observable

sequences, which are also the way Rx represents the time-variant values. Observable

means that you as a user can observe the values it carries, and sequence means an order

exists to what‘s carried. Rx was architected by Erik Meijer and Brian Beckman and drew

its inspiration from the functional programming style. In Rx a stream is represented by

96

observables that you can create from events, tasks, collections, or create by yourself

from another source.

Using Rx you can query the observables with LINQ operators and control the

concurrency with schedulers; that‘s why Rx is often defined as

Rx = Observables + LINQ + Schedulers.

Rx makes the events handling code simpler and expressive by using declarative

operations (in LINQ style) to create queries over a single sequence of events. Rx also

provides methods that are called combinators (combining operations) that allow joining

different sequences of events to handle patterns of event occurrence or correlation

between them. There are more than 600 operations (with overloads) in the Rx library—

each one encapsulates a recurring event processing code that otherwise you‘d have to

write yourself.

Observables

Observables are how the time-variant values (which we defined as observable sequences)

are implemented in Rx. They represent the ―push‖ model in which new data is pushed (or

notified) to the observers. In one sentence observables are defined as the source of the

events (or notifications) or, if you prefer, the publishers of a stream of data. And the push

model means that instead of having the observers fetch data from the source and always

checking if there‘s a new data that wasn‘t already taken (the ―pull‖ model), the data is

delivered to the observers when it‘s available.

4.5.1.2 AKKA

AKKA is a domain-neutral concurrency toolkit designed for the purposes of building

scalable, fault-tolerant applications on the JVM and .NET Common Language Runtime

(CLR). AKKA is written in Scala (Rob Williamson et al 2015) and is usable from both

JVM and has recently been ported to .NET Runtime. It's primary goal is to make the

achievement of performance, reliability, and scalability simpler. AKKA is based on the

Actor Model allowing software developers to just focus on how to most efficiently

implement solutions. Actors let the programmer just focus on getting the work done; the

97

system provides means outside the code for scaling it when the demand curve grows (or

shifts). Akka Toolkit can be integrated with Spring, .NET, Camel and ZeroMQ. Akka

provides more tools that we can use, including non-blocking IO, interaction with Akka

deployments on remote hosts, distributed transactions, finite-state-machines, fault

tolerance, performance tuning, and others.

Actor

An actor within the actor model encapsulates three key concepts namely storage,

processing and communication.

Communication: One of the key aspects of the actor model is the underlying means of

communication between actors. An actor has a mailbox with an associated address,

whenever it receives a message, this is added to the end of the queue. Actors are able to

communicate with absolutely any actor within the actor system or even in other actor

systems.

Behaviour

In order to handle any messages, actors have specific behaviour associated with them.

Actors are then scheduled to process messages in the queue at any time in the future. In

order to ensure the safety of any state within an actor, the messages are processed one by

one in first in, first-out order until the mailbox is empty.

Storage

Actors are also capable of storing some data within the confines of the actor boundary.

Any data within this actor is unable to be accessed by anything else outside of this actor.

This is one of the key components makes applications to scale out not only past thread

boundaries but also across network boundaries.

98

4.5.1.3 Futures

This refers to a computation that may or may not have yet finished. This means that you

can start a computation that‘s expected to take a while—because it‘s processor-intensive

or because it calls a web service—and not have it block the current computation.

Futures are composable while actors are not. Functional composition in particular, gives

us a level of expressiveness that brings a large amount of power and flexibility to our

daily coding. What if we could bring that level of expressiveness to our daily coding

while at the same time mixing in concurrency? Figure 34 below shows how actors can be

combined with futures.

4.5.1.4 Reactive Streams

Reactive programming is about non-blocking, event-driven applications that scale with a

small number of threads with back-pressure - a feedback mechanism that aims to ensure

producers do not overwhelm consumers.

4.6 Microservice Architecture Frontend and Backend Implementation

4.6.1 Frontend JavaScript Development Tools

Future Actor

“Request”

Message

“Response”
Message

Figure 31: Non-blocking interplay between actors and futures

http://www.reactivemanifesto.org/glossary#Back-Pressure

99

JavaScript is a de facto standard programming language for the internet and frontend web

applications.

Node.js is a platform built on Chrome‘s JavaScript engine. Node includes both a

framework and a runtime environment for running JavaScript code outside of the

browser.

npm is a package manager that allows you to download tools as well as JavaScript

libraries and frameworks. This package manager has a repository of thousands of items,

and we‘ll use it for installing pretty much everything.

Bower used to be a popular package manager for resolving application dependencies

(such as for Angular 2 and jQuery).

Grunt is a task runner. Lots of steps need to be performed between developing and

deploying the code, and all these steps must be automated. You may need to transpile the

code written in TypeScript into widely supported ES5 syntax, and the code, images, and

CSS files need to be minimized.

4.6.2 JavaScript Based frameworks and libraries.

The frontend of web application is now dominated by JavaScript based frameworks such

as angular, ReactJs and Ember.JS.

Angular is an open source framework for developing web applications. The framework

makes it simpler to create custom components that can be added to HTML documents

and to implement application logic. Angular uses data binding extensively, includes a

dependency injection module, supports modularization, and offers a routing mechanism.

Ember.js is an open source MVC-based framework for developing web applications. It

includes a routing mechanism and supports two-way data binding. This framework uses a

lot of code conventions, which increases the productivity of software developers.

Jasmine is an open source framework for testing JavaScript code. Jasmine doesn‘t

require a DOM object. It includes a set of functions that test whether certain parts of your

100

application behave as expected. Jasmine is often used with Karma, which is a test runner

that allows you to run tests in different browsers.

Polymer is a library created by Google for building custom components based on the

WebComponents standard. It comes with a set of nice-looking customizable UI

components that can be included in the HTML markup as tags. Polymer also includes

components for applications that need to work offline, as well as components that use

various Google APIs (such as calendar, maps, and others).

RxJS is a set of libraries for composing asynchronous and event-based programs using

observable collections. It allows applications to work with asynchronous data streams,

such as the server-side stream of stock price quotes or mouse move events. With RxJS,

the data streams are represented as observable sequences. This library can be used with or

without any other JavaScript framework.

Bootstrap is an open source library of UI components developed by Twitter. The

components are built using the responsive web design principles, which makes this

library extremely valuable if your web application needs to automatically adjust its layout

depending on the screen size of the user‘s device.

4.6.3 Microservice Development Using JHipter Framework

There are several microservices development frameworks. Popular software development

frameworks such as .NET and JAVA are redesigning their platforms to comply with

Microservice Architecture.

JHipster combines both spring boot, Yoeman and Angular 2 to make web application

developers more productive. Any microservice development and deployment framework

has to use the underlying orchestration layer such as Docker Swarm, Kubernetes and

Kontena.

101

Figure 32: Microservice Architecture implementation on the JVM using the JHipter

3.6 tooling

4.6.4 The Registry

The registry allows the microservices to be discovered by the gateway, which will handle

routing requests to the correct microservice.

Two options exist. Either we can clone the registry repository, or we can use the JHipster

Docker image. If we clone the repository, we only need to navigate to the directory and

run mvn. To use the docker image, we can use the following command:

Docker service create --name registry --publish 8761:8761/tcp jhipster/jhipster-

registry

https://hub.docker.com/r/jhipster/jhipster-registry/
https://hub.docker.com/r/jhipster/jhipster-registry/

102

4.6.5 The API Gateway

Ounce we have a running registry, we can create our gateway, which will handle routing

requests to the correct microservice. It will also be our entryway into the application.

Generating the gateway is simply done by running yo jhipster command, and choose

microservice gateway.

Starting the gateway only requires the running the mvn command after being generated.

If we access the registry again, we will see the following:

Figure 33: JHipster CLI for development of Microservices

4.6.6 Creating Microservices

Now we can finally create and use some microservices. We are asked some questions

about the options we want to include/exclude in the application, and it generates the

application. From here, we can create entities and begin to develop the business logic for

our microservice.

4.6.7 Running the Microservices Using Docker Compose

We simply answer a few questions, then set everything up with one simple command.

For our example, we just choose projects from our current working directory, which

103

include gateway, and other microservices in your application. You also have the option to

configure ELK to monitor your microservices and once you finish answering these

questions, we can simply and quickly start up our entire application. Before running

docker-compose up command, make sure the run mvn package docker: build

coammand in the root of each project you want to be involved in your docker-compose.

After running docker-compose up -d, all microservices in the application will be started.

The resulting docker container also includes the JHipster Console (assuming you chose to

monitor your application).

4.7 The Data Store Design

Monolithic Architecture is not scalable because there is a lot of friction amongst

developments and operations teams due to centralized databases

4.7.1 Data Consistency

The centralized RDBMS is not suitable design for a Microservice Architecture. Strong

consistency requires coordination, which is extremely expensive in a distributed system,

and puts an upper bound on scalability, throughput, low latency and availability.

The need for coordination—adding to the costs of contention and coherency, as defined

in the Universal Scalability Law—means that individual services can‘t make progress

individually but has to wait for consensus. When designing Microservices-based systems

we should therefore strive to minimize the service-to-service coordination of state, to

allow the Microservices to comfortably share state through well-defined API (Jonas

Bonér, 2016).

There are reasonable ways of coordinating data changes in a scalable and resilient

fashion, but it requires that your operations on the data are composable. Composability in

this context means that changes to data can be made available to other services without

stalling them and without waiting on coordination to take place.

4.7.2 Contention Free Access to Shared State

Apology-Oriented Programming

104

According to (Jonas Boner, 2016), the idea of Apology-Oriented Programming is built on

the premise that it is easier to ask for forgiveness than permission. If you can‘t

coordinate (and be sure about something), then take an educated guess, a bet that a

condition will hold, and if you were wrong, apologize and perform a compensating

action. This model works very well with an Event-Driven Architecture that leverages

asynchronous message-passing and Event Sourcing.

ACID 2.0

According to (Pat Helland, 2011), the term the acronym ACID 2.0 has a different

meaning from the traditional ACID (Atomic Consistent Isolated and Durable).

The ―A‖ in the acronym stands for Associative, which means that grouping of messages

does not matter—and allows for batching. The ―C‖ is for Commutative, which means that

ordering of messages does not matter. The ―I‖ stands for Idempotent, which means that

duplication of messages does not matter. The ―D‖ could stand for Distributed, but is

probably included just to make the ACID acronym work.

Casual Consistency

Relying on eventual consistency is sometimes not permissible, since it can force us to

give up too much of the high-level business semantics (Jonas Boner, 2006). If that is the

case then using causal consistency can be a good trade-off. Semantics based on causality

is what humans expect and find intuitive. Causal consistency can be made both scalable

and available and is even proven to be the best we can do in an always available system

(Prince Mahajan et al, 2011). Causal consistency is usually implemented using logical

time and is available in many NoSQL databases, Event Logging and Distributed Event

Streaming products (products allowing use of logical time to implement causal

consistency include Riak and Red Bull Eventuate).

Distributed Transactions

Historically, distributed transactions have been used to coordinate changes across a

distributed system. They provide the illusion that you are the only person using the

105

datastore. This is not true, and upholding this illusion is extremely costly, making

systems slow, unscalable, and brittle.

The Saga Pattern is a scalable and resilient alternative to distributed transactions . It is a

way to manage long running business transactions based on the discovery that long

running business transactions often comprise multiple transactional steps in which overall

consistency of the whole transaction can be achieved by grouping these steps into an

overall distributed transaction.

The technique is to pair every stage‘s transaction with a compensating reversing

transaction, so that the whole distributed transaction can be reversed (in reverse order) if

one of the stage‘s transactions fails.

A distributed storage system has multiple, sometimes competing, goals: availability, low

latency, and partition tolerance and scalability. Though strong consistency model

simplifies programming and provide users with the system behavior that they expect, it is

not well suited to distributed databases.

The first four of these properties are described as the ‗ALPS‘ properties: Availability,

Low-Latency, Partition-tolerance, and Scalability.

Availability: all operations complete successfully and no operation can block indefinitely

or return an error indicating that data is unavailable.

Low-latency: target response times on the order of a few milliseconds

Partition tolerance: the data store continues to operate under network partitions

Scalability: the data store scales out linearly

In this model popularly known as ALPS we sacrifice strong consistence for Causal

consistency. Causal consistency does not impose any order on concurrent operations.

106

Most database vendors are revising their database system design to adhere to these

principles of Apology Oriented Programming, ACID 2.0, Saga Pattern and Casual

Consistency.

Data replication

A replica may execute an operation without synchronising a priori with other replicas.

The operation is sent asynchronously to other replicas; every replica eventually applies

all updates, possibly in different orders. A background consensus algorithm such as Raft

reconciles any conflicting updates. This approach ensures that data remains available

despite network partitions.

One tool that embraces these ideas is CRDTs (Conflict-Free Replicated Data Types), as

they are eventually consistent, rich data-structures (including counters, sets, maps and

even graphs) that compose, and that converge without coordination. The ordering of the

updates does not matter, and can always be automatically merged safely. CRDTs are

fairly recent, but have been hardened in production for quite some years, and there are

production-grade libraries that you can leverage directly (for example in Akka and Riak).

CRDTs is one of the most interesting ideas coming out of distributed systems research in

recent years, giving us rich, eventually consistent, composable data-structures that are

guaranteed to converge consistently without the need for coordination.

4.7.3 Implementation of Distributed Data Stores

The NoSQL movement is based some good design principles that are being also

borrowed by the traditional SQL based databases. Currently most RDBMS vendors have

moved to claim that they are capable of offering didtributed databases through Database

as a Service (DBaaS). DBaaS is a big improvement over the traditional RDBMS however

they have several limitations. One of the limitations of the DBaaS is inability to scale and

unsuitable for Microservice Architecture.

4.7.3.1 Implementing Distributed Data Stores Using Containerization

107

4.7.3.1.1 Software Defined Storage

According to Wikipedia, Software-defined storage (SDS) is an evolving concept for

computer data storage software to manage policy-based provisioning and management of

data storage independent of the underlying hardware. Software-defined storage

definitions typically include a form of storage virtualization to separate the storage

hardware from the software that manages the storage infrastructure. The software

enabling a software-defined storage environment may also provide policy management

for feature options such as deduplication, replication, thin provisioning, snapshots and

backup.

To put it simply SDS is a class of storage solutions that can be used with commodity

storage media and compute hardware; where storage media and compute hardware have

no special intelligence embedded in them. All the intelligence of data management and

access is provided by a software layer. The solution may provide some or all the feature

of modern enterprise storage systems like scale up and out architecture, reliability and

fault tolerance, high availability, unified storage management and provisioning,

geographically distributed data center awareness and handling, disaster recovery, QoS,

 resource pooling, integration with existing storage infrastructure, etc. It may provide

some or all data access methods like file, block and object.

Containers were originally designed to be stateless – they do not natively support

requirements for databases, message queues, application state and instrumentation data.

Traditional storage architectures are complex and lack API functionality to support

DevOps. Storage doesn‘t scale with apps and performance is unpredictable. It‘s also very

difficult to move data securely between locations and/or cloud providers and

management and performance tool sets are lacking. Finally, the cost model is geared

towards fork lift CAPEX spikes and complex refresh cycles.

The rise of containers in enterprise has led to the creation of a new class of storage

optimized for containerized workloads. Existing storage technologies, such as network-

https://en.wikipedia.org/wiki/Computer_data_storage
https://en.wikipedia.org/wiki/Storage_virtualization
https://en.wikipedia.org/wiki/Thin_provisioning

108

attached storage (NAS) and storage area network (SAN), are not designed to run

containerized applications. A good storage solution should entail the following

characteristics

 Use of commodity x86 hardware

 Scale-out, shared-nothing, design

 Strong API-based management interface

4.7.3.1.2 SDS Solution Providers

Hedvig Distributed Storage Platform

 Software defined storage solution that virtualizes and aggregates flash and spinning disk

in a commodity-based server cluster or cloud, presenting it as a single, elastic storage

system that can be accessed as block, file, or object storage. Hedvig improves storage

flexibility and economics for container based environments. There are two main

components in the Hedvig architecture:

 Hedvig Storage Service – a distributed systems engine that scales storage

performance and capacity with x86 and ARM servers – including cloud instances.

 Hedvig Storage Proxy – a lightweight VM, container, or physical node that

delivers read/write access to the Hedvig Storage Service via industry- standard

protocols, performs local read caching, and enables client-side deduplication.

 Hedvig Docker Volume Plugin – takes advantage of the Docker Volume API to

integrate the Hedvig storage platform with Docker Datacenter and ensure

persistent, portable access to storage resources. Installs on each host that requires

access to Hedvig storage.

StorageOS

109

 StorageOS delivers persistent storage for containers, delivering scalable, deterministic,

low latency storage performance and simplifying provisioning and management of

containerized storage. All while enabling secure data mobility for containers to move

data between bare metal, virtual machines or cloud storage. StorageOS in the latest

entrant into the SDN space and boasts of the following capabilities

 Designed to allow 3rd party data services as well as customer databases, analytics

platforms and applications to run natively on the storage platform through use of

containers.

 Deployable as containers and runs on bare metal servers, virtual machines or

cloud instances in any combination.

 Storage services for any size customer from a small startup to a large enterprise.

 Monthly billing per Tetrabyte

4.7.3.2 Testing Software Defined Storage

We managed to test the principles of. SDN using two open source distributed databases.

The scalability of this solutions is made possible by the the underlying cluster

orchestration mechanism such as Docker Swarm, Kubernetes and Mesos.

4.7.3.2.1 Crate

Crate‘s architecture is based on the NoSQL architecture, but features Standard SQL.

Crate is extremely simple to install and use, with auto-sharding, auto-partitioning and

auto-replication. This enables realtime search & aggregations with the benefit of the

ability to horizontally scale any crate deployment. Crate makes cluster setup as easy as

possible, but there are things to note when building a new cluster.

Crate is designed in a shared nothing architecture, in which all nodes are equal and each

node is self-sufficient. This means that nodes work on their own, and all nodes in a

cluster are configured equally, the same as with a single-node instance. The crate

110

distributed Datastore architecture is based on Raft Consenus algorithm and its cluster

leader election resembles that of Docker Swarm.

To setup Swarm cluster and run crate distributed database on it, we first create the Swarm

cluster using the Bash script shown in figure 40. The script creates five nodes using the

docker machine and using Docker Swarm initializes the cluster by generating a token.

The token is a secret string that enables other nodes to join the cluster as manager nodes

or as worker nodes.

Figure 34: Docker Swarm cluster creation automation script.

To get a Crate cluster running on Swarm on the same Swarm cluster you can use docker

compose whose yaml file is as shown below. From the directory where your docker-

111

compose yaml file is located you can use the docker-copmpose bundle command to

create Distributed Application Bundle file (DAB) file.

This enables your application to be portable across various cloud environments without

changing anything.

crate:
image: crate
ports:

"4200:4200"
"4300:4300"
volumes:
/mnt/data/crate:/data
 environment:
 CRATE_HEAP_SIZE: 16g
 command: crate -Des.config=/path/to/crate.yml -Des.cluster.name=cluster
crate2:
 image: crate
 volumes:
 - /mnt/data/crate:/data
node:
 build: .
 ports:
 - "8000:8000"
 links:
 - crate

4.8 Test Results for Validation of Scalable Architecture

The validation of the scalability model layer were performed using results generated by

Jeff Nickoloff and available at https://github.com/allingeek/ecps-data . The raw data

shows the number of containers in a cluster and their start delay time. This data is used

obtain the number of container vs their throughput. Throughput is obtained by

multiplying the number of container by the inverse of the average start-up time of a

container. See appendix A for the CSV files. The test results were obtained as described

in section 3.6 and are as tabulated below.

112

Table 3: start delay vs Number of containers measurements

Figure 35: Validation of usability model using dataset1 (courtesy Nickoloff 2016)

No of containers

Mean delay time(ms)

10 262.78

20 178.140

30 190.40

40 164.70

50 289.30

60 416.64

70 446.34

113

Figure 36 : Validation of usability model using dataset2(courtesy Nickoloff 2016)

114

Figure 37: Determination of sigma and kamma coefficients for the scalability model

based using regression analysis.

Microservices
layer

Container
Orchestration
Layer

Cluster

Figure 38: Layering of a cluster to abstract scalability away from the microservices to the

orchestration layer

115

The Let‘s start by presuming (at least) two layers in each scalable application within a

cluster of machines. These layers differ in their perception of scaling. The lower layer of

the application understands the fact that more machines get added to make the system

scale. In addition to other work, it manages through container orchestration the mapping

of the upper layer of microservices to the physical machines and their locations. We are

presuming that the lower layer i.e container orchestration layer provides a scale agnostic

programming abstraction to the upper layer (microservices layer).

Using this scale-agnostic programming abstraction, the upper layer of Microservices is

written without worrying about scaling issues. By sticking to the scale agnostic

programming abstraction, we can write microservices logic without being worried about

the changes happening at the orchestration layer.

4.9 Performance evaluation

The universal scalability Law was used to develop a model for evaluating the scalability

of the Microservice Architecture. The start up time for a container was used as the

response time and the throughput is determined by multiplying the reciprocal of the start

up time x the no. of containers. The scalability was measured at the orchestration layer

and at the application layer. To be able to measure the scalability of the orchestration

layer we used data. The R software was used to validate the scalability based on the

Universal Scalability Law.

Table 4: Throughput vs Number of containers based container start delay time

No of
containers

Mean delay time(ms)

Throughput
= no of containers/delay

time

10 262.78 38.16794

20 178.140 112.3596

30 190.40 157.8947

40 164.70 243.9024

50 289.30 173.0104

60 416.64 144.2308

70 446.34 156.9507

116

The measured data for maximum throughput was used to construct graphs of maximum

throughput versus number of containers (functional scaling). Regression analysis

determines which of the scalability models best describes the data. Details of the analysis

are discussed in (Williams and Smith 2004). The analysis provides model parameters

which are then used to extrapolate the behavior to higher numbers of containers.

Regression analysis indicates that using Amdahl‘s Law provides the best fit to the

measured data. The functional scalability of this application is therefore described by

Equation 1 (Williams and Smith 2004).

..
)1(1

)1(
)(max

max

p

pX
pX

 Equation 6

Where

p is the number of containers

Xmax(1) is the maximum throughput with 1 container

Xmax(p) is the maximum throughput with p container

σ is the fraction of the workload that is performed sequentially.

The value of σ obtained from the regression analysis is 0.0000

 This means that the effect of contention on scalability is minimal

6...)1()(maxmax pXpX

Figure 39: Obtained Results –Variation of throughput vs the number of containers

117

The Amdahl‘s Law extrapolation indicates that the maximum throughput with 100

containers would give throughput of 100/10(38)=380 and the maximum throughput with

1000 containers would be 3800 requests. Thus, the required throughput of 2000 can be

achieved with 2000/380(100)= 526 containers.

The throughput decreases beyond 40 containers because the resources (RAM, DISK and

PROCESSOR SPEED) becomes a limiting factor.

4.10 Automated Testing

The Microservice Architecture and DevOps advocates for Continuous Integration and

Continuous

Delivery. The two processes requires automated Testing. In this thesis we implemented

an automated testing involving Unit Testing and Integration Testing. The tests were

carried out at the developers work station or laptop and at the Continuous Integration

Server.

There was one JUnit test and one integration test to test how the CustomerRepository

class saves the data to the in-memory data. As shown in the listing below, the test

involved inserting one record into the database.

118

package com.khakame.customerService;

import java.util.List;

import static org.junit.Assert.*;

public class CustomerRepositoryTest {

private CustomerRepository jdbcCustomerRepository;

@Before

public void setUp() {

jdbcCustomerRepository = new CustomerRepository();

}

@Test

public void insertToDoItem() {

Customer newCustomer = new Customer();

newCustomer.setNationalId("98765432");

newCustomer.setFirstName("Khakame");

newCustomer.setLastName("Peter");

newCustomer.setTelephoneNumber("254721876005");

newCustomer.setDateofBirth("29-3-1969");

newCustomer.setEmailAddress("khakamewamboko@gmail.com");

Long newId = jdbcCustomerRepository.insert(newCustomer);

assertNull(newId);

Customer persitedCustomer = jdbcCustomerRepository.findById(newId);

assertNotNull(persitedCustomer);

assertEquals(newCustomer, persitedCustomer);

}

}

Listing 1: The Test Class using JUnit

Methods marked with
this
annotation are always
executed before every
test method of class

Methods marked with
this annotation will
run as test case

Wrong assertion put
there on purpose to
provoke a failed test.

119

Figure 40: Test report integration tests conducted by the Continuous Integration server

120

CHAPTER FIVE : RESULTS ANALYSIS

5.1 Introduction

The aim of this thesis was developing a scalable Microservice Architecture for web

services using OS-level virtualization. The monolithic architecture is prevalent in many

organizations. The transition from monolithic architecture to microservices has been

made necessary by the need by companies to re-engineer their systems to meet the ever

changing business requirements and environment.

5.2 What Factors are Influencing the Adoption of Microservices

5.2.1 Virtualization

Virtualization is the new software order. Every business must enhance its IT in order to

compete. This model has worked well for Amazon Web Services. Companies that will

not transform themselves with the right IT systems will be driven out of business by the

competition from outside their industry. Music stores, books, movies etc are being served

from online stores. Netflix has succeeded by employing microservices based architecture

to offer online services.

Every business should be aware of the competition from within the industry and from

outside the industry. Cisco for example has been predominantly a hardware company

dealing with the manufacture of switches and Routers for networking. However

following recent trends , it is clear that software defined software defined networking,

software defined storage is going to disrupt many established businesses. Cisco on

sensing that its territory has been invaded from without decided to take the war to the

competitors ground by declaring that it has decided to become a software company. The

popular saying is that ―software is eating the world‖ is true. Vendors of RDBMS are also

facing disruption from new entrants who are introducing the new storage service called

software defined storage. Hedvig and StorageOS are new kits in that space and

established database vendors such Oracle have to wake up to the challenge. For this

reason mergers and acquisitions of the disrupting companies has become the norm.

121

Therefore as software becomes the differentiating factor amongst many service providers,

appropriate software architecture must be sought and embraced.

5.2.2 Containerization

Containerization as popularized by Docker is the just the beginning of the new era of

cloud computing. Containerization is a continuum that spans from Virtual machines to

Unikernels. The era of immutable infrastructure has just arrived. That means that one can

use the cloud without changing anything on the hardware side. Containers are running

processes that can only be replaced by other containers. Containers and microservices

are the opposite side of the same coin. Containerization enables developers or DevOps

teams to move software to the users much faster. Containerization is currently the best

way Microservices can be packaged, deployed, and released on infrastructure. This leads

to better infrastructure utilization, and simplifies the way a change is moved from a

developer‘s machine to the production environment.

5.2.3 Internet of Things

According Top 10 Strategic Technology Trends for 2016 (Gartner Research, 2015), The

age of Internet of Things or the Web of Things or the Web of Everything is around the

corner and is likely to impact on the way we develop software. JavaScript for example is

already enthroned as the language of choice for the internet. No single player can

dominate the IoT landscape. The most likely scenario will be thousands of web

applications with well defined API will rule the IoT. Hence the Web of Things will

embrace the Microservice Architecture. Gartner Research states that ―IT will

increasingly deliver services as cloud services in the mesh app and service architecture,

supported by software-defined application architectures, containers and microservices. IT

needs a DevOps mindset to bring together development and operations in support of

continuous development, and continuous integration and delivery‖.

122

5.3 Results Analysis

To what extend can containerization enhance design and implementation of Microservice

Architecture?

Neil Gunther‘s Universal Scalability Law (USL) provides a formal definition of

scalability, and a conceptual framework for understanding, evaluating, comparing, and

improving scalability. It does this by modeling the effects of linear speedup, contention

delay, and coherency delay due to crosstalk. It‘s been proven that blocking of any kind,

anywhere in the system will measurably impact scale due to:

• Contention- waiting for queues or shared resources.

• Coherency (Crosstalk)- the delay for data to become consistent.

In thesis we investigated our scalability against this law and used this model to improve

scalability of web services using OS-Level Virtualization. The no. of processors can be

interpreted to mean the number of containers. Scalability is handled at the orchestration

layer as shown in figure 14. The design of three cluster orchestration namely Docker

Swarm, Kubernetes and Mesos was examined in sections 2.12.1 , 2.12.2 and 2.12.3

respectively. Basically the orchestration layer has the role of minimizing contention and

crosstalk as the system is scaled up. According to the model that is based on USL the

expected behavior as the system is scaled up is shown below. However our results

showed that for well designed orchestration layer contention delay is completely

eliminated and coherency delay is minimal. The coefficient of contention delay sigma

was zero while the coefficient of coherency delay was found to be 0.0004475

123

Figure 41: Expected behavior of throughput vs no of containers. (courtesy

Gunther, 2007).

In section 2.12 we discussed the design of the orchestration layer for the three cluster

orchestration software. Docker Swarm 1.12.0 has simpler architecture based on the Raft

consensus algorithm to handle contention delay arising from the need to coordinate the

state of the containers that is constantly changing as the microservices are scaled up and

down. Looking keenly at the Docker Swarm architecture one will notice that it is based

on a Microservice Architecture. Inter-container communication is achieved using the

gRPC protocol that is built on the fast and high efficient HTTP/2 and protocol buffers

protocol.

Kubernetes is based on a very complex architecture which is an improvement of the

battle tested Borg and Omega. Both Borg and Omega have been in use by Google for

over several years to run Google data centres. It was noted that as Google moved from

Borg to Omega and to open source Kubernetes, the architecture was gradually changed

from monolithic to microservices.

5.3.1 Model Validation

Using scalability model and test results generated by Jeff Nickoloff we managed to

measure the performance of the Docker Swarm and Kubernetes architecture. Our finding

124

showed that both the two software are capable of scaling of a cluster to over 1000 nodes.

Within this range both systems scaled linearly as the number of container were increased

from 1 to 30000. Regression analysis done using the R software found out that the sigma

coefficient () and kamma () coefficient was found to be zero meaning that the effect

of contention for shared resources and coherency delay for data to become consistent was

non-existent.

5.3.2 Scalability Testing

We measured the mean container start up times as we increased number of containers

from 10 to 70. The throughput increased linearly with the number of containers up to 40

containers. Beyond 40 containers, the throughput decreases with the increase of number

of containers. This was attributed due to limited RAM, Hard Disk and processor

recourses on the 3 core 1.2 GHz 8GB Ram HP Laptop that was used to conduct the

measurements. From regression analysis did using the R software, the sigma coefficient

was found to be zero meaning effect contention shared resources was non-existent.

The kamma coefficient was found to be 0.0004475 as shown in figure 40. This means

that there is minimal crosstalk as the system tries to achieve consistency across its data

stores. From research findings it has been shown that strong consistency is not easy to

attain in a distributed system. However one can settle for eventual or casual consistency.

It was shown that casual consistency is more suitable to distributed data stores because

the state of the system converges with time.

5.4 Automated Software Testing

Software testing is a daunting task and attempts to automate it will go a long way in

improving software quality. While some organizations have invested a lot in automating

testing, many financial institutions still rely heavily on manual testing for important areas

like functional acceptance testing, integration testing, and security testing. A study

conducted by PWC in 2014 found that only 15% of testing activities have been

automated at major financial institutions. Because manual testing for large systems is so

expensive, many firms outsource or offshore testing to take advantage of lower-cost

125

skills, handing the code off to test teams in India or somewhere else in a ―follow the sun‖

approach to be tested overnight.

The path toward automated testing is straightforward, but it‘s not easy. It starts with the

basics of Continuous Integration: automating unit testing and basic functional testing, and

moving responsibility for regression testing onto developers. Using CI server we were

able to carry out automated Unit Testing and Integration testing for one of the classes in

the microservice.

Using Microservice Architecture, Containerization and DevOps makes Automated

Testing possible.

Dedicated teams can be assigned to automate the tests particularly using Model driven

Engineering.

Stateful containers where it is possible to migrate a microservice together with its

associated databases will be an enabling technology for Automated Testing because no

changes are necessary across the various testing platforms and environments.

126

CHAPTER SIX : CONCLUSIONS AND

RECOMMENDATIONS

6.1 Introduction

The introduction of Microservice Architecture has reinforced the resolve for agility in

software industry. Containerization is promising to transform the IT in more profound

way than full virtualization. The scalability and the associated cost reduction and energy

saving that can be achieved when the two technologies are applied concurrently is

enormous.

The most important resource in IT is Humanware. However it was discovered that for

large project teams working on monolithic software the man-month law works in reverse

as you increase the number of developers. This means that the performance of the team is

not proportional to the increased man-hours. Microservice Architecture enables scalable

development of software since small manageable cross-functional teams can handle each

Microservice.

Similarly a monolithic application will scale horizontally by consuming more virtual

machines or servers. Given that the monolith comprises of software components whose

functionality has varying demand from the users, it becomes wasteful to equally assign

more resources to all software components. The Microservice Architecture addresses this

problem by enabling scalability on a functional dimension. By splitting the application

into smaller units the manpower per unit can be resized accordingly to enhance

productivity. The number of technologies supported may be scaled accordingly as need

arises.

By employing distributed data stores in Microservice Architecture scalability is enhanced

through eliminating coherency delay that is prevalent in relational databases. The

developer has the flexibility to choose the right database technology.

127

6.2 What Factors are Influencing the Adoption of Microservice Architecture

Factors influencing adoption of Microservice Architecture include the virtualization,

containerization, and Internet of Things as discussed in section 5.2.

6.3 To what Extend Can Containerization Enhance Design and Implementation of

Microservice Architecture?

Containerization abstracts the complexity that is introduced by Microservice

Architecture. Most functions that arise due to splitting a monolith in to microservices

such load balancing, health checks etc are handled at the orchestration layer. Similarly

the functions such as service discovery, scheduling, inter-container communication are

hidden from the developer and handled at the orchestration layer. The Docker

Architecture is extensible through use of plugins. Volume plugins allow third-party

container data management solutions to provide data volumes for containers which

operate on data, such as databases, queues and key-value stores and other stateful

applications that use the file system. Network plugins allow third-party container

networking solutions to connect containers to container networks, making it easier for

containers to talk to each other even if they are running on different machines. Docker

Swarm is powerful cluster management tool that is capable of handling over 1000 host

and scheduling up to 30000 containers.

6.4 To What Extend Can Microservice Architecture Improve the Scalability of Web

Services?

Scalability of web applications can be achieved through vertical scaling, horizontal

scaling and functional scaling. By using Microservice Architecture it becomes possible to

split a web application into smaller units that can be packaged as containers for efficient

utilization of the hardware and software resources. With containerized microservices you

can achieve a high software density in a data centre than using a virtual machine. This

means that scaling up and down a given function in a web application is easier, faster and

less costly.

Scalability is multi-dimensional. Containerized Microservices makes functional

scalability possible. Using Docker Compose we managed to demonstrate how you can

128

scale up a service by specifying the number of containers using Command Line Interface.

By varying the number of container for a given microservice we were able to achieve the

desired scalability.

Microservice Architecture reduces friction amongst developer teams, operations team and

quality assurance teams. As you scale up by adding developers to monolithic system the

man-months increases. The coordination effort for a team of n members is proportional to

n(n-1). By splitting the monolith into microservices you are able to assign 3-5 people to

one microservice and this reduces friction though reduced coordination effort.

On the infrastructure side it has been found the only 15-30 % of the servers are used in

data centres while the rest of servers are on standby but consuming power. With

microservices you only scale those microservices that are receiving higher user requests.

One is able to back more containers per host machine and considerably reduce the OPEX

by eliminating the need for operating system per virtual machine. With proper mix of

containers and virtual machines you are can achieve high isolation and security making

multi-tenancy in data centres. With orchestration layer forming an abstraction layer the

complexity arising from microservices is hidden from the developer. Based on the results

analysis using the scalability model, Docker Swarm was found to scale linearly with the

increase in the number of containers up to thirty thousand containers placed over one

thousand host in AWS cloud. We repeated this test using our own data measured using a

cluster of five machines and it was found that throughput increased linearly with the

number of container. This means that the contention delay is eliminated and has no effect

on scalability. Coherency delay that is caused process waiting for data to be consistent is

minimal, This delay can be handled by using ACID 2.0 design principles.

6.5 To What Extend Can Microservices Testing be Automated?

Automated Testing is a prerequisite for Continuous Deployment and Continuous

Delivery. According to PWC report 15% of financial sector have embraced automated

testing. However it is important to note that automated testing for legacy monolithic

systems is not easy. Introduction of Microservice Architecture and DevOps will hasten

implementation of Automated Testing.

129

6.6 Recommendations for Future Work

Microservices is a promising architecture and Containerization abstracts the complexity

introduced by splitting an application into independent and composable functional units.

However given that microservices dictates that DevOps as the best development

methodology there is need to investigate and research on the strategies for organizations

to use to transition from monolithic to Microservice Architecture.

The introduction of containers in data centres to supplement Virtual machines should be

investigated further to device mechanisms of integrating all Orchestration technologies to

improve the isolation of processes running on a single host. This will enhance security in

data centres and hasten the adoption of containers in the cloud. There is need to develop

microservices development and deployment framework that is extensible and can use the

popular orchestration software as plugins.

Microservices development frameworks should be designed to exploit the functions that

are being offered at the orchestration layer. For example developers should be able to

create microservices endpoints by importing this information from the Docker Compose

files.

To simplify software development there is need to enhance the Docker Compose files to

be capable having enough information for creating microservices without need to use

other development tools. JHipster is JVM based development tool that can be enhanced

to exploit the Docker Compose information to simplify the generation of microservices

code.

The size of images also poses challenges because they consume a lot network capacity as

they are moved from registries to development and production environment. Further

research based on Unikernels, light-weight Virtual Machines and Serverless Computing

is required to enhance cloud security and reduce the size of images.

130

REFERENCES

Adrian Cockcroft, (2014), ―Migrating to Microservice‖. In: QCon London.

Agile Manifesto (Accessed on 3/07/2015) URL: http://www.agilemanifesto.org/

Alex Williams,(2016), ―The Docker and Container Ecosystem eBook Series‖, The New Stack.

Alex Williams, (2014), ―Flocker, A Nascent Docker Service For Making Containers Portable,

Data and All.

Bob Williamson et al,(2015) ―Akka in Action Manning‖.

Brendan et al.(2015), ― Borg, Omega, and Kubernetes, Lessons learned from three container-

management systems over a decade‖, Google Inc.

Cloudsoft , ―Container Networking plugin‖, (accessed 17/07/2015) URL:

http://www.projectcalico.org/learn

Cody Bumgardner, (2015), ― Openstack in action, Manning publications‖

Conway et al , (1968), ―How do Committees Invent?‖, Datamation 14 (5): 28–31.

D. Ongaro , J. Ousterhout, (2014), ― In Search of an Understandable Consensus Algorithm In

2014 USENIX Annual Technical Conference, pages 305-319, Philadelphia,PA.

Damon Edwards, ―What is DevOps?‖ (Accessed on 3/7/2015)

http://dev2ops.org/blog/2010/2/22/what-is-DevOps.html

Danilo Poccia, (2016), ―AWS Lambda in Action, Event-Driven Serverless Applications‖ First

Edition, Manning .

David Hilley et al.(2009), ―Cloud computing: A taxonomy of platform and infrastructure-level

offerings‖.

Edward A. Lee, (2006), ―The Problem with Threads‖ Technical Report No. UCB/EECS-2006-1

Edward ClusterHQ, ―Flocker Documentation‖ Accessed on (17/07/2015) URL:

http://www.agilemanifesto.org/
http://www.projectcalico.org/learn
http://www.melconway.com/research/committees.html
http://en.wikipedia.org/wiki/Datamation
http://dev2ops.org/blog/2010/2/22/what-is-devops.html

131

https://docs.clusterhq.com/en/1.0.3/introduction/index.html

Gartner Cool Vendor DevOps Report (Accessed 4/07/2015), URL:

https://www.gartner.com/doc/3034319/cool-vendors-DevOps/

Humble Jez, et al.(2010), ― Continuous Delivery: Reliable Software Releases through Build,

Test, and Deployment Automation‖, Addison-Wesley.

IBM (2015), ―Reducing Development Time, Risk and Cost through Microservice‖

IBM (2015) ―DevOps for Dummies‖, John Wiley & Sons

Iron.io (2015) White Paper

Ivan Dwyer, (2016), ―Serverless Computing: Developer empowerment reaches new heights‖

Iron.io

J. Lakshmi, (2010), ―System Virtualization in the Multi-core Era - a QoS Perspective‖, Phd

Thesis Supercomputer Education and Research Center Indian Institute of Science Banglore

–India .

Jeff Nickoloff, (2016) ― Docker in action‖, Manning.

Jeremy Cloud. (2013), ―Decomposing Twitter: Adventures in Service-Oriented Architecture‖.

In: QCon New York . URL: http://www.infoq.com/presentations/twitter-soa

Joab Jackson, (2016), ― Docker Swarm Wins Scaling Benchmark but Don‘t Take That as

Gospel‖ The New Stack March.

Jon Loeliger, (2009), ― Version Control with Git‖ , First Edition O‘Reilly Media.

Jonas Bonér, (2016), ―Reactive Microservice Architecture: Design Principles for Distributed

Systems‖ O‘Relly Media USA.

Jula, A., Sundararajan, E., & Othman, Z. (2014). Cloud computing service composition: A

systematic literature review. Expert Systems with Applications, 41(8), 3809–3824

Kavita Argarwal (2015). ―A Study of Virtualization Overheads‖, Thesis Master of science in

Computer Science, Stony Brook University.

https://docs.clusterhq.com/en/1.0.3/introduction/index.html
https://www.gartner.com/doc/3034319/cool-vendors-devops/
http://www.infoq.com/presentations/twitter-soa
http://thenewstack.io/author/joab/

132

L. Bass, P. Clements, and R. Kazman, (1998), ―Software Architecture in Practice” , Addison

Wesley, Reading, Mass.

L. G. Williams and C. U. Smith, (2004), ―Web Application Scalability: A Model-Based

Approach,‖ Proceedings of the Computer Measurement Group, Las Vegas.

L. Qian, Z. Luo, Y. Du, and L. Guo, (2009), ― Cloud computing: An overview. In Proceedings

of the 1st International Conference on Cloud Computing, CloudCom ‘09, pages 626–631,

Berlin, Heidelberg, Springer-Verlag.

Leonard Richardson, Sam Ruby, (2007), ―RESTful Web Services‖, O‘Relly.

M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski, G. Lee, D.A Patterson,

A. Rabkin, I. Stoica, and M. Zaharia. (2009), ―Above the clouds: A Berkeley view of

cloud computing‖, Technical Report UCB/EECS-2009-28, EECS Department,

Universityof California, Berkeley.

Mahmood, Z., Hill, R. (2011). Cloud Computing for Enterprise Architectures. Computer

Communications and Networks, Springer

Martin C. Roberts et (2016), ―Agile Principles, Patterns, and Practices in C#‖, First Edition

Prentice Hall .

Martin Fouler http://martinfowler.com/articles/Microservice.html accessed on 19-6-2015

Martin Fowler and James Lewis. Microservice (Accessed on 25/06/2015). 2014.

URL:http://martinfowler.com/articles/Microservice.html

Mathijs Jeroen Scheepers, (2014), ―Virtualization and Containerization of Application

Infrastructure: A comparison‖ University of Twende.

Neil J. Gunther, (2007), ―A Review of "Guerilla Capacity Planning: A Tactical Approach to

Planning for Highly Scalable Applications and Services, Performance Dynamics

Company.

P. Mell and T. Grance. (2011), ―The NIST definition of cloud computing‖, Technical report,

National Institute of Standard and Technology - NIST.

Pasa Maharjan (2016), ―Comparing and Measuring Network Event Dispatch Mechanisms in

Virtual Hosts‖ Mater of Science Thesis, Tampere University of Technology.

http://martinfowler.com/articles/microservices.html

133

Pat Helland Life beyond Distributed Transactions: an Apostate‘s Opinion

Prince Mahajan et al, (2011), ―Consistency, Availability, and Convergence‖, Department of

Computer Science, The University of Texas at Austin Technical Report.

PwC, (2014), ―An ounce of prevention: Why financial institutions need automated testing‖.

R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. (2011), ―Cloud computing and

emerging it platforms: Vision, hype, and reality for delivering computing as the 5th utility.

Future Generation Computer Systems‖.

R. Buyya, J. Broberg, and A.M. Goscinski. (2011), Cloud Computing Principles and Paradigms.

Wiley Publishing.

Rackspace, (2015), ―Building Your DevOps Engine: A Guide To Tearing Down Organizational

Silos to Create More Responsive Enterprise IT‖.

Rimal, B. P., Jukan, A., Katsaros, D., & Goeleven, Y. (2010). Architectural Requirements for

Cloud Computing Systems: An Enterprise Cloud Approach. Journal of Grid Computing,

9(1), 3–26.

Roy Thomas Fielding. (2000), ―Architectural styles and the design of network-based software

architectures”, PhD thesis, University of California, Irvine.

Scott Chacon and Ben Straub , (2010), ―Git Pro‖, First Edition Apress.

Tam Le Nhan. (2013), ―Model-Driven Software Engineering for Virtual Machine Images

Provisioning in Cloud Computing‖, Software Engineering. Universite Rennes.

Marko Luksu. (2016), Kubernetes in action Manning Publications

Verma, et al. (2015), ―Large-scale cluster management at Google with Borg. Europeatn

Conference on Computer Systems‖, Bordeaux, France.

Vladimír Jurenka (2015), ―Virtualization using Docker Platform‖, Master of science Thesis.

Weaveworks, ― Container Networking plugin‖ (accessed on 17-6-2015) URL:

https://github.com/weaveworks/weave

Wilde, Erik ; Pautasso, Cesare, (2011), ―REST: from research to practice‖, 2nd Ed., Springer

https://github.com/weaveworks/weave

134

New York.

Yang Yu, (2007), ―OS-Level Virtualization and its applications‖, PhD Thesis Stony Brook

University.

APPENDIX A1

 KUBERNETES ORCHESTRATOR :

Table 5: Measurements of throughput(tput) as the number of containers is increased from

one to 414

container Tput container tput container Tput container tput container tput

1 0.5 47 37.3 93 71.5 139 109.4 185 121.7

2 1 48 36.6 94 58 140 108.5 186 147.6

3 2.3 49 38.6 95 72 141 110.2 187 147.2

4 3.1 50 33.1 96 76.2 142 112.7 188 145.7

5 2.7 51 41.1 97 59.5 143 94.1 189 119.6

6 3.3 52 39.4 98 77.8 144 91.7 190 146.2

7 5.6 53 41.7 99 76.7 145 113.3 191 152.8

8 4 54 35.8 100 64.9 146 90.1 192 148.8

9 5.4 55 43.7 101 82.8 147 115.7 193 131.3

10 5.2 56 44.4 102 84.3 148 102.1 194 155.2

11 8.8 57 41 103 64.4 149 94.9 195 158.5

12 9.2 58 47.2 104 63.4 150 121 196 121.7

13 8.3 59 47.2 105 80.8 151 117.1 197 156.3

14 10.8 60 48 106 82.2 152 114.3 198 161

15 12 61 48.4 107 69.5 153 122.4 199 159.2

16 12.6 62 42.2 108 86.4 154 122.2 200 125.8

17 10.4 63 42 109 87.2 155 104.7 201 155.8

18 12.3 64 47.8 110 88.7 156 120.9 202 156.6

19 14.8 65 50 111 72.5 157 120.8 203 123.8

20 16.3 66 52.8 112 72.7 158 122.5 204 104.6

21 11.7 67 53.2 113 82.5 159 90.3 205 132.3

22 15.5 68 53.5 114 87.7 160 127 206 167.5

23 16.8 69 54.8 115 94.3 161 96.4 207 161.7

24 14.4 70 44.6 116 94.3 162 126.6 208 162.5

25 15.4 71 55 117 94.4 163 124.4 209 158.3

26 21 72 45.9 118 91.5 164 130.2 210 166.7

27 21.3 73 58.9 119 98.3 165 132 211 167.5

28 19.2 74 60.7 120 94.5 166 107.8 212 168.3

29 19 75 49 121 76.6 167 130.5 213 142

30 24.4 76 59.4 122 89.1 168 133.3 214 167.2

135

31 23.7 77 57.5 123 98.4 169 138.5 215 168

32 19.6 78 60.9 124 78.5 170 108.3 216 167.4

33 26 79 61.7 125 100.8 171 130.5 217 172.2

34 26.2 80 48.5 126 97.7 172 133.3 218 171.7

35 27.8 81 64.8 127 100.8 173 143 219 176.6

36 29 82 64.6 128 99.2 174 138.1 220 174.6

37 28.9 83 64.8 129 77.7 175 138.9 221 172.7

38 29.7 84 51.9 130 103.2 176 102.9 222 170.8

39 24.1 85 68 131 87.9 177 143.9 223 167.7

40 25.6 86 70.5 132 105.6 178 138 224 141.8

41 32 87 68 133 103.9 179 134.6 225 170.5

42 32.6 88 69.8 134 106.3 180 118.4 226 178

43 32.3 89 67.9 135 106.3 181 143.7 227 176

44 36.1 90 55.6 136 104.6 182 145.6 228 181

45 33.8 91 54.2 137 88.4 183 145.2 229 187.7

46 30.5 92 73 138 108.7 184 142.6 230 174.2

containers Tput containers tput containers tput containers tput

231 179.1 277 216.4 323 256.3 369 251

232 179.8 278 217.2 324 207.7 370 280.3

233 183.5 279 218 325 244.4 371 229

234 150 280 224 326 252.7 372 224.1

235 180.8 281 199.3 327 251.5 373 298.4

236 195 282 183.1 328 260.3 374 299.2

237 194.3 283 216 329 231.7 375 293

238 184.5 284 180.9 330 230.8 376 239.5

239 191.2 285 214.3 331 245.2 377 238.6

240 164.4 286 173.3 332 261.4 378 290.8

241 191.3 287 167.8 333 268.5 379 300.8

242 192.1 288 221.5 334 271.5 380 301.6

243 153.8 289 227.6 335 257.7 381 307.3

244 159.5 290 185.9 336 206.1 382 243.3

245 194.4 291 179.6 337 257.3 383 304

246 196.8 292 186 338 260 384 252.6

247 160.4 293 220.3 339 269 385 313

248 196.8 294 237.1 340 265.6 386 253.9

249 188.6 295 232.3 341 196 387 312.1

250 159.2 296 187.3 342 271.4 388 245.6

251 200.8 297 189.2 343 243.3 389 311.2

252 204.9 298 231 344 264.6 390 307.1

253 164.3 299 239.2 345 175.1 391 305.5

254 171.6 300 238.1 346 266.2 392 316.1

255 205.6 301 238.9 347 279.8 393 319.5

136

256 209.8 302 232.3 348 220.3 394 255.8

257 187.6 303 233.1 349 192.8 395 292.6

258 170.9 304 233.8 350 246.5 396 242.9

259 156 305 189.4 351 200.6 397 315.1

260 206.3 306 239.1 352 275 398 256.8

261 205.5 307 234.4 353 232.2 399 302.3

262 181.9 308 240.6 354 274.4 400 317.5

263 205.5 309 245.2 355 284 401 318.3

264 203.1 310 200 356 289.4 402 245.1

265 199.2 311 246.8 357 266.4 403 276

266 211.1 312 177.3 358 271.2 404 331.1

267 213.6 313 211.5 359 221.6 405 263

268 212.7 314 249.2 360 290.3 406 324.8

269 211.8 315 252 361 261.6 407 228.7

270 209.3 316 235.8 362 287.3 408 300

271 176 317 194.5 363 228.3 409 324.6

272 175.5 318 244.6 364 293.5 410 256.3

273 213.3 319 247.3 365 292 411 318.6

274 222.8 320 248.1 366 234.6 412 327

275 206.8 321 248.8 367 291.3 413 317.7

276 167.3 322 192.8 368 227.2 414 339.3

137

APPENDIX A2

SWARM ORCHESTRATOR:

Table 6: measurements of throughput(tput) as the number of containers is increased from

one to 500

Container Tput container tput container tput container tput container tput

1 1.7 51 81.0 101 162.9 151 260.3 201 340.7

2 2.8 52 88.1 102 150.0 152 257.6 202 315.6

3 4.9 53 88.3 103 166.1 153 186.6 203 338.3

4 6.6 54 70.1 104 115.6 154 265.5 204 313.8

5 8.6 55 91.7 105 178.0 155 258.3 205 347.5

6 10.0 56 98.2 106 186.0 156 255.7 206 355.2

7 11.5 57 95.0 107 178.3 157 296.2 207 323.4

8 13.3 58 71.6 108 177.0 158 263.3 208 352.5

9 15.3 59 98.3 109 181.7 159 274.1 209 342.6

10 16.9 60 100.0 110 117.0 160 266.7 210 344.3

11 18.3 61 100.0 111 188.1 161 268.3 211 376.8

12 20.7 62 92.5 112 189.8 162 265.6 212 353.3

13 19.7 63 105.0 113 179.4 163 281.0 213 355.0

14 19.7 64 108.5 114 183.9 164 215.8 214 339.7

15 23.8 65 110.2 115 194.9 165 305.6 215 370.7

16 27.6 66 111.9 116 193.3 166 276.7 216 366.1

17 27.0 67 121.8 117 191.8 167 253.0 217 361.7

18 26.5 68 107.9 118 178.8 168 284.7 218 275.9

19 28.8 69 119.0 119 205.2 169 281.7 219 353.2

20 31.7 70 107.7 120 166.7 170 293.1 220 333.3

21 30.0 71 126.8 121 189.1 171 275.8 221 368.3

22 34.9 72 120.0 122 203.3 172 307.1 222 376.3

23 38.3 73 109.0 123 195.2 173 279.0 223 371.7

24 42.1 74 125.4 124 210.2 174 271.9 224 386.2

25 29.1 75 127.1 125 211.9 175 286.9 225 368.9

26 40.6 76 135.7 126 217.2 176 247.9 226 269.0

27 43.5 77 106.9 127 219.0 177 310.5 227 366.1

28 44.4 78 121.9 128 216.9 178 287.1 228 386.4

29 47.5 79 136.2 129 230.4 179 293.4 229 394.8

30 46.2 80 135.6 130 228.1 180 305.1 230 396.6

31 50.8 81 124.6 131 222.0 181 296.7 231 339.7

32 53.3 82 134.4 132 231.6 182 313.8 232 386.7

33 47.8 83 140.7 133 211.1 183 315.5 233 394.9

34 52.3 84 133.3 134 223.3 184 311.9 234 403.4

35 56.5 85 149.1 135 225.0 185 220.2 235 385.2

138

36 57.1 86 138.7 136 238.6 186 295.2 236 421.4

37 60.7 87 150.0 137 214.1 187 316.9 237 388.5

38 64.4 88 151.7 138 184.0 188 324.1 238 403.4

39 63.9 89 103.5 139 231.7 189 245.5 239 419.3

40 65.6 90 155.2 140 241.4 190 322.0 240 369.2

41 66.1 91 146.8 141 243.1 191 303.2 241 422.8

42 67.7 92 161.4 142 189.3 192 304.8 242 410.2

43 69.4 93 157.6 143 234.4 193 306.3 243 379.7

44 66.7 94 164.9 144 244.1 194 298.5 244 406.7

45 75.0 95 163.8 145 241.7 195 319.7 245 422.4

46 74.2 96 160.0 146 208.6 196 225.3 246 396.8

47 79.7 97 142.6 147 245.0 197 317.7 247 380.0

48 77.4 98 158.1 148 246.7 198 319.4 248 381.5

49 81.7 99 159.7 149 248.3 199 343.1 249 401.6

50 83.3 100 163.9 150 254.2 200 322.6 250 431.0

Container tput container tput Container tput container tput container tput

251 353.5 301 493.4 351 351.0 401 691.4 451 739.3

252 420.0 302 495.1 352 586.7 402 659.0 452 753.3

253 395.3 303 459.1 353 560.3 403 639.7 453 781.0

254 445.6 304 498.4 354 590.0 404 684.7 454 769.5

255 432.2 305 516.9 355 572.6 405 698.3 455 745.9

256 441.4 306 478.1 356 593.3 406 654.8 456 786.2

257 421.3 307 487.3 357 585.2 407 667.2 457 774.6

258 403.1 308 504.9 358 459.0 408 668.9 458 704.6

259 424.6 309 515.0 359 552.3 409 705.2 459 778.0

260 426.2 310 373.5 360 631.6 410 621.2 460 807.0

261 372.9 311 501.6 361 547.0 411 685.0 461 731.7

262 429.5 312 537.9 362 593.4 412 675.4 462 810.5

263 445.8 313 513.1 363 625.9 413 688.3 463 771.7

264 440.0 314 541.4 364 596.7 414 667.7 464 800.0

265 331.3 315 500.0 365 629.3 415 669.4 465 762.3

266 429.0 316 554.4 366 677.8 416 682.0 466 763.9

267 452.5 317 511.3 367 601.6 417 719.0 467 791.5

268 454.2 318 521.3 368 584.1 418 708.5 468 793.2

269 420.3 319 483.3 369 615.0 419 735.1 469 744.4

270 442.6 320 551.7 370 493.3 420 736.8 470 839.3

271 423.4 321 501.6 371 639.7 421 690.2 471 692.6

272 438.7 322 536.7 372 600.0 422 727.6 472 828.1

273 390.0 323 504.7 373 643.1 423 640.9 473 775.4

274 434.9 324 540.0 374 613.1 424 743.9 474 640.5

275 443.5 325 550.8 375 614.8 425 494.2 475 848.2

139

276 467.8 326 509.4 376 637.3 426 734.5 476 806.8

277 469.5 327 554.2 377 661.4 427 700.0 477 851.8

278 421.2 328 537.7 378 630.0 428 658.5 478 810.2

279 465.0 329 557.6 379 611.3 429 516.9 479 870.9

280 474.6 330 578.9 380 678.6 430 728.8 480 716.4

281 468.3 331 542.6 381 443.0 431 684.1 481 829.3

282 414.7 332 553.3 382 647.5 432 533.3 482 831.0

283 479.7 333 564.4 383 683.9 433 687.3 483 832.8

284 465.6 334 575.9 384 650.8 434 711.5 484 864.3

285 282.2 335 587.7 385 621.0 435 713.1 485 881.8

286 476.7 336 579.3 386 448.8 436 714.8 486 771.4

287 503.5 337 561.7 387 678.9 437 633.3 487 854.4

288 480.0 338 520.0 388 636.1 438 782.1 488 774.6

289 473.8 339 565.0 389 637.7 439 731.7 489 873.2

290 475.4 340 576.3 390 520.0 440 628.6 490 859.6

291 485.0 341 568.3 391 630.6 441 723.0 491 846.6

292 503.4 342 570.0 392 642.6 442 669.7 492 878.6

293 496.6 343 612.5 393 644.3 443 703.2 493 896.4

294 466.7 344 563.9 394 571.0 444 727.9 494 823.3

295 427.5 345 547.6 395 693.0 445 635.7 495 853.4

296 501.7 346 607.0 396 628.6 446 743.3 496 870.2

297 503.4 347 578.3 397 661.7 447 745.0 497 887.5

298 458.5 348 589.8 398 663.3 448 711.1 498 844.1

299 482.3 349 471.6 399 712.5 449 736.1 499 875.4

300 483.9 350 583.3 400 645.2 450 775.9 500 877.2

140

APPENDIX C

 CONTAINER START DELAY MEASUREMENTS

Figure 42: Mean container start up measurements for 10 containers showing the 90
th

percentile and 99
th

 percentile

Figure 43: Mean container start up measurements for 20 containers

141

Figure 44: Mean container start up measurements for 30 containers

Figure 45: Mean container start up measurements for 40 containers

Figure 46: Mean container start up measurements for 50 containers

142

Figure 47: Mean container start up measurements for 60 container

Figure 48: Mean container start up measurements for 10 containers

