• Login
    • Login
    Advanced Search
    View Item 
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Health Sciences (FHS)
    • View Item
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Health Sciences (FHS)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Alkaliphilic Enzymes and Their Application in Novel Leather Processing Technology for Next-Generation Tanneries.

    Thumbnail
    Date
    2019-05-03
    Author
    Wanyonyi, WC
    Mulaa, FJ
    Type
    Article
    Language
    en
    Metadata
    Show full item record

    Abstract
    Leather manufacturing involves conversion of raw skin and hides into leather (stable material) through series of mechanical and chemical operations. The leather industry has attracted public outcry due to severe environmental degradation, pollution and health and safety risks. Currently the industry faces serious sustainability challenge due to extensive use of toxic chemicals and generation of hazardous waste. This chapter describes the polluting chemicals consumed in different stages of conventional leather processing and the nature of waste generated. In order to overcome the hazards caused by toxic chemicals in tanneries and protect the environment, enzymes have been identified as a realistic alternate for chemicals used in beam house operation and waste management. Alkaline active proteases of alkaliphiles offer advantages over the use of conventional chemical catalysts for numerous reasons, for example, they exhibit high catalytic activity and high degree of substrate specificity, can be produced in large amounts and are economically viable. This is because the enzymes of these alkaliphiles are capable of catalysing reactions at the extremes of pH, temperature and salinity of leather-manufacturing processes.The chapter describes how alkaliphilic enzyme can effectively be used in soaking, dehairing, bating and degreasing operations to prevent waste generation, help in recovery of valuable by-products, reduce cost and increase leather quality. It is worth noting that protease has the capability to replace sodium sulphide in the dehairing process. In addition, alkaline proteases have shown remarkable ability in bioremediation of waste generated during the industrial processes. Intensive efforts are being directed towards chemical-based industries to use viable clean technology in their operation to reduce their negative impact on the environment. Similarly, leather industry should adopt the use of eco-friendly reagents such as enzymes to achieve long-term sustainability and clean environment and avert health hazards. Application of enzyme technology in clean leather processing strongly depends on legislation, political will and allocation of financial resources in research, development and implementation of this potentially powerful technology. Graphical Abstract.
    URI
    https://www.ncbi.nlm.nih.gov/pubmed/31049627
    http://erepository.uonbi.ac.ke/handle/11295/106489
    Citation
    Adv Biochem Eng Biotechnol. 2019 May 3
    Publisher
    Springer
    Subject
    Alkaline active protease
    Biodegradation and sustainability
    Clean environment
    Leather manufacturing
    Pollution
    Collections
    • Faculty of Health Sciences (FHS) [10415]

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback

     

     

    Useful Links
    UON HomeLibrary HomeKLISC

    Browse

    All of UoN Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback