Show simple item record

dc.contributor.authorNjagi, L.
dc.contributor.authorNzimbi, B.M.
dc.contributor.authorMoindi, S.K.
dc.date.accessioned2019-10-07T06:33:37Z
dc.date.available2019-10-07T06:33:37Z
dc.date.issued2018
dc.identifier.urihttps://profiles.uonbi.ac.ke/nzimbi/publications/finite-dimensional-hilbert-space-frames-dual-and-normalized-frames-and-pseudo-in
dc.identifier.urihttp://erepository.uonbi.ac.ke/handle/11295/107276
dc.description.abstractIn this research paper we do an introduction to Hilbert space frames. We also discuss various frames in the Hilbert space. A frame is a generalization of a basis. It is useful, for example, in signal processing. It also allows us to expand Hilbert space vectors in terms of a set of other vectors that satisfy a certain condition. This condition guarantees that any vector in the Hilbert space can be reconstructed in a numerically stable way from its frame coefficients. Our focus will be on frames in finite dimensional spaces.en_US
dc.language.isoenen_US
dc.publisherUniversity of Nairobien_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectHilbert space, frame, Dual frame, Psuedo-inverse, Normalized frames.en_US
dc.titleOn Finite Dimensional Hilbert Space Frames, Dual And Normalized Frames And Pseudo-inverse Of The Frame Operatoren_US
dc.typeArticleen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States