• Login
    • Login
    Advanced Search
    View Item 
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Engineering, Built Environment & Design (FEng / FBD)
    • View Item
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Engineering, Built Environment & Design (FEng / FBD)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Particle Swarm Optimized Hybrid Kernel-Based Multiclass Support Vector Machine for Microarray Cancer Data Analysis.

    Thumbnail
    View/Open
    Full-text (1.324Mb)
    Date
    2019-08
    Author
    Segera, Davies
    Mbuthia, M
    Nyete, A
    Type
    Article
    Language
    en_US
    Metadata
    Show full item record

    Abstract
    Determining an optimal decision model is an important but difficult combinatorial task in imbalanced microarray-based cancer classification. Though the multiclass support vector machine (MCSVM) has already made an important contribution in this field, its performance solely depends on three aspects: the penalty factor C, the type of kernel, and its parameters. To improve the performance of this classifier in microarray-based cancer analysis, this paper proposes PSO-PCA-LGP-MCSVM model that is based on particle swarm optimization (PSO), principal component analysis (PCA), and multiclass support vector machine (MCSVM). The MCSVM is based on a hybrid kernel, i.e., linear-Gaussian-polynomial (LGP) that combines the advantages of three standard kernels (linear, Gaussian, and polynomial) in a novel manner, where the linear kernel is linearly combined with the Gaussian kernel embedding the polynomial kernel. Further, this paper proves and makes sure that the LGP kernel confirms the features of a valid kernel. In order to reveal the effectiveness of our model, several experiments were conducted and the obtained results compared between our model and other three single kernel-based models, namely, PSO-PCA-L-MCSVM (utilizing a linear kernel), PSO-PCA-G-MCSVM (utilizing a Gaussian kernel), and PSO-PCA-P-MCSVM (utilizing a polynomial kernel). In comparison, two dual and two multiclass imbalanced standard microarray datasets were used. Experimental results in terms of three extended assessment metrics (F-score, G-mean, and Accuracy) reveal the superior global feature extraction, prediction, and learning abilities of this model against three single kernel-based models.
    URI
    https://www.hindawi.com/journals/bmri/2019/4085725/
    http://erepository.uonbi.ac.ke/handle/11295/109226
    Citation
    Segera, D., Mbuthia, M., & Nyete, A. (2019). Particle Swarm Optimized Hybrid Kernel-Based Multiclass Support Vector Machine for Microarray Cancer Data Analysis. BioMed Research International, 2019.
    Publisher
    Hindawi
    Collections
    • Faculty of Engineering, Built Environment & Design (FEng / FBD) [1465]

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback

     

     

    Useful Links
    UON HomeLibrary HomeKLISC

    Browse

    All of UoN Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback