• Login
    • Login
    Advanced Search
    View Item 
    •   UoN Digital Repository Home
    • Conference/ Workshop/ Seminar/ Proceedings
    • Faculty of Science & Technology (FST)
    • View Item
    •   UoN Digital Repository Home
    • Conference/ Workshop/ Seminar/ Proceedings
    • Faculty of Science & Technology (FST)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Characterization of sliding spark plasma source for direct trace spectronalysis

    Thumbnail
    Date
    2013
    Author
    Angeyo, HK
    Golloch, A
    Type
    Article
    Language
    en
    Metadata
    Show full item record

    Abstract
    The sliding spark plasma – which is produced via ablation of a dielectric material enforced between a pair of electrodes by a pulsed high-voltage discharge propagating along the dielectric surface – has immense potential as a simple but novel spectroscopic source for direct in situ quantitative analysis of non-conducting samples, a ubiquitous theme in material characterization. The plasma-excited optical spectrum spans a broad spectral range Vacuum Ultra Violet-Near Infra Red (VUV-NIR) and carries the atomic and molecular signatures of the base matrix chemical composition. Since the analytical figures of merit for quantitative spectroanalysis are a function of the spark source and dielectric matrix ablation characteristics, we systematically studied the sliding spark plasma source, utilizing a charge-coupled device spectrometer with blazed holographic grating in order to find the combination of parameters that can tailor the source for trace spectroanalysis of dielectrics in air and atmospheric pressure. It was observed that in the UV–vis spectral range a unique set of sample matrix conditions, besides spark source parameters, exists for enhanced trace analyte spectral emission with low signal-to-noise ratios and where trace spectrochemical analysis of dielectrics depends multivariately on spark scan frequency, electrode geometry, plasma discharge current, spark source inductance, initial rate of applied voltage, mode of sample ablation, and specific capacitance of the dielectric surface.
    URI
    http://www.tandfonline.com/doi/abs/10.1080/10420150.2012.743551#.Ub8oKUbfodW
    http://hdl.handle.net/11295/35156
    Citation
    H. K. Angeyo & A. Golloch (2013): Characterization of sliding spark plasma source for direct trace spectronalysis, Radiation Effects and Defects in Solids: Incorporating Plasma Science and Plasma Technology, 168:3, 176-187
    Publisher
    Department of Physics, College of Biological and Physical sciences, University of Nairobi
    Collections
    • Faculty of Science & Technology (FST) [853]

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback

     

     

    Useful Links
    UON HomeLibrary HomeKLISC

    Browse

    All of UoN Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback