• Login
    • Login
    Advanced Search
    View Item 
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Science & Technology (FST)
    • View Item
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Science & Technology (FST)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evaluation of Selected Nonlinear Regression Models in Quantifying Seedling Emergence Rate of Spring Wheat

    Thumbnail
    Date
    1996
    Author
    Gan, Yantai
    Stobbe, Elmer H
    Njue, Catherine
    Type
    Article
    Language
    en
    Metadata
    Show full item record

    Abstract
    Fast and uniform seedling emergence increases yield potential of spring wheat (Triticum aestivum L.) in short-season areas. An accurate method of quantifying rate of seedling emergence is needed. In this study, we compared the relative effectiveness of the Gompertz, Logistic, and Weibull models in quantifying emergence rate of spring wheat. ‘Roblin’ wheat was grown in a growth room under five soil water potential: − 0.002, − 0.165, − 0.41, − 1.00, and − 1.45 MPa. Daily-recorded emergence data were fitted to each of the models. The analyses of stability and accuracy functions, residual sum of squares, and variance showed that the Weibull model was not appropriate in quantifying rate of emergence.The Gompertaz and Logistic models functioned in a similar way with great stability and accuracy in most cases. The Gompertz predictions most closely fitted the observed set of responses with residual points scattered around zero. For lognormally distributed emergence patterns common under field conditions, the Gompertz model provided the most appropriate characterization of emergence.
    URI
    https://www.crops.org/publications/cs/abstracts/36/1/CS0360010165
    http://erepository.uonbi.ac.ke:8080/xmlui/handle/123456789/35307
    Citation
    Vol. 36 No. 1, p. 165-168
    Publisher
    College of Physical and Biological Sciences
    Collections
    • Faculty of Science & Technology (FST) [4284]

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback

     

     

    Useful Links
    UON HomeLibrary HomeKLISC

    Browse

    All of UoN Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback