• Login
    • Login
    Advanced Search
    View Item 
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Science & Technology (FST)
    • View Item
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Science & Technology (FST)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Soil condition classification using infrared spectroscopy: A proposition for assessment of soil condition along a tropical forest-cropland chronosequence

    Thumbnail
    Date
    2008
    Author
    Awitia, AO
    Walsha, MG
    Shepherd, KD
    Kinyamario, J
    Type
    Article
    Language
    en
    Metadata
    Show full item record

    Abstract
    Soil fertility depletion in smallholder agricultural systems in sub-Saharan Africa presents a formidable challenge both for food production and environmental sustainability. A critical constraint to managing soils in sub-Saharan Africa is poor targeting of soil management interventions. This is partly due to lack of diagnostic tools for screening soil condition that would lead to a robust and repeatable spatially explicit case definition of poor soil condition. The objectives of this study were to: (i) evaluate the ability of near infrared spectroscopy to detect changes in soil properties across a forest-cropland chronosequence; and (ii) develop a heuristic scheme for the application of infrared spectroscopy as a toabstraol for case definition and diagnostic screening of soil condition for agricultural and environmental management. Soil reflectance was measured for 582 topsoil samples collected from forest-cropland chronosequence age classes namely; forest, recently converted, RC (17 years) and historically converted, HC (ca.70 years). 130 randomly selected samples were used to calibrate soil properties to soil reflectance using partial least-squares regression (PLSR). 64 randomly selected samples were withheld for validation. A proportional odds logistic model was applied to chronosequence age classes and 10 principal components of spectral reflectance to determine three soil condition classes namely; “good”, “average” and “poor” for 194 samples. Discriminant analysis was applied to classify the remaining 388 “unknown” samples into soil condition classes using the 194 samples as a training set. Validation r2 values were: total C, 0.91; total N, 0.90; effective cation exchange capacity (ECEC), 0.90; exchangeable Ca, 0.85; clay content, 0.77; silt content, 0.77 exchangeable Mg, 0.76; soil pH, 0.72; and K, 0.64. A spectral based definition of “good”, “average” and “poor” soil condition classes provided a basis for an explicitly quantitative case definition of poor or degraded soils. Estimates of probabilities of membership of a sample in a spectral soil condition class presents an approach for probabilistic risk-based assessments of soil condition over large spatial scales. The study concludes that reflectance spectroscopy is rapid and offers the possibility for major efficiency and cost saving, permitting spectral case definition to define poor or degraded soils, leading to better targeting of management interventions.
    URI
    Geoderma Volume 143, Issues 1–2, 15 January 2008, Pages 73–84
    http://erepository.uonbi.ac.ke:8080/xmlui/handle/123456789/35878
    Citation
    Geoderma Volume 143, Issues 1–2, 15 January 2008, Pages 73–84
    Publisher
    Elsevier
     
    School of Biological Sciences, University of Nairobi
     
    Subject
    Infrared spectroscopy
    Tropical rainforest
    Chronosequence
    Soil condition class
    Case definition
    Probabilistic risk-based assessment
    Collections
    • Faculty of Science & Technology (FST) [4284]

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback

     

     

    Useful Links
    UON HomeLibrary HomeKLISC

    Browse

    All of UoN Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback