• Login
    • Login
    Advanced Search
    View Item 
    •   UoN Digital Repository Home
    • Conference/ Workshop/ Seminar/ Proceedings
    • Faculty of Engineering, Built Environment & Design (FEng / FBD)
    • View Item
    •   UoN Digital Repository Home
    • Conference/ Workshop/ Seminar/ Proceedings
    • Faculty of Engineering, Built Environment & Design (FEng / FBD)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimization of rainwater catchment systems design parameters in the arid and semiarid lands of Kenya

    Thumbnail
    View/Open
    Stephen_Ngigi.pdf (74.91Kb)
    Date
    1999
    Author
    Ngigi, Stephen N
    Type
    Presentation
    Language
    en
    Metadata
    Show full item record

    Abstract
    It is evident from experiences in Kenya that rainwater could be the long awaited answer to water scarcity in the next millennium. However, some technical and policy hindrances need to be addressed. Lack of appropriate technical designs, among other factors, has led to low adoption of rainwater harvesting technology, especially in Arid and Semiarid Lands (ASAL), where rainwater is one of the most viable water supply. This calls for optimisation of Rain Water Catchment Systems (RWCS) design parameters and formulation of comprehensive water policy. Therefore, to address this problem, the paper focus on the hydrological criteria for determining RWCS design parameters, especially storage capacity and catchment area, using historical rainfall records of Kibwezi rainfall station. Specifically, a design procedure for determining optimal design parameters and developing design curves is outlined. The mass curve analysis was adopted for the determination and optimisation of the design parameters due to outlined inadequacies of most empirical formulae. The strength of the design procedure is the determination of optimal design parameters at various reliability levels of rainfall amount and distribution. The analysis of design parameters revealed that the catchment area and the storage capacity are affected by variations in rainfall amount and distribution respectively. In addition, the paper proposes a procedure for incorporating rainfall distribution, which has been consistently ignored in the designs of RWCS. The proposed procedure involves adjustment of monthly rainfall by using rainfall distribution indices such that the monthly rainfall totals correspond to annual rainfall at a given rainfall reliability level. The adjusted monthly rainfall is subjected to mass curve analysis to determine the design parameters at various reliability levels. The selection of optimal design parameters is simplified by the development of design tables and curves from which the catchment area and storage capacity for a specific water demand can be easily obtained at various reliability levels. The paper concludes by proposing some recommendations to promote utilisation of rainwater, and adoption of RWCS technology in Kenya. Therefore, the developed procedure could enormously contribute to the adoption and implementation of optimal RWCS designs, and hence supplement government efforts towards meeting ever increasing water demand. The procedure could also be used to evaluate the reliability of existing RWCS.
    URI
    http://hdl.handle.net/11295/38081
    Citation
    Stephen N. Ngigi (1999). Optimization of rainwater catchment systems design parameters in the arid and semiarid lands of Kenya. Proceedings of the 9th International Rainwater
    Publisher
    Department of Agricultural Engineering University of Nairobi
    Collections
    • Faculty of Engineering, Built Environment & Design (FEng / FBD) [839]

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback

     

     

    Useful Links
    UON HomeLibrary HomeKLISC

    Browse

    All of UoN Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback