• Login
    • Login
    Advanced Search
    View Item 
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Science & Technology (FST)
    • View Item
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Science & Technology (FST)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Euler’s differential equation and the identification of the magnetic point‐pole and point‐dipole sources

    Thumbnail
    Date
    1994
    Author
    Barongo, JO
    Type
    Article
    Language
    en
    Metadata
    Show full item record

    Abstract
    The concept of point‐pole and point‐dipole in interpretation of magnetic data is often employed in the analysis of magnetic anomalies (or their derivatives) caused by geologic bodies whose geometric shapes approach those of (1) narrow prisms of infinite depth extent aligned, more or less, in the direction of the inducing earth’s magnetic field, and (2) spheres, respectively. The two geologic bodies are assumed to be magnetically polarized in the direction of the Earth’s total magnetic field vector (Figure 1). One problem that perhaps is not realized when interpretations are carried out on such anomalies, especially in regions of high magnetic latitudes (45–90 degrees), is that of being unable to differentiate an anomaly due to a point‐pole from that due to a point‐dipole source. The two anomalies look more or less alike at those latitudes (Figure 2). Hood (1971) presented a graphical procedure of determining depth to the top/center of the point pole/dipole in which he assumed prior knowledge of the anomaly type. While it is essential and mandatory to make an assumption such as this, it is very important to go a step further and carry out a test on the anomaly to check whether the assumption made is correct. The procedure to do this is the main subject of this note. I start off by first using some method that does not involve Euler’s differential equation to determine depth to the top/center of the suspected causative body. Then I employ the determined depth to identify the causative body from the graphical diagram of Hood (1971, Figure 26)
    URI
    brary.seg.org/doi/abs/10.1190/1.1441780
    http://erepository.uonbi.ac.ke:8080/xmlui/handle/123456789/39468
    Citation
    GEOPHYSICS, 49(9), 1549–1553. 1994
    Publisher
    University of Nairobi, Department of Geology,
    Collections
    • Faculty of Science & Technology (FST) [4284]

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback

     

     

    Useful Links
    UON HomeLibrary HomeKLISC

    Browse

    All of UoN Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback