• Login
    • Login
    Advanced Search
    View Item 
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Science & Technology (FST)
    • View Item
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Science & Technology (FST)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Photovoltaic Cells Based on Sequentially Adsorbed Multilayers of Conjugated Poly(p-phenylene ethynylene)s and a Water-Soluble Fullerene Derivative†

    Thumbnail
    Date
    2005
    Author
    Mwaura, JM
    Pinto, MR
    Witker, D
    Ananthakrishnan, N
    Schanze, KS
    Reynolds, JR
    Type
    Article
    Language
    en
    Metadata
    Show full item record

    Abstract
    We describe the layer-by-layer (LBL) fabrication of multilayer films and photovoltaic cells using poly(phenylene ethynylene)-based anionic conjugated polyelectrolytes as electron donors and water-soluble cationic fullerene C60 derivatives as acceptors. LBL film deposition was found to be linearly related to the number of bilayers as monitored by UV−vis absorption. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) of the multilayer films revealed an aggregated but relatively uniform morphology devoid of any long-range phase separation. The maximum incident monochromatic photon to current conversion efficiency (IPCE) of the photovoltaic cells was 5.5%, the highest efficiency reported to date for cells fabricated by using the LBL fabrication technique, and since the thin film cells do not provide complete absorption of the incident light, the current generation per photon absorbed may be as much as 10%. The cells exhibited open circuit voltages of 200−250 mV with highest measured short circuit currents up to 0.5 mA/cm2 and fill factors around 30%. The power conversion efficiencies measured at AM 1.5 solar conditions (100 mW/cm2) varied between 0.01 and 0.04%, and similar to the IPCE results, the efficiency is a function of the thickness of the PV active layer.
    URI
    http://pubs.acs.org/doi/abs/10.1021/la050599m
    http://erepository.uonbi.ac.ke:8080/xmlui/handle/123456789/40426
    Citation
    Langmuir, 2005, 21 (22), pp 10119–10126
    Publisher
    Department of Chemistry, University of Nairobi
    Collections
    • Faculty of Science & Technology (FST) [4284]

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback

     

     

    Useful Links
    UON HomeLibrary HomeKLISC

    Browse

    All of UoN Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback