• Login
    • Login
    Advanced Search
    View Item 
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Science & Technology (FST)
    • View Item
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Science & Technology (FST)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Artificial neural networks models for predicting effective drought index: Factoring effects of rainfall variability

    Thumbnail
    Date
    2013
    Author
    Masinde, Muthoni
    Type
    Article
    Language
    en
    Metadata
    Show full item record

    Abstract
    Though most factors that trigger droughts cannot be prevented, accurate, relevant and timely forecasts can be used to mitigate their impacts. Drought forecasts must define the droughts severity, onset, cessation, duration and spatial distribution. Given the high probability of droughts occurrence in Kenya, her heavy reliance on rain-fed agriculture and lack of effective drought mitigation strategies, the country is highly vulnerable to impacts of droughts. Current drought forecasting approaches used in Kenya are not able to provide short and long term forecasts and they fall short of providing the severity of the drought. In this paper, a combination of Artificial Neural Networks and Effective Drought Index is presented as a potential candidate for addressing these drawbacks. This is demonstrated using forecasting models that were built using weather data for thirty years for four weather stations (representing 3 agro-ecological zones) in Kenya. Experiments varying various input/output combinations were carried out and drought forecasting network models were implemented in Matrix Laboratory’s (MATLAB) Neural Network Toolbox. The models incorporate forecasted rainfall values in order to mitigate for unexpected extreme climate variations. With accuracies as high as 98 %, the solution is a great enhancement to the solutions currently in use in Kenya.
    URI
    http://link.springer.com/article/10.1007/s11027-013-9464-0
    http://erepository.uonbi.ac.ke:8080/xmlui/handle/123456789/40564
    Citation
    Muthoni Masinde (2013). Artificial neural networks models for predicting effective drought index: Factoring effects of rainfall variability. Mitigation and Adaptation Strategies for Global Change May 2013
    Collections
    • Faculty of Science & Technology (FST) [4284]

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback

     

     

    Useful Links
    UON HomeLibrary HomeKLISC

    Browse

    All of UoN Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback