• Login
    • Login
    Advanced Search
    View Item 
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Science & Technology (FST)
    • View Item
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Science & Technology (FST)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Spectroelectrochemical Dynamics of Dendritic Poly (Propylene imine)- Polythiophene Star Copolymer Aptameric 1713-Estradiol Biosensor

    Thumbnail
    View/Open
    Iwuoha et al_Spectroelectrochemical Dynamics (735.7Kb)
    Date
    2011
    Author
    Iwuoha', Emmanuel
    Baker, Priscilla
    Njomo, Njagi
    Ikpo, Chinwe O.
    Baleg, Abd Almonam
    Ndangili, Peter M
    Olowu, Rasaq A.
    Type
    Article
    Language
    en
    Metadata
    Show full item record

    Abstract
    Aptamers, which are in vitro-selected functional oligonucleotides, have been employed to design novel aptasensor due to their inherent high selectivity and affinity compared to traditional biorecognition elements. This report presents a novel aptamer biosensor for determining the endocrine disrupting compound (EDC), 17~-estradiol (E2), which was constructed from a SELEX-synthesized 76-mer biotinylated aptamer for 17~-estradiol incorporated in a dendritic generation 1 poly(propylene imine)- poly thiophene (G 1PPT-co-PEDOT) star copolymer-functionalised Au electrode via biotin-avidin interaction. The sensor platform and aptasensor were interrogated with scanning electron microscopy (SEM), FTIR, electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and square wave voltammetry (SWV). The kinetic parameters of the sensor platform were determined by modelling the [Fe(CN)6r3/ - 4 (redox probe) Nyquist and Bode impedimetric spectra to the appropriate equivalent electrical circuit. The EIS spectra shows that at low frequencies (100 mHz) when the electronics of the electrode systems are only minimally perturb.ed.. the AuIG1PPT-co-PEDOT nanoelectrode exhibited greater semi-conductor behaviour (higher phase angle value) than AulG IPPT due to the incorporation of charged functionalized dendrimer. However, the Bode plot also shows that the charge transfer dynamics of the nanoelectrode can be frequency modulated. The biosensor response to 17 B-estradiol was based on the decrease in the SWV current as the EDC binds to the ssDNA aptamer on the biosensor. The dynamic linear range of the sensor was 0.1 - 100 nM. These initial studies also showed that the aptamer used in this study was very selective to, and reproducible for, 17 B-estradiol.
    URI
    http://erepository.uonbi.ac.ke:8080/xmlui/handle/123456789/41246
    Citation
    Int. .J Electrochem. Sci., 6 (2011) 1686 - 1708
    Publisher
    Department of Chemistry, University of the Western Cape, Bellville,
    Subject
    Functionalized dendrimer, conducting polymer, 17 B-estradiol (E2), star copolymer, SELEX, endocrine disrupting compound, DNA aptamer, electrochemical impedance spectroscopy,
    Collections
    • Faculty of Science & Technology (FST) [4284]

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback

     

     

    Useful Links
    UON HomeLibrary HomeKLISC

    Browse

    All of UoN Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback